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Abstract

We present the first two-round, two-party general function evaluation protocol that is secure against
honest-but-curious adaptive corruption of both parties. In addition, the protocol is incoercible for one of
the parties, and fully leakage tolerant. It requires a global (non-programmable) reference string and is
based on one way functions and general-purpose indistinguishability obfuscation with sub-exponential
security, as well as augmented non-committing encryption.

A Byzantine version of the protocol, obtained by applying the Canetti et al. [STOC 02] compiler,
achieves UC security with comparable efficiency parameters, but is no longer incoercible.

1 Introduction

Obtaining adaptive security, namely guaranteeing security against adversaries that decide who to corrupt in
an adaptive way depending on their view of the computation so far, has been a major challenge in secure
computation since its inception. Indeed, adaptive security provides a more realistic modeling of adversarial
behavior and party infection in modern communication networks. Furthermore, when combined with an
additional property called corruption oblivious simulation, adaptive security implies a strong variant of
leakage tolerance [BCH12], namely resilience to side channel attacks on the participating computational
devices.

Guaranteeing adaptive security turns out to be considerably more challenging than guaranteeing security in
the static setting where the set of corrupted parties is fixed in advance. As in the static setting, the security
guarantees become stronger when the adversary is allowed to corrupt more parties. Furthermore, while
in the static case the situation where all the parties are corrupted is trivial, in the adaptive case protecting
against adversaries that can eventually corrupt all parties is by far the hardest case. Note that withstanding
corruption of all parties is crucial for guaranteeing meaningful security of a protocol within a larger system
or context. Also, the transformation from adaptive security to leakage tolerance is most meaningful in this
case (namely, leakage from all parties). In particular:

• The best round complexity of a fully adaptively secure protocol (namely a protocol that does not rely
on secure erasure of information and that withstands adaptive corruption of all parties) is

∼
Ω (d), where
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d is the depth of the circuit being evaluated [BGW88, CFGN96, CLOS02]. (The works of [IPS08],
[GS12] obtain constant number of rounds; however they cannot support corruption of all parties.)
Furthermore, this is the best known round complexity even in the case of two party computation, even
for the honest but curious setting, and even in the common reference string model.

• No fully leakage-tolerant (hence also no non-erasing oblivious simulation adaptively secure) general
function evaluation protocol is known, with any number of rounds. Again, this holds even for honest-
but-curious corruptions and even for two party protocols. (The protocol of [BDL14] obtains leakage
tolerance in a setting with an initial, leakage free interactive set-up state.)

Our results. We present a two-message, two party secure function evaluation protocol that is secure
against adaptive honest-but-curious corruption of all parties — thereby resolving a long standing open prob-
lem in the theory of secure computation. Furthermore, the protocol has non-erasing oblivious simulation,
implying leakage tolerance. Security is based on subexponentially secure indistinguishabiliy obfuscation for
all circuits and one way functions, as well as augmened non-committing encryption as in [DN00, CLOS02].

The protocol requires a global, non-programmable reference string. In fact, this string needs to be available
to only one of the parties. (Specifically, the string contains an obfuscated program to be run by that party.)
We call this mild version of the reference string model the factory model, since it is reminiscent of a setting
where the obfuscated program is generated by a “trusted factory”.

The protocol is also incoercble [CDNO97, CG96, Can01] for one of the parties. That is, it provides one
of the parties with a mechanism to present “convincing evidence” that explains its outgoing messages as
resulting from any arbitrary input value (that may be different than the input value actually used). This
holds even when the “coercer” expects to see the full internal state of the party.

That is, we show:

Theorem 1. Assume existence of sub-exponentially secure indistinguishability obfuscators for all circuits
and one way functions, as well as augmented non-committing encryption. Then there exists a two-message,
two party protocol, in the factory model, for evaluating any function with UC security in the presence of
adaptive, honest-but-curious corruption of both parties. Furthremore:
(a) The protocol is leakage tolerant as in [BCH12].
(b) The protocol is incoercible with respect to one of the parties.

Compiling this protocol via the [GMW87, CLOS02] compiler, we obtain a constant-round, adaptively secure
UC protocol for Byzantine adversaries in the standard CRS model. While the protocol remains leakage
resilient, it is no longer incoercible.

The protocol and techniques. Before presenting the protocol, let us recall the definition of security.
Security requires existence of a simulator that has access only to the trusted party for the function, and still
emulates for the adversary (or, rather, the environment) an execution with the actual protocol. Since we are
in the honest but curious model, we can assume without loss of generality that the adversary first waits to
see the entire communication of the protocol to the end, and then corrupts all parties. The simulator should
first create a simulated public transcript of the computation given only the output value; then, when a party
is corrupted and the simulator learns the input of that party, the simulator should present the adversary with
the appropriate random choices of the party that are consistent with the party’s input and messages sent.
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Our starting point is Yao’s garbled circuit two party protocol, together with a two-message oblivious transfer.
Recall that the first message in the protocol is the first OT message from the evaluator to the garbler. The
second message, from the garbler to the evaluator, consists of the second OT message together with the
garbled circuit. The evaluator then outputs the result of the computation. (If both parties wish to learn the
output then they run another copy of the protocol in parallel, with reverse roles.)

When the OT is adaptively secure (as in, say, [CLOS02]) and the garbler’s message is encrypted using
non-commiting encryption, the protocol becomes adaptively secure with respect to the corruption of the
evaluator. That is, the simulator can indeed create the transcript of the communication ahead of time (this
is just ciphertexts of non-committing encryption) and when the evaluator is corrupted, provide the receiver
message for the adaptively secure OT protocol. Note however that here the simulator has to commit to the
garbled circuit, without knowing the garbler’s input.

Now, simulating the corruption of the garbler gets stuck: Here the environment expects to see the internal
randomness of the garbler, including the random choices used for the generation of the garbled circuit. This
we do not know how to do efficienty. In fact, in some cases such valid opening simply does not exist.

One may hope to get around this apparently inherent difficulty by obfuscating the program of the garbler.
That is, let the common reference string contain an obfuscated version of the garbler’s program. The garbler
will then run the obfuscated program on its input and random input and send the resulting message. The
hope is that now the random input will not leak additional information to the adverary.

This naive attempt does not work by itself, since the randomness for the protocol may well be correlated with
the internal randomness that’s not supposed to be leaked. We address this issue by applying a pseudorandom
function on the random and real inputs, and using the result as randomness to the protocol. In addition, to
make the simulation go through with only indistinguishability obfuscation we follow the lead of Sahai and
Waters [SW14] and use puncturable PRFs and an “explain” algorithm that allows the simulator to generate
randomness that “explains” any given outgoing message.

As simple as the protocol is, the proof of security is rather delicate. One subtle point that deserves highlight-
ing is the treatment of adaptivity in the choice of inputs. We first prove security in a model where the inputs
are “selective”: the environment determines the inputs to the computation before it sees the reference string
(namely the obfuscated programs). This is a rather weak security model. We then extend the analysis to
the setting where the environment chooses the inputs adaptively. Here is where we use the sub-exponential
security of the indistingushabiity obfuscator: the analysis here requires as many hybrids as the number of
potential inputs to the computaion. This number can be exponential. We note, however, that since the pa-
rameters of the obfucsation can be chosen to be larger than the size of the inputs to the computation, this
requires only sub-exponential security of the iO in use.

Finally we remark that the trust requirements from the reference string are relatively mild. First, it is non
programmable, in the sense that the simulator need not know any secret infromation related to the string.
Second, only one party needs to use the string (ie, the obfuscated program). Third, static security holds
even if the secrets associated with the reference string, namely the secrets of the obfuscation and the secret
keys, are exposed. We call this mild reference string model the factory model, since it essentially amounts
to having one of the parties run a program that was “obfuscated at the vendor’s factory”.

Organization. Section 2 sketches the models of computation and recalls the main results of this work.
Section 3 provides an overview of the construction. Section 4 provides a detailed presentation and analysis
of the main protocol.
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2 The models of computation

Adaptive corruptions. We consider the standard UC model of computation with adaptive, honest-but-
curious party corruption. The parties have access to a global set-up functionality (“the factory”) that is
described in more detail in the next section. That is, all parties, including the environment, have direct
access to this functionality.

Leakage tolerance. We consider the leakage tolerance model of [BCH12], which is aimed as capturing
protocols that are tolerant to arbitrary amount of leakage, and where the security loss is gradual with the
amount of leakage. More specifically, recall that here a protocol π computes a function f if no adversarial
environment can tell whether it is interacting with the parties running π, while obtaining some `-bit leakage
function of the individual internal states of the pariticipants, or aternatively with a simulator and an ideal
process for evaluating f , in which the simulator obtains some arbitrary `-bit function of each of the inputs
of the parties.

Recall further that, as shown there, if a protocol is shown to be adaptively secure with a corruption oblivious
simulator (defined below), then the protocol is leakage tolerant as there.

A simulator is corruption oblivious if the information it gathers upon corruption of a party, namely the
secret input (and potentially also the secret output) of that party, is used only to generate a simulated view
of the local state of that party. This information is not used anywhere else in the simulation. (Formally,
the simulator creates a special subroutine for simulating the internal state of that party. The newly learned
input of the corrupted party does not leave the confines of this subroutine.) It is shown in [BCH12] that if a
protocol is adaptively secure with a corruption oblivious simulator then it is also leakage tolerant.

Incoercibility. Incoercibility is aimed to protect the protocol participants from external authoritative (or
otherwise coercive) entities that try to entice a party to reveal its state voluntarily. The idea is to provide
parties with a “faking” algorithm that takes any desired fake value of, say, the secret input, and exhibits “fake
randomness” that appears to explain the past messages sent by the party with the fake input. Incoercible
comutation was defined in [CG96], where a generic construction from any deniable encryption scheme
[CDNO97] is given. However, the construction there has a lare number of rounds.

We consider the definition of coercion-free computation from [Can01, P. 59]. In that definition, the standard
definition of UC emulation remains unchanged, but the model of computation is modified so that the reaction
of a party to a corruption message by the adversary is to first ask the environment for a potential “fake input”
x′, which is potentially different than the actual input x that the party used so far. If such input is given,
then the party runs a special faking algorithm that’s specified in the protocol, obtains a fake value for its
own random input (or, equivalently, its own internal state), and forwards this value to the adversay. If no
fake input is given, then the party just reveals its real input and random input. (It is stressed that there is
only a single corruption operation, and it is up to the environment to decide whether to reveal the real state
or to employ a faking algorithm. Indeed, this modeling captures the requirement that the adversary cannot
distinguish between real openings and fake ones. (We note that the above definition is based on [CG96].
There, however, the underlying model does not admit a UC-like composition theorem. Furthermore, there,
both the adversary and the simulator know which parties are corrupted and which are coerced. Making this
distinction public renders that definition weak.)
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3 Protocol overview

Let’s first recall how the original Yao protocol looks like. Let’s say parties P0 and P1 have inputs x0 and
x1 and they want to evaluate y = C(x0, x1) for some circuit C. P0 generates a garbled circuit: that is, for
every wire of C P0 creates two random labels l0, l1, and a garbled circuit consists of 4 encryptions of output
label under input labels as keys, and the result table, which lists 0 and 1 labels for output gates.

P0 sends to P1 the garbled circuit together with the labels corresponding to P0’s input. Then for every P0’s
input bit P0 and P1 run OT protocol, after which P1 learns the keys corresponding to his input. At this point
P1 has all information he needs to evaluate the circuit: it has all input labels, and it keeps evaluating the
circuit gate by gate, until finally it learns output labels. Then it uses result table to learn the output.

As shown in [LP09], the original Yao protocol is statically secure, given augmented non-committing en-
cryption [DN00, CLOS02]. In particular, when P1 is corrupted, Simulator learns x1 and y and shows a fake
garbled circuit which always evaluates to y and is indistignuishable from the real garbled circuit. (It cannot
show the real garbled circuit since it doesn’t know x0.) Also the simulator shows labels corresponding to
P0’s and P1’s inputs. Here it is crucial that an adversary sees only one label per each input bit and therefore
cannot distinguish between a fake circuit and a real one.

The same simulation works in adaptive case with erasures: P0 should erase its internal state before sending
the second message. However, in the adaptive case without erasures this simulation fails: an adversary could
corrupt P0 after corrupting P1 and learning a fake garbled circuit. For every P1’s input bit, a simulator has
to show both labels since this labels were P0’s input in OT protocol. Now the adversary sees one label for
each one of P0’s input bits and both labels for P1’s input bit. This allows the adversary to detect that the
garbled circuit is not valid.

Indeed, consider a circuit that consists of just one AND gate. The simulator corrupts P1 and learns its input
x1 = 0 and y = 0. At this point the simulator still doesn’t know P0’s input, but it has to show the garbled
circuit, therefore it shows fake circuit where all four ciphertexts encrypt the same key l0, and it shows the
result table where l0 is decrypted to 0. Now the Simulator corrupts P0 and learns x0 = 1. It has to show
keys corresponding to both x1 = 0 and x1 = 1. This means that the adversary knows the keys for x0 = 1,
x1 = 0 and x1 = 1 and can evaluate the circuit on inputs (1, 1) and (1, 0). Since the circuit is just an AND
gate, the result should be different. However, since our garbled circuit contained the same key in all four
encryptions, an adversary trying to evaluate the circuit will get 0 in both cases and will detect cheating.

The problem is that an adversary learns too much at the moment of corruption: learning both keys for P1’s
input allows him to evaluate the circuit on many inputs and to check that the circuit is a fake. To avoid
this problem, we change the protocol such that P0 himself doesn’t know the keys for P1’s input. In order
to achieve this, we “glue together” the garbled circuit generation, the input labels generation and the OT
into one program P which outputs the next message function for the Yao protocol. This program will be
obfuscated by the factory. Now, P0 will run this program on his input and local randomness and send its
output to P1.

Naively one may hope that, since the program is obfuscated, P0 himself doesn’t know more than just inputs
he used and output it sent to P1 (in particular, it doesn’t know the keys for P1’s input). However, this is not
enough: it might be the case that the input itself reveals the keys (say, if the keys are just set to be some
substring of the random input). To deal with this problem, we don’t use the random input directy in the
protocol. instead, we first apply a pseudorandom function to the input and random input, and then use the

5



output of the pseudorandom function as the random input to the protocol.

The next set of challenges deals with making the above plan to work with an ofuscation mechanism that
only guarantees indistinguishability obfuscation. Here we follow the lead of Sahai and Waters [SW14] and
use similar constructs and techniques as there. Specifically, we use the technique of embedding “hidden
triggers” in the random input to the program P . If the program recognizes a hidden trigger then it just
outputs the value encrypted in that trigger. Else, the program used the randomness as in the Yao protocol.
We publish P together with a “faking” algorithm Explain that allows anyone to generate hidden triggers of
one’s choice. This addition has a twofold effect: For one it provides for incoercibility for the garbler. In
addition it also simplifies the proof of security.

Throughout, and following [SW14], we employ constrained, or puncturable pseudorandom functions [GGM86,
BGI13, BW13], which enables applying indistinguishability obfuscation to pseudorandom function in a
meaningful way.

We describe and analyze the scheme in a simple setting where the parties have secure communication chan-
nels, and with only honest but curious corruptions. Once we have such a protocol, we can implement
secure channels using non-committing encryption. We can also deal with Byzantine corruptions by forcing
semi-honest behavior.

We also assume without loss of generality that only the evaluator learns the output. If both parties need
to obtain outputs from the computation then they can run the same protocol twice, on the same inputs but
with reverse roles. (Alternatively, at the cost of adding a message to the protocol, the evaluator can send the
function value to the garbler.)

Implementing secure channels. As we will see later, only the second message in our protocol should be sent
over a secure channel. This means that P1 can send EKNCE in the first message, and the protocol still
remains two-round after implementing secure channels.

Corruption obliviousness and leakage resilience. The naive protocol, described above, does not naturally
lend to corruption-oblivious simulation. Indeed, to simulate the corruption of the garbler, the simulator
needs to come up with a second message, namely a garbled circuit, that outputs the correct output of the
computation. This needs to be done without knowing the input or output of the evaluator, and only using the
input of the garbler. Furthermore, when the evaluator is corrupted, the simulator needs to come up with the
same garbled circuit, without knowing the input of the garbler. This is not known to be possible in general.
We get around this issue by making a simple modification to the protocol: Instead of evaluating f(x0, x1),
the parties will use the above protocol to evaluate f ′(x0, (x1, z)) = f(x0, x1) ⊕ z. The evaluator, P1, will
choose z at random, and after obtaining the output value y, it will set its output to be y ⊕ z.

With this modification in place, the simulator can set the output of the garbled circuit to be a random value
fixed in advance and then deal with the corruption of the parties in an oblivious way.

Incoercibility. We provide incoercibility for the garbler. This is done in a straighforward way: Since the
explain procedure is public, a coerced garbler can demonstrate random input that exaplains any input value
of its choice, in the same way as in [SW14].

Handling Byzantine corruptions. Here we use the generic transformation of [CLOS02] (based on [GMW87])
that transforms a protocol that is secure against adaptive honest but curious corruptions into a protocol that
is secure against adaptive Byzantine corruptions.
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4 Detailed description and analysis

Preliminaries. In our construction we use the following primitives. The reader is referred to the papers
cited for detailed definitions.

1. Indistinguishability obfuscation iO for polynomial-cize circuits, as defined, constructed and used in
[BGI+01, GR14, GGH+13, SW14].

2. augmented non-committing encryption scheme Enc ([DN00, CLOS02]). We denote its generation,
oblivious generation and inverting algorithms as Enc.Gen, Enc.oGen and Enc.Inv.

3. Puncturable PRFs which are additionally extracting or injective [BGI13, BW13, SW14].

4. The garbled circuit generation algorithm Gen together with an algorithm SimGen for generating fake
garbled circuit from [LP09].

Deterministic single-party-output functionalities. First, we recall that it suffices to be able to compute
deterministic functionalities: indeed, there exists a standard reduction of any randomized functionality to a
deterministic one, given by fdet((x0, r0), (x1, r1)) = frand(x0, x1; r0⊕r1). Second, it is enough to compute
functionalities where only one party gets the output (and the other party gets nothing): parties can run in
parallel two instances of the protocol with the same input, where in the first execution only the first party
generates output and in the second execution only the second party generates output.

In our protocol P0 is the garbler and P1 is the evaluator for the Yao protocol. The natural thing to do would
be to create a garbled circuit for the functionality they want to compute (−; f(x0, x1)). However, in this
case the simulation is not corruption-oblivious.1 We therefore slightly modify a protocol: P1 first generates
random z, and P0 generates a garbled circuit for the function f ′(x0, (x1, z)) = f(x0, x1)⊕ z. As we’ll see,
this will suffice for making the simulation corruption-oblivious.

Oblivious transfer. We use the following one out of two OT protocol, based on [EGL85]: assume P0

has k0, k1 and P1 has a bit b; we want P1 to learn kb. First, P1 generates keys (EKb, DKb) and EK1−b
without corresponding decryption key (this encryption scheme, in addition to normal key generation, should
have oblivious key generation algorithm which outputs encryption keys without corresponding decryption
keys, in such a way that this encryption keys are indistinguishable from normal encryption keys. For this we
use augmented non-committing encryption). P1 sends EK0, EK1 to P0. P0 sends back encryptions c0 =
Enc(EK0; k0) and c1 = Enc(EK1; k1). Since P1 hasDKb, he can decrypt kb = Dec(DKb; cb). However,
since there is no DK1−b generated , the second value k1−b remains unknown to P1. Following [CLOS02],
we make the OT adaptively secure by using non-committing encryption for the encryption scheme.

With this implementation of OT, the Yao protocol consists of the following two messages:

1. First, P1 generates two sets of encryption keys PK0, PK1 and one set of decryption keys SKx1 (such
that for every input bit xi1 P1 only knows DKi

xi). P1 sends PK0, PK1 to P0.

1Indeed, for the simulation to be corruption-oblivious, the subroutine for generating P1’s internal state should be able to create
a fake garbled circuit without knowing x0. At the same time, the subroutine for creating P0 internal state should be able to create
(the same) fake garbled circuit without knowing the output y. It is not clear how to do that for the above “natural” garbling method.
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2. P0 generates a garbled circuit GC and sends to P1 GC, keys for P0’s input bits, and keys for all
possible P1’s input bits encrypted under PK0, PK1 (we will call this a Yao message). P1 decrypts
the keys corresponding to its input, and, since it has GC and all input labels, it evaluates the circuit
gate by gate.

Protocol description. We have parties P0, P1 with inputs x0, x1 respectively. The protocol for allowing
P1 to learn the value f(x0, x1) for some function f is described in Figure 1. The referece string consists of
programs P and Explain, described in Figures 2 and 3. The circuit C that prorgam P evaluates will be the
circuit that computes the function f ′(x0, (x1, z)) = f(x0, x1) ⊕ z. (The value z will be chosen by P1 at
random as part of the protocol.)

The protocol consists of two rounds. In round one, P1 (the evaluator) chooses randomness s and z and sets
x′1 = (x1, z) to be its new input. It samples secret and public keys for oblivious transfer using s (public
keys which do not correspond to P1’s input are sampled obliviously). P1 sends all public keys to P0. In
the second round P0 chooses its randomness r and runs a program P on its input x0, randomness r and a
set of public keys from P1. The program P internally generates new randomness u and runs the underlying
subroutine Gen to generate a Yao message, which becomes the program output. P0 sends this message to
P1. P1 gets the labels for x0, decrypts the labels for x1 and evaluates the circuit, obtaining f(x0, x1) ⊕ z.
Then P1 xor’s the result with z and gets the output f(x0, x1).

The program Explain is not used in the protocol directly. However, it is used in the case when parties want
to deny their inputs, as well as in the proof.

The Protocol:
1. P1 chooses random z and sets x′1 ← (x1, z). Then it chooses random s and generates PKx′1

, SKx′1
←

Enc.Gen(s[0]) and PK1−x′1 ← Enc.oGen(s[1]). It sets α∗ ← PK0, PK1 and sends α∗ to P0.
2. P0 chooses random r∗, runs β∗ ← P (x0, α

∗; r∗) and sends β∗

3. P1 evaluates the garbled circuit taken from β∗, using the labels and output table from β∗, and outputs
the result xor’ed with z.

Figure 1: Protocol description

The choice of parameters. Since we use different types of PRFs (in particular, extracting PRFs and
injective PRFs) in the construction, we must ensure that the lengths of all values fit the requirements for
these PRFs. Indeed, as shown in [SW14], there exist:

• injective puncturable PRFs which map n(λ) bits to m(λ) bits where injectivity holds with probability
1− 2−e(λ) (over the choice of a key), as long as m(λ) ≥ 2n(λ) + e(λ);

• extracting puncturable PRFs which map n(λ) bits to m(λ) bits for distribution X with min-entropy
k(λ) with statistical distance between (k, Fk(X)) and (k, Um) at most 2−e(λ), as long as n(λ) ≥
k(λ) ≥ m(λ) + 2e(λ) + 2.

Let’s recall how we use these PRFs in the computation. Let’s denote the lengths of a Yao message β and
randomness used to create it u as |β| and |u|; also we denote the length ofM (the hidden value prepared by a
simulator and encoded inside randomness) as |M |. All these lengths are polynomial in security parameter as
well as a circuit size and inputs length. We have to choose randomness length to guarantee that both injective

8



Program P
inputs: P0’s input x, P1’s 1-round message α, randomness r = r[1]r[2]
P (x, α; r) :

1. check if r has encoded value inside:
(a) M ′ ← Fk3(r[2])⊕ r[1]; if Fk2(M ′) 6= r[2] then goto 2;
(b) parse M ′ as β′, x′, α′, ρ̂′. If (x′, α′) 6= (x, α) then goto 2;
(c) output β′

2. else run Gen:
(a) u← Fk1(x, α, r)
(b) output Gen(x, α;u)

Program Gen.
Constants: circuit C with m wires and s output wires; let’s assume that first 2n wires are input wires and
last s wires are output wires
Input: P0’s input x0; P1’s two sets of public keys PK0, PK1; randomness u
Gen(x0, PK;u):

1. (k01, k
1
1), . . . , (k0m, k

1
m)← u1 (labels for wires)

2. for every gate t in C (this is for "and" gate):
GCt[0, 0]← SEnck0i

(SEnck0j
(k0l ;u2);u3)

GCt[0, 1]← SEnck0i
(SEnck1j

(k0l ;u2);u3)

GCt[1, 0]← SEnck1i
(SEnck0j

(k0l ;u2);u3)

GCt[1, 1]← SEnck1i
(SEnck1j

(k1l ;u2);u3)

shuffle GCt[0, 0], GCt[1, 0], GCt[0, 1], GCt[1, 1]
(garbled circuit - 4 encryptions per gate)

3. for all i = 1..n (c0i , c
1
i )← (EncPKi

0
(k0n+i;u4), EncPKi

1
(k1n+i;u4)) (labels for P1’s input)

4. output:
(a) GCi[0, 0], GCi[0, 1], GCi[1, 0], GCi[1, 1] for i = 1..m (garbled circuit)
(b) (0 : k0m−s+1; 1 : k1m−s+1), . . . , (0 : k0m; 1 : k1m) (the result table)

(c) kx
1
0

1 , . . . , k
xn0
n (labels for P0’s input)

(d) (c01, c
1
1) . . . , (c

0
n, c

1
n) (encrypted labels for P1’s input)

Figure 2: Program P is used by P0 to generated the second protocol message. It calls Gen as a subroutine;
Gen is a program which outputs a Yao message: that is, a garbled circuit, labels for P0’s input and encrypted
labels for all possible P1’s inputs.

Program Explain
inputs: message m which should be encoded; randomness ρ
P (m; ρ) :

1. M ← m, prg(ρ)
2. r[2]← Fk2(M), r[1]← Fk3(r[2])⊕M
3. output r = r[1]r[2]

Figure 3: Program Explain.
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and extracting PRFs exist. Recall that randomness r (denoted as er in simulated case) consists of two parts
r[1] and r[2]. Note that the way er[1], the first part of randomness, is generated (er[1] ← Fk3(er2) ⊕M )
implies that its length is exactly |M |.

1. Fk2 should be an injective PRF with negligible failure. It takes as input M and outputs er[2]. Thus, it
should be the case that |er[2]| ≥ 2|M |+ λ.

2. Fk1 should be an extracting PRF with negligible distance. It takes as input (x0, PK, r[1]r[2]) and
outputs u. We are going to use extracting property when r = r[1]r[2] is chosen at random, and min-
entropy of input is at least |r| = |r[1]|+ |r[2]|. Thus, it should be the case that |x0|+ |PK|+ |r[1]|+
|r[2]| ≥ |r[1]|+ |r[2]| ≥ |u|+ 2λ+ 2.

Once a security parameter and a circuit are fixed, all values above are also fixed except |r[2]|. Note that by
choosing |r[2]| large enough (but still polynomial in the security parameter), we can satisfy both inequalities.
We show:

Theorem 2. Let:

• SEnc be CPA-secure symmetric key encryption scheme with an elusive efficiently verifiable range
([LP09])

• Enc be an augmented non-committing encryption scheme

• Fk1 be extracting puncturable PRF

• Fk2 be injective puncturable PRF

• Fk3 be puncturable PRF

• PRG be an input-doubling PRG

• iO be indistinguishability obfuscator

then the protocol is adaptively secure in presence of semi-honest adversaries assuming existence of secure
channels in the factory model. Futhermore, it is secure with oblivious simulation.

Proof. The outline of the proof is the following. First, we give a description of our simulator. Then we
prove that no enviroment can distinguish between a real execution and a simulation. We do this in two steps.
In step one we deal with the case of non-adaptively chosen inputs; that is, the enviroment first chooses
parties’ inputs and only then sees a CRS. In order to show indistinguishability in non-adaptive case, we
consider an intermidiate middle hybrid where all protocol messages are generated as in a real execution, but
the randomness is explained. In two lemmas we prove that this middle hybrid is indistinguishable from both
real execution and simulation. In step two we consider the case of adaptive inputs choice, thus proving the
theorem statement.

Simplifying assumptions. In our honest-but-curious setting we can assume that corruptions happen after
the protocol execution and that both parties are corrupted. Since our simulator, as we see later, is corruption-
oblivious (information learned in one party corruption is not used in the other party corruption), we don’t
need to think about different order of corrupting parties. Also we assume secure channels, therefore our
simulator has to show the protocol transcript only after one of the parties is corrupted.

10



In our proofs of lemmas instead of having an interactive game with the adversary we just run an experiment
and show to the adversary the resulting distribution, asking it to guess which hybrid it sees. Indeed, by
itself the security definition is interactive: an enviroment first sees a CRS and then outputs inputs; after
this, it sees protocol messages. Then it can send corruption requests and get back parties’ internal states.
Given this information, the adversary chooses which hybrid it sees. However, in the case of non-adaptively
chosen inputs, we can use a non-interactive security definition: the inputs are fixed in advance, therefore
we can send a CRS later with other values the adversary should see. Next, we assumed that all parties are
corrupted, and therefore the adversary doesn’t need to send corruption requests; the simulator will send it
all parties’ internal states itself. Therefore, instead of playing an interactive game with the adversary, in
our security definitions the simulator generates all protocol information (a CRS, protocol messages, parties’
internal states) and sends it to the adversary, who should distinguish between hybrids.

Description of the simulator. Our simulator is described in Figure 4. It generates its state s (to create
P1’s keys for encryption scheme), sCRS to sample all necessary keys and randomness needed to create a
CRS, sGS , randomness used to create a fake garbled circuit, and sy, a random value which is the result of
z ⊕ y in a real execution.

The simulator generates a CRS (programs P,Explain) using sCRS . Since we assume secure channels, it
doesn’t need to show a transcript at this point yet.

Upon corruption of a party Pi, the simulator calls its subroutine SimPi(s, sCRS , sGS , sy) to simulate Pi’s in-
ternal state. Each subroutine has to show randomness used by a party and the communication it sees. SimPi

first generates a CRS, secret and public keys for P1 and sets α∗ to be P1’s public keys (note that since all three
programs (Sim, SimP0 and SimP1) use the same state to generate values, they get the same result). Then
it generates a fake garbled circuit and encryptions for OT β∗ ← SimGen(sy, α

∗; sCS). The next step de-
pends on the party. A simulator for P0 computes explained randomness er∗ ← Explain((β∗;x0, PK; ρ∗)
for randomly chosen ρ∗ and shows er∗ (internal state) and α∗ (communication). A simulator for P1 sets its
randomness z to be consistent with the garbled circuit output and the protocol output (that is, z = y ⊕ sy)
and then, using an invertion algorithm, creates randomness es∗, which produces obliviously sampled keys
PK1−x1 . The simulator shows es∗ and z as P1’s internal state and β∗ as the communication seen.

Note that to simulate a party during corruption, the simulator doesn’t use internal information of the other
party; only this party’s input/output is used, together with randomness swhich acts as a state of the simulator.
Therefore this simulator is corruption oblivious.

Step one - non-adaptive inputs case. In the following two lemmas, we prove that real and simulated
experiments are indistinguishable. To achieve this we consider a middle hybrid where all protocol messages
are generated honestly like in a real execution, but the randomness shown to the adversary is explained. In
the first lemma we show that this middle hybrid is indistinguishable from simulation; indistinguishability
between the middle hybrid and a real execution is shown in lemma 2. In both proofs we first give an overview
of hybrids, and then present a detailed description with reductions.

Our notations. To denote the first and the second part of randomness, we write r[1] and r[2]. By PK we
denote a set of public keys for each possible input bit of P1’s input; PK0 and PK1 mean sets of public keys
for input bits 0 and input bits 1. By PKx1 we mean the set of public keys corresponding to P1’s input, that
is, PKx1 = (PK1

x11
, . . . , PKn

xn1
). By PK1−x1 we mean the opposite set of public keys.
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The simulation:
1. Obtain the public programs P,Explain
2. Choose randomness for simulation s = (sGC , sy)
3. upon corruption of P0: output SimP0(sGC , sy)
4. upon corruption of P1: output SimP1(sGC , sy)

SimP0(sCRS , sGC , sy)
1. learn x0
2. generate PK0, SK0, PK1, SK1 ← Enc.Gen(s); set α∗ ← PK0, PK1

3. set β∗ ← SimGen(sy, PK; sGC)
4. choose random ρ∗ and set er∗ ← Explain(β∗;x0, PK; ρ∗)
5. output (er∗, α∗)

SimP1(sGC , sy)
1. learn x1, y
2. generate PK0, SK0, PK1, SK1 ← Enc.Gen(s)
3. set β∗ ← SimGen(sy, PK; sGC)
4. set z ← sy ⊕ y, x′1 ← (x1, z)
5. set es∗ ← Enc.Inv(s, x′1)
6. output (es∗, z;β∗)

Figure 4: Simulation

Program SimGen.

Constants: circuit C with m wires and s output wires; let’s assume that first 2n wires are input wires and
last s wires are output wires
Input: the output y; P1’s two sets of public keys PK0, PK1; randomness u
Gen(y, PK;u):

1. (k01, k
1
1), . . . , (k0m, k

1
m)← u1 (labels for wires)

2. for every gate t in C encrypt the same label:
GCt[0, 0]← SEnck0i

(SEnck0j
(k0l ;u2);u3)

GCt[0, 1]← SEnck0i
(SEnck1j

(k0l ;u2);u3)

GCt[1, 0]← SEnck1i
(SEnck0j

(k0l ;u2);u3)

GCt[1, 1]← SEnck1i
(SEnck1j

(k0l ;u2);u3)

shuffle GCt[0, 0], GCt[1, 0], GCt[0, 1], GCt[1, 1]
(garbled circuit - 4 encryptions per gate)

3. for all i = 1..n (c0i , c
1
i )← (Enc

PKi,0
1

(k0n+i;u4), EncPKi,1
1

(k1n+i;u4)) (labels for P1’s input)
4. output:

(a) GCi[0, 0], GCi[0, 1], GCi[1, 0], GCi[1, 1] for i = 1..m (garbled circuit)
(b) (y0 : k0m−s+1; 1− y0 : k1m−s+1), . . . , (ym : k0m; 1− ym : k1m) (result table)

(c) kx
1
0

1 , . . . , k
xn0
n (labels for P0’s input)

(d) (c01, c
1
1) . . . , (c

0
n, c

1
n) (encrypted labels for P1’s input)

Figure 5: Program SimGen
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We mark the values obtained in the experiment with a star to distinguish these values from variables in
programs. We denote the first round message (P1’s public keys) as α∗ and the second round message (a
garbled circuit, an output table, labels for P0’s input, encrypted labels for all possible P1’s inputs) as β∗.

Lemma 1. The results of the following two experiments are indistinguishable:

Experiment Simulation:

1. choose randomness s, sCRS , sGS , sy. Set z = y ⊕ sy. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PK0, PK1, SK0, SK1 ← PKE.Gen(s). Set α∗ ← PK0, PK1

4. run β∗ ← SimGen(sy, α
∗; sGS)

5. choose ρ∗ at random

6. er∗ ← Explain(β∗;x0, α
∗; ρ∗), es∗ ← Enc.Inv(s, x′1)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (es∗, z), programs (P,Explain).

and

Experiment Middle:

1. choose randomness s, sCRS , sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random r∗

5. run β∗ ← P (x0, α
∗; r∗)

6. choose ρ∗ at random

7. er∗ ← Explain(β∗;x0, α
∗; ρ∗)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (s, z), programs (P,Explain).

Proof. We show indistinguishability using several hybrids as described below:

1. H0 = Simulation

2. H1: like a simulation, but OT public keys PK1−x1 (which do not correspond to P1’s input) are
sampled obliviously

3. H2: like a simulation, but β∗ is chosen as a result of Gen(x0;α
∗;u∗) for some random u∗; previously

β∗ was the result of SimGen. Based on indistinguishbility between a fake and a real garbled circuit.
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4. H3: Like H1, but u∗ is chosen as Fk1(x0, α
∗, r∗) for random r∗; previously it was chosen at random.

Based on extracting property of Fk1

5. H4 = Middle: Like H2, but β∗ ← P (x0, α
∗; r∗) (which means that now first check 1 is performed on

randomness r∗ before generating the output). Based on the fact that r∗ is random and for a random
value this check passes with negligible probability.

H1.

1. choose randomness s, sCRS , sGS , sy. Set z = y ⊕ sy. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. run β∗ ← SimGen(sy, α
∗; sGS)

5. choose ρ∗ at random

6. er∗ ← Explain(β∗;x0, α
∗; ρ∗)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (s, z), programs (P,Explain).

In this hybrid we generate public keys for OT which do not correspond to P1’ input obliviously and show
to the adversary the real randomness s which was used to generate these keys. Indistinguishability holds
because of the property of augmented non-committing encryption: no adversary can distinguish between
a real randomness used for oblivious key generation and a randomness obtained as a result of inverting
algorithm.

H2.

1. choose randomness s, sCRS , sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random u∗

5. run β∗ ← Gen(x0, α
∗;u∗)

6. choose ρ∗ at random

7. er∗ ← Explain(β∗;x0, α
∗; ρ∗)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (s, z), programs (P,Explain).

In this hybrid we changed the way β∗ is generated. Previously it contained a fake garbled circuit which
always evaluates to sy, now it contains a real garbled circuit. Indistinguishability is based on indistinguisha-
bility between a fake garbled circuit and a real one, as shown in [LP09].
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H3.

1. choose randomness s, sCRS,sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random r∗. Set u∗ ← Fk1(x0, α
∗, r∗)

5. run β∗ ← Gen(x0, α
∗;u∗)

6. choose ρ∗ at random

7. er∗ ← Explain(β∗;x0, α
∗; ρ∗)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (s, z), programs (P,Explain).

In this hybrid we choose u∗ as u∗ ← Fk1(x0, α
∗, r∗), instead of choosing it at random. Indistinguishability

holds because of extracting property of Fk1 . Indeed, since min-entropy of the PRF input is at least |r∗|, then
by our choice of parameters the output of this PRF is indistinguishable from random. We can reduce these
hybrids to an extracting prf game as follows: given k1 and random w or w = Fk1(x0, α

∗, r∗) for random r∗,
we choose other keys and obfuscate programs, and then compute other variables using u∗ = w. Depending
on whether w is random or not, we are either in H1 or in H2.

H4 (Middle).

1. choose randomness s, sCRS,sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random r∗. Set u∗ ← Fk1(x0, α
∗, r∗)

5. run β∗ ← Gen(x0, α
∗;u∗)

6. choose ρ∗ at random

7. er∗ ← Explain(β∗;x0, α
∗; ρ∗)

An adversary sees protocol transcript (α∗, β∗), internal states er∗ and (s, z), programs (P,Explain).

In this hybrid we generate β∗ as a result of a program P . In other words, before computing u∗ we perform
check 1 in P . Since for randomly chosen r∗ this check passes with negligible probability, hybrids are
statistically close to each other.

Thus lemma 1 is proved.
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Lemma 2. No PPT adversary can distinguish between the following two distributions:

Experiment Middle:

1. choose randomness s, sCRS , sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random r∗

5. run β∗ ← P (x0, α
∗; r∗)

6. choose ρ∗ at random

7. er∗ ← Explain(β∗;x0, α
∗; ρ∗)

An adversary sees (α∗, β∗, er∗, s, z), programs (P,Explain).

Experiment Real:

1. choose randomness s, sCRS , sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random r∗

5. run β∗ ← P (x0, α
∗; r∗)

An adversary sees (α∗, β∗, r∗, s, z), programs (P,Explain).

Proof. The lemma states that the view of an adversary in the real execution is indistinguishable from its
view in the experiment when instead of real randomness, explained randomness is shown (which we called
a middle experiment). To prove the lemma statement, we consider a sequence of hybrids Real = H0

0 ∼
. . . ∼ H0

6 ∼ H1
6 ∼ . . . ∼ H1

0 = Middle. For b = 0, 1 we will show that Hb
0 is indistinguishable from Hb

6.
After this, we show that H0

6 and H1
6 are indistinguishable as well. This proves that a middle hybrid and a

real execution are indistinguishable.

Hybrids overview:

1. In H1b we skip check 1 in the program P and directly compute u∗ ← Fk1(x0, α
∗; r∗), β∗ ←

Gen(x0, α
∗;u∗). Since r∗ is random, the check passes with negligible probability.

2. In H2b, instead of computing ρ̂∗ ← prg(ρ∗) (and then evaluating er∗ using this ρ̂∗), we choose ρ̂∗ at
random. Indistinguishability is based on security of a PRG.

3. In H3b we show punctured programs P : 1 and Explain : 1 instead of original ones. We prove that
new programs have the same functionality and rely the indistinguishability on the security of iO.
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4. In H4b we choose u∗ at random instead of Fk1(x∗0, α
∗; r∗). Based on punctured PRF Fk1

5. In H5b we choose er∗[2] at random instead of Fk2(β∗;x0, α
∗; ρ̂∗). Based on punctured PRF Fk2

6. In H6b we choose er∗[1] at random instead of Fk3(er∗[2]) ⊕ (β∗;x0, α
∗; ρ̂∗). Based on punctured

PRF Fk3

H0b

1. choose randomness s, sCRS , sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random r∗

5. run β∗ ← P (x0, α
∗; r∗)

6. choose ρ∗ at random

7. er∗ ← Explain(β∗;x0, α
∗; ρ∗)

If b = 0, an adversary sees (α∗, β∗, r∗, s, z), programs (P,Explain). If b = 1, an adversary sees
(α∗, β∗, er∗, s, z), programs (P,Explain).

H1b

1. choose randomness s, sCRS , sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random r∗, u∗ ← Fk1(x0, α
∗; r∗),

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ∗ at random

7. er∗ ← Explain(β∗;x0, α
∗; ρ∗)

If b = 0, an adversary sees (α∗, β∗, r∗, s, z), programs (P,Explain). If b = 1, an adversary sees
(α∗, β∗, er∗, s, z), programs (P,Explain).

In this hybrid we omit check 1 in the program P while computing β∗. Since for randomly chosen r∗ the
check passes with negligible probability, hybrids are statistically close.

H2b

1. choose randomness s, sCRS , sGS , sy. Choose random z. Set x′1 ← (x1, z)
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2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random r∗, u∗ ← Fk1(x0, α
∗; r∗),

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ̂∗ at random

7. set M∗ ← β∗;x0, α
∗; ρ̂∗

8. er∗[2]← Fk2(M∗)

9. er∗[1]← Fk3(er∗[2])⊕M∗

If b = 0, an adversary sees (α∗, β∗, r∗, s, z), programs (P,Explain). If b = 1, an adversary sees
(α∗, β∗, er∗, s, z), programs (P,Explain).

In this hybrid we use randomly chosen ρ̂∗ instead of the result of applying a PRG to ρ∗ while generating
er∗. Indistinguishability of hybrids immediately follows from the security of a PRG.

H3b

1. choose randomness s, sCRS , sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random r∗, u∗ ← Fk1(x0, α
∗; r∗),

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ̂∗ at random

7. set M∗ ← β∗;x0, α
∗; ρ̂∗

8. er∗[2]← Fk2(M∗)

9. er∗[1]← Fk3(er∗[2])⊕M∗

If b = 0, an adversary sees (α∗, β∗, r∗, s, z), programs (P : 1, Explain : 1). If b = 1, an adversary sees
(α∗, β∗, er∗, s, z), programs (P : 1, Explain : 1).

In this hybrid we show punctured programs P : 1 and Explain : 1 instead of their normal versions. We
rely the indistinguishability on iO security: modified programs have the same functionality as original ones,
as proven in [SW14] in their proof for deniable encryption scheme (with a natural modification of the input
from their input m, r to our input (x0, PK, r)). However, for the sake of self-containment we briefly sketch
it here:
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Program P:1

inputs: protocol input x, 1-round message α, randomness r = r[1]r[2]
P (x, α; r) :

1. check if r has encoded value inside:
(a) if (x, α, r) = (x0, α

∗, r∗) or (x, α, r) = (x0, α
∗, er∗) then output β∗

(b) if r[2] = r∗[2] or r[2] = er∗[2] then goto 2
(c) M ′ ← Fk3{r∗[2],er∗[2]}(r[2])⊕ r[1];
(d) if M ′ = M∗ then goto 2;
(e) if Fk2{M∗}(M

′) 6= r[2] then goto 2;
(f) parse M ′ as β′, x′, α′, ρ̂′. If (x′, α′) 6= (x, α) then goto 2;
(g) output β′

2. else run Gen:
(a) u← Fk1{(x0,α∗,r∗),(x0,α∗,er∗)}(x, α, r)
(b) output Gen(x, α;u)

Figure 6: Program P:1.

Program P:

1. we add a line "if (x, α, r) = (x0, α
∗, r∗) or (x, α, r) = (x0, α

∗, er∗) then output β∗", this is exactly
what the original program outputs on these inputs.

2. add "if r[2] = r∗[2] or r[2] = er∗[2] then goto 2". If r[2] = r∗[2], then the check in part one
will not pass since a random r∗[2] with high probability is outside the image of Fk2 , so we can go
to part 2. If r[2] = er∗[2], then either the check doesn’t pass and we can go to part 2, or, if it
passes, then the encoded message M ′ = M∗ (due to injectivity of F2), and therefore r[1] = er∗[1],
(x′, α′) = (x0, α

∗), which would be detected in the first added line in P:1.

3. now Fk3 is never called on r∗[2] or er∗[2], therefore we can safely puncture at these points.

4. add " if M ′ = M∗ then goto 2". If M ′ = M∗ and the check passes, then r[2] = er∗[2], r[1] = er∗[1],
and this would be detected in the first line in P:1.

5. now Fk2 will not be called on M∗, and we can puncture at this point.

6. we can puncture Fk1{(x0,α∗,r∗),(x0,α∗,er∗)}, since these inputs are treated in the first line of P:1.

Program Explain:

1. we puncture k2 at M∗, since ρ̂∗ (which is a part of M∗) is generated at random (instead of prg(ρ∗))
and with high probability is outside the image of a PRG; therefore no input results in M = M∗ in
Explain.

2. we puncture k3 at both points r∗[2] and er∗[2]. Since r∗[2] is randomly chosen, with high probability it
is outside the image of a PRF Fk2 , therefore no input for Explain results in r[2] = r∗[2] and therefore
Fk3 is never called on r∗[2]. Futhermore, as we said no input for Explain results in M = M∗, and
due to Fk2 injectivity no input for Explain results in er∗[2] = Fk2(M∗), which means that Fk3 is not
called on er∗[2] as well.

H4b
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Program Explain:1

inputs: message m which should be encoded; randomness ρ
P (m; ρ) :

1. M ← m, prg(ρ)
2. r[2]← Fk2{M∗}(M), r[1]← Fk3{r∗[2],er∗[2]}(r[2])⊕M
3. output r = r[1]r[2]

Figure 7: Program Explain:1.

1. choose randomness s, sCRS , sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random u∗

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ̂∗ at random

7. set M∗ ← β∗;x0, α
∗; ρ̂∗

8. er∗[2]← Fk2(M∗)

9. er∗[1]← Fk3(er∗[2])⊕M∗

If b = 0, an adversary sees (α∗, β∗, r∗, s, z), programs (P : 1, Explain : 1). If b = 1, an adversary sees
(α∗, β∗, er∗, s, z), programs (P : 1, Explain : 1).

In this hybrid we choose u∗ at random instead of choosing it as Fk1(xk, α
∗
1−k, r

∗). Security follows from
pseudorandomness of a puncturable PRF. Indeed, given a punctured key Fk1{(xk,α∗1−k,r

∗)} and w, which
is random or Fk1(xk, α

∗
1−k, r

∗), we choose other keys ourselves and create programs. Then we evaluate
variables in the experiment setting u∗ = w and showing the resulting destribution to the adversary. If w was
random, then the adversary sees Hb

3, otherwise Hb
2.

H5b

1. choose randomness s, sCRS , sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random u∗

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ̂∗ at random
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7. set M∗ ← β∗;x0, α
∗; ρ̂∗

8. choose random er∗[2]

9. er∗[1]← Fk3(er∗[2])⊕M∗

If b = 0, an adversary sees (α∗, β∗, r∗, s, z), programs (P : 1, Explain : 1). If b = 1, an adversary sees
(α∗, β∗, er∗, s, z), programs (P : 1, Explain : 1).

In this hybrid we choose er∗[2] at random instead of choosing it as Fk2(M∗). Security follows from pseu-
dorandomness of a puncturable PRF. Indeed, given a punctured key Fk2{M∗} and w, which is random or
Fk2(M∗), we choose other keys ourselves and create programs. Then we evaluate variables in the experi-
ment setting er∗[2] = w and showing the resulting destribution to the adversary. If w was random, then the
adversary sees Hb

5, otherwise Hb
4.

H6b

1. choose randomness s, sCRS , sGS , sy. Choose random z. Set x′1 ← (x1, z)

2. generate a CRS: prf keys k1, k2, k3, Gen internal keys and choose randomness for obfuscation xP , xExpl
using sCRS . Create obfuscated programsP ← O(Pk1,k2,k3 ;Gen;x), Explain← O(Explaink2,k3 ;xExpl).

3. sample P0’s keys PKx′1
, SKx′1

← PKE.Gen(s[0]), PK1−x′1 ← PKE.oGen(s[1]). Set α∗ ←
PK0, PK1

4. choose random u∗

5. β∗ ← Gen(x0, α
∗;u∗).

6. choose ρ̂∗ at random

7. set M∗ ← β∗;x0, α
∗; ρ̂∗

8. choose random er∗[2]

9. choose random er∗[1]

If b = 0, an adversary sees (α∗, β∗, r∗, s, z), programs (P : 1, Explain : 1). If b = 1, an adversary sees
(α∗, β∗, er∗, s, z), programs (P : 1, Explain : 1).

In this hybrid we choose er∗[1] at random instead of choosing it as Fk3(er∗[2]) ⊕ M . Security follows
from pseudorandomness of a puncturable PRF. Indeed, given a punctured key Fk3{er∗[2]} and w, which is
random or Fk3(M∗), we choose other keys ourselves and create programs. Then we evaluate variables in
the experiment setting er∗[2] = w and showing the resulting destribution to the adversary. If w was random,
then the adversary sees Hb

6, otherwise Hb
5.

Finally we notice that distributions H0
6 and H1

6 are the same, since both programs and the experiment treat
r∗ and er∗ in the same manner. Therefore no adversary can distinguish between these two hybrids, and
lemma statement is proved.
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Step two - dealing with adaptive inputs. In this part we show how to deal with the case of adaptive
inputs. In order to do this, for all possible pairs of inputs (x∗0, x

∗
1) = (0n, 0n), . . . , (x∗0, x

∗
1) = (1n, 1n)

we consider a hybrid Mx∗0,x
∗
1
. In this hybrid we use x∗0, x

∗
1 as a guess for inputs which an adversary will

choose. We create a CRS and show it to the adversary. If it chooses (lexicographically) smaller pair of inputs
(x′0, x

′
1), then we run a simulation experiment with new inputs x′0, x

′
1; otherwise we run a real execution

experiment with new inputs x′0, x
′
1 (it is crucial that in both a real execution and a simulation, a CRS has the

same distribution; this allows us to choose which experiment to run after we show a CRS). Note thatM0n,0n

is always a real execution and M1n,1n is a real execution only if an adversary chooses (1n, 1n).

Indistinguishability betweenMk andMk+1 (and also betweenM1n,1n and a simulation) follows from selec-
tive security of the protocol proven in part one. If an adversary which sees a CRS chooses an input which is
smaller than k, then in both cases it sees the same distribution (real). If it chooses an input greater or equal
than k + 1, then it again sees the same distribution (a simulation). Finally, if an adversary chooses an input
k, then it sees a real execution in Mk and a simulation in Mk+1. As we proved in part one, for any fixed
input these distributions are indistinguishable. This implies that for every k = 02n, . . . , 12n Mk and Mk+1

are indistinguishable (where M12n+1 is a simulation), and therefore a real execution and a simulation are
indistinguishable even in the case of adaptively chosen inputs.

It should be noted that we have as many hybrids as the number of potential inputs to the protocol, thus
the security loss is also linear in the number of possible inputs to the computation. Consequently, the
parameters of the underlying primitives (especially, the obfuscation and the puncturable PRFs) need to be
set accordingly.

4.1 Obtaining Incoercibility

Recall that, to be incoercible, the protocol should be augmented by faking algorithms for the two parties.
The faking algorithm for a party takes as input a value x′, representing a fake input value for the party, as
well as the party’s local state and the messages sent by that party so far, and outputs a “fake random input” r′

for the party, such that running the party’s program on input x′ and random input r′ results in the messages
sent by the party so far, and furthermore r′ “looks random” given the rest of the view of the adversary. More
precisely, the protocol together with the faking algorithm should be simulatable as in the definition sketched
in Section 2.

To show incoercibility for the garbler, we demonstrate a faking algorithm: Having received message α,
sent message β, and given the fake input value x′, simply run the Explain algorithm with input message
m = β, x′, α and some fresh randomness. Then output the output of Explain.

It is straightforward to see that the same simulation actually demonstrates incorecibility for the garbler.
Indeed, the simulator exhibits the same information for coercion and corruption attacks.
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