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Abstract

Cryptographic protocols with adaptive security ensure that security holds against an adver-
sary who can dynamically determine which parties to corrupt as the protocol progresses—or
even after the protocol is finished. In the setting where all parties may potentially be cor-
rupted, and secure erasure is not assumed, it has been a long-standing open question to design
secure-computation protocols with adaptive security running in constant rounds.

Here, we show a constant-round, universally composable protocol for computing any func-
tionality, tolerating a malicious, adaptive adversary corrupting any number of parties. Interest-
ingly, our protocol can compute all functionalities, not just adaptively well-formed ones.

1 Introduction

When designing and analyzing protocols for secure computation, there are several different ad-
versarial models one can consider. The original definitions of security assume a static adversary
who decides which parties to corrupt before execution of the protocol begins. Subsequently [3, 9],
researchers began to consider the more challenging setting in which the adversary may adaptively
decide which parties to corrupt as the protocol progresses—or even after the protocol ends. It is
easy to come up with examples of protocols that are secure in a static-corruption model, but that
are trivially insecure in the adaptive setting.

Even in a setting where adaptive corruptions are considered, there are different assumptions
one can make. Initial work on adaptive security [3] made the assumption that honest parties
can securely erase local data (e.g., randomness or other internal state) when no longer needed.
Later work, led by Canetti et al. [9], sought to avoid this assumption, arguing that it is unwise
to rely on other parties to erase data (since there is no way such erasure can be verified) and
that it is generally difficult—even for an honest party who intends to erase data—to ensure that
all traces of data are gone. Whether or not erasure is assumed has a significant impact on the
complexity of adaptively secure protocols; for example, adaptively secure public-key encryption
is fairly simple and efficient [3] if erasure is assumed, but much more complicated (and much less
efficient) [9, 2, 15, 13] without this assumption. Similarly, adaptively secure two-party computation
is much easier with the assumption of secure erasure [26] than without [11].

Designing protocols without the assumption of secure erasure is difficult, in part, due to the
need to deal with post-execution corruption (PEC), whereby an adversary can corrupt parties
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(and hence obtain the randomness they used) even after execution of the protocol has concluded.
Handling PEC is inherent to the setting of universal composability (UC) [7], and is important for
ensuring sequential composition even in the stand-alone setting [6]. If secure erasure is assumed,
the definition of adaptive security does not change whether or not PEC is allowed [8], but without
erasure the requirement of dealing with PEC adds significant additional complications.

Prior work. We are interested in adaptive security, with PEC, in a model where secure erasure
is not assumed. Some prior protocols for secure computation in this setting (e.g., [9, 2]) assume a
majority of the parties remain uncorrupted. Other work [24, 23, 18, 21], including concurrent work
of [16], allows all but one of the parties to be corrupted. While it may seem strange to worry about
corruption of all parties, consideration of this case is important when a protocol Πouter invokes some
protocol Πinner (not involving all parties running Πouter) as a subroutine. In this case, all parties
running Πinner may eventually be corrupted, and security of Πouter should still be guaranteed.

To the best of our knowledge, all prior work giving adaptively secure protocols for general
functionalities (without erasure), and tolerating an arbitrary number of corruptions, are based on
the Goldreich-Micali-Wigderson [19] paradigm for semi-honest computation, and thus have round
complexity linear in the depth of the circuit being computed. These include protocols in the
common reference string model [11], the “sunspots” model [12], the key-registration model [1], and,
more generally, based on adaptively secure UC puzzles [14]. In addition, all prior work in this
setting handles only “adaptively well-formed functionalities” (see [11] for a definition).

1.1 Our Result

We show a constant-round, universally composable protocol for multi-party computation of arbi-
trary functionalities, with security against a malicious, adaptive adversary corrupting any number
of parties. Once again, we stress that we do not assume secure erasure.

Overview of our techniques. The main difficulty in our setting is to construct a constant-round
protocol with security against a semi-honest, adaptive adversary corrupting any number of parties.
Given any such protocol, we can compile it as in [11] to obtain a universally composable protocol
with security against a malicious, adaptive adversary, and still running in constant rounds. We
may also assume secure channels, which can be implemented using adaptively secure encryption.

Our protocol in the semi-honest setting relies on a common reference string (CRS). While it
would be more elegant to avoid this assumption, note that a CRS—or some other form of setup—
is anyway needed [10] in order to obtain universally composable computation in the presence of
malicious adversaries corrupting half or more of the parties, even in a static-corruption model.
Thus, as far as our final result (i.e., our protocol with security in the malicious setting) is concerned,
some form of setup is unavoidable. We remark further that results of Garg and Sahai [18] indicate
that a CRS (or some other form of setup) is needed to obtain constant-round protocols with adaptive
security even in the semi-honest case; see further discussion at the end of this section.

At its core, our protocol relies on the ability to make arbitrary algorithms explainable, an idea
we explain in more detail now. Fix some randomized algorithm Alg. Informally, an explainable
version of Alg is an algorithm Ãlg along with an associated explain algorithm Explain such that, for
any input, (1) the distributions over the outputs of Alg(input) and Ãlg(input) are statistically close,

and (2) choosing random coins r, computing output := Ãlg(input; r), and outputting (output, r) is

computationally indistinguishable from choosing random coins r, computing output := Ãlg(input; r),
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and then outputting (output,Explain(input, output)). That is, the Explain algorithm provides the

ability to sample random coins for Ãlg that “explain” any given input/output pair.
Sahai and Waters [27] introduced the notion of explainability for the specific case of public-key

encryption schemes, in the context of constructing a deniable encryption scheme. We observe that
their techniques can be suitably generalized to give an explainable version of arbitrary algorithms
based on indistinguishability obfuscation for general circuits (and one-way functions). We refer the
reader to Section 3 for a formal statement of this result.

Let C be a circuit taking n-bit inputs.1 Consider the following functionality NextMsg that
(essentially) computes the next-message function for a two-round secure-computation protocol
for C based on garbled circuits: NextMsg takes as input a sequence of first-round messages
OT1,1, . . . ,OT1,n for a two-round, adaptively secure, oblivious-transfer (OT) protocol (e.g., the
protocol of [11]); it then (1) computes a garbled circuit GC corresponding to C, along with input-
wire labels {(yi,0, yi,1)}ni=1, and (2) computes a sequence of OT responses OT2,1, . . . ,OT2,n. (These
responses allow the party that generated OT1,i using input bit b to recover yi,b while learning noth-
ing about yi,1−b.) The output of NextMsg is (GC,OT2,1, . . . ,OT2,n). The CRS for our protocol will

be ˜NextMsg, an explainable version of NextMsg.2 We note that, in contrast to [27], in the real-world

execution no parties have access to the Explain algorithm corresponding to ˜NextMsg.
Our multi-party protocol computing C can now be described quite simply. The protocol pro-

ceeds in four rounds. Say we have n parties P1, . . . , Pn holding inputs x1, . . . , xn, respectively.
These parties generate first-round OT messages OT1,1, . . . ,OT1,n (with the party who is sup-
posed to provide the ith input generating OT1,i), and send these to Pn. Party Pn then runs

˜NextMsg(OT1,1, . . . ,OT1,n) to obtain GC,OT2,1, . . . ,OT2,n, and sends OT2,i to the corresponding
party (which might be itself). Each party Pi then locally recovers yi, the label for the ith input
wire of the garbled circuit, and sends yi to Pn. Finally, Pn evaluates the garbled circuit GC using
the provided input-wire labels to obtain the output z, and sends z to all the other parties.3 Only
the third- and fourth-round messages need to be sent via a secure channel.

We now describe the simulator informally. Our simulator begins by generating ˜NextMsg along

with its associated Explain algorithm, and letting ˜NextMsg be the CRS. It simulates OT1,1, . . . ,OT1,n

and OT2,1, . . . ,OT2,n using the simulator for the OT protocol (recall the OT protocol is adaptively
secure), and uses these for the first two rounds of the protocol. Upon corruption of party Pi, the
simulator corrupts that party in the ideal world and learns its input xi and the output z. Then:

• If this is the first corruption, the simulator generates a simulated garbled circuit GC consistent
with output z, along with n input-wire labels y1, . . . , yn. It also uses the Explain algorithm

to generate random coins r∗ consistent with running ˜NextMsg on input OT1,1, . . . ,OT1,n and
obtaining output GC,OT2,1, . . . ,OT2,n.

• The simulator uses the simulator for the OT protocol to generate internal state for Pi consis-
tent with input xi and output yi, and returns this to the adversary. In addition, if P = Pn

then it returns r∗ to the adversary.

1We assume for simplicity here that C is deterministic. Randomized functionalities are handled in Section 4.
2As described, the CRS depends on the circuit C. However, by taking C to be a universal circuit, the CRS can

be fixed independently of the “actual” function the parties wish to compute.
3As described, all parties learn the output of the computation. Standard techniques can be used to handle the

general case in which each party learns a possibly different function of the inputs.
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Impossibility results? We briefly mention two impossibility results regarding (constant-round)
adaptively secure computation, and explain why they do not apply in our setting.

First, our protocol can compute arbitrary randomized functionalities, not just adaptively well-
formed ones. (We refer to [11] for a definition of this term.) This may seem somewhat surprising
in light of an impossibility result of Ishai et al. [22] showing that adaptively secure computation
of all functionalities (and not just well-formed ones) is impossible. A closer examination of their
result, however, reveals that it does not hold in the CRS model.4

Second, Garg and Sahai [18] show that no constant-round, adaptively secure, multi-party pro-
tocol can be proven secure using black-box techniques; although they only claim this result for
protocols with security against malicious adversaries, their proof appears to extend to the case of
semi-honest adversaries as well. Their impossibility result, though, explicitly only applies to the
“plain” model where no setup is assumed, whereas in our work we assume a CRS.

1.2 Organization of the Paper

We review some standard cryptographic background and primitives in Section 2. In Section 3, we
introduce the notion of an explainable algorithm, and show how the Sahai-Waters compiler [27] can
be used to make any algorithm explainable. Finally, in Section 4 we present a constant-round multi-
party computation protocol tolerating a semi-honest, adaptive adversary corrupting any number of
parties. Applying the compiler of Canetti et al. [11] yields a constant-round protocol tolerating a
malicious, adaptive adversary corrupting any number of parties.

2 Preliminaries

We let λ denote the security parameter. We refer to previous work [6, 8, 26] for definitions of secure
computation in the adaptive-corruption setting (with PEC).

2.1 Garbled Circuits

We rely on the standard notion of garbled circuits [28]. However, we use slightly non-standard
notation that we introduce here. Let C be a randomized circuit taking n-bit inputs and using λ bits
of randomness. We abstract the construction/evaluation of a garbled circuit for C via algorithms
GenGC,EvalGC with the following properties. GenGC is a randomized algorithm that takes as input
1λ and C, and outputs a garbled circuit GC along with 2n input-wire labels y1,0, y1,1, . . . , yn,0, yn,1 ∈
{0, 1}λ and 2λ random-wire labels w1,0, w1,1, . . . , wλ,0, wλ,1 ∈ {0, 1}λ. Deterministic algorithm
EvalGC takes as input GC and n+ λ labels y1, . . . , yn, w1, . . . , wλ, and outputs a value z.

Correctness requires that for any GC,
(
{yi,0, yi,1}ni=1, {wi,0, wi,1}λi=1

)
output by GenGC(1λ, C),

any x ∈ {0, 1}n and any r ∈ {0, 1}λ, we have

EvalGC
(
GC, {yi,xi}ni=1, {wi,ri}λi=1

)
= C(x; r).

Security requires an efficient simulator SimGC such that for all x, r, the distribution{(
GC, {(yi,0, yi,1)}ni=1, {(wi,0, wi,1)}λi=1

)
← GenGC(1λ, C) :

(
GC, {yi,xi}ni=1, {wi,ri}λi=1

)}
is computationally indistinguishable from the output of SimGC(1λ, C, C(x; r)).

4Although Ishai et al. claim that their result holds in the CRS model, they only provide a proof in the plain model
and their proof seems to break down in the CRS model.
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2.2 Adaptively Secure Oblivious Transfer

Our protocol uses a two-round, semi-honest, adaptively secure OT protocol as a building block. A
suitable construction can be found in [11].

A two-round OT protocol ΠOT comprises three algorithms: a receiver algorithm ROT, a sender
algorithm SOT, and an evaluation algorithm EOT. Algorithm ROT takes as input a bit b and random
coins rR, and outputs initial message OT1. Algorithm SOT takes as input an initial message OT1,
a pair of λ-bit strings (y0, y1), and randomness rS , and outputs message OT2. The evaluation
algorithm EOT takes as input b, rR, and OT2 and outputs the λ-bit string yb.

For our purposes we require the following property that is implied by semi-honest, adaptive
security of ΠOT. There is exist an efficient simulator SimOT = (SimOT1, SimOT2), where SimOT2

is deterministic, such that (1) SimOT1 outputs a transcript (OT1,OT2) along with state st and
(2) SimOT2, given as input b, y, and st, outputs coins rR for the receiver consistent with (OT1,OT2)
and the receiver holding input b and obtaining output y; for any b, y0, y1, the distribution{

rR, rS ← {0, 1}∗;OT1 := ROT(b; rR) :
(
rR, OT1, SOT(OT1, y0, y1; rS)

)}
is computationally indistinguishable from{

(OT1,OT2, st)← SimOT1(1
λ);

rR := SimOT2(1
λ, b, yb, st)

: (rR,OT1,OT2)

}
.

That is, we only require “one-sided security” [21] for adaptive corruption of the receiver.
If we define algorithm SimOT′

1(1
λ) to run SimOT1(1

λ) and output only (OT1, st), and define
the algorithm SimOT′

2(1
λ, b, st) to simply run SimOT2(1

λ, b, 0λ, st), then for any b the distribution{
rR ← {0, 1}∗ :

(
rR, ROT(b; rR)

)}
is computationally indistinguishable from{

(OT1, st)← SimOT′
1(1

λ);
rR := SimOT′

2(1
λ, b, st)

: (rR,OT1)

}
.

2.3 Indistinguishability Obfuscation

We use an indistinguishability obfuscator as a building block. A ppt machine iO is an indistin-
guishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

Correctness. For all λ, and all C ∈ Cλ, it holds that C and iO(1λ, C) compute the same function.

Polynomial slowdown. There is a polynomial p(·) such that |iO(1λ, C)| ≤ p(λ)·|C| for all C ∈ Cλ.

Indistinguishability. For any sequence {(Cλ,0, Cλ,1, auxλ)}λ where Cλ,0, Cλ,1 ∈ Cλ, Cλ,0 ≡ Cλ,1,
and |Cλ,0| = |Cλ,1|, and any ppt distinguisher D, there is a negligible function negl such that:∣∣∣Pr[D(iO(1λ, Cλ,0), auxλ) = 1]− Pr[D(iO(1λ, Cλ,1), auxλ) = 1]

∣∣∣ ≤ negl(λ).

When clear from the context, we will often omit the security parameter 1λ as an input to iO and
as a subscript for C.

iO is an indistinguishability obfuscator for P/poly if there is a polynomial p such that iO is an
indistinguishability obfuscator for {Cλ}, where Cλ contains all circuits of size at most p(λ). Garg et
al. [17] have shown the first candidate construction of indistinguishability obfuscators for P/poly.
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3 Explainability Compilers

Sahai and Waters [27] define a notion of explainability for public-key encryption, and show a
compiler that transforms any public-key encryption scheme into an explainable version. Here, we
generalize the notion of explainability for an arbitrary algorithm Alg, and show that the Sahai-
Waters compiler can be used to transform any algorithm Alg into an explainable version Ãlg.

At a high level, an explainability compiler takes as input (a description of) a randomized algo-

rithm Alg, and outputs two algorithms Ãlg,Explain. The first of these is a randomized algorithm
computing the same functionality as Alg. The second algorithm, roughly speaking, takes an in-
put/output pair input, output and produces random coins r consistent with running Ãlg(input) and
obtaining the result output. That is, the algorithm “explains” the input/output pair input, output.
We now give a formal definition.

Definition 1. A ppt algorithm Comp is an explainability compiler if for every efficient, randomized
circuit Alg, the following hold:

Polynomial slowdown. There is a polynomial p(·) such that, for any (Ãlg,Explain) output by

Comp(1λ,Alg) it holds that |Ãlg| ≤ p(λ) · |Alg|.

Statistical functional equivalence. With overwhelming probability over choice of (Ãlg, ⋆) as

output by Comp(1λ,Alg) the distribution of Ãlg(input) is statistically close to the distribu-
tion of Alg(input) for all input.

Explainability. The success probability of every non-uniform, polynomial-time adversary A in the
following experiment is negligibly close to 1/2:

1. A(1λ) outputs input∗ of its choice.

2. Comp(1λ,Alg) is run to obtain (Ãlg,Explain).

3. Choose uniform coins r0 ∈ {0, 1}∗ and compute output∗ := Ãlg(input∗; r0).

4. Compute r1 ← Explain(input∗, output∗).

5. Choose a uniform bit b and give Ãlg, output∗, rb to A.
6. A outputs a bit b′, and succeeds if b′ = b.

We highlight one key difference between our definition and the corresponding one from [27]:
in our case input∗ is an arbitrary length value (depending on the domain of Alg) chosen by the
adversary, whereas in [27] the input to the explainable algorithm is a single bit chosen uniformly
(and given to the adversary). Because of this, and due to the way the explainability compiler is

constructed, we require the adversary to choose input∗ “non-adaptively,” i.e., before being given Ãlg.
This definition of explainability suffices for our eventual protocol.

3.1 Constructing an Explainability Compiler

Following [27], we now show how to construct an explainability compiler. As in [27], we rely on an
indistinguishability obfuscator, iO, for P/poly and three different pseudorandom function (PRF)
variants (cf. Appendix A):

6



Alg

Hardwired constants: Keys K1, K2, and K3.
Input: Input input and randomness u = (u[1], u[2]).

1. Let input′, output′, r′) := F3(K3, u[1]) ⊕ u[2]. If it is the case that input = input′ and u[1] =
F2(K2, (input

′, output′, r′)), then output output := output′ and end.

2. Else let x := F1(K1, (input, u)) and output output := Alg(input;x) and end.

Figure 1: Program Alg

• A puncturable, extracting PRF F1(K1, ·) that accepts inputs of length ℓ1+ℓ2+ℓin, and outputs
strings of length ℓr. It is extracting when the input min-entropy is greater than ℓr + 2λ+ 4,
with statistical closeness less than 2−(λ+1). Observe that ℓin + ℓ1 + ℓ2 ≥ ℓr +2λ+4, and thus
if one-way functions exist then such a PRF exists by Theorem 4.

• A puncturable, statistically injective PRF F2(K2, ·) that accepts inputs of length 2λ+ℓin+ℓout,
and outputs strings of length ℓ1. Observe that ℓ1 ≥ 2 ·(2λ+ℓin+ℓout)+λ, and thus if one-way
functions exist then such a PRF exists by Theorem 3.

• A puncturable PRF F3(K3, ·) that accepts inputs of length ℓ1 and outputs strings of length ℓ2.
If one-way functions exist, then such a PRF exists by Theorem 2.

We define Comp(1λ,Alg) as follows. Let Alg : {0, 1}ℓin × {0, 1}ℓr → {0, 1}ℓout be an algorithm

with domain {0, 1}ℓin , range {0, 1}ℓout , and randomness length ℓr. Our compiled program Ãlg will
take input input ∈ {0, 1}ℓin and randomness u = (u[1], u[2]) of length ℓ1 + ℓ2, where |u[1]| = ℓ1 =
5λ + 2(ℓin + ℓout) + ℓr and |u[2]| = ℓ2 = 2λ + ℓin + ℓout. Our compiler first samples keys K1, K2,
and K3 for PRFs F1, F2, and F3, respectively. It then defines algorithms Alg and Explain as in
Figures 1 and 2, respectively. Finally, it computes Ãlg ← iO(Alg) and Explain ← iO(Explain), and
outputs (Ãlg,Explain).

The proofs of security for our compiler, given for completeness in Appendix B, follow closely
along the lines of the analogous proofs in [27]. Specifically, the proof of statistical functional
equivalence closely follows the proof used by Sahai and Waters to establish IND-CPA security of
their deniable encryption scheme, and the proof of explainability follows the Sahai-Waters proof
establishing explainability of their deniable encryption scheme. We highlight, however, that in our
proof of explainability a difference arises because in our case the input input∗ is an arbitrary length
value (depending on the domain of Alg), whereas in [27] the input is just a single bit. We are able

to adapt the proof to this case because we do not allow input∗ to depend on Ãlg.

Explain

Hardwired constants: Keys K2 and K3.
Input: input, output, and randomness r ∈ {0, 1}λ.

1. Set α := F2(K2, (input, output,PRG(r))) and let β := F3(K3, α)⊕ (input, output,PRG(r)).
Output (α, β).

Figure 2: Program Explain
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NextMsg

Inputs: OT1,1, . . . ,OT1,n; randomness r1, . . . , rλ ∈ {0, 1} and rGC, rS,1, . . . , rS,n ∈ {0, 1}∗.

1. Run GenGC(1λ, C; rGC) to produce the garbled circuit GC along with n pairs of input-wire
labels {(yi,0, yi,1)}ni=1 and λ pairs of random-wire labels {(wi,0, wi,1)}λi=1.

2. For i ∈ [n], run SOT on input OT1,i and (yi,0, yi,1) using randomness rS,i, to obtain OT2,i.

3. Output GC, OT messages {OT2,i}ni=1, and random-wire labels w1,r1 , . . . , wλ,rλ .

Figure 3: Algorithm NextMsg. The security parameter 1λ and circuit C are hardwired.

4 A Semi-Honest, Adaptively Secure Protocol

We describe here a protocol for secure computation of a randomized circuit C by a set of parties
P1, . . . , Pn. We assume for simplicity that all parties learn the output of C; using standard tech-
niques, we can handle the general case in which each party learns a possibly different function of
the inputs. For ease of notation, we assume that the domain of C is {0, 1}n with party Pi providing
the ith input xi ∈ {0, 1}. (One can easily verify that our protocol and proof generalize to the case
of arbitrary-length inputs.) We also assume without loss of generality that C uses λ random bits.

The CRS of our protocol is an “explainable” version ˜NextMsg of the algorithm NextMsg defined

in Figure 3. That is, the CRS is generated by computing ( ˜NextMsg,Explain)← Comp(1λ,NextMsg)

and letting the CRS be ˜NextMsg. As described, the CRS depends on C (since NextMsg does);
however, by letting C be a universal circuit the CRS can be fixed independently of the “actual”
function the parties wish to compute. We note that we allow the environment Z to choose the
parties’ inputs depending on the CRS.

Let ΠOT = (ROT, SOT, EOT) be a two-round, semi-honest, adaptively secure OT protocol (cf.
Section 2.2). Our secure-computation protocol Π is defined in Figure 4. We describe the protocol
assuming the existence of secure channels; these can be instantiated using any adaptively secure
public-key encryption scheme.

Theorem 1. Assume Comp is an explainability compiler, and GenGC and ΠOT satisfy the defini-
tions from Sections 2.1 and 2.2, respectively. Then protocol Π in Figure 4 UC-realizes functional-
ity C in the presence of a semi-honest, adaptive adversary corrupting any number of parties.

Proof: Let SimGC, SimOT denote appropriate simulators as defined in Section 2. Fix an envi-
ronment Z and a dummy adversary A attacking protocol Π. Recall that we allow the environment
Z to adaptively choose the inputs of all parties after seeing the common reference string. Without
loss of generality, we assume Z first observes the entire protocol transcript (which, since we use
secure channels in rounds 3 and 4, consists only of the messages sent in the first two rounds) before
corrupting any parties. Our simulator Sim for this adversary proceeds as follows:

1. Compute ( ˜NextMsg,Explain)← Comp(1λ,NextMsg), and give ˜NextMsg to Z as the CRS.

2. Run SimOT1(1
λ) a total of n times to obtain {(OT1,i,OT2,i, sti)}ni=1. Give OT1,1, . . . ,OT1,n−1

to Z as the first-round message, and OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

3. When Z requests to corrupt party Pi, corrupt Pi in the ideal world to learn its input xi and
the output z. Then:
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Semi-Honest, Adaptively Secure Multi-Party Computation

Common input:

• CRS = ˜NextMsg.

• Description of a randomized circuit C.

Private inputs: Every party Pi has private input xi ∈ {0, 1}.

[Each Pi:] Compute first-round OT messages:

• Sample random coins rR,i ← {0, 1}∗ of appropriate length.

• Compute OT1,i := ROT(xi; rR,i) and, for i ∈ [n− 1], send OT1,i to Pn.

[Pn:] Compute garbled circuit and second-round OT messages:

• Sample random coins rn ← {0, 1}∗ of appropriate length.

• Compute (GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

• For i ∈ [n− 1], send OT2,i to Pi.

[Each Pi:] Recover OT output :

• Compute yi := EOT(xi, rR,i,OT2,i) and, for i ∈ [n − 1], send yi to Pn over a secure
channel.

[Pn:] Evaluate garbled circuit and broadcast output :

• Compute z := EvalGC(GC, {yi}ni=1, {wi}λi=1).

• For i ∈ [n− 1], send z to Pi over a secure channel.

Output: Each party Pi outputs z.

Figure 4: Protocol Π for computing randomized circuit C.

• If this is the first party to be corrupted, compute (GC, {yi}ni=1, {wi}λi=1)← SimGC(1λ, C, z)
and rn ← Explain ((OT1,1, . . . ,OT1,n), (GC,OT2,1, . . . ,OT2,n, w1, . . . , wn)). Store these
values to be used, as needed, in the rest of the simulation.

• In any case, compute rR,i := SimOT2(1
λ, xi, yi, sti) and give xi, z, yi, and rR,i to Z. In

addition, if i = n give {yi}n−1
i=1 and r∗n to Z.

4. Output whatever Z outputs.

We prove that the output of Z when interacting with A and parties in a real-world execution of
protocol Π is indistinguishable from the output of Z when interacting with Sim and the functionality
C in an ideal-world execution of the protocol. We do so by considering a sequence of hybrid
experiments, beginning with the real-world execution and ending with the ideal-world execution,
and showing that each experiment is computationally indistinguishable from the preceding one.

Hybrid 0. This corresponds to the real-world execution of the protocol. We write the experiment
in a format convenient for the proof. This experiment proceeds via the following steps:
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1. Compute ( ˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z as the CRS. Z
chooses inputs x1, . . . , xn.

2. For i ∈ [n], sample coins rR,i and compute OT1,i := ROT(xi; rR,i). Give the sequence of values
OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Sample coins rn and compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

4. When Z requests to corrupt party Pi, compute yi := EOT(xi, rR,i,OT2,i) and give xi, z, yi,
and rR,i to Z. In addition, if i = n then compute yi := EOT(xi, rR,i,OT2,i) for i ∈ [n− 1] and
give {yi}n−1

i=1 and rn to Z.

Hybrid 1. This experiment is similar to the previous one, except that the OT1 messages and the
random coins {rR,i} are generated by the simulator for the OT protocol (cf. Section 2.2). That is,
the experiment proceeds via the following steps:

1. Compute ( ˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z as the CRS. Z
chooses inputs x1, . . . , xn.

2. Run SimOT′
1(1

λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the sequence of values
OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Sample coins rn and compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

4. When Z corrupts party Pi, compute rR,i := SimOT′
2(1

λ, xi, sti) and yi := EOT(xi, rR,i,OT2,i),
and give xi, z, yi, and rR,i to Z. In addition, if i = n then for i ∈ [n − 1] compute rR,i :=
SimOT′

2(1
λ, xi, sti) and yi := EOT(xi, rR,i,OT2,i), and give {yi}n−1

i=1 and rn to Z.

It follows immediately by security of the OT protocol (and a straightforward hybrid argument)
that this experiment is computationally indistinguishable from the previous one.

Hybrid 2. This experiment is similar to the previous one, except that we now use the Explain
algorithm to generate the random coins rn. That is, the experiment proceeds as follow:

1. Compute ( ˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z as the CRS. Z
chooses inputs x1, . . . , xn.

2. Run SimOT′
1(1

λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the sequence of values
OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

10



3. Sample coins rn and compute

(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ) := ˜NextMsg(OT1,1, . . . ,OT1,n; rn).

In addition, let input∗ = (OT1,1, . . . ,OT1,n) and output∗ = (GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ),
and compute r∗ ← Explain(input∗, output∗).

Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

4. When Z corrupts party Pi, compute rR,i := SimOT′
2(1

λ, xi, sti) and yi := EOT(xi, rR,i,OT2,i),
and give xi, z, yi, and rR,i to Z. In addition, if i = n then for i ∈ [n − 1] compute rR,i :=
SimOT′

2(1
λ, xi, sti) and yi := EOT(xi, rR,i,OT2,i), and give {yi}n−1

i=1 and r∗n to Z.

Computationally indistinguishability of this experiment from the previous one follows from the
definition of explainability (cf. Definition 1), and the fact that Comp is an explainability compiler.
To see this, say there is an efficient adversary Z and a non-uniform, polynomial-time distinguisherD
that distinguishes the outcome of Hybrid 1 from that of Hybrid 2. We show how to use this to
construct an attacker A′ violating explainability. A′ works as follows: it runs SimOT′

1(1
λ) a total

of n times to obtain {(OT1,i, sti)}ni=1, and outputs the value input∗ = (OT1,1, . . . ,OT1,n). Given

˜NextMsg, output∗, r in response, where output∗ = (GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ), it then does:

1. Give ˜NextMsg to Z as the CRS. Z chooses inputs x1, . . . , xn.

2. Give OT1,1, . . . ,OT1,n−1 to Z as the first-round message, and OT2,1, . . . ,OT2,n−1 to Z as the
second-round message.

3. When Z corrupts party Pi, compute rR,i := SimOT′
2(1

λ, xi, sti) and yi := EOT(xi, rR,i,OT2,i),
and give xi, z, yi, and rR,i to Z. In addition, if i = n then for i ∈ [n − 1] compute rR,i :=
SimOT′

2(1
λ, xi, sti) and yi := EOT(xi, rR,i,OT2,i), and give {yi}n−1

i=1 and r to Z.

Finally, run D on the output of Z and output the result. It is easy to see that if the coins r are

those used to run ˜NextMsg, then the view of Z when run as a subroutine by A′ corresponds to
Hybrid 1, whereas if the coins r are those output by Explain, then the view of Z when run as a
subroutine by A′ corresponds to Hybrid 2. Indistinguishability of the two experiments follows.

Hybrid 3. This is similar to the previous experiment, except that NextMsg and Explain are used

in place of ˜NextMsg. That is, the experiment proceeds as follows:

1. Compute ( ˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z as the CRS. Z
chooses inputs x1, . . . , xn.

2. Run SimOT′
1(1

λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the sequence of values
OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Compute
(GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ)← NextMsg(OT1,1, . . . ,OT1,n).

In addition, let input∗ = (OT1,1, . . . ,OT1,n) and output∗ = (GC,OT2,1, . . . ,OT2,n, w1, . . . , wλ),
and compute r∗ ← Explain(input∗, output∗).

Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.
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4. When Z corrupts party Pi, compute rR,i := SimOT′
2(1

λ, xi, sti) and yi := EOT(xi, rR,i,OT2,i),
and give xi, z, yi, and rR,i to Z. In addition, if i = n then for i ∈ [n − 1] compute rR,i :=
SimOT′

2(1
λ, xi, sti) and yi := EOT(xi, rR,i,OT2,i), and give {yi}n−1

i=1 and r∗n to Z.

Indistinguishability of this experiment from the previous one follows by statistical equivalence

of NextMsg and ˜NextMsg.

Hybrid 4. In this experiment, we first make explicit the steps of NextMsg. (This is just a
syntactic rewriting, and does not affect the experiment.) In addition, we now set yi = yi,xi instead
of computing yi using the OT-evaluation algorithm EOT. This experiment proceeds as follows:

1. Compute ( ˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z as the CRS. Z
chooses inputs x1, . . . , xn.

2. Run SimOT′
1(1

λ) a total of n times to obtain {(OT1,i, sti)}ni=1. Give the sequence of values
OT1,1, . . . ,OT1,n−1 to Z as the first-round message.

3. Compute (GC, {(yi,0, yi,1)}ni=1, {(wi,0, wi,1)}λi=1) ← GenGC(1λ, C) and set yi = yi,xi for all i.
For i ∈ [n], run OT2,i ← SOT(OT1, yi,0, yi,1). Choose uniform r1, . . . , rλ ∈ {0, 1}, and let
input∗ = (OT1,1, . . . ,OT1,n) and output∗ = (GC,OT2,1, . . . ,OT2,n, wr1 , . . . , wrλ). Compute
r∗ ← Explain(input∗, output∗).

Give OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

4. When Z corrupts party Pi, compute rR,i := SimOT′
2(1

λ, xi, sti). Give xi, z, yi, and rR,i to Z.
In addition, if i = n then give {yi}n−1

i=1 and r∗n to Z.

Computational indistinguishability of this experiment from the previous one follows from secu-
rity of the OT protocol.

Hybrid 5. In the previous experiment the OT2 messages were generated honestly as part of
NextMsg. Here, we have the OT simulator output them instead. That is, we now do:

1. Compute ( ˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z as the CRS. Z
chooses inputs x1, . . . , xn.

2. Run SimOT1(1
λ) a total of n times to obtain {(OT1,i,OT2,i, sti)}ni=1. Give the sequence of

values OT1,1, . . . ,OT1,n−1 to Z as the first-round message, and give OT2,1, . . . ,OT2,n−1 to Z
as the second-round message.

3. Compute (GC, {(yi,0, yi,1)}ni=1, {(wi,0, wi,1)}λi=1) ← GenGC(1λ, C) and set yi = yi,xi for all i.
Choose uniform values r1, . . . , rλ ∈ {0, 1}, and let input∗ = (OT1,1, . . . ,OT1,n) and output∗ =
(GC,OT2,1, . . . ,OT2,n, wr1 , . . . , wrλ). Compute r∗ ← Explain(input∗, output∗).

4. When Z corrupts party Pi, compute rR,i := SimOT2(1
λ, xi, yi, sti). Give xi, z, yi, and rR,i

to Z. In addition, if i = n then give {yi}n−1
i=1 and r∗n to Z.

Again, computational indistinguishability between this experiment and the previous one follows
by security of the OT protocol.

Hybrid 6. Here we use the garbled-circuit simulator (cf. Section 2.1) instead of the garbled-circuit
generation algorithm. Thus, the experiment now proceeds as follows:
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1. Compute ( ˜NextMsg,Explain) ← Comp(1λ,NextMsg), and give ˜NextMsg to Z as the CRS. Z
chooses inputs x1, . . . , xn.

2. Run SimOT1(1
λ) a total of n times to obtain {(OT1,i,OT2,i, sti)}ni=1. Give OT1,1, . . . ,OT1,n−1

to Z as the first-round message, and OT2,1, . . . ,OT2,n−1 to Z as the second-round message.

3. Compute (GC, {yi}ni=1, {wi}λi=1) ← SimGC(1λ, C, z). Let input∗ = (OT1,1, . . . ,OT1,n) and
output∗ = (GC,OT2,1, . . . ,OT2,n, wr1 , . . . , wrλ). Compute r∗ ← Explain(input∗, output∗).

4. When Z corrupts party Pi, compute rR,i := SimOT2(1
λ, xi, yi, sti). Give xi, z, yi, and rR,i

to Z. In addition, if i = n then for i ∈ [n− 1] give {yi}n−1
i=1 and r∗n to Z.

Computational indistinguishability between this experiment and the previous one follows from
security of garbled circuits.

We conclude the proof by noting that Hybrid 6 is simply a syntactic rewriting of the ideal-world
execution involving the simulator originally defined.

5 Conclusions and Open Questions

In this work we have shown the first constant-round, universally composable protocol tolerating a
malicious, adaptive adversary that can corrupt any number of parties, in a setting where secure
erasure is not assumed. In addition, we have shown the first adaptively secure protocol, regardless of
round complexity, that can compute arbitrary functionalities (and not only adaptively well-formed
ones) in the presence of any number of corruptions and without erasures.

Several interesting open questions remain. Although a CRS (or some other form of setup) is
necessary if we wish to obtain a universally composable protocol with security against malicious
adversaries corrupting an arbitrary number of parties, it is still possible that the CRS can be
avoided in the semi-honest case, or in the stand-alone setting. Moreover, our protocol assumes
that the CRS depends on the circuit C being computed or, if we let C be a universal circuit (cf.
footnote 2), an a priori bound on the size of the circuit being computed. It would be interesting to
see if this can be avoided.
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A Puncturable PRFs

Puncturable PRFs are a type of constrained PRF [4, 5, 25] whereby it is possible to generate a key
that defines the function everywhere except on some polynomial-size set of inputs:

Definition 2. A puncturable family of PRFs is defined by polynomials n(·) and m(·) and a triple of
Turing machines KeyF , PunctureF , and EvalF , and satisfying the following conditions:
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Functionality preserved under puncturing. For all polynomial-size sets S ⊆ {0, 1}n(λ) and
all x ∈ {0, 1}n(λ) \ S, we have:

Pr
[
K ← KeyF (1

λ),KS = PunctureF (K,S) : EvalF (K,x) = EvalF (KS , x)
]
= 1.

Pseudorandom at punctured points. For every ppt adversary (A1, A2) such that A1(1
λ) out-

puts a set S ⊆ {0, 1}n(λ) and state σ, consider an experiment where K ← KeyF (1
λ) and

KS = PunctureF (K,S). Then we have∣∣∣Pr [A2(σ,KS , S,EvalF (K,S)) = 1
]
− Pr

[
A2(σ,KS , S, Um(λ)·|S|) = 1

]∣∣∣ ≤ negl(λ)

where EvalF (K,S) denotes the concatenation of EvalF (K,x1), . . . ,EvalF (K,xk), and S =
{x1, . . . , xk} is an enumeration of the elements of S in lexicographic order.

For ease of notation, we write F (K,x) to represent EvalF (K,x). We also represent the punc-
tured key PunctureF (K,S) by K(S).

As observed by [4, 5, 25], the GGM construction [20] of PRFs from one-way functions yields
puncturable PRFs. Thus:

Theorem 2. [4, 5, 25] If one-way functions exist, then for all polynomials n(λ) and m(λ) there
exists a puncturable PRF family that maps n(λ) bits to m(λ) bits.

We follow [27] for the following definitions of puncturable PRFs with enhanced properties:

Definition 3. A statistically injective (puncturable) PRF family with failure probability ϵ(·) is a
family of (puncturable) PRFs F such that with probability 1 − ϵ(λ) over the random choice of key
K ← KeyF (1

λ), we have that F (K, ·) is injective.

Definition 4. An extracting (puncturable) PRF family with error ϵ(·) for min-entropy k(·) is a
family of (puncturable) PRFs F mapping n(λ) bits to m(λ) bits such that for all λ, if X is any
distribution over n(λ) bits with min-entropy greater than k(λ), then the statistical distance between
(K ← KeyF (1

λ), F (K,X)) and (K ← KeyF (1
λ), Um(λ)) is at most ϵ(λ).

The following results were proved in [27]:

Theorem 3 ([27]). If one-way functions exist, then for all efficiently computable functions n(λ),
m(λ), and e(λ) such that m(λ) ≥ 2n(λ)+e(λ), there exists a puncturable statistically injective PRF
family with failure probability 2−e(λ) that maps n(λ) bits to m(λ) bits.

Theorem 4. If one-way functions exist, then for all efficiently computable functions n(λ), m(λ),
k(λ), and e(λ) such that n(λ) ≥ k(λ) ≥ m(λ) + 2e(λ) + 2, there exists an extracting puncturable
PRF family that maps n(λ) bits to m(λ) bits with error 2−e(λ) for min-entropy k(λ).

B Proof of Security for Our Explainability Compiler

In this section we prove security of our explainability compiler. We must show two properties:
statistical functional equivalence and explainability. (Polynomial slowdown is obvious.) The proof
of statistical functional equivalence is largely identical to the analogous proof in [27], so is omitted.
Instead, we focus on explainability.

We first state the following lemma, whose proof is the same as in [27].
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Lemma 1. Except with negligible probability over the choice of key K2, the following hold:

1. For any fixed u[1] = α, there exists at most one pair (input, β) such that the input input with
randomness u = (α, β) will cause the Step 1 check of Alg to be satisfied.

2. There are at most 22λ+ℓin+ℓout values for the randomness u that can cause the Step 1 check of
Alg to be satisfied.

Given the above, we prove:

Theorem 5. If F1, F2, F3 are PRFs that satisfy the properties specified in Section 3.1, and iO is an
indistinguishability obfuscator for P/poly, then our construction Comp(·, ·) satisfies explainability.

Proof: Recall the explainability game from Definition 1:

1. A(1λ) outputs input∗ of its choice.

2. Comp(1λ,Alg) is run to obtain (Ãlg,Explain).

3. Choose random coins r0 ← {0, 1}∗, and compute output∗ ← Ãlg(input∗; r0).

4. Compute r1 ← Explain(input∗, output∗).

5. Choose a uniform bit b and give Ãlg, output∗, rb to A.

6. A outputs a bit b′, and succeeds if b′ = b.

Let ExplAlg,A be a random variable set to 1 if A succeeds in outputting b′ = b in the above game.

Security of Comp(1λ,Alg) requires that for every ppt A and for every efficient algorithm Alg, we
have Pr[ExplAlg,A = 1] ≤ 1/2 + negl(λ).

Assume towards a contradiction that there is some ppt adversaryA and some efficient algorithm
Alg such that Pr[ExplAlg,A = 1] ≥ 1/2 + ε(λ), for non-negligible ε(·). Then, we shall arrive at a
contradiction through several hybrids. To maintain ease of verification for the reader, we present
a full description of each hybrid experiment, each one given on a separate page. The change
between each hybrid and the previous hybrid will be denoted in underlined font. The hybrids are
chosen so that the indistinguishability of each successive hybrid experiment follows in a relatively
straightforward manner.

We unwrap the explainability game specifically with respect to our construction Comp. Recall
that we consider an adversary whose objective is to output b′ = b in the following game.

Original Game. We consider the probability that b′ = b in the following game:

1. b← {0, 1}.

2. input∗ ← A(1λ).

3. Choose K1,K2,K3 at random.

4. Select u∗ at random. Select r∗ at random.

17



5. - If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′,
and input′ = input∗, and u[1] = F2(K2, (input

′, output′, r′)), then let output∗ = output′

and jump to Step 5. Otherwise, perform the following Step.

- Let x∗ = F1(K1, (input
∗, u∗)) and let output∗ = Alg(input∗;x∗).

6. Do the following. Set α∗ = F2(K2, (input
∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α

∗) ⊕
(input∗, output∗,PRG(r∗)).
Set e∗ = (α∗, β∗).

7. Let Ãlg← iO(Alg) for Alg as in Figure 1. Let Explain← iO(Explain) for Explain as in Figure 2.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗).

If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Next, we jump to Hybrid 0, where we eliminate Step 1 check from the Alg program when
preparing the outputs of the fixed challenge input input∗. Hybrid 0 is statistically close to the
original Explainability game by Lemma 1.

Hybrid 0. We consider the probability that b′ = b in the following game:

1. b← {0, 1}.

2. input∗ ← A(1λ).

3. Choose K1,K2,K3 at random.

4. Select u∗ at random. Select r∗ at random.

5. - If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′,
and input′ = input∗, and u[1] = F2(K2, (input

′, output′, r′)), then let output∗ = output′

and jump to Step . Otherwise, perform the following Step.

- Let x∗ = F1(K1, (input
∗, u∗)) and let output∗ = Alg(input∗;x∗).

6. Do the following. Set α∗ = F2(K2, (input
∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α

∗) ⊕
(input∗, output∗,PRG(r∗)). Set e∗ = (α∗, β∗).

7. Let Ãlg← iO(Alg) for Alg as in Figure 5. Let Explain← iO(Explain) for Explain as in Figure 6.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗).

If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Hybrid 1. In this hybrid, we modify the Alg program as follows: First, we add constants
input∗, output∗, u∗, e∗ to the program. Then, we add an “if” statement at the start that outputs
output∗ if the input is either (input∗, u∗) or (input∗, e∗), as this is exactly what the original Alg
program would do by our choice of u∗, e∗. Because this “if” statement is in place, we know that F1

cannot be evaluated at either (input∗, u∗) or (input∗, e∗), within the program, and therefore we can
safely puncture key K1 at these two positions.
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Alg

Constants: Keys K1, K2, and K3.
Input: Input input, randomness u = (u[1], u[2]).

1. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′, and
input′ = input, and u[1] = F2(K2, (input

′, output′, r′)), then output output = output′ and end.

2. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Figure 5: Program Alg

Explain

Constants: Keys K2 and K3.
Input: Input input, output output, randomness r ∈ {0, 1}λ.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α)⊕ (input, output,PRG(r)). Output
e = (α, β).

Figure 6: Program Explain

By construction, the new Alg program is functionally equivalent to the original Alg program.
Therefore the indistinguishability of Hybrid 0 and Hybrid 1 follows by the security of iO. Thus,
the probabilities that A outputs b′ = b in the two hybrids differ by a negligible amount.
Note: Implicitly, all “if” statements that are added to programs with multiple checks are written
in lexicographic order; that is, if u∗ < e∗ in lexicographic order, we write it as “If (input, u) =
(input∗, u∗) or (input∗, e∗),” otherwise we write it as “If (input, u) = (input∗, e∗) or (input∗, u∗).”

1. b← {0, 1}.

2. input∗ ← A(1λ).

3. Choose K1,K2,K3 at random.

4. Select u∗ at random. Select r∗ at random.

5. Let x∗ = F1(K1, (input
∗, u∗)) and let output∗ = Alg(input∗;x∗).

6. Do the following. Set α∗ = F2(K2, (input
∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α

∗) ⊕
(input∗, output∗,PRG(r∗)). Set e∗ = (α∗, β∗).

7. Let Ãlg← iO(Alg) for Alg as in Figure 7. Let Explain← iO(Explain) for Explain as in Figure 8.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗).

If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Hybrid 2. Here, the value x∗ is chosen uniformly instead of as the output of F1(K1, (input
∗, u∗)).

The indistinguishability of Hybrid 2 from Hybrid 1 follows immediately from the pseudorandomness
property of the punctured PRF F1 (Definition 2). Thus, the difference in the probability A outputs
b′ = b in the two hybrids is by a negligible amount.
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Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys K1((input
∗, u∗), (input∗, e∗)), K2, and K3.

Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.

2. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′, and
input′ = input, and u[1] = F2(K2, (input

′, output′, r′)), then output output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Figure 7: Program Alg

Explain

Constants: PRF keys K2, and K3.
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α)⊕ (input, output,PRG(r)). Output
e = (α, β).

Figure 8: Program Explain

1. b← {0, 1}.

2. input∗ ← A(1λ).

3. Choose K1,K2,K3 at random.

4. Select u∗ at random. Select r∗ at random.

5. Let x∗ be chosen randomly and let output∗ = Alg(input∗;x∗).

6. Do the following. Set α∗ = F2(K2, (input
∗, output∗,PRG(r∗))). Let β∗ = F3(K3, α

∗) ⊕
(input∗, output∗,PRG(r∗)). Set e∗ = (α∗, β∗).

7. Let Ãlg← iO(Alg) for Alg as in Figure 9. Let Explain← iO(Explain) for Explain as in Figure 10.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗).

If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Hybrid 3. In this hybrid, instead of picking r∗ at random and applying a PRG to it, a value
r̃ is chosen at random from the co-domain of the PRG. The indistinguishability of Hybrid 2 and
Hybrid 3 follows immediately from the security of the PRG. Thus, the difference in the probability
A outputs b′ = b in the two hybrids differs by a negligible amount.

1. b← {0, 1}.

2. input∗ ← A(1λ).

3. Choose K1,K2,K3 at random.
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Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys K1((input
∗, u∗), (input∗, e∗)), K2, and K3.

Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.

2. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′, and
input′ = input, and u[1] = F2(K2, (input

′, output′, r′)), then output output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Figure 9: Program Alg

Explain

Constants: PRF keys K2, and K3.
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α)⊕ (input, output,PRG(r)). Output
e = (α, β).

Figure 10: Program Explain

4. Select u∗ at random. Select r̃ at random.

5. Let x∗ be chosen randomly and let output∗ = Alg(input∗;x∗).

6. Do the following. Set α∗ = F2(K2, (input
∗, output∗, r̃)). Let β∗ = F3(K3, α

∗)⊕(input∗, output∗, r̃).
Set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 11. Let Explain ← iO(Explain) for Explain as in
Figure 12.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗).

If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys K1((input
∗, u∗), (input∗, e∗)), K2, and K3.

Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.

2. If F3(K3, u[1]) ⊕ u[2] = (input′, output′, r′) for (proper length) strings output′, r′, input′, and
input′ = input, and u[1] = F2(K2, (input

′, output′, r′)), then output output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Figure 11: Program Alg
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Explain

Constants: PRF keys K2, and K3.
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α)⊕ (input, output,PRG(r)). Output
e = (α, β).

Figure 12: Program Explain

Hybrid 4. In this hybrid, the Alg and Explain programs are modified as shown below. In Lemma 2,
(proven below after all hybrids are given), we argue that except with negligible probability over
choice of constants, these modifications do not alter the functionality of either program.

Thus, the indistinguishability of Hybrid 3 and Hybrid 4 follows from the iO security property.
and so the difference in the probability A outputs b′ = b in the two hybrids differs by a negligible
amount.

1. b← {0, 1}.

2. input∗ ← A(1λ).

3. Choose K1,K2,K3 at random.

4. Select u∗ at random. Select r̃ at random.

5. Let x∗ be chosen randomly and let output∗ = Alg(input∗;x∗).

6. Do the following. Set α∗ = F2(K2, (input
∗, output∗, r̃)). Let β∗ = F3(K3, α

∗)⊕(input∗, output∗, r̃).
Set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 13. Let Explain ← iO(Explain) for Explain as in
Figure 14.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗).

If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Hybrid 5. In this hybrid, the value e∗[2], denoted β∗, is chosen at random instead of being chosen
as β∗ = F3(K3, α

∗)⊕ (input∗, output∗, r̃). The indistinguishability of Hybrid 4 and Hybrid 5 follows
immediately from the pseudorandomness property of the puncturable PRF F3. Thus, the difference
in the probability A outputs b′ = b in the two hybrids differs by a negligible amount.

1. b← {0, 1}.

2. input∗ ← A(1λ).

3. Choose K1,K2,K3 at random.

4. Select u∗ at random. Select r̃ at random.

5. Let x∗ be chosen randomly and let output∗ = Alg(input∗;x∗).
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Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys K1((input
∗, u∗), (input∗, e∗)), K2, and

K3(u
∗[1], e∗[1]).

Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.

2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step. If F3(K3, u[1])⊕ u[2] = (input′, output′, r′)

for (proper length) strings output′, r′, input′, and input′ = input, and u[1] =
F2(K2, (input

′, output′, r′)), then output output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Figure 13: Program Alg

Explain

Constants: PRF keys K2, and K3(u
∗[1], e∗[1]).

Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α)⊕ (input, output,PRG(r)). Output
e = (α, β).

Figure 14: Program Explain

6. Do the following. Set α∗ = F2(K2, (input
∗, output∗, r̃)). Let β∗ be random. Set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 15. Let Explain ← iO(Explain) for Explain as in
Figure 16.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗).

If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Alg

Constants: input∗, output∗, u∗, e∗ and PRF keys K1((input
∗, u∗), (input∗, e∗)), K2, and

K3(u
∗[1], e∗[1]).

Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.

2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step. If F3(K3, u[1]) ⊕ u[2] =
(input′, output′, r′) for (proper length) strings output′, r′, input′, and input′ = input, and
u[1] = F2(K2, (input

′, output′, r′)), then output output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Figure 15: Program Alg

Hybrid 6. In this hybrid, first we modify the Alg program to add a condition to Step 2 check to de-
termine if the decrypted (input′, output′, r′) = (input∗, output∗, r̃), and if so, to skip this check. This
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Explain

Constants: PRF keys K2, and K3(u
∗[1], e∗[1]).

Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α)⊕ (input, output,PRG(r)). Output
e = (α, β).

Figure 16: Program Explain

new check does not change the functionality of the program, because e∗[1] = F2(K2, (input
∗, output∗, r̃)),

and therefore the check could not pass if (input′, output′, r′) = (input∗, output∗, r̃), since Step 2 is
skipped entirely if u[1] = e∗[1]. Then, both the Alg and Explain programs are modified to have keys
K2 punctured at the points (input∗, output∗, r̃). This puncturing does not change the functionality
of the Alg program because of the new “if” condition just implemented. With high probability over
the choice of r̃, it is true that r̃ is not in the image of the PRG, and therefore this puncturing also
does not change the functionality of the Explain program.

Thus, the indistinguishability of Hybrid 5 and Hybrid 6 follows from the iO security property.
Thus, the difference in the probability A outputs b′ = b in the two hybrids differs by a negligible
amount.

1. b← {0, 1}.

2. input∗ ← A(1λ).

3. Choose K1,K2,K3 at random.

4. Select u∗ at random. Select r̃ at random.

5. Let x∗ be chosen randomly and let output∗ = Alg(input∗;x∗).

6. Do the following. Set α∗ = F2(K2, (input
∗, output∗, r̃)). Let β∗ be random. Set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 17. Let Explain ← iO(Explain) for Explain as in
Figure 18.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗).

If b = 1, set b′ ← A(Ãlg, output∗, e∗).

Hybrid 7. In our final hybrid, we modify e∗[1], denoted α∗, to be randomly chosen, instead of
being set as α∗ = F2(K2, (input

∗, output∗, r̃)). The indistinguishability of Hybrid 6 and Hybrid 7
follows immediately from the pseudorandomness property of the puncturable PRF F2. Thus, the
difference in the probability A outputs b′ = b in the two hybrids differs by a negligible amount.

1. b← {0, 1}.

2. input∗ ← A(1λ).

3. Choose K1,K2,K3 at random.
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Alg

Constants: input∗, output∗, u∗, e∗, r̃ and PRF keys K1((input
∗, u∗), (input∗, e∗)),

K2((input
∗, output∗, r̃)), and K3(u

∗[1], e∗[1]).
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.

2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step. If F3(K3, u[1]) ⊕ u[2] =
(input′, output′, r′) for (proper length) strings output′, r′, input′, and input′ = input, and
(input′, output′, r′) ̸= (input∗, output∗, r̃), then also check if u[1] = F2(K2, (input

′, output′, r′)),

then output output = output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Figure 17: Program Alg

Explain

Constants: PRF keys K2((input
∗, output∗, r̃)), and K3(u

∗[1], e∗[1]).
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α)⊕ (input, output,PRG(r)). Output
e = (α, β).

Figure 18: Program Explain

4. Select u∗ at random. Select r̃ at random.

5. Let x∗ be chosen randomly and let output∗ = Alg(input∗;x∗).

6. Do the following. Let α∗ be random. Let β∗ be random. Set e∗ = (α∗, β∗).

7. Let Ãlg ← iO(Alg) for Alg as in Figure 19. Let Explain ← iO(Explain) for Explain as in
Figure 20.

8. If b = 0, set b′ ← A(Ãlg, output∗, u∗).

If b = 1, set b′ ← A(Ãlg, output∗, e∗).

In Hybrid 7 we observe that the variables e∗, u∗ are now both independently uniformly random
strings, and they are treated entirely symmetrically. (Recall that the “if” statements above have
the conditions written in lexicographic order, so they do not reveal any asymmetry between e∗ and
u∗.) Thus, the distributions output by this Hybrid for b = 0 and b = 1 are identical, and therefore
even an unbounded adversary outputs b = b′ with probability exactly 1/2.

The proof above made use of the following lemma for arguing that the programs obfuscated
by the indistinguishability obfuscator in Hybrid 3 are equivalent to the corresponding programs in
Hybrid 4.

Lemma 2. Except with negligible probability over the choice of u∗[1] and e∗[1], the Alg and Explain
programs in Hybrid 4 are equivalent to the Alg and Explain programs in Hybrid 3.
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Alg

Constants: input∗, output∗, u∗, e∗, r̃ and PRF keys K1((input
∗, u∗), (input∗, e∗)),

K2((input
∗, output∗, r̃)), and K3(u

∗[1], e∗[1]).
Input: Input input, randomness u = (u[1], u[2]).

1. If (input, u) = (input∗, u∗) or (input∗, e∗), output output∗ and stop.

2. If u[1] = e∗[1] or u[1] = u∗[1], then skip this step. If F3(K3, u[1])⊕ u[2] = (input′, output′, r′)
for (proper length) strings output′, r′, input′, and input′ = input, and, (input′, output′, r′) ̸=
(input∗, output∗, r̃), then also check if u[1] = F2(K2, (input

′, output′, r′)), then output output =
output′ and end.

3. Else let x = F1(K1, (input, u)). Output output = Alg(input;x).

Figure 19: Program Alg

Explain

Constants: PRF keys K2((input
∗, output∗, r̃)), and K3(u

∗[1], e∗[1]).
Input: Input input, output output, randomness r.

1. Set α = F2(K2, (input, output,PRG(r))). Let β = F3(K3, α)⊕ (input, output,PRG(r)). Output
e = (α, β).

Figure 20: Program Explain

Proof: We consider below each change to the programs.
First, an “if” statement is added to Step 2 of the Alg program, to skip Step 2 check if, either

u[1] = e∗[1] or u[1] = u∗[1]. To see why this change does not affect the functionality of the program,
let us consider each case in turn. Observe that by Lemma 1, if u[1] = e∗[1], then the only way the
Step 2 check can be satisfied is if input = input∗ and u[2] = e∗[2]. But this case is already handled
in Step 1, therefore skipping Step 2 if u[1] = e∗[1] does not affect functionality. On the other hand,
recall that every u∗[1] is chosen at random, and therefore the probability that u∗[1] would be in the
image of F2(K2, ·) is negligible, therefore with high probability over the choice of constants u∗[1],
Step 2 check cannot be satisfied if u[1] = u∗[1] . Therefore, the addition of this “if” statement does
not alter the functionality of the Alg program.

Also, the key K3 is punctured at u∗[1], e∗[1] in both the Alg and Explain programs. The new “if”
statement above ensures that F3(K3, ·) is never called at these values in the Alg program. Recall
that the Explain program only calls F3(K3, ·) on values computed as F2(K2, (input, output,PRG(r)))
for some bit input and strings output and r. Furthermore, F2 is statistically injective with a very
sparse image set, by our choice of parameters. Since every u∗[1] is randomly chosen, it is very
unlikely to be in the image of F2(K2, ·). Since every e∗[1] is chosen based on a random r̃ value
instead of a PRG output, it is very unlikely to correspond to F2(K2, (input, output,PRG(r))) for any
(input, output, r). Thus, these values are not called by the Explain program, except with negligible
probability over the choice of these constants u∗[1] and e∗[1].

26


