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Abstract

We present a construction of a private-key functional encryption scheme for any family of
randomized functionalities based on any such scheme for deterministic functionalities that is
sufficiently expressive. Instantiating our construction with existing schemes for deterministic
functionalities, we obtain schemes for any family of randomized functionalities based on a variety
of assumptions (including the LWE assumption, simple assumptions on multilinear maps, and
even the existence of any one-way function) offering various trade-offs between security and
efficiency.

Previously, Goyal, Jain, Koppula and Sahai [Cryptology ePrint Archive, 2013] constructed a
public-key functional encryption scheme for any family of randomized functionalities based on
indistinguishability obfuscation.

One of the key insights underlying our work is that, in the private-key setting, a sufficiently
expressive functional encryption scheme may be appropriately utilized for implementing proof
techniques that were so far implemented based on obfuscation assumptions (such as the punctured
programming technique of Sahai and Waters [STOC 2014]). We view this as a contribution of
independent interest that may be found useful in other settings as well.
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1 Introduction

The cryptographic community’s vision of functional encryption [SW08, BSW11, O’N10] is rapidly
evolving. Whereas traditional encryption schemes offer an all-or-nothing guarantee when accessing
encrypted data, functional encryption schemes offer tremendous flexibility. Specifically, such schemes
support restricted decryption keys that allow users to learn specific functions of the encrypted data
and nothing else.

Motivated by the early examples of functional encryption schemes for specific functionalities
(such as identity-based encryption [Sha84, BF03, Coc01]), extensive research has recently been
devoted to the construction of functional encryption schemes for rich and expressive families of
functions (see, for example, [SW08, BSW11, O’N10, GVW12, AGV+13, BO13, BCP14, DIJ+13,
GGH+13, GKP+13, Wat14, GGH+14, BS14] and the references therein).

Until very recently, research on functional encryption has focused on the case of deterministic
functions. More specifically, in a functional encryption scheme for a family F of deterministic
functions, a trusted authority holds a master secret key msk that enables to generate a functional
key skf for any function f ∈ F . Now, anyone holding the functional key skf and an encryption of
some value x, can compute f(x) but cannot learn any additional information about x. In many
scenarios, however, dealing only with deterministic functions may be insufficient, and a more general
framework allowing randomized functions is required.

Functional encryption for randomized functionalities. Motivated by various real-world sce-
narios, Goyal et al. [GJK+13] have recently put forward a generalization of functional encryption
to randomized functionalities. In this setting, given a functional key skf for a randomized function
f and given an encryption of a value x, one should be able to obtain a sample from the distribution
f(x). As Goyal et al. pointed out, the case of randomized functions presents new challenges for
functional encryption. These challenge arise already when formalizing the security of functional
encryption for randomized functions1, and then become even more noticeable when designing such
schemes.

Goyal et al. [GJK+13] presented a realistic framework for modeling the security of functional
encryption schemes for randomized functionalities. Even more importantly, within their framework
they constructed a public-key functional encryption scheme supporting the set of all randomized
functionalities (that are computable by bounded-size circuits). Their construction builds upon the
elegant approach of punctured programming due to Sahai and Waters [SW14], and they prove the
security of their construction based on indistinguishability obfuscation [BGI+12, GGH+13].

Identifying the minimal assumptions for functional encryption. The work of Goyal et al.
[GJK+13] naturally gives rise to the intriguing question of whether functional encryption for random-
ized functionalities can be based on assumptions that are seemingly weaker than indistinguishability
obfuscation. On one hand, it may be the case that functional encryption for randomized functional-
ities is indeed a significantly more challenging primitive than functional encryption for deterministic
functionalities. In this case, it would be conceivable to use the full power of indistinguishability
obfuscation for constructing such schemes. On the other hand, however, it may be possible that
a functional encryption scheme for randomized functions can be constructed in a direct black-box
manner from any such scheme for deterministic functions.

1For example, an adversary holding a functional key skf and an encryption of a value x, should not be able to
tamper with the randomness that is used for sampling from distribution f(x). This is extremely well motivated by
the examples provided by Goyal et al. in the contexts of auditing an encrypted database via randomized sampling,
and of performing differentially-private analysis on an encrypted database via randomized perturbations. We refer the
reader to [GJK+13] for more details.
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This question is especially interesting since various functional encryption schemes for (general)
deterministic functionalities are already known to exist based on assumptions that seem significantly
weaker than indistinguishability obfuscation (such as Learning with Errors assumption or even the
existence of any one-way function) offering various trade-offs between security and efficiency (see
Section 2.2 for more details on the existing schemes).

1.1 Our Contributions

In this work we consider functional encryption in the private-key setting, where the master secret key
is used both for generating functional keys and for encryption. In this setting we provide an answer
to the above question: we present a construction of a private-key functional encryption scheme for
any family F of randomized functions based on any private-key functional encryption scheme for
deterministic functions that is sufficiently expressive2. Inspired by the work of Goyal et al. [GJK+13]
in the public-key setting, we prove the security of our construction within a similarly well-motivated
framework for capturing the security of private-key functional encryption for randomized functions.

Instantiations. Our resulting scheme inherits the flavor of security guaranteed by the underlying
scheme (e.g., full vs. selective security, and one-key vs. many-keys security), and can be instantiated
by a variety of existing functional encryption schemes. Specifically, our scheme can be based either on
the Learning with Errors assumption, on obfuscation assumptions, on multilinear-maps assumptions,
or even on the existence of any one-way function (offering various trade-offs between security and
efficiency – we refer the reader to Section 2.2 for more details on the possible instantiations).

Applicable scenarios. Following-up on the motivating applications given by Goyal et al. [GJK+13]
in the contexts of auditing an encrypted database via randomized sampling, and of performing
differentially-private analysis on an encrypted database via randomized perturbations, we observe
that these two examples are clearly valid in the private-key setting as well. Specifically, in both
applications, the party that provides functional keys is more than likely the same one who encrypts
the data.

Obfuscation-based techniques via function privacy. One of the key insights underlying our
work is that in the private-key setting, where encryption is performed honestly by the owner of
the master secret key, the power of indistinguishability obfuscation may not be needed. Specifi-
cally, we observe that in some cases one can instead rely on the weaker notion of function privacy
[SSW09, BRS13a, AAB+13, BS14]. Intuitively, a functional encryption scheme is function private if
a functional key skf for a function f reveals no “unnecessary” information on f . For functional en-
cryption in the private-key setting, this essentially means that encryptions of messages m1, . . . ,mT

together with functional keys corresponding to functions f1, . . . , fT reveal essentially no information
other than the values {fi(mj)}i,j∈[T ]. Brakerski and Segev [BS14] recently showed that a function-
private scheme can be obtained from any private-key functional encryption scheme.

Building upon the notion of function privacy, we show that any private-key functional encryption
scheme may be appropriately utilized for implementing some of the proof techniques that were so
far implemented based on indistinguishability obfuscation. These include, in particular, a variant of
the punctured programming approach of Sahai and Waters [SW14]. We view this as a contribution
of independent interest that may be found useful in other settings as well.

2Our only assumption on the underlying scheme is that it supports the family F (when viewed as a family of single-
input deterministic functions), supports the evaluation procedure of a pseudorandom function family, and supports a
few additional basic operations (such as conditional statements).
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1.2 Additional Related Work

A related generalization of functional encryption is that of functional encryption for multiple-input
functions due to Goldwasser et al. [GGG+14]. A multiple-input functional encryption scheme for
a function family F allows generating a functional key skf for any function f ∈ F , and this en-
ables to compute f(x, y) given an encryption of x and an encryption of y, while not learning any
additional information. Although capturing the security guarantees that can be provided by such
schemes is quite challenging, multiple-input functional encryption might be useful for dealing with
single-input randomized functionalities: One can view a randomized function f(x; r) as a two-input
function, where its first input is the actual input x, and its second input is the randomness r (that is
possibly derived by a PRF key). However, the construction of Goldwasser et al. is based on indistin-
guishability obfuscation, and our goal is to rely on weaker assumptions. In addition, it is not clear
that the notion of security of Goldwasser et al. suffices for capturing our notion of “best-possible”
message privacy which allows for an a-priori non-negligible advantage in distinguishing the output
distributions of two randomized functions (see Sections 1.3 and 3 for our notion of privacy).

Our construction relies on the notion of function privacy for functional encryption schemes,
first introduced by Boneh et al. [BRS13a, BRS13b] in the public-key setting, and then studied by
Agrawal et al. [AAB+13] and by Brakerski and Segev [BS14] in the private-key setting (generalizing
the work on predicate privacy in the private-key setting by Shen et al. [SSW09]). As discussed
in Section 1.1, for functional encryption in the private-key setting, function privacy essentially
means that encryptions of messages m1, . . . ,mT together with functional keys corresponding to
functions f1, . . . , fT reveal essentially no information other than the values {fi(mj)}i,j∈[T ]. In terms
of underlying assumptions, we rely on the fact that Brakerski and Segev [BS14] showed that a
function-private scheme can be obtained from any private-key functional encryption scheme.

1.3 Overview of Our Approach

A private-key functional encryption scheme for a family F of randomized functions consists of four
probabilistic polynomial-time algorithms (Setup,KG,Enc,Dec). The syntax is identical to that of
functional encryption for deterministic functions (see Section 2.2), but the correctness and security
requirements are more subtle. In this section we begin with a brief overview of our notions of
correctness and security. Then, we provide a high-level overview of our new construction, and the
main ideas and challenges underlying its proof of security.

Correctness and independence of decrypted values. Our notion of correctness follows that
of Goyal et al. [GJK+13] by adapting it to the private-key setting. Specifically, we ask that for any
sequence of messages x1, . . . , xT and for any sequence of functions f1, . . . , fT ∈ F , it holds that the
distribution obtained by encrypting x1, . . . , xT and then decrypting the resulting ciphertexts with
functional keys corresponding to f1, . . . , fT is computationally indistinguishable from the distribu-
tion {fj(xi; ri,j)}i,j∈[T ] where the ri,j ’s are sampled independently and uniformly at random. As
noted by Goyal et al. [GJK+13], unlike in the case of deterministic functions where is suffices to
define correctness for a single ciphertext and a single key, here it is essential to define correctness
for multiple (possibly correlated) ciphertexts and keys. We refer the reader to Section 3.1 for our
formal definition.

“Best-possible” message privacy. As in functional encryption for deterministic functions, we
consider adversaries whose goal is to distinguish between encryptions of two challenge messages, x∗0
and x∗1, when given access to an encryption oracle (as required in private-key encryption) and to
functional keys of various functions. Recall that in the case of deterministic functions, the adversary
is allowed to ask for functional keys for any function f such that f(x∗0) = f(x∗1).
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When dealing with randomized functions, however, it is significantly less clear how to prevent
adversaries from choosing functions f that will enable to easily distinguish between encryptions
of x∗0 and x∗1. Our notions of message privacy ask that the functional encryption scheme under
consideration will not add a non-negligible advantage to the (possibly non-negligible) advantage that
adversaries may already have in distinguishing between the distributions f(x∗0) and f(x∗1). That is,
given that adversaries are able to obtain a sample from the distribution f(x∗0) or from the distribution
f(x∗1) using the functional key skf , and may already have some advantage in distinguishing these
distributions, we ask for “best-possible” message privacy in the sense that essentially no additional
advantage can be gained.

Concretely, if the distributions f(x∗0) and f(x∗1) can be efficiently distinguished with advantage
at most ∆ = ∆(λ) to begin with (where ∆ does not necessarily have to be negligible), then we
require that no adversary that is given a functional key for f will be able to distinguish between
encryptions of x∗0 and x∗1 with advantage larger than ∆ +neg(λ), for some negligible function neg(·).
More generally, an adversary that is given functional keys for T = T (λ) such functions (and access
to an encryption oracle), should not be able to distinguish between encryptions of x∗0 and x∗1 with
advantage larger than T ·∆ +neg(λ). We note that our approach for realistically capturing message
privacy somewhat differs from that of Goyal et al. [GJK+13], and we refer the reader to Appendix A
for a brief comparison between the two approaches3.

We put forward two flavors of “best-possible” message privacy, a non-adaptive flavor and an
adaptive flavor, depending on the flavor of indistinguishability guarantee that is satisfied by the
function family under consideration. We refer the reader to Section 3.2 for our formal definitions,
and for some typical examples of function families that satisfy each flavor.

Our construction. Let (Setup,KG,Enc,Dec) be any private-key functional encryption scheme that
provides message privacy and function privacy4. Our new scheme is quite intuitive and is described
as follows:

• The setup and decryption algorithms are identical to those of the underlying scheme.

• The encryption algorithm on input a message x, samples a string s uniformly at random, and
outputs an encryption ct ← Enc(msk, (x,⊥, s,⊥)) of x and s together with two additional
“empty slots” that will be used in the security proof.

• The key-generation algorithm on input a description of a randomized function f , samples a
PRF key K, and outputs a functional key for the deterministic function Leftf,K defined as
follows: On input (xL, xR, s, z) output f(xL; r) where r = PRFK(s).

The correctness and independence of our scheme follow in a straightforward manner from the cor-
rectness of the underlying scheme and the assumption that PRF is pseudorandom. In fact, it suffices
that PRF is weakly pseudorandom (i.e., computationally indistinguishable from a truly random
function when evaluated on independent and uniformly sampled inputs).

As for the message privacy of the scheme, recall that we consider adversaries that can access
an encryption oracle and a key-generation oracle, and should not be able to distinguish between
an encryption Enc(msk, (x∗0,⊥, s∗,⊥)) of x∗0 and an encryption Enc(msk, (x∗1,⊥, s∗,⊥)) of x∗1 with
advantage larger than T · ∆ + neg(λ) (where T is the number of functional keys given to the

3As far as we are able to currently tell, it seems that both our scheme and the scheme of Goyal et al. [GJK+13]
provide message privacy according to both of these approaches. We emphasize that we view the main contribution
of our paper as basing the security of our scheme on any underlying functional encryption scheme (and avoiding
obfuscation-related assumptions), and not as offering alternative notions of message privacy.

4As discussed above, function privacy can be assumed without loss of generality using the transformation of
Brakerski and Segev [BS14].
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adversary, and ∆ is the a-priori distinguishing advantage for the functions under consideration as
described above).

The first step in our proof of security is to replace the challenge ciphertext with a modi-
fied challenge ciphertext Enc(msk, (x∗0, x

∗
1, s
∗,⊥)) that contains information on both challenge mes-

sages (this is made possible due to the message privacy of the underlying scheme). Next, de-
noting the adversary’s key-generation queries by f1, . . . , fT , our goal is to replace the functional
keys Leftf1,K1 , . . . , LeftfT ,KT with the functional keys Rightf1,K1

, . . . ,RightfT ,KT , where the function
Rightf,K is defined as follows: On input (xL, xR, s, z) output f(xR; r) where r = PRFK(s). At this
point we note that, from the adversary’s point of view, when providing only Left keys the modified
challenge ciphertext is indistinguishable from an encryption of x∗0, and when providing only Right
keys the modified challenge ciphertext is indistinguishable from an encryption of x∗1.

The most challenging part of the proof is in bounding the adversary’s advantage in distinguishing
the sequences of Left and Right keys, based on the function privacy and the message privacy of the
underlying scheme. The basic idea is to switch the functional keys from Left to Right one by one,
following different proof strategies for pre-challenge keys and for post-challenge keys5.

When dealing with a pre-challenge key skf , the function f is already known when producing the
challenge ciphertext. Therefore, we can use the message privacy of the underlying scheme and replace
the (already-modified) challenge ciphertext with Enc(msk, (x∗0, x

∗
1, s
∗, z∗)), where z∗ = f(x∗0; r∗) and

r∗ = PRFK(s∗). Then, we use the function privacy of the underlying scheme, and replace the
functional key Leftf,K with a functional key for the function OutputZ that simply outputs z whenever
s = s∗. From this point on, we use the pseudorandomness of PRF and replace r∗ = PRFK(s∗) with
a truly uniform r∗, and then replace z∗ ← f(x∗0) with z∗ ← f(x∗1). Similar steps then enable us to
replace the functional key OutputZ with a functional key for the function Rightf,K .

When dealing with a post-challenge key skf , we would like to follow the same approach of
embedding the value f(x∗0; r∗) or f(x∗1; r∗). However, for post-challenge keys, the function f is not
known when producing the challenge ciphertext. Instead, in this case, the challenge messages x∗0
and x∗1 are known when producing the functional key skf . Combining this with the function privacy
of the underlying scheme enables us to embed the above values in the functional key skf , and once
again replace the Left keys with the Right keys. We refer the reader to Section 4 for the formal
description of our scheme and its proof of security.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we provide an overview of the basic
notation and standard tools underlying our construction. In Section 3 we introduce our notions of
security for private-key functional encryption schemes for randomized functionalities. In Section 4
we present our new scheme and prove its security. Formal proofs of the claims that are stated in
Section 4 appear in Appendices B and C.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For a randomized function f and an input x ∈ X , we denote by y ← f(x) the
process of sampling a value y from the distribution f(x). For an integer n ∈ N we denote by [n]

5We use the term pre-challenge keys for all functional keys that are obtained before the challenge phase, and the
term post-challenge keys for all functional keys that are obtained after the challenge phase.
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the set {1, . . . , n}. A function neg : N → R is negligible if for every constant c > 0 there exists an
integer Nc such that neg(λ) < λ−c for all λ > Nc.

The statistical distance between two random variables X and Y over a finite domain Ω is defined
as SD(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω]− Pr[Y = ω]|. Two sequences of random variables X = {Xλ}λ∈N

and Y = {Yλ}λ∈N are computationally indistinguishable if for any probabilistic polynomial-time algo-
rithm A there exists a negligible function neg(·) such that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤

neg(λ) for all sufficiently large λ ∈ N.

2.1 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval) be a function family
with the following syntax:

• PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the unary represen-
tation of the security parameter λ, and outputs a key K ∈ Kλ.

• PRF.Eval is a deterministic polynomial-time algorithm that takes as input a key K ∈ Kλ and
a value x ∈ Xλ, and outputs a value y ∈ Yλ.

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range of the function
family, respectively. For easy of notation we may denote by PRF.EvalK(·) or PRFK(·) the function
PRF.Eval(K, ·) for K ∈ Kλ. The following is the standard definition of a pseudorandom function
family.

Definition 2.1 (Pseudorandomness). A function family PRF = (PRF.Gen,PRF.Eval) is pseudoran-
dom if for every probabilistic polynomial-time algorithm A there exits a negligible function neg(·)
such that

AdvPRF,A(λ)
def
=

∣∣∣∣ Pr
K←PRF.Gen(1λ)

[
APRF.EvalK(·)(1λ) = 1

]
− Pr
f←Fλ

[
Af(·)(1λ) = 1

]∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of functions that map Xλ into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely on the seem-
ingly stronger (yet existentially equivalent) notion of a puncturable pseudorandom function family
[KPT+13, BW13, SW14, BGI14]. In terms of syntax, this notion asks for an additional probabilistic
polynomial-time algorithm, PRF.Punc, that takes as input a key K ∈ Kλ and a set S ⊆ Xλ and
outputs a “punctured” key KS . The properties required by such a puncturing algorithm are capture
by the following definition.

Definition 2.2 (Puncturable PRF). A pseudorandom function family PRF = (PRF.Gen,PRF.Eval,
PRF.Punc) is puncturable if the following properties are satisfied:

1. Functionality: For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and for every x ∈ Xλ \S
it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K,S)

[PRF.EvalK(x) = PRF.EvalKS (x)] = 1.

2. Pseudorandomness at Punctured Points: Let A = (A1,A2) be any probabilistic poly-
omial-time algorithm such that A1(1λ) outputs a set S ⊆ Xλ, a value x ∈ S, and state
information state. Then, for any such A there exists a negligible function neg(·) such that

AdvpuPRF,A(λ)
def
= |Pr [A2(KS ,PRF.EvalK(x), state) = 1]− Pr [A2(KS , y, state) = 1]| ≤ neg(λ)
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for all sufficiently large λ ∈ N, where (S, x, state) ← A1(1λ), K ← PRF.Gen(1λ), KS =
PRF.Punc(K,S), and y ← Yλ.

As observed by [KPT+13, BW13, SW14, BGI14] the GGM construction [GGM86] of PRFs from
one-way functions can be easily altered to yield a puncturable PRF.

2.2 Private-Key Functional Encryption

A private-key functional encryption scheme over a message space X = {Xλ}λ∈N and a function space
F = {Fλ}λ∈N is a quadruple (Setup,KG,Enc,Dec) of probabilistic polynomial-time algorithms. The
setup algorithm Setup takes as input the unary representation 1λ of the security parameter λ ∈ N
and outputs a master-secret key msk. The key-generation algorithm KG takes as input a master-
secret key msk and a function f ∈ Fλ, and outputs a functional key skf . The encryption algorithm
Enc takes as input a master-secret key msk and a message x ∈ Xλ, and outputs a ciphertext ct.
In terms of correctness we require that for all sufficiently large λ ∈ N, for every function f ∈ Fλ
and message x ∈ Xλ it holds that Dec(KG(msk, f),Enc(msk, x)) = f(x) with all but a negligible
probability over the internal randomness of the algorithms Setup, KG, and Enc.

In terms of security, we rely on the private-key variants existing indistinguishability-based notions
for message privacy (see, for example, [BSW11, O’N10, BO13]) and function privacy (see [AAB+13,
BS14]). When formalizing these notions it would be convenient to use the following standard notion
of a left-or-right oracle.

Definition 2.3 (Left-or-right oracle). Let O(·, ·) be a probabilistic two-input functionality. For

each b ∈ {0, 1} we denote by Ob the probabilistic three-input functionality Ob(k, z0, z1)
def
= O(k, zb).

2.2.1 Message Privacy

A functional encryption scheme is message private if the encryptions of any two messages x0 and x1

are computationally indistinguishable given access to an encryption oracle (as required in private-
key encryption) and to functional keys for any function f such that f(x∗0) = f(x∗1). We consider
two variants of message privacy: (full) message privacy in which adversaries are fully adaptive, and
selective-function message privacy in which adversaries must issue their key-generation queries in
advance.

Definition 2.4 (Message privacy). A functional encryption scheme FE = (Setup,KG,Enc,Dec) over
a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is message private if for any
probabilistic polynomial-time adversary A there exists a negligible function neg(·) such that

AdvMP
FE,A,F (λ)

def
=
∣∣∣Pr
[
AKG(msk,·),Enc0(msk,·,·)(1λ) = 1

]
− Pr

[
AKG(msk,·),Enc1(msk,·,·)(1λ) = 1

]∣∣∣ ≤ neg(λ)

for all sufficiently large λ ∈ N, where for every (x0, x1) ∈ Xλ×Xλ and f ∈ Fλ with which A queries
the oracles Encb and KG, respectively, it holds that f(x0) = f(x1). Moreover, the probability is
taken over the choice of msk← Setup(1λ) and the internal randomness of A.

Definition 2.5 (Selective-function message privacy). A functional encryption scheme FE = (Setup,
KG,Enc,Dec) over a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is T -selective-
function message private, where T = T (λ), if for any probabilistic polynomial-time adversary A =
(A1,A2) there exists a negligible function neg(·) such that

AdvsfMP
FE,A,F ,T (λ)

def
=
∣∣∣Pr
[
Expt

(0)
FE,A,F ,T (λ) = 1

]
− Pr

[
Expt

(1)
FE,A,F ,T (λ) = 1

]∣∣∣ ≤ neg(λ)
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for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the random variable Expt
(b)
FE,A,F ,T (λ)

is defined as follows:

1. msk← Setup(1λ).

2. (f1, . . . , fT , state)← A1(1λ), where fi ∈ Fλ for all i ∈ [T ].

3. skfi ← KG(msk, fi) for all i ∈ [T ].

4. b′ ← AEncb(msk,·,·)
2 (skf1 , . . . , skfT , state), where for each of A2’s queries (x0, x1) ∈ Xλ × Xλ to

Encb(msk, ·, ·) it holds that fi(x0) = fi(x1) for all i ∈ [T ].

5. Output b′.

Such a scheme is selective-function message private if it is T -selective-function message private for
all polynomials T = T (λ).

Known constructions. Private-key functional encryption schemes that satisfy the notions pre-
sented in Definitions 2.4 and 2.5 (and support circuits of any a-priori bounded polynomial size) are
known to exist based on various assumptions. The known schemes are in fact public-key schemes,
which are in particular private-key ones.

Specifically, a public-key scheme that satisfies the notion of 1-selective-function message privacy
was constructed by Gorbunov, Vaikuntanathan and Wee [GVW12] under the sole assumption that
public-key encryption exists. In the private-key setting, their transformation can in fact rely on
any private-key encryption scheme (and thus on any one-way function). By assuming, in addition,
the existence of a pseudorandom generator computable by small-depth circuits (which is known
to be implied by most concrete intractability assumptions), they construct a scheme that satisfies
the notion of T -selective-function message privacy for any predetermined polynomial T = T (λ).
However, the length of the ciphertexts in their scheme grows linearly with T and with an upper
bound on the circuit size of the functions that the scheme allows (which also has to be known
ahead of time). Goldwasser et al. [GKP+13] showed that based on the Learning with Errors (LWE)
assumption, T -selective-function message privacy can be achieved where the ciphertext size grows
with T and with a bound on the depth of allowed functions.

In addition, schemes that satisfy the notion of (full) message privacy (Definition 2.4) were con-
structed by Boyle et al. [BCP14] and by Ananth et al. [ABG+13] based on differing-input obfuscation,
by Waters [Wat14] based on indistinguishability obfuscation, and by Garg et al. [GGH+14] based
on multilinear maps. We conclude that there is a variety of constructions offering various flavors of
security under various assumptions that can be used as a building block in our construction.

2.2.2 Function Privacy

A private-key functional-encryption scheme is function private [SSW09, AAB+13, BS14] if a func-
tional key skf for a function f reveals no “unnecessary” information on f . More generally, we ask
that encryptions of messages m1, . . . ,mT together with functional keys corresponding to functions
f1, . . . , fT reveal essentially no information other than the values {fi(mj)}i,j∈[T ]. We consider two
variants of function privacy: (full) function privacy in which adversaries are fully adaptive, and
selective-function function privacy in which adversaries must issue their key-generation queries in
advance.

Definition 2.6 (Function privacy). A functional encryption scheme FE = (Setup,KG,Enc,Dec)
over a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is function private if for any
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probabilistic polynomial-time adversary A there exists a negligible function neg(·) such that

AdvFPFE,A,F (λ)
def
=
∣∣∣Pr
[
AKG0(msk,·,·),Enc0(msk,·,·)(1λ) = 1

]
− Pr

[
AKG1(msk,·,·),Enc1(msk,·,·)(1λ) = 1

]∣∣∣
≤ neg(λ)

for all sufficiently large λ ∈ N, where for every (f0, f1) ∈ Fλ × Fλ and (x0, x1) ∈ Xλ × Xλ with
which A queries the oracles KG and Encb, respectively, it holds that f0(x0) = f1(x1). Moreover, the
probability is taken over the choice of msk← Setup(1λ) and the internal randomness of A.

Definition 2.7 (Selective-function function privacy). A functional encryption scheme FE = (Setup,
KG,Enc,Dec) over a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is said
T -selective-function function private, where T = T (λ), if for any probabilistic polynomial-time
adversary A = (A1,A2) there exists a negligible function neg(·) such that

AdvsfFPFE,A,F ,T (λ)
def
=
∣∣∣Pr
[
Expt

(0)
FE,A,F ,T (λ) = 1

]
− Pr

[
Expt

(1)
FE,A,F ,T (λ) = 1

]∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the random variable Expt
(b)
FE,A,F ,T (λ)

is defined as follows:

1. msk← Setup(1λ).

2. ((f0,1, . . . , f0,T ), (f1,1, . . . , f1,T ), state)← A1(1λ), where fσ,i ∈ Fλ for all σ ∈ {0, 1} and i ∈ [T ].

3. sk∗i ← KG(msk, fb,i) for all i ∈ [T ].

4. b′ ← AEncb(msk,·,·)
2 (sk∗1, . . . , sk

∗
T , state), where for each query (x0, x1) ∈ Xλ×Xλ to Encb(msk, ·, ·)

it holds that f0,i(x0) = f1,i(x1) for all i ∈ [T ].

5. Output b′.

Such a scheme is selective-function function private if it is T -selective-function function private for
all polynomials T = T (λ).

Known constructions. Brakerski and Segev [BS14] showed how to transform any (selective-
function or fully secure) message-private function encryption scheme into a (selective-function or
fully secure, respectively) functional encryption scheme which is also function private. Thus, any
instantiation of a message-private (or selective-function message private) function encryption scheme
as discussed in Section 2.2.1 can be used as a building block in our construction.

3 Private-Key Functional Encryption for Randomized Functionalities

In this section we present a framework for capturing the security of private-key functional encryption
for randomized functionalities. Our framework is inspired by that of Goyal et al. [GJK+13] in the
public-key setting, but takes a slightly different approach as we discuss below.

Throughout this section, we let F = {Fλ}λ∈N be a family of randomized functionalities, where
for every λ ∈ N the set Fλ consists of functions of the form f : Xλ × Rλ → Yλ. That is, such a
function f maps Xλ into Yλ using randomness from Rλ.

A private-key functional encryption scheme for a family F of randomized functions consists of
four probabilistic polynomial-time algorithms (Setup,KG,Enc,Dec) with the same syntax that is
described in Section 2.2 for deterministic functions. Although the syntax in this setting is the same
as in the deterministic setting, the correctness and security requirements are more subtle.
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3.1 Correctness and Independence

In terms of correctness we rely on the definition of Goyal et al. [GJK+13] (when adapted to the
private-key setting). As discussed in Section 1.3, we ask that for any sequence of messages x1, . . . , xT
and for any sequence of functions f1, . . . , fT ∈ F , it holds that the distribution obtained by encrypt-
ing x1, . . . , xT and then decrypting the resulting ciphertexts with functional keys corresponding to
f1, . . . , fT is computationally indistinguishable from the distribution {fj(xi; ri,j)}i,j∈[T ] where the
ri,j ’s are sampled independently and uniformly at random.

Definition 3.1 (Correctness). A functional encryption scheme Π = (Setup,KG,Enc,Dec) for a
family F of randomized functions is correct if for all sufficiently large λ ∈ N, for every polynomial
T = T (λ), and for every x1, . . . , xT ∈ Xλ and f1, . . . , fT ∈ Fλ, the following two distributions are
computationally indistinguishable:

• Real(λ)
def
=
{
Dec(skfj , cti)

}
i,j∈[T ]

, where:

– msk← Setup(1λ),

– cti ← Enc(msk, xi) for all i ∈ [T ],

– skfj ← KG(msk, fj) for all j ∈ [T ].

• Ideal(λ)
def
= {fj(xi)}i,j∈[T ].

As noted by Goyal et al. [GJK+13], unlike in the case of deterministic functions where is suffices
to define correctness for a single ciphertext and a single key, here it is essential to define correctness
for multiple (possibly correlated) ciphertexts and keys. We refer the reader to [GJK+13] for more
details.

3.2 “Best-Possible” Message Privacy

We consider indistinguishability-based notions for capturing message privacy in private-key func-
tional encryption for randomized functionalities. As in the (standard) case of deterministic functions
(see Section 2.2), we consider adversaries whose goal is to distinguish between encryptions of two
challenge messages x∗0 and x∗1, when given access to an encryption oracle (as required in private-key
encryption) and to functional keys of various functions. Recall that in the case of deterministic func-
tions, the adversary is allowed to ask for functional keys for any function f such that f(x∗0) = f(x∗1).

As discussed in Section 1.3, our notions of message privacy ask that the functional encryption
scheme under consideration will not add any non-negligible advantage to the (possibly non-negligible)
advantage that adversaries holding a functional key for a function f may already have in distin-
guishing between the distributions f(x∗0) and f(x∗1) to begin with. That is, given that adversaries
are able to obtain a sample from the distribution f(x∗0) or from the distribution f(x∗1) using the
functional key skf , and may already have some advantage in distinguishing these distributions, we
ask for “best-possible” message privacy in the sense that essentially no additional advantage can be
gained.

In what follows we put forward two flavors of “best-possible” message privacy, depending on the
flavor of indistinguishability guarantee that is satisfied by the function family under consideration.

Message privacy for non-adaptively-admissible functionalities. Our first notion is that of
non-adaptively-admissible function families. These are families F such that for a randomly sampled
f ← F , no efficient adversary on input f can output x0 and x1 and distinguish the distributions
f(x0) and f(x1) with probability larger than ∆ (note again that ∆ does not have to be negligible).
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One possible example for such a function family is a function that on input x samples a public-key
pk for a public-key encryption scheme, and outputs pk together with a randomized encryption of x.

For such function families we consider a corresponding notion of message privacy in which the
adversary obtains functional keys only for functions that are sampled uniformly and independently
from F . This is formally captured by the following two definitions.

Definition 3.2 (Non-adaptively-admissible function family). A family F = {Fλ}λ∈N of efficiently-
computable randomized functions is ∆(λ)-non-adaptively admissible if for any probabilistic poly-
nomial-time algorithm A = (A1,A2) it holds that

AdvnaADM
F ,A (λ)

def
=

∣∣∣∣Pr
[
ExptnaADM

F ,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ ∆(λ)

for all sufficiently large λ ∈ N, where the random variable ExptnaADM
F ,A (λ) is defined via the following

experiment:

1. b← {0, 1}, f ← Fλ.

2. (x0, x1, state)← A1(1λ, f).

3. y = f(xb; r) for r ← {0, 1}∗.
4. b′ ← A2(y, state).

5. If b′ = b then output 1, and otherwise output 0.

Definition 3.3 (Message privacy; non-adaptive case). Let F = {Fλ}λ∈N be a ∆(λ)-non-adaptively
admissible function family. A private-key functional encryption scheme Π = (Setup,KG,Enc,Dec) is
message private with respect to F if for any probabilistic polynomial-time adversary A = (A1,A2)
and for any polynomial T = T (λ) there exists a negligible function neg(λ) such that

AdvnaMPRF
Π,F ,A,T (λ)

def
=

∣∣∣∣Pr
[
ExptnaMPRF

Π,F ,A,T (λ) = 1
]
− 1

2

∣∣∣∣ ≤ T (λ) ·∆(λ) + neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExptnaMPRF
Π,F ,A,T (λ) is defined via the following

experiment:

1. b← {0, 1}, msk← Setup(1λ), f1, . . . , fT ← Fλ.

2. skfi ← KG(msk, fi) for all i ∈ [T ].

3. (x∗0, x
∗
1, state)← A

Enc(msk,·)
1 (1λ, f1, . . . , fT , skf1 , . . . , skfT ).

4. c∗ = Enc(msk, x∗b).

5. b′ ← AEnc(msk,·)
2 (c∗, state).

6. If b′ = b then output 1, and otherwise output 0.

Message privacy for adaptively-admissible functionalities. Our second notion is that of
adaptively-admissible function families. These are families F such that no efficient adversary can
output f ∈ F together with two inputs x0 and x1, and distinguish the distributions f(x0) and
f(x1) with probability larger than ∆. One possible example for such a function family is that of
differentially private mechanisms, as discussed by Goyal et al. [GJK+13]. Specifically, these are
randomized functions that on any two inputs that differ on only a few of their entries, produce
output distributions whose statistical distance is polynomially small (i.e., ∆ is polynomial in 1/λ)6.

6The definitions of differential privacy are in fact stronger than requiring small statistical distance.
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It is easy to observe that there are function families that are non-adaptively admissible but are
not adaptively admissible. One possible example is functions of the form fpk that are indexed by a
public encryption key pk, and on input x output a randomized encryption of x under pk. Giving
adversaries the possibility of adaptively choosing such functions, they can choose a function fpk for
which they know the corresponding decryption key sk. In this case, although for a randomly chosen
pk the distributions fpk(x0) and fpk(x1) are computationally indistinguishable, they may be easily
distinguishable given the randomness used by the adversary (from which it may be easy to compute
the corresponding decryption key sk).

For adaptively-admissible function families we consider a corresponding notion of message pri-
vacy in which the adversary obtains functional keys for functions that are adaptively chosen from
F . This is formally captured by the following two definitions.

Definition 3.4 (Adaptively-admissible function family). A family F = {Fλ}λ∈N of efficiently-
computable randomized functions is ∆(λ)-adaptively admissible if for any probabilistic polynomial-
time algorithm A = (A1,A2) it holds that

AdvaADM
F ,A (λ)

def
=

∣∣∣∣Pr
[
ExptaADM

F ,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ ∆(λ)

for all sufficiently large λ ∈ N, where the random variable ExptaADM
F ,A (λ) is defined via the following

experiment:

1. b← {0, 1}.
2. (f, x0, x1, state)← A1(1λ), where f ∈ Fλ.

3. y = f(xb; r) for r ← {0, 1}∗.
4. b′ ← A2(y, state).

5. If b′ = b then output 1, and otherwise output 0.

Definition 3.5 (Message privacy; adaptively-admissible case). Let F = {Fλ}λ∈N be a ∆(λ)-
adaptively admissible function family. A private-key functional encryption scheme Π = (Setup,
KG,Enc,Dec) is message private with respect to F if for any probabilistic polynomial-time adversary
A = (A1,A2) that issues at most T = T (λ) key-generation queries there exists a negligible function
neg(λ) such that

AdvaMPRF
Π,F ,A (λ)

def
=

∣∣∣∣Pr
[
ExptaMPRF

Π,F ,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ T (λ) ·∆(λ) + neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExptaMPRF
Π,F ,A (λ) is defined via the following

experiment:

1. b← {0, 1}, msk← Setup(1λ).

2. (x∗0, x
∗
1, state)← A

Enc(msk,·),KG(msk,·)
1 (1λ).

3. c∗ = Enc(msk, x∗b).

4. b′ ← AEnc(msk,·),KG(msk,·)
2 (c∗, state).

5. If b′ = b then output 1, and otherwise output 0.

4 Our Functional Encryption Scheme

In this section we present our construction of a private-key functional encryption scheme for ran-
domized functionalities. Let F = {Fλ}λ∈N be a family of randomized functionalities, where for

12



every λ ∈ N the set Fλ consists of functions of the form f : Xλ ×Rλ → Yλ (i.e., f maps Xλ into Yλ
using randomness from Rλ). Our construction relies on the following building blocks:

1. A private-key functional encryption scheme FE = (FE.Setup,FE.KG,FE.Enc,FE.Dec).

2. A pseudorandom function family PRF = (PRF.Gen,PRF.Eval). We assume that for every λ ∈ N
and for every key K that is produced by PRF.Gen(1λ), it holds that PRF.Eval(K, ·) : {0, 1}λ →
Rλ.

As discussed in Section 1.1, we assume that the scheme FE is sufficiently expressive in the
sense that it supports the function family F (when viewed as a family of single-input deterministic
functions), the evaluation procedure of the pseudorandom function family PRF, and a few additional
basic operations (such as conditional statements). Our scheme Π = (Setup,KG,Enc,Dec) is defined
as follows.

• The setup algorithm. On input the security parameter 1λ the setup algorithm Setup samples
FE.msk← FE.Setup(1λ), and outputs msk = FE.msk.

• The key-generation algorithm. On input the master secret key msk and a function
f ∈ Fλ, the key-generation algorithm KG samples K ← PRF.Gen(1λ) and outputs skf ←
FE.KG(msk, Leftf,K), where Leftf,K is a deterministic function that is defined in Figure 1.

• The encryption algorithm. On input the master secret key msk and a message x ∈ Xλ, the
encryption algorithm Enc samples s← {0, 1}λ and outputs ct← FE.Enc(msk, (x,⊥, s,⊥)).

• The decryption algorithm. On input a functional key skf and a ciphertext ct, the decryp-
tion algorithm Dec outputs FE.Dec(skf , ct).

Leftf,K(xL, xR, s, z):

1. Let r = PRF.Eval(K, s).

2. Output f(xL; r).

Rightf,K(xL, xR, s, z):

1. Let r = PRF.Eval(K, s).

2. Output f(xR; r).

Figure 1: The functions Leftf,K and Rightf,K . The function Leftf,K is used by the actual scheme, whereas
the function Rightf,K is used in the proofs of its security.

The correctness and independence of the above scheme with respect to any family of randomized
functionalities follows in a straightforward manner from the correctness of the underlying functional
encryption scheme FE and the assumption that PRF is a pseudorandom function family (in fact, it
suffices that PRF is a weak pseudorandom function family). Specifically, consider a sequence of mes-
sages x1, . . . , xT and a sequence of functions f1, . . . , fT . As the encryption FE.Enc(msk, (xi,⊥, si,⊥))
of each message xi uses a uniformly sampled si ∈ {0, 1}λ, and the functional key for a func-
tion fj contains a freshly sampled key Kj for the pseudorandom function family, the distribution
{fj(xi;PRF.Eval(Kj , si)} is computationally indistinguishable from the distribution {fj(xi; ri,j)},
where the ri,j ’s are sampled independently and uniformly at random.

The following two theorems capture the security of the scheme. These theorems (which are
proved in Sections 4.1 and 4.2) state that under suitable assumptions on the underlying building
blocks, the scheme is message private for non-adaptively-admissible randomized functionalities and
for adaptively-admissible randomized functionalities.

Theorem 4.1. Assuming that PRF is a pseudorandom function family and that FE is selective-
function function private, then Π is message private for non-adaptively-admissible randomized func-
tionalities.
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Theorem 4.2. Assuming that PRF is a puncturable pseudorandom function family and that FE is
function private, then Π is message private for adaptively-admissible randomized functionalities.

As discussed in Sections 2.1 and 2.2, Theorems 4.1 and 4.2 can be instantiated based on a
variety of known pseudorandom function families and functional encryption schemes. In particular,
Theorem 4.1 can be based on the minimal assumption that a selective-function message-private
functional encryption scheme exists, and Theorem 4.2 can be based on the minimal assumption that
a message-private functional encryption scheme exists.

4.1 Proof of Theorem 4.1

We prove that the scheme Π is message private for non-adaptively-admissible functionalities (see
Definition 3.2) based on the assumptions that PRF is a pseudorandom function family and that FE
is selective-function function private (see Definition 2.7).

Let A be a probabilistic polynomial-time adversary that receives functional keys for at most
T = T (λ) functions (note that T may be any polynomial and is not fixed in advance), and let F be
a ∆-non-adaptively admissible family of randomized functionalities. We denote by f1, . . . , fT the
functions for which A receives functional keys.

We present a sequence of experiments and upper bound A’s advantage in distinguishing each two
consecutive experiments. Each two consecutive experiments differ either in the description of their
encryption oracle or in the description of their key-generation oracle. The first experiment is the
experiment ExptnaMPRF

Π,F ,A,T (λ) (see Definition 3.3), and the last experiment is completely independent
of the bit b. This enables us to prove that there exists a negligible function neg(·) such that

AdvnaMPRF
Π,F ,A,T (λ)

def
=

∣∣∣∣Pr
[
ExptnaMPRF

Π,F ,A,T (λ) = 1
]
− 1

2

∣∣∣∣ ≤ T (λ) ·∆(λ) + neg(λ)

for all sufficiently large λ ∈ N. Throughout the proof we use, in addition to Leftf,K and Rightf,K
that are defined in Figure 1, the algorithm OutputZ that is described in Figure 2. In what follows

OutputZ(xL, xR, s, z)

1. Output z.

Figure 2: The function OutputZ.

we describe the experiments, and we refer the reader to Table 1 for a high-level overview of the
differences between them.

Experiment H(0)(λ). This is the experiment ExptnaMPRF
Π,F ,A,T (λ) (see Definition 3.3).

Experiment H(1)(λ). This experiment is obtained from the experiment H(0)(λ) by modifying
the encryption oracle and the distribution of the challenge ciphertext as follows. The encryption
oracle on input x samples s ← {0, 1}λ and outputs ct ← FE.Enc(msk, (x, x , s,⊥)) instead of ct ←
FE.Enc(msk, (x, ⊥ , s,⊥)). Similarly, the challenge ciphertext is computed by sampling s∗ ← {0, 1}λ

and outputting ct∗ ← FE.Enc(msk, (x∗b , x
∗
1 , s

∗,⊥)) instead of ct∗ ← FE.Enc(msk, (x∗b , ⊥ , s∗,⊥)).

Note that for each function f ∈ {f1, . . . , fT } with an associated PRF key K, for the deterministic
function Leftf,K it holds that Leftf,K(x, x, s,⊥) = Leftf,K(x,⊥, s,⊥) (and similarly for the challenge
ciphertext). Therefore, the selective-function message privacy of the underlying scheme FE (with
respect to deterministic functions) guarantees that the adversary A has only a negligible advantage
in distinguishing experiments H(0) and H(1). Specifically, let F ′ denote the family of deterministic
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Experiment Encryption oracle Challenge ciphertext Functional keys

H(0) (x,⊥, s,⊥) (x∗b ,⊥, s∗,⊥) Leftf,K

H(1) (x, x , s,⊥) (x∗b , x
∗
1 , s

∗,⊥) Leftf,K

H(2,i) (x, x, s,⊥) (x∗b , x
∗
1, s

∗,⊥)
Keys 1, . . . , i− 1: Rightf,K

Keys i, . . . , T : Leftf,K

H(3,i) (x, x, s, fi(x;PRFKi
(s)) ) (x∗b , x

∗
1, s

∗, fi(x
∗
b ;PRFKi

(s∗)) )
Keys 1, . . . , i− 1: Rightf,K

Keys i, . . . , T : Leftf,K

H(4,i) (x, x, s, fi(x;PRFKi
(s))) (x∗b , x

∗
1, s

∗, fi(x
∗
b ;PRFKi

(s∗)))

Keys 1, . . . , i− 1: Rightf,K

Key i : OutputZ

Keys i+ 1, . . . , T : Leftf,K

H(5,i) (x, x, s, fi(x; r )) (x∗b , x
∗
1, s

∗, fi(x
∗
b ; r∗ ))

Keys 1, . . . , i− 1: Rightf,K

Key i: OutputZ

Keys i+ 1, . . . , T : Leftf,K

H(6,i) (x, x, s, fi(x; r)) (x∗b , x
∗
1, s

∗, fi( x
∗
1 ; r∗))

Keys 1, . . . , i− 1: Rightf,K

Key i: OutputZ

Keys i+ 1, . . . , T : Leftf,K

H(7,i) (x, x, s, fi(x; PRFKi
(s) )) (x∗b , x

∗
1, s

∗, fi(x
∗
1; PRFKi

(s∗) ))

Keys 1, . . . , i− 1: Rightf,K

Key i: OutputZ

Keys i+ 1, . . . , T : Leftf,K

H(8,i) (x, x, s, fi(x;PRFKi
(s))) (x∗b , x

∗
1, s

∗, fi(x
∗
1;PRFKi

(s∗)))
Keys 1, . . . , i : Rightf,K

Keys i+ 1, . . . , T : Leftf,K

H(9) (x, x, s,⊥) ( x∗1 , x
∗
1, s

∗,⊥) Rightf,K

Table 1: The differences between the experiments H(0), . . . ,H(9).
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functions Leftf,K and Rightf,K for every f ∈ F and PRF key K (as defined in Figure 1) as well as
the function OutputZ (as defined in Figure 2). In Appendix B we prove the following claim:

Claim 4.3. There exists a probabilistic polynomial-time adversary B(0)→(1) such that∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣ ≤ AdvsfMP
FE,F ′,B(0)→(1),T

(λ).

Experiment H(2,i)(λ) where i ∈ [T + 1]. This experiment is obtained from the experiment
H(1)(λ) by modifying the distribution of the functional keys as follows. The functional keys for

f1, ..., fi−1 are generated as skf ← FE.KG(msk, Rightf,K ) instead of as skf ← FE.KG(msk, Leftf,K )

(where Rightf,K is defined in Figure 1), and the functional keys for fi, ..., fT are generated as before

(i.e., as skf ← FE.KG(msk, Leftf,K)). We observe that H(1)(λ) = H(2,1)(λ).

Experiment H(3,i)(λ) where i ∈ [T ]. This experiment is obtained from the experiment H(2,i)(λ)
by modifying the encryption oracle and the distribution of the challenge ciphertext as follows. The
encryption oracle on input x samples s ← {0, 1}λ and outputs ct ← FE.Enc(msk, (x, x, s, z )),

where z = fi(x;PRF.Eval(Ki, s)), instead of ct← FE.Enc(msk, (x, x, s, ⊥ )). Similarly, the challenge

ciphertext is computed by sampling s∗ ← {0, 1}λ and outputting ct← FE.Enc(msk, (x∗b , x
∗
1, s
∗, z∗ )),

where z∗ = fi(x
∗
b ;PRF.Eval(Ki, s

∗)), instead of ct← FE.Enc(msk, (x∗b , x
∗
1, s
∗, ⊥ )).

Note that for function f ∈ {f1, . . . , fT } with an associated PRF key K, for the deterministic func-
tions Leftf,K and Rightf,K it holds that Leftf,K(x, x, s, z) = Leftf,K(x, x, s,⊥) and Rightf,K(x, x, s, z)
= Rightf,K(x, x, s,⊥) (and similarly for the challenge ciphertext). Therefore, the selective-function
message privacy of the underlying scheme FE (with respect to deterministic functions) guarantees
that the adversary A has only a negligible advantage in distinguishing experiments H(2,i) and H(3,i).
In Appendix B we prove the following claim:

Claim 4.4. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary B(2,i)→(3,i) such
that ∣∣∣Pr

[
H(2,i)(λ) = 1

]
− Pr

[
H(3,i)(λ) = 1

]∣∣∣ ≤ AdvsfMP
FE,F ′,B(2,i)→(3,i),T

(λ).

Experiment H(4,i)(λ) where i ∈ [T ]. This experiment is obtained from the experiment H(3,i)(λ)
by modifying the distribution of the functional key for the ith function fi. Specifically, the functional
key for fi is computed as skfi ← FE.KG(msk, OutputZ ) instead of skfi ← FE.KG(msk, Leftfi,Ki ),

where the function OutputZ is defined in Figure 1.
Note that the encrypted values are all of the form (x, x, s, fi(x;PRF.Eval(Ki, s))) or of the

form (x∗b , x
∗
1, s
∗, fi(x

∗
b ;PRF.Eval(Ki, s

∗))), and therefore OutputZ(x, x, s, fi(x;PRF.Eval(Ki, s))) =
Leftfi,Ki(x, x, s, fi(x;PRF.Eval(Ki, s))) and similarly OutputZ(x∗b , x

∗
1, s
∗, fi(x

∗
b ;PRF.Eval(Ki, s

∗))) =
Leftfi,Ki(x

∗
b , x
∗
1, s
∗, fi(x

∗
b ;PRF.Eval(Ki, s

∗))). Therefore, the selective-function function privacy of
the underlying scheme FE (with respect to deterministic functions) guarantees that the adversary
A has only a negligible advantage in distinguishing experiments H(3,i) and H(4,i). In Appendix B
we prove the following claim:

Claim 4.5. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary B(3,i)→(4,i) such
that ∣∣∣Pr

[
H(3,i)(λ) = 1

]
− Pr

[
H(4,i)(λ) = 1

]∣∣∣ ≤ AdvsfFP
FE,F ′,B(3,i)→(4,i),T

(λ).
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Experiment H(5,i)(λ) where i ∈ [T ]. This experiment is obtained from the experiment H(4,i)(λ)
by modifying the encryption oracle and the distribution of the challenge ciphertext as follows. The
encryption oracle on input x outputs ct ← FE.Enc(msk, (x, x, s, z)), where z = fi(x; r ) for a fresh

and uniformly sampled value r instead of z = fi(x; PRF.Eval(Ki, s) ). Similarly, the challenge

ciphertext is computed as ct∗ ← FE.Enc(msk, (x∗b , x
∗
1, s
∗, z∗)), where z∗ = fi(x

∗
b ; r

∗ ) for a fresh and

uniformly sampled value r∗ instead of z∗ = fi(x
∗
b ; PRF.Eval(Ki, s

∗) ).

The pseudorandomness of PRF.Eval(Ki, ·) guarantees that the adversary A has only a negligible
advantage in distinguishing experiments H(4,i) and H(5,i). In Appendix B we prove the following
claim:

Claim 4.6. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary B(4,i)→(5,i) such
that ∣∣∣Pr

[
H(4,i)(λ) = 1

]
− Pr

[
H(5,i)(λ) = 1

]∣∣∣ ≤ AdvPRF,B(4,i)→(5,i)(λ).

Experiment H(6,i)(λ) where i ∈ [T ]. This experiment is obtained from the experiment H(5,i)(λ)

by computing the challenge ciphertext as ct∗ ← FE.Enc(msk, (x∗b , x
∗
1, s
∗, z∗)), where z∗ = fi( x

∗
1 ; r∗)

instead of z = fi( x
∗
b ; r∗).

The computational admissibility of the function family F guarantees that the advantage of the
adversary A in distinguishing experiments H(5,i) and H(6,i) is at most ∆(λ). In Appendix B we
prove the following claim:

Claim 4.7. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary B(5,i)→(6,i) such
that ∣∣∣Pr

[
H(5,i)(λ) = 1

]
− Pr

[
H(6,i)(λ) = 1

]∣∣∣ ≤ AdvnaADM
F ,B(5,i)→(6,i)(λ) ≤ ∆(λ).

Experiment H(7,i)(λ) where i ∈ [T ]. This experiment is obtained from the experiment H(6,i)(λ)
by modifying the encryption oracle and the distribution of the challenge ciphertext as follows. The

encryption oracle on input x outputs ct← FE.Enc(msk, (x, x, s, z)) where z = fi(x; PRF.Eval(Ki, s) )

instead of z = fi(x; r ) for a fresh and uniformly sampled value r. Similarly, the challenge ciphertext

is computed as ct∗ ← FE.Enc(msk, (x∗b , x
∗
1, s
∗, z∗)), where z = fi(x

∗
1; PRF.Eval(Ki, s

∗) ) instead of

z = fi(x
∗
1; r∗ ) for a fresh and uniformly sampled value r∗.

The pseudorandomness of PRF.Eval(Ki, ·) guarantees that the adversary A has only a negligi-
ble advantage in distinguishing experiments H(6,i) and H(7,i). The proof of the following claim is
essentially identical to the proof of Claim 4.6 (see Appendix B):

Claim 4.8. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary B(6,i)→(7,i) such
that ∣∣∣Pr

[
H(6,i)(λ) = 1

]
− Pr

[
H(7,i)(λ) = 1

]∣∣∣ ≤ AdvPRF,B(6,i)→(7,i)(λ).

Experiment H(8,i)(λ) where i ∈ [T ]. This experiment is obtained from the experiment H(7,i)(λ)
by modifying the distribution of the functional key for the ith function fi. Specifically, the functional
key for fi is computed as skfi ← FE.KG(msk, Rightfi,Ki ) instead of skfi ← FE.KG(msk, OutputZ ).
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As in the proof of Claim 4.5, the selective-function function privacy of the underlying scheme
FE (with respect to deterministic functions) guarantees that the adversary A has only a negligi-
ble advantage in distinguishing experiments H(7,i) and H(8,i). The proof of the following claim is
essentially identical to the proof of Claim 4.5 (see Appendix B):

Claim 4.9. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary B(7,i)→(8,i) such
that ∣∣∣Pr

[
H(7,i)(λ) = 1

]
− Pr

[
H(8,i)(λ) = 1

]∣∣∣ ≤ AdvsfFP
FE,F ′,B(7,i)→(8,i),T

(λ).

Next, we observe that the experiment H(2,i+1)(λ) is obtained from the experiment H(8,i)(λ) by
modifying the encryption oracle and the distribution of the challenge ciphertext as follows. The
encryption oracle on input x outputs ct ← FE.Enc(msk, (x, x, s, ⊥ )) instead of ct ← FE.Enc(msk,
(x, x, s, z )) where z = fi(x;PRF.Eval(Ki, s)). Similarly, the challenge ciphertext is computed using
z∗ = ⊥ instead of z∗ = fi(x

∗
1;PRF.Eval(Ki, s

∗)).
Note that for each function f ∈ {f1, . . . , fT } with an associated PRF key K, for the deter-

ministic functions Leftf,K and Rightf,K it holds that Leftf,K(x, x, s,⊥) = Leftf,K(x, x, s, z) and
Rightf,K(x, x, s,⊥) = Rightf,K(x, x, s, z) (and similarly for the challenge ciphertext). Therefore, the
selective-function message privacy of the underlying scheme FE (with respect to deterministic func-
tions) guarantees that the adversary A has only a negligible advantage in distinguishing experiments
H(8,i) and H(2,i+1). The proof of the following claim is essentially identical to the proof of Claim
4.4 (see Appendix B):

Claim 4.10. For every i ∈ [T ] there exists a probabilistic polynomial-time adversary B(8,i)→(2,i+1)

such that ∣∣∣Pr
[
H(8,i)(λ) = 1

]
− Pr

[
H(2,i+1)(λ) = 1

]∣∣∣ ≤ AdvsfMP
FE,F ′,B(8,i)→(2,i+1),T

(λ).

Experiment H(9)(λ). This experiment is obtained from the experiment H(2,T+1)(λ) by comput-

ing the challenge ciphertext as ct∗ ← FE.Enc(msk, ( x∗1 , x
∗
1, s
∗,⊥)) instead of ct ← FE.Enc(msk,

( x∗b , x
∗
1, s
∗,⊥)). Note that this experiment is completely independent of the bit b, and therefore

Pr
[
H(9)(λ) = 1

]
= 1/2.

In addition, note that for every function f ∈ {f1, . . . , fT } with an associated PRF key K, for
the deterministic function Rightf,K it holds that Rightf,K(x∗b , x

∗
1, s
∗,⊥) = Rightf,K(x∗1, x

∗
1, s
∗,⊥).

Therefore, the selective-function message privacy of the underlying scheme FE (with respect to
deterministic functions) guarantees that the adversary A has only a negligible advantage in distin-
guishing experiments H(8,i) and H(2,i+1). The proof of the following claim is essentially identical to
the proof of Claim 4.3 (see Appendix B):

Claim 4.11. There exists a probabilistic polynomial-time adversary B(2,T+1)→(9) such that∣∣∣Pr
[
H(2,T+1)(λ) = 1

]
− Pr

[
H(9)(λ) = 1

]∣∣∣ ≤ AdvsfFP
FE,F ′,B(2,T+1)→(9),T

(λ).

Finally, putting together Claims 4.3–4.11 with the facts that ExptnaMPRF
Π,F ,A,T (λ) = H(0)(λ),H(1)(λ) =
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H(2,1)(λ) and Pr
[
H(9)(λ) = 1

]
= 1/2, we observe that

AdvnaMPRF
Π,F ,A,T

def
=

∣∣∣∣Pr
[
ExptnaMPRF

Π,F ,A,T (λ) = 1
]
− 1

2

∣∣∣∣
=
∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(9)(λ) = 1

]∣∣∣
≤
∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣
+

T∑
i=1

7∑
j=2

∣∣∣Pr
[
H(j,i)(λ) = 1

]
− Pr

[
H(j+1,i)(λ) = 1

]∣∣∣
+

T∑
i=1

∣∣∣Pr
[
H(8,i)(λ) = 1

]
− Pr

[
H(2,i+1)(λ) = 1

]∣∣∣
+
∣∣∣Pr
[
H(2,T+1)(λ) = 1

]
− Pr

[
H(9)(λ) = 1

]∣∣∣
≤ T (λ) ·∆(λ) + neg(λ).

4.2 Proof of Theorem 4.2

We prove that the scheme Π is message private for adaptively-admissible functionalities (see Defi-
nition 3.5) based on the assumptions that PRF is a puncturable pseudorandom function family and
that FE is function private (see Definition 2.6).

Let A be a probabilistic polynomial-time adversary that issues at most T1 = T1(λ) pre-challenge
key-generation queries, at most T2 = T2(λ) post-challenge key-generation queries (where T =
T1 + T2), and at most T = T (λ) encryption queries (note that T1, T2 and T may be any poly-
nomials and are not fixed in advance), and let F be a ∆-adaptively admissible family of randomized
functionalities. We denote by f1, . . . , fT the key-generation queries that are issued by A.

We present a sequence of experiments and upper bound A’s advantage in distinguishing each
two consecutive experiments. Each two consecutive experiments differ either in the distribution of
their challenge ciphertexts or in the distribution of the functional keys that are produced by the
key-generation oracle. The first experiment is the experiment ExptaMPRF

Π,F ,A,T (λ) (see Definition 3.5),
and the last experiment is completely independent of the bit b. This enables us to prove that there
exists a negligible function neg(·) such that

AdvaMPRF
Π,F ,A,T (λ)

def
=

∣∣∣∣Pr
[
ExptaMPRF

Π,F ,A,T (λ) = 1
]
− 1

2

∣∣∣∣ ≤ T (λ) ·∆(λ) + neg(λ)

for all sufficiently large λ ∈ N. Throughout the proof we use, in addition to the functions Leftf,K and
Rightf,K that were defined in Figure 1, the functions PuncOutputYf,K′,y,s∗ and PuncOutputZf,K′,s∗
that are defined in Figure 3. In what follows we describe the experiments, and we refer the reader to
Table 2 for a high-level overview of the differences between them. We note that in all experiments
the encryption oracle is as defined by the encryption procedure of the scheme.

Experiment H(0)(λ). This is the experiment ExptaMPRF
Π,F ,A (λ) (see Definition 3.5).

Experiment H(1)(λ). This experiment is obtained from the experiment H(0)(λ) by modifying
the encryption oracle so that on the challenge input (x∗0, x

∗
1) it samples s∗ ← {0, 1}λ and outputs

ct← FE.Enc(msk, (x∗b , x
∗
1 , s

∗,⊥)) instead of ct← FE.Enc(msk, (x∗b , ⊥ , s∗,⊥)).
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Experiment
Challenge

ciphertext

Key-generation oracle

(pre-challenge)

Key-generation oracle

(post-challenge)

H(0) (x∗b ,⊥, s∗,⊥) Leftf,K Leftf,K

H(1) (x∗b , x
∗
1 , s

∗,⊥) Leftf,K Leftf,K

H(2,i) (x∗b , x
∗
1, s

∗,⊥) Leftf,K

PuncOutputYf,K′,y,s∗

Keys T1 + 1, . . . , T1 + i− 1:

y ← f(x∗b)

Keys T1 + i, . . . , T :

y = f(x∗b ;PRFK(s∗))

H(3,i) (x∗b , x
∗
1, s

∗,⊥) Leftf,K

PuncOutputYf,K′,y,s∗

Keys T1 + 1, . . . , T1 + i− 1:

y ← f(x∗1)

Keys T1 + i, . . . , T :

y = f(x∗b ;PRFK(s∗))

H(4,i) (x∗b , x
∗
1, s

∗,⊥)
Keys 1, . . . , i− 1: Rightf,K

Keys i, . . . , T1: Leftf,K

PuncOutputYf,K′,y,s∗

y ← f(x∗1)

H(5,i)
(x∗b , x

∗
1, s

∗, z∗ )

z∗ = fi(x
∗
b ;PRFKi

(s∗))

Keys 1, . . . , i− 1: Rightf,K

Keys i, . . . , T1: Leftf,K

PuncOutputYf,K′,y,s∗

y ← f(x∗1)

H(6,i)
(x∗b , x

∗
1, s

∗, z∗)

z∗ = fi(x
∗
b ;PRFKi

(s∗))

Keys 1, . . . , i− 1: Rightf,K

Key i : PuncOutputZfi,K′i,s
∗

Keys i+ 1, . . . , T1 : Leftf,K

PuncOutputYf,K′,y,s∗

y ← f(x∗1)

H(7,i)
(x∗b , x

∗
1, s

∗, z∗)

z∗ = fi(x
∗
b ; r∗ )

Keys 1, . . . , i− 1: Rightf,K

Key i: PuncOutputZfi,K′i,s
∗

Keys i+ 1, . . . , T1: Leftf,K

PuncOutputYf,K′,y,s∗

y ← f(x∗1)

H(8,i)
(x∗b , x

∗
1, s

∗, z∗)

z∗ = fi( x
∗
1 ; r∗)

Keys 1, . . . , i− 1: Rightf,K

Key i: PuncOutputZfi,K′i,s
∗

Keys i+ 1, . . . , T1: Leftf,K

PuncOutputYf,K′,y,s∗

y ← f(x∗1)

H(9,i)
(x∗b , x

∗
1, s

∗, z∗)

z∗ = fi(x
∗
1; PRFKi

(s∗) )

Keys 1, . . . , i− 1: Rightf,K

Key i: PuncOutputZfi,K′i,s
∗

Keys i+ 1, . . . , T1: Leftf,K

PuncOutputYf,K′,y,s∗

y ← f(x∗1)

H(10,i)
(x∗b , x

∗
1, s

∗, z∗)

z∗ = fi(x
∗
1;PRFKi

(s∗))

Keys 1, . . . , i : Rightf,K

Keys i+ 1, . . . , T1: Leftf,K

PuncOutputYf,K′,y,s∗

y ← f(x∗1)

H(11) ( x∗1 , x
∗
1, s

∗,⊥) Rightf,K
PuncOutputYf,K′,y,s∗

y ← f(x∗1)

Table 2: The differences between the experiments H(0), . . . ,H(11).
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PuncOutputYf,K′,y,s∗(xL, xR, s, z):

1. If s = s∗ then output y.

2. Otherwise, let r = PRF.Eval(K ′, s) and out-
put f(xL; r).

PuncOutputZf,K′,s∗(xL, xR, s, z):

1. If s = s∗ then output z.

2. Otherwise, let r = PRF.Eval(K ′, s) and out-
put f(xL; r).

Figure 3: The functions PuncOutputYf,K′,y,s∗ and PuncOutputZf,K′,s∗ .

Note that for each function f ∈ {f1, . . . , fT } with an associated PRF key K, for the deterministic
function Leftf,K and the challenge ciphertext it holds that Leftf,K(x∗b , x

∗
1, s
∗,⊥) = Leftf,K(x∗b ,⊥, s∗,

⊥). Therefore, the message privacy of the underlying scheme FE (with respect to deterministic
functions) guarantees that the adversary A has only a negligible advantage in distinguishing ex-
periments H(0) and H(1). Specifically, let F ′ denote the family of deterministic functions Leftf,K
and Rightf,K for every f ∈ F and PRF key K (as defined in Figure 1) as well as the function
PuncOutputYf,K′,y,s∗ and PuncOutputZf,K′,s∗ for every f ∈ F , punctured PRF key K ′, value y ∈ Yλ
and string s∗ ∈ {0, 1}λ (as defined in Figure 3). In Appendix C we prove the following claim:

Claim 4.12. There exists a probabilistic polynomial-time adversary B(0)→(1) such that∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣ ≤ AdvMP
FE,F ′,B(0)→(1),T

(λ).

Experiment H(2,i)(λ) where i ∈ [T2 + 1]. This experiment is obtained from the experiment
H(1)(λ) by modifying the post challenge key-generation oracle to generate keys as follows. The
functional keys for the fT1+1, . . . , fT1+i−1 are generated as PuncOutputYf,K′,y,s∗ (see Figure 3 for the

definition of PuncOutputYf,K′,y,s∗), where K ′ is generated by sampling a PRF key K ← PRF.Gen(1λ)
and then puncturing it at s∗, and where y ← f(x∗b), and the functional keys for fT1+i, . . . , fT1+T2 = fT
are generated as PuncOutputYf,K′,y,s∗ , where K ′ and s∗ are as before but y = f(x∗b ;PRFK(s∗)).

Note that every x 6= x∗b with which the encryption oracle is queries (with probability negligibly
close to 1) it holds that s 6= s∗, hence, using the functionality feature of the punctured PRF, for every
f ∈ {fT1+1, . . . , fT } it holds that Leftf,K(x, x, s,⊥) = PuncOutputYf,K′,y,s∗(x, x, s,⊥). In addition,
for the challenge x∗b it holds that Leftf,K(x∗b , x

∗
1, s
∗,⊥) = PuncOutputYf,K′,y,s∗(x

∗
b , x
∗
1, s
∗,⊥) since

PuncOutputYf,K′,y,s∗ simply outputs y, where y = f(x∗b ;PRFK(s∗)). Thus, the function-privacy
of the underlying scheme FE guarantees that the adversary A has only a negligible advantage in
distinguishing experiments H(1)(λ) and H(2,1)(λ). In Appendix C we prove the following claim:

Claim 4.13. There exists a probabilistic polynomial-time adversary B(1)→(2,1) such that∣∣∣Pr
[
H(1)(λ) = 1

]
− Pr

[
H(2,1)(λ) = 1

]∣∣∣ ≤ AdvFP
FE,F ′,B(1)→(2,1),T

(λ) + neg(λ).

Moreover, note that the pseudorandomness of PRFK(·) at punctured point s∗ (see Definition 2.2)
guarantees that the adversary A has only a negligible advantage in distinguishing experiments H(2,i)

and H(2,i+1). In Appendix C we prove the following claim:

Claim 4.14. For every i ∈ [T2] there exists a probabilistic polynomial-time adversary B(2,i)→(2,i+1)

such that ∣∣∣Pr
[
H(2,i)(λ) = 1

]
− Pr

[
H(2,i+1)(λ) = 1

]∣∣∣ ≤ AdvpuPRF,B(2,i)→(2,i+1)(λ).
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Experiment H(3,i)(λ) where i ∈ [T2 + 1]. This experiment is obtained from the experiment
H(2,T2)(λ) by modifying the post-challenge key-generation oracle as follows. The functional keys for
the fT1+1, . . . , fT1+i−1 are generated as PuncOutputYf,K′,y,s∗ , where K ′ is generated by sampling a

PRF key K ← PRF.Gen(1λ) and then puncturing it at s∗, and where y ← f(x∗1) , and the functional

keys for fT1+i, . . . , fT1+T2 are generated as PuncOutputYf,K′,y,s∗ , where K ′ and s∗ are as before but

y ← f(x∗b). We observe that H(2,T+1)(λ) = H(3,1)(λ).
The adaptive admissibility of the function family F (see Definition 3.4) guarantee that the

advantage of the adversary A in distinguishing experiments H(3,i) and H(3,i+1) is at most ∆(λ). In
Appendix C we prove the following claim:

Claim 4.15. For every i ∈ [T2] there exists a probabilistic polynomial-time adversary B(3,i)→(3,i+1)

such that ∣∣∣Pr
[
H(3,i)(λ) = 1

]
− Pr

[
H(3,i+1)(λ) = 1

]∣∣∣ ≤ AdvaADM
F ,B(3,i)→(3,i+1) ≤ ∆(λ).

Experiment H(4,i)(λ) where i ∈ [T1 + 1]. This experiment is obtained from the experiment
H(3,T )(λ) by modifying the pre-challenge key-generation oracle as follows. The functional keys for

f1, ..., fi−1 are generated as skf ← FE.KG(msk, Rightf,K ) instead of as skf ← FE.KG(msk, Leftf,K )

(where Rightf,K is defined in Figure 1), and the functional keys for fi, ..., fT1 are generated as before

(i.e., as skf ← FE.KG(msk, Leftf,K)). We observe that H(3,T+1)(λ) = H(4,1)(λ).

Experiment H(5,i)(λ) where i ∈ [T1]. This experiment is obtained from the experimentH(4,i)(λ)
by modifying the encryption oracle so that on the challenge input (x∗0, x

∗
1) it samples s∗ ← {0, 1}λ

and outputs ct ← FE.Enc(msk, (x∗b , x
∗
1, s
∗, z∗ )), where z∗ = fi(x

∗
b ;PRF.Eval(Ki, s

∗)), instead of

ct← FE.Enc(msk, (x∗b , x
∗
1, s
∗, ⊥ )).

Notice that both Leftf,K and Rightf,K are defined to ignore the fourth input z, hence, for the first
i − 1 keys it holds that Rightf,K(x∗b , x

∗
1, s
∗,⊥) = Rightf,K(x∗b , x

∗
1, s
∗, z∗) and for the next T1 − i + 1

keys it holds that Leftf,K(x∗b , x
∗
1, s
∗,⊥) = Leftf,K(x∗b , x

∗
1, s
∗, z∗). Therefore, the message privacy

of the underlying scheme FE guarantees that the adversary A has only a negligible advantage in
distinguishing experiments H(4,i) and H(5,i). In Appendix C we prove the following claim:

Claim 4.16. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary B(4,i)→(5,i)

such that ∣∣∣Pr
[
H(4,i)(λ) = 1

]
− Pr

[
H(5,i)(λ) = 1

]∣∣∣ ≤ AdvMP
FE,F ′,B(4,i)→(5,i),T

(λ).

Experiment H(6,i)(λ) where i ∈ [T1]. This experiment is obtained from the experimentH(5,i)(λ)
by modifying the behavior of the pre-challenge key-generation oracle on the ith query fi (without
modifying its behavior on all other queries). On input the ith query fi, the pre-challenge key-

generation oracle compute skfi ← FE.KG(msk, PuncOutputZfi,K′i,s∗ ) instead of skfi ← FE.KG(msk,

Leftfi,Ki ) (where the function PuncOutputZfi,K′i,s∗ is defined in Figure 3).

Note that by the functionality feature of the punctured PRF (see Definition 2.2), for every ci-
phertext (x,⊥, s, z) which is not the challenge ciphertext (with probability negligibly close to 1) it
holds that PuncOutputZfi,K′i,s∗(x,⊥, s, z) = Leftfi,Ki(x,⊥, s, z) (since s 6= s∗ with very high prob-
ability). For the challenge ciphertext the latter also holds since PuncOutputZfi,K′i,s∗(x

∗
b , x
∗
1, s
∗, z∗)

outputs z∗ = fi(x
∗
b ;PRFKi(s

∗)). Thus, the function-privacy of the underlying scheme FE guarantees
that the adversary A has only a negligible advantage in distinguishing experiments H(6,i)(λ) and
H(7,i)(λ). In Appendix C we prove the following claim:
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Claim 4.17. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary B(5,i)→(6,i)

such that ∣∣∣Pr
[
H(5,i)(λ) = 1

]
− Pr

[
H(6,i)(λ) = 1

]∣∣∣ ≤ AdvFP
FE,F ′,B(5,i)→(6,i),T

(λ) + neg(λ).

Experiment H(7,i)(λ) where i ∈ [T1]. This experiment is obtained from the experimentH(6,i)(λ)
by modifying the encryption oracle so that on the challenge input (x∗0, x

∗
1) it outputs ct← FE.Enc(msk,

(x∗b , x
∗
1, s
∗, z∗)), where z∗ = fi(x

∗
b ; r

∗ ) for a fresh and uniformly sampled value r∗ instead of

z∗ = fi(x
∗
b ; PRF.Eval(Ki, s

∗) ).

The pseudorandomness at punctured point s∗ of PRF.Eval(Ki, ·) guarantees that the adversary
A has only a negligible advantage in distinguishing experiments H(6,i) and H(7,i). In Appendix C
we prove the following claim:

Claim 4.18. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary B(6,i)→(7,i)

such that ∣∣∣Pr
[
H(6,i)(λ) = 1

]
− Pr

[
H(7,i)(λ) = 1

]∣∣∣ ≤ AdvpuPRF,B(6,i)→(7,i)(λ).

Experiment H(8,i)(λ) where i ∈ [T1]. This experiment is obtained from the experimentH(7,i)(λ)
by modifying the encryption oracle so that on the challenge input (x∗0, x

∗
1) it outputs ct← FE.Enc(msk,

(x∗b , x
∗
1, s
∗, z∗)), where z∗ = fi( x

∗
1 ; r∗) instead of z∗ = fi( x

∗
b ; r∗) (both with fresh and uniform r∗).

The adaptive admissibility of the function family F (see Definition 3.4) guarantees that the
advantage of the adversary A in distinguishing experiments H(7,i) and H(8,i) is at most ∆(λ). In
Appendix C we prove the following claim:

Claim 4.19. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary B(7,i)→(8,i)

such that ∣∣∣Pr
[
H(7,i)(λ) = 1

]
− Pr

[
H(8,i)(λ) = 1

]∣∣∣ ≤ AdvaADM
F ,B(7,i)→(8,i) ≤ ∆(λ).

Experiment H(9,i)(λ) where i ∈ [T1]. This experiment is obtained from the experimentH(8,i)(λ)
by modifying the encryption oracle so that on the challenge input (x∗0, x

∗
1) it outputs ct← FE.Enc(msk,

(x∗b , x
∗
1, s
∗, z∗)), where z∗ = fi(x

∗
1; PRF.Eval(Ki, s

∗) ) instead of z∗ = fi(x
∗
1; r∗ ) for a fresh and uni-

formly sampled value r∗.
The pseudorandomness at punctured point s∗ of PRF.Eval(Ki, ·) guarantees that the adversary

A has only a negligible advantage in distinguishing experiments H(9,i) and H(10,i). The proof of the
following claim is essentially identical to the proof of Claim 4.18 (see Appendix C):

Claim 4.20. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary B(8,i)→(9,i)

such that ∣∣∣Pr
[
H(8,i)(λ) = 1

]
− Pr

[
H(9,i)(λ) = 1

]∣∣∣ ≤ AdvpuPRF,B(8,i)→(9,i)(λ).

Experiment H(10,i)(λ) where i ∈ [T1]. This experiment is obtained from the experiment
H(9,i)(λ) by modifying the behavior of the pre-challenge key-generation oracle on the ith query fi
(without modifying its behavior on all other queries). On input the ith query fi, the key-generation

oracle compute skfi ← FE.KG(msk, Rightfi,Ki ) instead of skfi ← FE.KG(msk, PuncOutputZfi,K′i,s∗ ).
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As in the proof of Claim 4.8, the selective-function function privacy of the underlying scheme
FE (with respect to deterministic functions) guarantees that the adversary A has only a negligible
advantage in distinguishing experiments H(9,i) and H(10,i). The proof of the following claim is
essentially identical to the proof of Claim 4.17 (see Appendix C):

Claim 4.21. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary B(9,i)→(10,i)

such that ∣∣∣Pr
[
H(9,i)(λ) = 1

]
− Pr

[
H(10,i)(λ) = 1

]∣∣∣ ≤ AdvFP
FE,F ′,B(9,i)→(10,i),T

(λ) + neg(λ).

Next, we observe that experiment H(4,i+1)(λ) is obtained from the experiment H(10,i)(λ) by mod-
ifying the challenge ciphertext to be computed using z∗ = ⊥ instead of z∗ = fi(x

∗
1;PRF.Eval(Ki, s

∗)).
Note that for each function f ∈ {f1, . . . , fT } with an associated PRF key K, for the deterministic

functions Leftf,K and Rightf,K and the challenge ciphertext it holds that Leftf,K(x∗b , x
∗
1, s
∗,⊥) =

Leftf,K(x∗b , x
∗
1, s
∗, z∗) and Rightf,K(x∗b , x

∗
1, s
∗,⊥) = Rightf,K(x∗b , x

∗
1, s
∗, z∗). Therefore, the selective-

function message privacy of the underlying scheme FE (with respect to deterministic functions)
guarantees that the adversary A has only a negligible advantage in distinguishing experiments
H(10,i) and H(4,i+1). The proof of the following claim is essentially identical to the proof of Claim
4.16 (see Appendix C):

Claim 4.22. For every i ∈ [T1] there exists a probabilistic polynomial-time adversary B(10,i)→(4,i+1)

such that ∣∣∣Pr
[
H(10,i)(λ) = 1

]
− Pr

[
H(4,i+1)(λ) = 1

]∣∣∣ ≤ AdvMP
FE,F ′,B(10,i)→(4,i+1),T

(λ).

Experiment H(11)(λ). This experiment is obtained from the experiment H(4,T+1)(λ) by mod-
ifying the encryption oracle so that on the challenge input (x∗0, x

∗
1) it outputs ct ← FE.Enc(msk,

( x∗1 , x
∗
1, s
∗,⊥)) instead of ct ← FE.Enc(msk, ( x∗b , x

∗
1, s
∗,⊥)). Note that this experiment is com-

pletely independent of the bit b, and therefore Pr
[
H(11)(λ) = 1

]
= 1/2.

In addition, note that for every function f ∈ {f1, . . . , fT1} with an associated PRF key K,
for the deterministic function Rightf,K it holds that Rightf,K(x∗b , x

∗
1, s
∗,⊥) = Rightf,K(x∗1, x

∗
1, s
∗,⊥).

Therefore, the message privacy of the underlying scheme FE (with respect to deterministic functions)
guarantees that the adversary A has only a negligible advantage in distinguishing experiments
H(4,T1+1) and H(11). The proof of the following claim is essentially identical to the proof of Claim
4.12 (see Appendix C):

Claim 4.23. There exists a probabilistic polynomial-time adversary B(4,T1+1)→(11) such that∣∣∣Pr
[
H(4,T1+1)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣∣∣ ≤ AdvsfFP
FE,F ′,B(4,T+1)→(11),T

(λ).

Finally, putting together Claims 4.12–4.23 with the facts that ExptaMPRF
Π,F ,A,T (λ) = H(0)(λ), H(1)(λ)

= H(2,1)(λ), H(2,T+1)(λ) = H(3,1)(λ), H(3,T+1)(λ) = H(4,1)(λ) and Pr
[
H(11)(λ) = 1

]
= 1/2, we
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observe that

AdvaMPRF
Π,F ,A,T

def
=

∣∣∣∣Pr
[
ExptaMPRF

Π,F ,A,T (λ) = 1
]
− 1

2

∣∣∣∣
=
∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣∣∣
≤
∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣
+
∣∣∣Pr
[
H(1)(λ) = 1

]
− Pr

[
H(2,1)(λ) = 1

]∣∣∣
+

3∑
j=2

T2∑
i=1

∣∣∣Pr
[
H(j,i)(λ) = 1

]
− Pr

[
H(j,i+1)(λ) = 1

]∣∣∣
+

T1∑
i=1

9∑
j=4

∣∣∣Pr
[
H(j,i)(λ) = 1

]
− Pr

[
H(j+1,i)(λ) = 1

]∣∣∣
+

T1∑
i=1

∣∣∣Pr
[
H(10,i)(λ) = 1

]
− Pr

[
H(4,i+1)(λ) = 1

]∣∣∣
+
∣∣∣Pr
[
H(4,T+1)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣∣∣
≤ (T1(λ) + T2(λ)) ·∆(λ) + neg(λ)

= T (λ) ·∆(λ) + neg(λ).
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A A Comparison with the Definitional Framework of Goyal et al. [GJK+13]

Our approach for defining message privacy is inspired by that of Goyal et al. but there are a few
subtle differences between the two approaches. As mentioned in Section 1.3, as far as we are able to
currently tell, it seems that both our scheme and the scheme of Goyal et al. provide message privacy
according to both of these approaches. We emphasize once again that we view the main contribution
of our paper as basing the security of our scheme on any underlying functional encryption scheme
(and avoiding obfuscation-related assumptions), and not as offering alternative notions of message
privacy. In what follows we point out a couple of differences between the two approaches7.

• Goyal et al. allow adversaries to obtain functional keys only for functions f for which the distri-
butions f(x∗0) and f(x∗1) are negligibly close (either computationally or statistically), whereas
our framework does not include such a restriction. In our framework, if the distributions f(x∗0)
and f(x∗1) can be efficiently distinguished with advantage at most ∆ = ∆(λ) to begin with
(where ∆ does not necessarily have to be negligible), then we require that no adversary that

7In personal communication with the authors of [GJK+13] we have learned that their work has been revised to
take into account various definitional issues. The following comparison is based on the ePrint version of their work (as
of October 7, 2014), and on this personal communication, and represents our current understanding of their revised
notions of message privacy.
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is given a functional key for f will be able to distinguish between encryptions of x∗0 and x∗1
with advantage larger than ∆ + neg(λ), for some negligible function neg(·).
This seems to better capture the motivating applications given by Goyal et al. of auditing an
encrypted database and of performing differentially-private analysis on an encrypted database.
In both applications the distributions obtained from two different encrypted databases are not
negligibly close, as otherwise no utility can be gained.

• Goyal et al. allow adversaries to obtain functional keys only for functions f for which the
distributions f(x∗0) and f(x∗1) are negligibly close even when conditioned on the adversary’s
randomness and on the master secret key of the scheme. This may cause a situation where
it is legal to obtain a functional key for some function f by some specific adversary and
for some specific instantiation of the functional encryption scheme, but it may be illegal to
obtain a functional key for the same function f by some other adversary and for some other
instantiation of the encryption scheme.
In our framework, on one hand, each function family is considered either admissible or inad-
missible independently of the adversary (and of the challenge ciphertext) and of the encryption
scheme under consideration. However, on the other hand, our framework may consider some
function families inadmissible, whereas the framework of Goyal et al. would consider the same
function families as admissible with respect to some adversaries and encryption schemes. Nev-
ertheless, our framework is still sufficiently general for capturing applications such as auditing
an encrypted database, performing differentially-private analysis on an encrypted database,
and many more.

B Proofs of Claims 4.3–4.7

Proof of Claim 4.3. The adversary B(0)→(1) = (B1,B2) is defined as follows. First, B1 samples T
PRF keys K1, . . . ,KT ← PRF.Gen(1λ) and T functions f1, . . . , fT←F independently and uniformly
at random. Then, it outputs the functions Leftf1,K1 , . . . , LeftfT ,KT ∈ F ′ (and its own randomness as
the state information state).

Next, B2 on input functional keys sk1, . . . , skT emulates the execution of A1 on input (f1, . . . , fT ,
sk1, . . . , skT ) by simulating the encryption oracle Enc(msk, ·) as follows: Whenever A1 requests an
encryption of some x ∈ Xλ, B2 samples s ∈ {0, 1}λ uniformly at random, queries the encryption
oracle FE.Encσ(msk, ·, ·) with the pair ((x,⊥, s,⊥), (x, x, s,⊥)), and returns the answer to A1. When
A1 outputs its challenge messages (x∗0, x

∗
1), B2 chooses a random bit b, samples s∗ ∈ {0, 1}λ, and

queries the encryption oracle Encσ(msk, ·, ·) with the pair ((x∗b ,⊥, s∗,⊥), (x∗b , x
∗
b , s
∗,⊥)) to get the

ciphertext c∗. Then, B2 runs A2 similarly to running A1 using the input (c∗, state) to get its output
b′. Finally, B2 outputs 1 if b′ = b, and otherwise it outputs 0.

Note that when σ = 0 (the mode of the encryption oracle Encσ(msk, ·, ·)) then A’s view is
identical to its view in the experiment H(0), and when σ = 1 then A’s view is identical to its view
in the experiment H(1). Therefore,

AdvsfMP
FE,F ′,B(0)→(1),T

(λ) =
∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣ .
Proof of Claim 4.4. The adversary B(2,i)→(3,i) = (B1,B2) is defined as follows. First, B1 chooses T
PRF keys K1, . . . ,KT ← PRF.Gen(1λ) and T functions f1, . . . , fT←F independently and uniformly
at random. Then, it outputs the functions (Rightf1,K1

, . . . ,Rightfi−1,Ki−1
, Leftfi,Ki , . . . , LeftfT ,KT )

(and its own randomness as the state information state).
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Next, B2 on input functional keys sk1, . . . , skT emulates the execution of A1 on input (f1, . . . , fT ,
sk1, . . . , skT ) by simulating the encryption oracle Enc(msk, ·) as follows: When A1 requests an en-
cryption of x ∈ Xλ, B2 samples s ∈ {0, 1}λ uniformly at random, queries the encryption ora-
cle Encσ(msk, ·, ·) with the pair ((x, x, s,⊥), (x, x, s, fi(x;PRF.Eval(Ki, s)))), and returns the an-
swer to A1. When A1 outputs its challenge messages (x∗0, x

∗
1), B2 chooses a random bit b, sam-

ples s∗ ∈ {0, 1}λ, and queries the encryption oracle Encσ(msk, ·, ·) with the pair ((x∗b , x
∗
1, s
∗,⊥),

(x∗b , x
∗
1, s
∗, fi(x

∗
b ;PRF.Eval(Ki, s

∗)))) to get the ciphertext c∗. Then, B2 runs A2 similarly to running
A1 using the input (c∗, state) to get its output b′. Finally, B2 outputs 1 if b′ = b, and otherwise it
outputs 0.

Note that when σ = 0 (the mode of the encryption oracle Encσ(msk, ·, ·)) then A’s view is
identical to its view in the experiment H(2,i), and when σ = 1 the A’s view is identical to its view
in the experiment H(3,i). Therefore,

AdvsfMP
FE,F ′,B(2,i)→(3,i),T

(λ) =
∣∣∣Pr
[
H(2,i)(λ) = 1

]
− Pr

[
H(3,i)(λ) = 1

]∣∣∣ .
Proof of Claim 4.5. The adversary B(3,i)→(4,i) = (B1,B2) is defined as follows. First, B1 chooses T
PRF keys K1, . . . ,KT ← PRF.Gen(1λ) and T functions f1, . . . , fT←F independently and uniformly
at random. Then, it outputs the functions (Rightf1,K1

, . . . ,Rightfi−1,Ki−1
, Leftfi,Ki , . . . , LeftfT ,KT )

and (Rightf1,K1
, . . . ,Rightfi−1,Ki−1

,OutputZ, Leftfi+1,Ki+1
, . . . , LeftfT ,KT ) (and its own randomness as

the state information state).
Next, B2 on input functional keys sk1, . . . , skT emulates the execution of A1 on input (f1, . . . , fT ,

sk1, . . . , skT ) by simulating the encryption oracle Enc(msk, ·) as follows: When A1 requests an en-
cryption of x ∈ Xλ, B2 samples s ∈ {0, 1}λ uniformly at random, queries the encryption ora-
cle Encσ(msk, ·, ·) with the pair ((x, x, s, fi(x;PRF.Eval(Ki, s))), (x, x, s, fi(x;PRF.Eval(Ki, s)))), and
returns the answer to A1. When A1 outputs its challenge messages (x∗0, x

∗
1), B2 chooses a ran-

dom bit b, samples s∗ ∈ {0, 1}λ, and queries the encryption oracle Encσ(msk, ·, ·) with the pair
((x∗b , x

∗
1, s
∗, fi(x

∗
b ;PRF.Eval(Ki, s

∗))), (x∗b , x
∗
1, s
∗, fi(x

∗
b ;PRF.Eval(Ki, s

∗)))) to get the ciphertext c∗.
Then, B2 runs A2 similarly to running A1 using the input (c∗, state) to get its output b′. Finally,
B2 outputs 1 if b′ = b, and otherwise it outputs 0.

Note that when σ = 0 (the functional keys correspond to the first list of functions) then A’s
view is identical to its view in the experiment H(3,i), and when σ = 1 then A’s view is identical to
its view in the experiment H(4,i). Therefore,

AdvsfFP
FE,F ′,B(3,i)→(4,i),T

(λ) =
∣∣∣Pr
[
H(3,i)(λ) = 1

]
− Pr

[
H(4,i)(λ) = 1

]∣∣∣ .
Proof of Claim 4.6. The adversary B(4,i)→(5,i) = B is defined as follows. First, B chooses a master
key msk← FE.Setup(1λ), T − 1 PRF keys K1, . . . ,Ki−1,Ki+1, . . . ,KT ← PRF.Gen(1λ) and T func-
tions f1, . . . , fT←F independently and uniformly at random. Then, it computes the functional keys
sk1, . . . , skT for the functions (Rightf1,K1

, . . . ,Rightfi−1,Ki−1
, OutputZ,Leftfi+1,Ki+1

, . . . , LeftfT ,KT ) us-
ing msk. Recall that B has access to an oracle, denoted R(·), that is either a random function or a
PRF and its goal is to distinguish between the two cases.

Next, B emulates the execution of A1 on input (f1, . . . , fT , sk1, . . . , skT ) by simulating the en-
cryption oracle Enc(msk, ·) as follows: When A1 requests an encryption of x ∈ Xλ, B samples
s ∈ {0, 1}λ uniformly at random, queries R(s) to get r, computes FE.Enc(msk, (x, x, s, fi(x; r))),
and returns the output to A1. When A1 outputs its challenge messages (x∗0, x

∗
1), B chooses a
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random bit b, samples s∗ ∈ {0, 1}λ, queries R(s∗) to get r∗ and computes the ciphertext c∗ =
FE.Enc(msk, (x∗b , x

∗
1, s
∗, fi(x

∗
b ; r
∗))). Then, B runs A2 similarly to running A1 using the input

(c∗, state) to get its output b′. Finally, B2 outputs 1 if b′ = b, and otherwise it outputs 0.
Note that when R(·) corresponds to a pseudorandom function then A’s view is identical to its

view in the experiment H(4,i), and when R(·) corresponds to a truly random function then A’s view
is identical to its view in the experiment H(5,i). Therefore,

AdvPRF,B(4,i)→(5,i)(λ) =
∣∣∣Pr
[
H(4,i)(λ) = 1

]
− Pr

[
H(5,i)(λ) = 1

]∣∣∣ .
Proof of Claim 4.7. The adversary B(5,i)→(6,i) = (B1,B2) on input f←F is defined as follows.
First, B1 chooses a master key msk ← FE.Setup(1λ), T PRF keys K1, . . . ,KT ← PRF.Gen(1λ) and
T − 1 functions f1, . . . , fi−1, fi+1, . . . , fT←F independently and uniformly at random. Then, it
computes the functional keys sk1, . . . , skT for the functions (Rightf1,K1

, . . . ,Rightfi−1,Ki−1
, OutputZ,

Leftfi+1,Ki+1
, . . . , LeftfT ,KT ). Next, B1 emulates the execution of A1 on input (f1, . . . , fi−1, f , fi+1,

. . . , fT , sk1, . . . , skT ) by simulating the encryption oracle Enc(msk, ·) as follows: When A1 requests
an encryption of x ∈ Xλ, B2 samples s ∈ {0, 1}λ and a random string r, computes FE.Enc(msk,
(x, x, s, f(x; r))), and returns the output to A1. When A1 outputs its challenge messages (x∗0, x

∗
1),

B2 outputs (x∗b , x
∗
1), where b ∈ {0, 1} is chosen uniformly at random.

Then, B2 on input y (which is a uniform sample either from f(x∗b) or from f(x∗1)) samples
s∗ ∈ {0, 1}λ uniformly at random, computes c∗ = FE.Enc(msk, (x∗b , x

∗
1, s
∗, y)), runs A2 similarly to

running A1 using the input c∗ to get its output b′. Finally, B2 outputs 1 if b′ = b, and otherwise it
outputs 0.

Note that when y is sampled according to f(x∗b), then A’s view is identical to its view in the
experiment H(5,i). Similarly, when y is sampled according to f(x∗1), then A’s view is identical to its
view in the experiment H(6,i). Therefore,

AdvnaADM
F ,B(5,i)→(6,i)(λ) =

∣∣∣Pr
[
H(5,i)(λ) = 1

]
− Pr

[
H(6,i)(λ) = 1

]∣∣∣ .

C Proofs of Claims 4.12–4.19

Proof of Claim 4.12. The adversary B(0)→(1) = B is defined as follows. First, B emulates the
execution of A1 on input (1λ) by simulating the encryption oracle and the key generation oracle as
follows: When A1 requests an encryption of x ∈ Xλ, B samples s ∈ {0, 1}λ, queries the encryption
oracle Encσ(msk, ·, ·) with the pair ((x,⊥, s,⊥), (x,⊥, s,⊥)) and returns the output to A1. When
A1 requests a functional key for f ∈ F , B, samples a PRF key K1 ← PRF.Gen(1λ), queries the key
generation oracle KG(msk, Leftf,K) and returns the output to A1. Finally, A1 outputs the challenge
(x∗0, x

∗
1, state).

Next, B chooses a random bit b, samples s∗ ∈ {0, 1}λ, and queries the encryption oracle with the
pair ((x∗b ,⊥, s∗,⊥), (x∗b , x

∗
b , s
∗,⊥)) to get the ciphertext c∗. Then, B runs A2 similarly to running

A1 using the input (c∗, state) to get its output b′. Finally, B outputs 1 if b′ = b, and otherwise it
outputs 0.

Note that when σ = 0 (the mode of the encryption oracle Encσ(msk, ·, ·)) then A’s view is
identical to its view in the experiment H(0), and when σ = 1 then A’s view is identical to its view
in the experiment H(1). Therefore,∣∣∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣ = AdvMP
FE,F ′,B(0)→(1),T

(λ).
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Proof of Claim 4.13. The adversary B(1)→(2,1) = B is defined as follows. First, B emulates the
execution of A1 on input (1λ) by simulating the encryption oracle and the key generation oracle as
follows: When A1 requests an encryption of x ∈ Xλ, B samples s ∈ {0, 1}λ, queries the encryption
oracle Encσ(msk, ·, ·) with the pair ((x,⊥, s,⊥), (x,⊥, s,⊥)) and returns the output to A1. When
A1 requests a functional key for f ∈ F , B samples a PRF key K ← PRF.Gen(1λ), queries the
key generation oracle KGσ(msk, ·, ·) with the pair (Leftf,K , Leftf,K) and returns the output to A1.
Finally, A1 outputs the challenge (x∗0, x

∗
1, state).

Next, B chooses a random bit b, samples s∗ ∈ {0, 1}λ, and queries the encryption oracle with the
pair ((x∗b ,⊥, s∗,⊥), (x∗b , x

∗
b , s
∗,⊥)) to get the ciphertext c∗. We assume that s∗ 6= s for all sampled

s’s and lose an additive negligible factor. Then, B emulates the execution of A2 on input (c∗, state)
by simulation the encryption oracle in the same way and simulating the key generation oracle as
follows: When A2 requests for a functional key for f ∈ F , B samples K ← PRF.Gen(1λ) computes
the key K ′ by puncturing K at s∗, sets y = f(x∗b ;PRF.EvalK(s∗)) and queries the key generation
oracle KGσ(msk, ·, ·) with the pair (Leftf,K ,PuncOutputYf,K′,y,s∗). Finally, when A2 outputs b′, B
outputs 1 if b′ = b, and otherwise it outputs 0.

Note that when σ = 0 (the mode of the encryption oracle Encσ(msk, ·, ·) and key generation
oracle KGσ(msk, ·, ·)) then A’s view is identical to its view in the experiment H(1), and when σ = 1
then A’s view is identical to its view in the experiment H(2,1). Therefore,∣∣∣Pr

[
H(1)(λ) = 1

]
− Pr

[
H(2,1)(λ) = 1

]∣∣∣ ≤ AdvFP
FE,F ′,B(1)→(2,1),T

(λ) + neg(λ).

Proof of Claim 4.14. The adversary B(2,i)→(2,i+1) = (B1,B2) is defined as follows. B1 samples a
random string s∗ ∈ {0, 1}λ and outputs the set {s∗} as the punctured set and the point s∗ as the
state.
B2 gets as input a punctured PRF key K ′ , K{s∗} at the point s∗, a value y (which is either

PRFK(s∗) or a random string), and the point s∗ as the state information. Next, B2 chooses a master
key msk← FE.Setup(1λ) and emulates the execution of A1 on input 1λ by simulating the encryption
oracle and the key generation oracle as follows: When A1 requests an encryption of x ∈ Xλ, B2

samples s ∈ {0, 1}λ, computes FE.Enc(msk, (x,⊥, s,⊥)) and returns the output to A1. When A1

requests a functional key for the function f ∈ F , B2 samples a PRF key K ← PRF.Gen(1λ), computes
FE.KG(msk, Leftf,K), and returns the output to A1. Finally, A1 outputs the challenge (x∗0, x

∗
1, state).

Then, B2 chooses a random bit b, computes c∗ ← FE.Enc(msk, (x∗b , x
∗
1, s
∗,⊥)) and emulates the

execution of A2 on input (c∗, state) by simulating the encryption oracle as before and simulating
the key generation oracle as follows: When A2 requests the jth functional key for fj ∈ F , if j < i
then B2 samples a PRF key Kj ← PRF.Gen(1λ), obtains K ′j by puncturing Kj at s∗, samples
y ← f(x∗b), computes FE.KG(msk,PuncOutputYfj ,K′j ,y,s∗) and returns the output to A2. If j = i

then B2, computes FE.KG(msk,PuncOutputYfj ,K′,y,s∗) and returns the output to A2. If j > i

then B2 samples a PRF key Kj ← PRF.Gen(1λ), obtains K ′j by puncturing Kj at s∗, samples
y = f(x∗b ;PRF.EvalKj (s

∗)), computes FE.KG(msk,PuncOutputYfj ,K′j ,y,s∗) and returns the output to

A2. Finally, when A2 outputs the bit b′, B2 outputs 1 if b′ = b, and otherwise it outputs 0.
Note that when y is obtained from as a PRF evaluation then A’s view is identical to its view in

the experiment H(2,i+1), and when y is obtained from as a random string then A’s view is identical
to its view in the experiment H(2,i). Therefore,∣∣∣Pr

[
H(2,i)(λ) = 1

]
− Pr

[
H(2,i+1)(λ) = 1

]∣∣∣ = AdvpuPRF,B(2,i)→(2,i+1)(λ).
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Proof of Claim 4.15. The adversary B(3,i)→(3,i+1) = (B1,B2) is defined as follows. First, B1

chooses a master key msk ← FE.Setup(1λ) and emulates the execution of A1 on input 1λ by sim-
ulating the encryption oracle and the key generation oracle as follows: When A1 requests an en-
cryption of x ∈ Xλ, B1 samples s ∈ {0, 1}λ, computes FE.Enc(msk, (x,⊥, s,⊥)) and returns the
output to A1. When A1 requests a functional key for the function f ∈ F , B1 samples a PRF key
K ← PRF.Gen(1λ), computes FE.KG(msk, Leftf,K), and returns the output to A1. When, A1 outputs
the challenge (x∗0, x

∗
1, state), B1 chooses a random bit b, computes c∗ ← FE.Enc(msk, (x∗b , x

∗
1, s
∗,⊥))

and emulates the execution of A2 on input (c∗, state) by simulating the encryption oracle as before
and simulating the key generation oracle for the first i − 1 times as follows: When A2 requests a
functional key for f ∈ F , B1 samples a PRF key K ← PRF.Gen(1λ), obtains K ′ by puncturing K at
s∗, samples y ← f(x∗1), computes FE.KG(msk,PuncOutputYf,K′,y,s∗) and returns the output to A2.

When A2 requests the ith functional key f ∈ F then B1 chooses a random bit b, outputs (f, x∗b , x
∗
1)

and its entire memory and internal randomness as the state state (without answering the last key
generation query of A2).

Next, B2 runs on input (y, state), continues the execution of A2, samples a PRF key K ←
PRF.Gen(1λ), obtains K ′ by puncturing K at s∗, computes FE.KG(msk,PuncOutputYf,K′,y,s∗) and
returns the output to A2. When A2 requests a functional key for the function f ∈ F , B2 samples a
PRF key K ← PRF.Gen(1λ), obtains K ′ by puncturing K at s∗, samples y = f(x∗b ;PRF.EvalK(s∗)),
computes FE.KG(msk,PuncOutputYf,K′,y,s∗) and returns the output to A2. Finally, when A2 outputs
the bit b′, B2 outputs 1 if b′ = b, and otherwise it outputs 0.

Note that when y is sampled from f(x∗b) then A’s view is identical to its view in the experiment
H(3,i+1), and when y is sampled from f(x∗1) then A’s view is identical to its view in the experiment
H(3,i). Therefore,∣∣∣Pr

[
H(3,i)(λ) = 1

]
− Pr

[
H(3,i+1)(λ) = 1

]∣∣∣ = AdvaADM
F ,B(3,i)→(3,i+1) ≤ ∆(λ).

Proof of Claim 4.16. The adversary B(4,i)→(5,i) = B is defined as follows. First, B samples T1

PRF keys K1, . . . ,KT1 ← PRF.Gen(1λ). Then, B emulates the execution of A1 on input (1λ) by
simulating the encryption oracle and the key generation oracle as follows: When A1 requests an
encryption of x ∈ Xλ, B samples s ∈ {0, 1}λ, queries the encryption oracle Encσ(msk, ·, ·) with the
pair ((x,⊥, s,⊥), (x,⊥, s,⊥)) and returns the output to A1. When A1 requests a functional key
for the function f ∈ F for the jth time, if j ≤ i − 1 then B queries the key generation oracle
KG(msk,Rightf,Kj ) and returns the output to A1, and otherwise B queries the key generation oracle
with KG(msk, Leftf,Kj ) and returns the output toA1. Finally, A1 outputs the challenge (x∗0, x

∗
1, state).

Next, B chooses a random bit b, samples s∗ ∈ {0, 1}λ, computes z∗ = fi(x
∗
b ;PRF.EvalKi(s

∗))
and queries the encryption oracle with the pair ((x∗b , x

∗
1, s
∗,⊥), (x∗b , x

∗
1, s
∗, z∗)) to get the cipher-

text c∗. Then, B emulates the execution of A2 on input (c∗, state) by simulating the key gener-
ation oracle as follows: When A2 requests a functional key for the function f ∈ F , B samples
s∗ ∈ {0, 1}λ uniformly at random, samples K ← PRF.Gen(1λ), computes the key K ′ which is the
key K punctured at the point s∗, queries the key generation oracle KGσ(msk, ·, ·) with the pair
(PuncOutputZfi,K′,s∗ ,PuncOutputZfi,K′,s∗) and returns the output to A1. Finally, when A2 outputs
the bit b′, B outputs 1 if b′ = b, and otherwise it outputs 0.

Note that when σ = 0 (the mode of the encryption oracle Encσ(msk, ·, ·)) then A’s view is
identical to its view in the experiment H(4,i), and when σ = 1 then A’s view is identical to its view
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in the experiment H(5,i). Therefore,∣∣∣Pr
[
H(4,i)(λ) = 1

]
− Pr

[
H(5,i)(λ) = 1

]∣∣∣ = AdvMP
FE,F ′,B(4,i)→(5,i),T

(λ).

Proof of Claim 4.17. The adversary B(5,i)→(6,i) = B is defined as follows. First, B samples T1

PRF keys K1, . . . ,KT1 ← PRF.Gen(1λ). Then, B emulates the execution of A1 on input (1λ) by
simulating the encryption oracle and the key generation oracle as follows: When A1 requests an
encryption of x ∈ Xλ, B samples s ∈ {0, 1}λ, queries the encryption oracle Encσ(msk, ·, ·) with
the pair ((x,⊥, s,⊥), (x,⊥, s,⊥)) and returns the output to A1. When A1 requests a functional
key for the function f ∈ F for the jth time, if j < i then B queries the key generation oracle
KGσ(msk, ·, ·) with the pair (Rightf,Kj ,Rightf,Kj ) and returns the output to A1. If j = i then B
samples s∗ ∈ {0, 1}λ uniformly at random, samples a PRF key K, obtains a punctured key K ′

which is the key K punctured at the point s∗, queries the key generation oracle KGσ(msk, ·, ·) with
the pair (Rightf,Ki ,PuncOutputZfi,K′i,s∗) and returns the output to A1. If j > i then B queries the
key generation oracle KGσ(msk, ·, ·) with the pair (Leftf,Kj , Leftf,Kj ) and returns the output to A1.
Finally, A1 outputs the challenge (x∗0, x

∗
1, state).

Next, B chooses a random bit b, samples s∗ ∈ {0, 1}λ, computes z∗ = fi(x
∗
b ;PRF.EvalKi(s

∗)) and
queries the encryption oracle with the pair ((x∗b , x

∗
1, s
∗, z∗), (x∗b , x

∗
1, s
∗, z∗)) to get the ciphertext c∗.

We assume that s∗ 6= s for all sampled s’s and lose an additive negligible factor. Then, B emulates
the execution of A2 on input (c∗, state) by simulating the key generation oracle as follows: When A2

requests a functional key for the function f ∈ F , B samples s∗ ∈ {0, 1}λ uniformly at random, sam-
ples K ← PRF.Gen(1λ), computes the key K ′ which is the key K punctured at the point s∗, queries
the key generation oracle KGσ(msk, ·, ·) with the pair (PuncOutputZfi,K′,s∗ ,PuncOutputZfi,K′,s∗) and
returns the output to A1. Finally, when A2 outputs the bit b′, B outputs 1 if b′ = b, and otherwise
it outputs 0.

Note that when σ = 0 (the mode of the encryption oracle Encσ(msk, ·, ·)) then A’s view is
identical to its view in the experiment H(5,i), and when σ = 1 then A’s view is identical to its view
in the experiment H(6,i). Therefore,∣∣∣Pr

[
H(5,i)(λ) = 1

]
− Pr

[
H(6,i)(λ) = 1

]∣∣∣ ≤ AdvFP
FE,F ′,B(5,i)→(6,i),T

(λ) + neg(λ).

Proof of Claim 4.18. The adversary B(6,i)→(7,i) = (B1,B2) is defined as follows. B1 samples a
random string s∗ ∈ {0, 1}λ and outputs the set {s∗} as the punctued set and the point s∗ as the
state.

Next, B2 gets as input a punctured PRF key K ′ , K{s∗} at the point s∗, a value y (which is
either PRFK(s∗) or a random string), and the point s∗ as the state information. Next, B2 chooses
a master key msk ← FE.Setup(1λ) and emulates the execution of A1 on input 1λ by simulating
the encryption oracle and the key generation oracle as follows: When A1 requests an encryption of
x ∈ Xλ, B2 samples s ∈ {0, 1}λ, computes FE.Enc(msk, (x,⊥, s,⊥)) and returns the output to A1.
When A1 requests the jth functional key for fj ∈ F , B2 samples a PRF key Kj ← PRF.Gen(1λ),
computes FE.KG(msk,Rightfj ,Kj ) if j < i, computes FE.KG(msk,PuncOutputZfj ,K′,s∗) if j = i and
computes FE.KG(msk, Leftfj ,Kj ) if j > i, and returns the output to A1. Finally, A1 outputs the
challenge (x∗0, x

∗
1, state).

Then, B2 chooses a random bit b, computes c∗ ← FE.Enc(msk, (x∗b , x
∗
1, s
∗, fi(x

∗
b , y))) and emulates

the execution of A2 on input (c∗, state) by simulating the encryption oracle as before and simulating
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the key generation oracle as follows: When A2 requests a functional key for f ∈ F , B2 computes
FE.KG(msk,PuncOutputYf,K′,f(x∗1),s∗) and returns the outputs to A2. Finally, when A2 outputs the
bit b′, B2 outputs 1 if b′ = b, and otherwise it outputs 0.

Note that when y is obtained from as a PRF evaluation then A’s view is identical to its view in
the experiment H(6,i), and when y is obtained from as a random string then A’s view is identical to
its view in the experiment H(7,i). Therefore,∣∣∣Pr

[
H(6,i)(λ) = 1

]
− Pr

[
H(7,i)(λ) = 1

]∣∣∣ = AdvpuPRF,B(6,i)→(7,i)(λ).

Proof of Claim 4.19. The adversary B(7,i)→(8,i) = (B1,B2) is defined as follows. First, B1 chooses
a master key msk← FE.Setup(1λ) and emulates the execution of A1 on input 1λ by simulating the
encryption oracle and the key generation oracle as follows: When A1 requests an encryption of x ∈
Xλ, B1 samples s ∈ {0, 1}λ, computes FE.Enc(msk, (x,⊥, s,⊥)) and returns the output to A1. When
A1 requests the jth functional key for fj ∈ F , B2 samples a PRF key Kj ← PRF.Gen(1λ), samples
s∗ ← {0, 1}λ, computes FE.KG(msk,Rightfj ,Kj ) if j < i, computes FE.KG(msk,PuncOutputZfj ,K′,s∗)
if j = i and computes FE.KG(msk, Leftfj ,Kj ) if j > i, and returns the output to A1. When, A1

outputs the challenge (x∗0, x
∗
1, state), B1 chooses a random bit b, and outputs (fi, x

∗
b , x
∗
1) and its

entire memory and internal randomness as the state information.
Next, B2 runs on input y (which is either a uniform sample from f(x∗b) or from f(x∗1)), computes

c∗ ← FE.Enc(msk, (x∗b , x
∗
1, s
∗, y)), emulates the execution of A2 on input (c∗, state) by simulating

the encryption algorithm as before and simulating the key generation oracle as follows: When A2

requests a functional key for f ∈ F , B2 computes FE.KG(msk,PuncOutputYf,K′,f(x∗1),s∗) and returns
the outputs to A2. Finally, when A2 outputs the bit b′, B2 outputs 1 if b′ = b, and otherwise it
outputs 0.

Note that when y is sampled from f(x∗b) then A’s view is identical to its view in the experiment
H(7,i), and when y is sampled from f(x∗1) then A’s view is identical to its view in the experiment
H(8,i). Therefore,∣∣∣Pr

[
H(7,i)(λ) = 1

]
− Pr

[
H(8,i)(λ) = 1

]∣∣∣ = AdvaADM
F ,B(7,i)→(8,i) ≤ ∆(λ).
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