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Abstract. Recently it was observed that for a particular nonzero in-
put difference to an S-Box, some bits in all the corresponding output
differences may remain invariant. These specific invariant bits are called
undisturbed bits. Undisturbed bits can also be seen as truncated differ-
entials with probability 1 for an S-Box. The existence of undisturbed
bits was found in the S-Box of Present and its inverse. A 13-round
improbable differential attack on Present was provided by Tezcan and
without using the undisturbed bits in the S-Box an attack of this type
can only reach 7 rounds. Although the observation and the cryptanalytic
application of undisturbed bits are given, their relation with other prop-
erties of an S-Box remain unknown. This paper presents some results on
mathematical properties of S-Boxes having undisturbed bits. We show
that an S-Box has undisturbed bits if any of its coordinate functions has
a nontrivial linear structure. The relation of undisturbed bits with other
cryptanalytic tools such as difference distribution table (DDT) and linear
approximation table (LAT) are also given. We show that autocorrelation
table is proven to be a more useful tool, compared to DDT, to obtain
all nonzero input differences that yield undisturbed bits. Autocorrelation
table can then be viewed as a counterpart of DDT for truncated differ-
ential cryptanalysis. Given an n×m balanced S-Box, we state that the
S-Box has undisturbed bits whenever the degree of any of its coordinate
function is quadratic.

Keywords: block cipher, substitution box, undisturbed bits, truncated
differential

1 Introduction

The emerging trends of small-scale computing devices raise the need for suitable
cryptographic primitives, especially block ciphers. Two main challenges to design
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a block cipher for small-scale devices are the limited memory and available power.
Some of the proposals for lightweight block ciphers, such as Present [2] and
Rectangle [17], are designed in bit-oriented fashion. This is due to the efficiency
of bit-level operation in hardware implementation.

In [16], Tezcan observed that for a particular nonzero input difference to
the substitution box (S-Box) of Present, in all of the output differences, there
exist some bits that remain the same. These specific invariant bits are called
undisturbed bits. For instance, with input difference 9 = (1, 0, 0, 1) the least
significant bit of every possible output difference is undisturbed and its value is
equal to zero. The existence of undisturbed bits can also be equally seen as a
truncated differential [7] with probability one for a given S-Box. This allows an
attacker to have longer truncated differential for bit-oriented ciphers. In [16], a
13-round improbable differential attack was provided for Present and without
using undisturbed bits, the best attack of this type can only reach 7 rounds.

Table 1. The 4× 4 S-Box of Present.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2

Proving the exact security bound of a block cipher against differential crypt-
analysis is a challenging task. Typically the designer of block cipher would
perform computer-aided search to find the best differential characteristic on
reduced-round version of the cipher. One obvious way to improve the complex-
ity of the searching algorithm is by reducing the search space. In [15] Sun et
al. used the undisturbed bits in the S-Box of Present as additional constraint
for searching the best differential in related-key settings. The existence of undis-
turbed bits remove some differential patterns that would never occur and, hence,
reduce the search space of the differential characteristics. The undisturbed bits
are then converted into linear inequalities for Mixed-Integer Linear Program-
ming (MILP) model. The term conditional differential propagation is used by
the authors to describe this behaviour.

In [16], it was shown that all 3×3 bijective S-Boxes contain undisturbed bits.
Moreover, many 4 × 4 S-Boxes of cryptographic algorithms are also evaluated
in [16], and it was observed that 66% of these S-Boxes contain undisturbed bits.
Since bit-oriented lightweight block ciphers use small S-Boxes, undisturbed bits
pose a threat to the security of these ciphers.

Although previous literature have discussed the observation on undisturbed
bits and its application in cryptanalysis of block ciphers, the relation of undis-
turbed bits with other properties of an S-Box remain unknown. The main goal
of this paper is to address this open problem and presents the relation of undis-
turbed bits to other properties in an S-Box. All necessary notations and prelim-
inaries on Boolean functions and S-Boxes are given in Sect. 2.

We breakdown the primary goal of this paper into several sub-problems.
The first sub-problem is, one may ask the implication of undisturbed bits to



the component functions of an S-Box. Specifically, we would like to focus on
the component functions of an S-Box where the undisturbed bits occur. The
second sub-problem is the relation of undisturbed bits with other cryptanalytic
tools for S-Boxes. We want to see the existence of undisturbed bits from the
point of view of two well-known cryptanalytic tools, difference distribution table
(DDT) [1] and linear approximation table (LAT) [10]. We will address these two
sub-problems and show the relation of undisturbed bits with the notion of linear
structure in Sect. 3. The third sub-problem in this work deals with a problem of
developing dedicated cryptanalytic tool to obtain all nonzero input differences
that yield undisturbed bits. In Sect. 4 autocorrelation table will be introduced
as a cryptanalytic tool, in addition to DDT and LAT, that can be used to find
undisturbed bits. Lastly, we ask what would be the property of an S-Box that
may indicate whether an S-Box has undisturbed bits. We will show in Sect. 5 that
a balanced n ×m S-Box with a quadratic coordinate function has undisturbed
bits. We conclude this paper in Sect. 6.

2 Notations and Preliminaries

The cardinality of a set V is denoted by |V |. Let F2 = {0, 1} be a finite field with
two elements and Fn2 be n-dimensional vector space over F2. Any element of Fn2
is denoted by x = (xn−1, . . . , x0). The notation ⊕ is used to denote the addition
in F2 as well as Fn2 . The vector x = (xn−1, . . . , x0) ∈ Fn2 can be represented as

integer by x =
∑n−1
i=0 xi2

i and its associated integer representation is written
using boldface type font. The standard basis for Fn2 is represented by

en−1 = (1, 0, 0, . . . , 0), . . . e1 = (0, . . . , 0, 1, 0), e0 = (0, 0, . . . , 0, 1)

The vector ei is called the i-th standard basis of Fn2 . The integer representation
of each i-th standard basis of Fn2 is given by 2i. The inner product of vectors
x, y ∈ Fn2 is defined as x ·y = xn−1yn−1⊕· · ·⊕x0y0. The weight of vector x ∈ Fn2
is defined as the number of its nonzero components, denoted wt(x). Note that
in this paper every vector is considered as column vector, but we will continue
writing it in row-wise manner.

2.1 Boolean Functions

A Boolean function f : Fn2 7→ F2 is a map from Fn2 to F2. The associated sign

function f̂(x) for every Boolean function f is defined by f̂(x) = (−1)f(x) ∈
{−1, 1}. The weight of a Boolean function f , denoted by wt(f), is defined as
wt(f) = |{x ∈ Fn2 | f(x) 6= 0}|. A Boolean function f with wt(f) = 2n−1 is
called a balanced function. If for every x ∈ Fn2 the Boolean function f(x) = τ for
a fixed τ ∈ F2, then we call f a constant function. The distance of two Boolean
functions f, g, denoted by dt(f, g) is defined as the number of entry in which
they differ, i.e. dt(f, g) = |{x ∈ Fn2 | f(x) 6= g(x)}|.



A Boolean function can be represented using algebraic expression

f(x) = f(xn−1, . . . , x1, x0) =
⊕
u∈Fn2

aux
un−1

n−1 · · ·x
u0
0 =

⊕
u∈Fn2

aux
u (1)

The coefficient au is obtained by au =
⊕

x�u f(x) where x � u means that
xi ≤ ui for all 0 ≤ i ≤ n − 1 (we say that u covers x). We refer to expression
given in Equation (1) as the algebraic normal form (ANF) of f . The degree of
Boolean function, deg(f), is defined as the maximal monomial degree in its ANF
representation. The following proposition gives an upper bound of the degree for
balanced function.

Proposition 1 ([14]). For a balanced n-variable Boolean function with n ≥ 2,
deg(f) ≤ n− 1.

An affine function is a Boolean function such that its ANF is of the form ω·x⊕ε =
ωn−1xn−1 ⊕ · · · ⊕ ω0x0 ⊕ ε for ω = (ωn−1, . . . , ω0) ∈ Fn2 and ε ∈ F2. The vector
ω is the coefficient vector of the affine function. If ε = 0, the function ω · x is
called a linear function. The following proposition characterizes the weight of
affine functions.

Proposition 2. Every affine function with nonzero coefficient vector is bal-
anced. If the coefficient vector is zero vector, the affine function is a constant
function.

In the analysis of a Boolean function, Walsh-Hadamard Transform is an
important tool that could determine various properties of the function. We give
the following definition of Walsh-Hadamard Transform as well as its inverse
transform.

Definition 1 (Walsh-Hadamard Transform). The Walsh value of f at ω ∈
Fn2 is defined by

Wf (ω) =
∑
x∈Fn2

(−1)f(x)(−1)ω·x =
∑
x∈Fn2

f̂(x)(−1)ω·x

The inverse transform is defined by

f̂(x) = 2−n
∑
ω∈Fn2

Wf (ω)(−1)x·ω

The vector (Wf (0), . . . ,Wf (2n−1)) is called the Walsh spectrum of f . One of
the properties of a Boolean function that can be determined from the Walsh
value is balancedness.

Proposition 3. The Boolean function f is balanced if and only if Wf (0) = 0.

Another important tool in analysis of Boolean functions is the notion of
autocorrelation and its relation with undisturbed bits are discussed in Sect. 3.



Definition 2 (Autocorrelation). The autocorrelation of n-variable Boolean
function f at α ∈ Fn2 is defined by

rf (α) =
∑
x∈Fn2

(−1)f(x)(−1)f(x⊕α) =
∑
x∈Fn2

(−1)f(x)⊕f(x⊕α)

.

We refer to vector (rf (0), . . . , rf (2n−1)) as the autocorrelation spectrum of f .
The relation of autocorrelation and Walsh-transform is given by the Wiener-
Khinthcine’s Theorem.

Theorem 1 (Wiener-Khinthcine [12]). The expression of the autocorrela-
tion in terms of Walsh value is equal to

rf (α) = 2−n
∑
ω∈Fn2

W2
f (ω)(−1)α·ω

A cryptographic criteria which is closely related to its autocorrelation is Strict
Avalanche Criterion (SAC). An n-variable Boolean function f satisfies SAC if
changing any one of the n bits in the input results in the output of the function
being changed with probability 1/2. It is clear that the following proposition fol-
lows from the definition of SAC and could be treated as an equivalent definition.

Proposition 4. An n-variable Boolean function f satisfies SAC if and only if
the function f(x) ⊕ f(x ⊕ α) is balanced for every α ∈ Fn2 with wt(α) = 1.
Equivalently, the function f satisfies SAC if and only if rf (α) = 0, with wt(α) =
1.

An n-variable Boolean function is said to satisfy propagation criterion of degree
k, which we denote by PC(k), if changing any i (1 ≤ i ≤ k) of the n bits
in the input results in the output of the function being changed for half of
the times. This definition generalizes the notion of SAC, which clearly equals
to PC(1) function. The following proposition is analogous to the one given in
Proposition 4.

Proposition 5. An n-variable Boolean function f satisfies PC(k) if and only
if all of the given values

rf (α) =
∑
x∈Fn2

(−1)f(x)(−1)f(x⊕α) = 0 1 ≤ wt(α) ≤ k

The derivative of f at α ∈ Fn2 is defined as Dαf(x) = f(x)⊕ f(x⊕ α). The
derivative of f at any point in Fn2 can also be treated as an n-variable Boolean
function. The autocorrelation of a Boolean function can then be expressed in
terms of its derivative as rf (α) =

∑
x∈Fn2

(−1)Dαf(x). The following proposition

gives an upper bound of the degree of a derivative function.

Proposition 6 ([9]). If f is an n-variable Boolean function and α ∈ Fn2 , then
deg(Dαf) ≤ deg(f)− 1.



If Dαf(x) is a constant function, then α is a linear structure of f [8][6]. The
zero vector 0 is a trivial linear structure since D0f(x) = 0 for all x ∈ Fn2 . We
say that the function f has a linear structure if there exists a nonzero vector
α ∈ Fn2 such that Dαf(x) is a constant function. The notation LSf is used to
denote the set of all linear structures of f . The set of all n-variable Boolean
functions that has linear structure is denoted by LS(n). From the point of view
of autocorrelation, a vector in Fn2 is a linear structure if it satisfies the following
proposition.

Proposition 7. The vector α ∈ Fn2 is a linear structure of f if and only if
rf (α) = ±2n.

Proposition 8. Any vector in Fn2 is a linear structure of every affine functions.

Proof. Let α ∈ Fn2 . Recall that we can represent affine function as ω · x⊕ ε with
ω ∈ Fn2 and ε ∈ F2. The derivative of affine function ω · x⊕ ε at α is equal to

(ω · x⊕ ε)⊕ (ω · (x⊕ α)⊕ ε) = (ω · x⊕ ε)⊕ ((ω · x⊕ ω · α)⊕ ε)
= ω · α

This implies that the derivative of affine function ω · x⊕ ε at α is equal to ω · α
for all x ∈ Fn2 and, hence, is a constant function. Clearly α is a linear structure
of ω · x⊕ ε. ut

2.2 Substitution Boxes

An n×m S-Box is a mapping S : Fn2 7→ Fm2 . The internal structure of an S-Box
can be decomposed into Boolean functions. Let y = (ym−1, . . . , y0) ∈ Fm2 and
y = S(x). The component of y can be computed by yi = hi(x). The function
hi : Fn2 7→ F2 is called the coordinate function of S-Box S. The component
functions of S-Box S are the mapping b · S(x) for all nonzero b ∈ Fm2 . The
component functions are essentially generalization of coordinate functions of
an S-Box by considering its linear combination. It follows that the coordinate
function hi(x) = ei · S(x) where ei is the i-th standard basis of Fm2 .

An n×m S-Box S is balanced if it takes every value of Fm2 the same number
2n−m of times [3]. The following proposition characterizes a balanced S-Box from
the balancedness of its component functions.

Proposition 9 ([3]). An n×m S-Box is balanced if and only if its component
functions are balanced, that is if and only if for every nonzero b ∈ Fm2 , the
Boolean function b · S(x) is balanced.

The notion of linear structures in Boolean functions can be extended for
the case of S-Boxes. The definition of an S-Box that has a linear structure was
originally proposed by Chaum [5] and Evertse [6]. They define that an S-Box
has a linear structure by considering the existence of nontrivial linear structure
in any of the component functions of the S-Box.



Definition 3 (S-Box with linear structures [5][6][11]). An n×m S-Box S
is said to have a linear structure if there exists a nonzero vector α ∈ Fn2 together
with a nonzero vector b ∈ Fm2 such that b · S(x) ⊕ b · S(x ⊕ α) takes the same
value c ∈ F2 for all x ∈ Fn2 .

Proposition 10. An n×m S-Box S is said to have a linear structure if there
exists a nonzero vector α ∈ Fn2 together with a nonzero vector b ∈ Fm2 such that
rb·S(α) = ±2n

In the cryptanalysis of block ciphers, the two most well-known cryptanalytic
tools to analyse properties of an S-Box are DDT and LAT.

Let x, x′ ∈ Fn2 be two inputs to the S-Box S and y = S(x), y′ = S(x′) be
their corresponding outputs. We refer to the difference in the input x ⊕ x′ = α
as the input difference to S. Similarly y ⊕ y′ = β is the output difference of S
correponding to input difference α. DDT examines how many times a certain
output difference of an S-Box occur for a given input difference. The definition
of DDT is given as follows.

Definition 4. For an n×m S-Box S, the entry in the row s ∈ Fn2 and column
t ∈ Fm2 (considering their integer representation) of difference distribution table
of S is defined by DDT(s, t) = |{x ∈ Fn2 | S(x)⊕ S(x⊕ s) = t}|.

The probability of an input difference α that yields the output difference β is
then defined by

PrS [α→ β] = 2−n|{x ∈ Fn2 | S(x)⊕ S(x⊕ α) = β}|
= 2−n · DDT(α,β)

On the other hand, LAT is used to find the best linear approximation for an
S-Box involving the parity bits of its input and output. The definition of linear
approximation table is given as follows.

Definition 5. For an n×m S-Box S, the linear approximation table of S at row
s ∈ Fn2 and column t ∈ Fm2 (considering their integer representation) is defined
as

LAT(s, t) = |{x ∈ Fn2 | s · x = t · S(x)}| − 2n−1

3 Undisturbed Bits and Linear Structures

In this section we recall the definition of undisturbed bits and provide its relations
with autocorrelation, derivative, and linear structure of coordinate functions in
an S-Box. The notation S = (hm−1, . . . , h0) will be used consistently for the rest
of the paper to denote the n×m S-Box S : Fn2 7→ Fm2 with coordinate functions
hm−1, . . . , h0, where hi : Fn2 7→ F2.

Definition 6 (Undisturbed Bits). Let α ∈ Fn2 be a nonzero input difference
to S-Box S and Ωα = {β = (βm−1, . . . , β0) ∈ Fm2 | PrS [α → β] > 0} be the



set of all possible output differences of S corresponding to α. If βi = c for a
fixed c ∈ F2 and for all β ∈ Ωα with i ∈ {0, . . . ,m − 1}, then the S-Box S has
undisturbed bits. In particular, we say that for input difference α, the i-th bit of
the output difference of S is undisturbed (and its value is c).

Recall that any output of the S-Box as the element of Fm2 can be computed
component-wisely using coordinate functions of an S-Box. If PrS [α → β] > 0,
then there exists a v ∈ Fn2 such that S(v) ⊕ S(v ⊕ α) = β. It follows that the
component of the output difference vectors β = (βm−1, . . . , β0) can be obtained
by βi = hi(v) ⊕ hi(v ⊕ α). The following result is an implication from this
observation.

Theorem 2. For a nonzero input difference α ∈ Fn2 and i ∈ {0, . . . ,m − 1},
the i-th bit of the output difference of S is undisturbed if and only if Dαhi(x) =
hi(x)⊕ hi(x⊕ α) is a constant function.

Proof. Suppose for an input difference α the i-th bit of the output difference of
S is undisturbed. Let Ωα = {β = (βm−1, . . . , β0) ∈ Fm2 | PrS [α → β] > 0} be
the set of all possible output differences of S corresponding to α. Definition 6
tells us that for all β = (βm−1, . . . , β0) ∈ Ωα the component βi = c for a
fixed c ∈ F2. Since βi = hi(v) ⊕ hi(v ⊕ α) for some v ∈ Fn2 and because the
computation of output differences in Ωα run through all the elements of Fn2 ,
clearly Dαhi(x) = hi(x) ⊕ hi(x ⊕ α) = c for all x ∈ Fn2 . Hence Dαhi(x) is a
constant function. The converse part of the proof can be done by reversing the
previous step. ut

The value of undisturbed bits can then be deduced whether the constant func-
tion Dαhi(x) is equal to zero or one, for each x ∈ Fn2 . Because Dαhi(x) is a
constant function, then the nonzero vector α is a linear structure of the coordi-
nate function hi. Equivalently, since α is a nonzero vector, then hi is a function
with linear structure. This result shows that a particular S-Box has undisturbed
bits if any of its coordinate functions has a nontrivial linear structure. In order
to see if an S-Box has undisturbed bits, it is sufficient to check the derivative of
each coordinate function at every nonzero element of Fn2 .

Theorem 2 also relates an S-Box which has undisturbed bits with Defini-
tion 3 about an S-Box with linear structures. It shows that an S-Box that has
undisturbed bits belongs to special class of S-Boxes with linear structures by
only considering the existence of linear structures in its coordinate functions.
This can be described by the following proposition, and it can be treated as an
equivalent definition for an S-Box that has undisturbed bits.

Proposition 11. An n×m S-Box S is said to have an undisturbed bit if there
exists a nonzero vector α ∈ Fn2 together with a nonzero vector b ∈ Fm2 with
wt(b) = 1 such that b · S(x) ⊕ b · S(x ⊕ α) takes the same value c ∈ F2 for all
x ∈ Fn2 .

In other words, if an S-Box S has undisturbed bits, then S has a linear structure.
However, the converse is not true in general. Thus, Definition 3 can be seen as
a generalization of undisturbed bits.



The existence of undisturbed bits in an S-Box may also be used to describe
the unsatisfiability of the corresponding coordinate functions against SAC. We
state it in the following remark.

Remark 1. Let Ii = {α ∈ Fn2 , α 6= 0 | hi(x)⊕ hi(x⊕ α) is a constant function}
be the set such that for any α ∈ Ii the i-th bit of the output difference of S
is undisturbed. Equivalently Ii is the set of all nonzero linear structures of the
coordinate function hi, i.e. Ii = LShi \ {0}. We set

d = min
α∈Ii

wt(α)

If d = 1, then from Proposition 4 it follows that the coordinate function hi does
not satisfy Strict Avalanche Criterion (SAC). However, this remark can not be
generalized for d > 1. The reason is because if there exists a d′ with 1 ≤ d′ < d
such that the coordinate function does not satisfy PC(d′) then d is not a proper
bound for the unsatisfiability condition.

A trivial lemma can be derived from Theorem 2 to indicate whether an S-
Box has undisturbed bits from the autocorrelation of its coordinate functions.
We will use the following lemma to show the relation of other cryptanalytic tools
with undisturbed bits.

Lemma 1. For a nonzero input difference α ∈ Fn2 , the i-th bit of the output
difference of S is undisturbed if and only if

rhi(α) = ±2n

for i ∈ {0, . . . ,m− 1}.

Proof. Suppose for a nonzero input difference α ∈ Fn2 , the i-th bit of the output
difference of S is undisturbed. From Theorem 2 the vector α is a linear structure
of coordinate function hi. It follows that from Proposition 7 we have rhi(α) =
±2n. The converse can be proven by reversing the previous steps. ut

The remaining part of this section describes the relation of some existing
cryptanalytic tools with undisturbed bits. In particular, we give the relation
of undisturbed bits with two most important cryptanalytic tools for an S-Box,
namely DDT and LAT. The following theorem of [18] provides a relation between
DDT and the autocorrelation of the component functions of an S-Box.

Theorem 3 ([18]). The relation between difference distribution table and the
autocorrelation of the component functions of S is given by

rj·S(α) =
∑
v∈Fm2

DDT(α,v)(−1)j·v

for α ∈ Fn2 and j ∈ Fm2 .

Using Lemma 1 the relation of undisturbed bits and DDT can be easily shown
in Corollary 1.



Corollary 1 (DDT and Undisturbed Bits). For a nonzero input difference
α ∈ Fn2 , the i-th bit of the output difference of S is undisturbed if and only if∑

v∈Fm2

DDT(α,v)(−1)ei·v = ±2n

for i ∈ {0, . . . ,m− 1} and ei is the i-th standard basis of Fm2 .

Proof. Suppose for a nonzero input difference α ∈ Fn2 , the i-th bit of the output
difference of S is undisturbed. From Lemma 1 we have rhi(α) = ±2n. Since
rhi(α) = rei·S(α) it follows from Theorem 3 that

∑
v∈Fm2

DDT(α,v)(−1)ei·v =

±2n. The converse can be trivially proved by reversing the previous steps. ut

Linear approximation table (LAT) is used as a counterpart of DDT in the
domain of linear cryptanalysis. Although undisturbed bits are useful in con-
structing truncated differential for bit-oriented cipher, one may also indicate the
existence of undisturbed bits from LAT. We will use a well-known relation of
LAT and the Walsh value of component functions of an S-Box in Lemma 2. To-
gether with Theorem 1 (Wiener-Khintchine) and Lemma 1, the relation of LAT
and undisturbed bits can be established. The main result is given in Theorem 4.

Lemma 2. The relation between linear approximation table of S and the Walsh
transform of the component functions of S is given by

LAT(a, b) =
1

2
Wb·S(a)

for a ∈ Fn2 and b ∈ Fm2 .

Theorem 4 (LAT and Undisturbed Bits). For a nonzero input difference
α ∈ Fn2 , the i-th bit of the output difference of S is undisturbed if and only if

22−n
∑
a∈Fn2

LAT(a,2i)2(−1)α·a = ±2n

for i ∈ {0, . . . ,m− 1}.

Proof. Firstly, we claim that 22−n
∑
a∈Fn2

LAT(a, b)2(−1)α·a = rb·S(α). The proof

of the claim is as follows

22−n
∑
a∈Fn2

LAT(a, b)2(−1)α·a = 2−n
∑
a∈Fn2

22 · LAT(a, b)2(−1)α·a

= 2−n
∑
a∈Fn2

(2 · LAT(a, b))2(−1)α·a

= 2−n
∑
a∈Fn2

Wb·S(a)2(−1)α·a from Lemma 2

= rb·S(α) from Theorem 1



Clearly we have

22−n
∑
a∈Fn2

LAT(a,2i)2(−1)α·a = rei·S(α) = rhi(α) = ±2n

where ei is the i-th standard basis of Fm2 . Immediately from Lemma 1, for nonzero
input difference α the i-th bit of the output difference of S is undisturbed.

Conversely, if for a nonzero input difference α the i-th bit of the output
difference of S is undisturbed, Lemma 1 implies that rhi(α) = ±2n. From our
claim we can have ±2n = rei·S(α) = 22−n

∑
a∈Fn2

LAT(a,2i)2(−1)α·a. ut

4 Autocorrelation Table

One way to check the existence of undisturbed bits in an S-Box is by taking a
nonzero input difference and see whether there are some bits in all the corre-
sponding output differences that remain invariant. This can be done by observing
the DDT of an S-Box. However, this indirect approach can be improved if one
is able to find a dedicated cryptanalytic tool for the case of undisturbed bits.

In this section, we extend the result of Lemma 1 and provide a tool called
autocorrelation table, which was also appeared previously in [18]. Though it
was introduced earlier, the application of autocorrelation table for cryptanalysis
of block ciphers was not mentioned. We will show that autocorrelation table
is proven to be a more useful tool, compared to DDT, to check if an S-Box
has undisturbed bits. Moreover, we will be able to obtain all nonzero input
differences that has undisturbed bits in its corresponding output differences.
Because undisturbed bit is also a truncated differential of probability one in
an S-Box, autocorrelation table can be viewed as a counterpart of DDT in the
domain of truncated differential cryptanalysis.

Definition 7 (Autocorrelation Table [18]). For a ∈ Fn2 and b ∈ Fm2 , we
define autocorrelation table of S-Box S, denoted as ACT, where the entry in the
row a and column b is equal to

ACT(a, b) = rb·S(a)

Proposition 10 provides an equivalent description of an S-Box that has linear
structure from the the autocorrelation of its component functions. Autocorrela-
tion table can then be used to determine if an S-Box has linear structure.

Theorem 5. An S-Box S has a linear structure if and only if there exists a
nonzero α ∈ Fn2 and a nonzero b ∈ Fm2 such that ACT(α, b) = ±2n.

Proof. This is an immediate consequences from Definition 3 and Proposition 10.
ut

Remark 2. Let α be an input difference to S and let

Ωα = {β ∈ Fm2 | PrS [α→ β] > 0}

be the set of all possible output differences of S corresponding to α. If the entry
ACT(α, b) = +2n (resp. −2n), for b ∈ Fm2 , then b ·β = 0 (resp. 1) for all β ∈ Ωα.



To determine if an S-Box has undisturbed bits, it is sufficient to observe nonzero
row entries in each column of autocorrelation table that correspond to the au-
tocorrelation spectrum of coordinate functions of the S-Box, i.e. the column
2i, i ∈ {0, . . . ,m− 1}. The result is given as the following corollary.

Corollary 2. For a nonzero input difference α, the i-th bit of the output differ-
ence of S is undisturbed if and only if ACT(α,2i) = ±2n, for i ∈ {0, . . . ,m−1}.

Proof. From Theorem 2, the vector α is a linear structure of the coordinate
function hi. Clearly this is a direct consequence of Theorem 5. ut

Autocorrelation table of the S-Box of Present is provided in Table 2. Some
input differences that have undisturbed bits in its corresponding output differ-
ences can be observed in column 1, which is the autocorrelation spectrum of
the rightmost coordinate function. One may see in row entries 1, 8, and 9 at
column 1 have value ±24 = ±16. Note that the row index represents the input
difference and the column index represents the component functions of the S-
Box. The magnitude of the entry indicate the value of undisturbed bits, where
the sign ”+” and ”−” correspond to the undisturbed bit value equal to zero and
one, respectively.

Table 2. Autocorrelation table of the S-Box of Present. Column 1 correspond to the
autocorrelation spectrum of the rightmost coordinate function h0. Notice that the row
entries 1,8,9 are equal to ±16. Thus, for input difference 1,8,9, the 0-th bit of the
output difference of Present’s S-Box is undisturbed. The value of undisturbed bits is
either 0 or 1, depending whether the magnitude is + or −, respectively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 −16 0 0 0 0 0 0 0 0 −16 16 0 0 0 0
2 16 0 0 −8 −8 0 −8 8 0 −8 0 0 0 0 0 8
3 16 0 −8 0 0 −8 0 0 8 0 0 0 −8 −8 8 0
4 16 0 0 −8 −8 0 0 0 0 −8 0 0 −8 8 0 8
5 16 0 8 0 0 −8 −8 −8 −8 0 0 0 0 0 8 0
6 16 0 −8 8 0 0 0 0 −8 8 0 −16 0 0 0 0
7 16 0 0 0 0 0 8 −8 0 0 0 −16 8 −8 0 0
8 16 −16 −8 8 0 0 0 0 −8 8 0 0 0 0 0 0
9 16 16 0 0 −8 −8 0 0 0 0 0 0 0 0 −8 −8
10 16 0 0 −8 0 8 −8 8 0 −8 0 0 0 0 −8 0
11 16 0 8 0 8 0 0 0 −8 0 0 0 −8 −8 0 −8
12 16 0 0 −8 0 8 0 0 0 −8 0 0 −8 8 −8 0
13 16 0 −8 0 8 0 −8 −8 8 0 0 0 0 0 0 −8
14 16 0 0 0 0 0 0 0 0 0 −16 0 0 0 0 0
15 16 0 0 0 −8 −8 8 −8 0 0 16 0 8 −8 −8 −8

In Table 2 one may also find component functions, other than the coordinate
functions, which have linear structures. For instance, the component functions



in S-Box of Present represented by 10 · S(x) and 11 · S(x) have nontrivial
linear structures (this can be seen in column 10 and 11 in Table 2 where some
of the nonzero row entries are equal to ±2n). The implication of this result
was given in Remark 2. However, it remains unknown whether the existence of
linear structures in component functions of an S-Box other than the coordinate
functions could improve or lead to a new approach in (truncated)-differential
cryptanalysis of bit-oriented block cipher.

5 S-Boxes with Undisturbed Bits

Recall from Theorem 2 that an S-Box has undisturbed bits if the derivative of
any of its coordinate function at a nonzero vector in Fn2 is a constant function.
The existence of an S-Box that has undisturbed bits can then be reduced into
a question whether any of the coordinate functions of the S-Box has a nonzero
linear structure.

So far the known Boolean functions that have nonzero linear structures are
affine functions (from Proposition 8). If an S-Box has affine coordinate function,
then definitely the S-Box has undisturbed bits. However, this is unlikely to occur
in real case. This will lead to a linear approximation that involves input and
output bits of the S-Box with probability one, and clearly does not serve its
purpose as a nonlinear layer for block ciphers.

In order to find Boolean functions with linear structure, Proposition 6 restrict
our attention to the Boolean functions of low degree. The following result is due
to Carlet [4]. The complete proof of the following lemma is given in the appendix.

Lemma 3 ([4]). If f is a balanced n-variable Boolean function with deg(f) = 2,
then there exists a nonzero α ∈ Fn2 such that Dαf(x) = f(x)⊕ f(x⊕ α) = 1 for
all x ∈ Fn2 .

We extend the result from Lemma 3 in Theorem 6 to show that an S-Box with
at least one quadratic coordinate function has undisturbed bits. Hence we show
that one may determine whether an S-Box has undisturbed bits from the degree
of its coordinate functions.

Theorem 6. Let S be a balanced n×m S-Box and hm−1, . . . , h0 be its coordinate
functions. If there exists a coordinate function hi with deg(hi) = 2 then the S-
Box S has undisturbed bits. More precisely, there exists a nonzero α ∈ Fn2 such
that for input difference α, the i-th bit of the output difference of S is undisturbed
and its value is 1.

Proof. From Proposition 9, for every nonzero b ∈ Fm2 all the component func-
tions b ·S(x) are balanced Boolean functions, including the coordinate functions
hm−1, . . . , h0 of S. If there exists a coordinate function hi with deg(hi) = 2,
Lemma 3 says that there is a nonzero α ∈ Fn2 such that Dαhi(x) = 1 for all
x ∈ Fn2 . Theorem 2 implies that for input difference α, the i-th bit of the output
difference of S is undisturbed and its value is 1. ut



Corollary 3. If S is a balanced n×m S-Box with n = 3, then S has undisturbed
bits. Moreover, for every i ∈ {0, . . . ,m− 1} there exists a nonzero α ∈ Fn2 such
that for input difference α, the i-th bit of the output difference of S is undisturbed
and its value is 1.

Proof. Since S is a balanced S-Box, based on Proposition 1 then deg(b · S) ≤ 2
for all nonzero b ∈ Fm2 . It follows that every coordinate functions of S is of degree
≤ 2. The results follows immediately from Theorem 6 and Proposition 8. ut

In [16] it was stated that every bijective 3 × 3 S-Box has undisturbed bits.
Since bijective 3× 3 S-Boxes are balanced S-Boxes, it follows immediately from
Corollary 3 that they have undisturbed bits. This can be seen as an alternative
proof of [16] where the author used the equivalence classes of 3 × 3 bijective
S-Boxes.

Corollary 4. Every 3× 3 bijective S-Box has undisturbed bits.

6 Conclusion and Further Remarks

In this work we define the notion of undisturbed bits of an S-Box and give its
relation with other properties. S-Boxes which have undisturbed bits are shown
to be a special class of S-Boxes with linear structures. We also show that it
is possible to indicate whether an S-Box has undisturbed bits or not by using
DDT and LAT. Autocorrelation table of an S-Box can be used as a dedicated
tool to find nonzero input differences which have undisturbed bits in its output
differences. The last result of this paper is the existence of undisturbed bits for
balanced n×m S-Boxes with quadratic coordinate functions.

While the notion of undisturbed bits is related to the existence of nonzero
linear structures in the coordinate functions of an S-Box, we also showed that
other component functions of an S-Box may have nonzero linear structures. It
remains unknown whether this property in an S-Box could improve or lead to a
new approach in cryptanalysis of bit-oriented block ciphers.
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7 Appendix

7.1 Proof of Lemma 3

Before proving the result in Lemma 3, the following two propositions are re-
quired.



Proposition 12 ([4]). Let f be n-variable Boolean function. We have the fol-
lowing relation

W2
f (0) =

∑
b∈Fn2

WDbf
(0)

Proof.

∑
b∈Fn2

WDbf
(0) =

∑
b∈Fn2

∑
x∈Fn2

(−1)Dbf(x)(−1)0·x

 =
∑
b∈Fn2

∑
x∈Fn2

(−1)Dbf(x)


=

∑
b∈Fn2

rf (b) =
∑
b∈Fn2

rf (b)(−1)0·b =W2
f (0)

ut

Proposition 13 ([4]). If f is an n-variables Boolean function with deg(f) = 2
then

W2
f (0) = 2n

∑
b∈LSf

(−1)Dbf(0)

Proof. Since the degree of f is equal to 2, it follows from Proposition 6 that
for every b ∈ Fn2 we have deg(Dbf) ≤ 1. Clearly Dbf is affine, hence from
Proposition 2 it is either balanced (for nonzero coefficient vector) or constant
function (for zero coefficient vector). Consequently, for the case where Dbf is
balanced, we have WDbf

(0) = 0 from Proposition 3. Using the result from the
Proposition 12, then

W2
f (0) =

∑
b∈Fn2

WDbf
(0) =

∑
b∈LSf

WDbf
(0) =

∑
b∈LSf

∑
x∈Fn2

(−1)Dbf(x)


= 2n

∑
b∈LSf

(−1)Dbf(0)

ut

Lemma 3 stated that if f is a balanced n-variable Boolean function with deg(f) =
2, then there exist a nonzero α ∈ Fn2 such that Dαf(x) = f(x) ⊕ f(x ⊕ α) = 1
for all x ∈ Fn2 . The proof is given below.

Proof. Let f be a balanced n-variable Boolean function with deg(f) = 2. Since
f is balanced, then Wf (0) = 0 and consequently W2

f (0) = 0. The result from

Proposition 13 implies that the sum
∑
b∈LSf (−1)Dbf(0) must be equal to zero.

We know that the zero vector 0 ∈ Fn2 is a trivial linear structure because
D0f(x) = 0 for all x ∈ Fn2 . Clearly 0 ∈ LSf . Using existence of zero vector
in the set of linear structure of f , then there must exist a vector α ∈ Fn2 , α 6= 0
such that Dαf(x) = 1 for all x ∈ Fn2 . ut



7.2 Linear Structures and Output Differences of an S-Box

Theorem 7. Let S be an n ×m S-Box and Ωα = {β = (βm−1, . . . , β0) ∈ Fm2 |
PrS [α→ β] > 0} be the set of all possible output differences of S corresponding
to input difference α ∈ Fn2 . The vector α is a linear structure of the component
function b · S(x) if and only if b · β remains equal for all β ∈ Ωα.

Proof. Let hm−1, . . . , h0 be coordinate functions of the S-Box S. For the vector
b = (bm−1, . . . , b0) ∈ Fm2 we can express the component function b · S(x) as a
linear combination of coordinate functions of S, i.e. b · S(x) = bm−1hm−1(x) ⊕
. . .⊕ b0h0(x). Since α ∈ Fn2 is a linear structure of b ·S(x), we have the following

c = b · S(x)⊕ b · S(x⊕ α) ∀x ∈ Fn2
c = (bm−1hm−1(x)⊕ . . .⊕ b0h0(x))⊕

(bm−1hm−1(x⊕ α)⊕ . . .⊕ b0h0(x⊕ α)) ∀x ∈ Fn2
c = bm−1(hm−1(x)⊕ hm−1(x⊕ α))⊕ . . .⊕ b0(h0(x)⊕ h0(x⊕ α)) ∀x ∈ Fn2
c = b · (hm−1(x)⊕ hm−1(x⊕ α), . . . , h0(x)⊕ h0(x⊕ α)) ∀x ∈ Fn2
c = b · β ∀β ∈ Ωα

The converse is obvious from above equations. ut

7.3 DDT of the S-Box of PRESENT

Table 3. Difference Distribution Table of the S-Box of PRESENT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
10 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
11 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
12 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
13 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
14 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
15 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4


