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Abstract. The references [9,3,1] treat timing attacks on RSA with
CRT and Montgomery’s multiplication algorithm in unprotected imple-
mentations. It has been widely believed that exponent blinding would
prevent any timing attack on RSA. At cost of significantly more tim-
ing measurements this paper extends the before-mentioned attacks to
RSA with CRT when Montgomery’s multiplication algorithm and expo-
nent blinding are applied. Simulation experiments are conducted, which
confirm the theoretical results. Effective countermeasures exist. In partic-
ular, the attack efficiency is higher than in the previous version [12] while
large parts of both papers coincide.
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1 Introduction

* In 1996 Paul Kocher introduced timing analysis [6]. In particular, [6] presents
a timing attack on an unprotected RSA implementation, which does not apply
the Chinese Remainder Theorem (CRT). Reference [9] introduced a new timing
attack on RSA implementations, which apply CRT and Montgomery’s multipli-
cation algorithm [8]. This attack was extended to OpenSSL (RSA, CRT, sliding
window exponentiation algorithm, Montgomery’s multiplication algorithm) [3],
and later optimized [1]. Also [5,9-11] consider timing attacks on RSA imple-
mentations that apply Montgomery’s multiplication algorithm. All these attacks
target unprotected RSA implementations.

Besides presenting the first timing attack on RSA (without CRT) [6] pro-
poses various countermeasures (Section 10), including exponent blinding where
a random multiple of Euler’s ¢ function of the modulus is added to the secret
exponent. Since then (exclusive) exponent blinding has widely been assumed to
be effective to prevent (any type of) timing attacks on RSA, at least no suc-
cessful timing attacks against exponent blinding have been known. The present
paper extends the timing attack from [9] to RSA implementations, which apply
exponent blinding, proving that exclusive exponent blinding (without additional
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countermeasures) does not always prevent timing attacks on RSA. However,
the presence of exponent blinding increases the number of timing measurements
enormously.

In Section 2 the targeted implementation is described (RSA with CRT,
square & multiply, Montgomery’s multiplication algorithm, exponent blinding),
assumptions are formulated and justified. Section 3 contains the theoretical foun-
dations of our attack while in Section 4 the attack is specified and experimental
results are given. Moreover, the attack is adjusted to table-based exponentiation
algorithms, and effective countermeasures are proposed.

In this paper the attack efficiency is higher than in [12]. For several proofs in
Section 3 and an parameter estimation process we refer to [12]. Apart from that
and from editorial improvements both papers essentially coincide in large parts.

2 Modular Exponentiation with Montgomery’s
Multiplication Algorithm

In this section we describe the targeted RSA implementation. More precisely,
we begin with the modular arithmetic, and finally we specify the modular expo-
nentiation algorithm. Moreover, two assumptions are formulated and analysed,
which will be applied later.

Montgomery’s multiplication algorithm (MM) [8] fits perfectly to the hard-
ware architecture of a computer, smart card or microcontroller since modulo
operations and divisions only have to be carried out for moduli and divisors,
which are powers of 2.

Definition 1. For a positive integer M > 1 we set Zpr :={0,1,..., M —1}. We
write a = bmod M if (a — b) is a multiple of M. The term b(mod M) denotes
the unique element in Zy;, which is congruent to b modulo M .

For an odd modulus M the integer R := 2! > M is called Montgomery’s con-
stant, and R~! € Z; denotes its multiplicative inverse modulo M. Moreover,
M* € Zg satisfies the integer equation RR™! — MM* = 1.

On input (a, b)) Montgomery’s algorithm returns MM(a, b; M) := abR~*( mod
M). This value is computed with a multiprecision version of Montgomery’s
multiplication algorithm, which is adjusted to the particular device. More pre-
cisely, let ws denote the word size for the arithmetic operations (typically,
ws = 8,16,32,64), which divides the exponent ¢ of R. Further, r = 2%% so
that in particular R = r¥ with v = t/ws (numerical example: (ws,t,v) =
(16,1024,64)). In Algorithm 1 a,b and s are expressed in the r-adic represen-
tation. That is, a = (ay—1,--,@0)r, 0 = (by—1,--,00)r and s = (Sy—1, -, S0)r--
Finally, m* = M* (mod r). In particular, MM* = RR™' —1 = —1mod R
and thus m* = —M ' mod r.

Algorithm 1. Montgomery’s multiplication algorithm (MM), multiprecision vari-
ant

1. Input: a,b € Zym



2. 5:=0
3. Fori=0 to v—1do{
u = (s + a;bg)m*(mod r)
s:=(s+ab+uM)/r
}
4. If (s > M) then s :=s— M [= extra reduction (ER)]
5. return s (= abR~*(mod M) = MM(a, b; M))

After Step 3 s = abR~! mod M and s € [0,2M). The instruction s := s — M
in Step 4, called ’extra reduction’ (ER), is carried out iff s € [M,2M). This
conditional integer subtraction is responsible for timing differences. Whether an
ER is necessary does not depend on the chosen multiprecision variant but only
on the quadruple (a,b, M, R) [9], Remark 1. This allows to consider the case
ws =t (i.e. v = 1) when analyzing the stochastic behaviour of the ERs in
modular exponentiations.

Algorithm 2 combines Montgomery’s multiplication algorithm with the square
& multiply exponentiation algorithm.

Algorithm 2. Square & multiply with Montgomery’s algorithm (s&m, MM)
Computes ¥+ y%(mod M) for d= (dy_1,...,0)2
temp := yr := MM(y, R*(mod M); M) (Pre-multiplication)
for i=w-1 down to 0 do {
temp := MM(temp, temp; M)
if (d;=1) then temp := MM(temp, yr; M)
}
MM (temp, 1; M) (Post-multiplication)
return temp (= y%(mod M))

Asusual, n = p1p2 and R denotes the Montgomery constant while MM(a, b;n) :=
abR~(mod n) stands for the Montgomery multiplication of a and b. The com-
putation of v = y?(mod n) is performed in several steps:

Algorithm 3. RSA, CRT, s&m, MM, exponent blinding

1. (a) Set y; := y(mod p1) and d; := d(mod (p; — 1))
(b) (Exponent blinding) Generate a random number r; € {0,1,...,2° — 1}
and compute the blinded exponent dy j, := d1+7r1¢(p1) = d1 +7r1(p1—1).
(c) Compute vy := yf”’(mod p1) with Algorithm 2 (M = py).
2. (a) Set y9 := y(mod p3) and dy := d(mod (p2 — 1))
(b) (Exponent blinding) Generate a random number 75 € {0,1,...,2° — 1}
and compute the blinded exponent da j, := do +r2¢(p2) = da+72(p2 —1).
(¢) Compute vy := ygz’b(mod p2) with Algorithm 2 (M = ps).
3. (Recombination) Compute v := y¢(mod n) from (v1,v3), e.g. with Garner’s
algorithm: v := vy + py (p; ' (mod p2) - (v2 — v1)(mod p)) (mod n)



Assumption 1. For fixed modulus M and fixed Montgomery constant R
Time (MM(a,b; M)) € {¢,c+ cgr} forall a,be€ Zy, (1)

which means that an MM operation costs time c if no ER is needed, and cgr
equals the time for an ER. (The values ¢ and cgr depend on the concrete device.)

Remark 1. [Justification of Assumption 1]

(i) Since the divisions and the modular reductions in Step 3 of Algorithm 1 can
be realized by shifts and masking operations the calculations within the for-loop
are essentially integer additions and integer multiplications or parts thereof, re-
spectively. For fixed M and R the time per iteration of the for-loop should be
constant. Since usually log, (M) ~ log,(R) for known input attacks the leading
words a,_1 and b,_; are de facto always non-zero, at least if ws > 16, and thus
may expect that (1) is fulfilled.

(ii) Our timing attack is an adapted chosen input attack, for which in the course
of the attack in many Montgomery multiplications one factor has one or more
leading zero words. For smart cards and microcontrollers one might assume that
this feature may not violate Assumption 1 since optimizations of rare events
(within the normal use of the device) seem to be unlikely.

(iii) On a PC cryptographic software might process small operands (i.e., those
with leading zero-words) in Step 3 of Algorithm 1 differently, e.g. because differ-
ent integer multiplication algorithm is applied (e.g., OpenSSL: normal multiplic-
ation vs. Karatsuba multiplication [3,1]). Such effects, however, may complicate
our attack but should not prevent it [3, 1].

Assumption 2. Assumption 1 holds for the modular multiplications (mod p)
and (mod py) with identical time constants ¢ and cgr. The attacker knows the
values ¢ and cggR.

Remark 2. (i) Usually, the r-adic representations of p; and py comprise the same
number of words, i.e. [logy(p1)/ws] = [logy(p2)/ws], and R is identical in both
cases. With regard to Remark 1 this justifies the first claim of Assumption 2.
(If the number of words should be different we may expect unequal triplets
(R1,c1,cgr,1) and (Rg, 2, crRr,2), which would complicate the attack.)

(ii) In the best case (from the attacker’s point of view) the attacker either knows ¢
and cgg or is able to determine them precisely with a simulation tool. Otherwise,
he may estimate both values, see [12], Subsect. 4.4.

3 Theoretical Background of our Attack

This section contains the theoretical foundations of our attack. The main re-
sults are the mean value and the variance of the execution time of Algorithm 3
(Subsection 3.1 and Subsection 3.2) and the distinguisher, which allows to de-
cide whether a given interval contains / does not contain a multiple of p; or ps.
(Subsection 3.3).



3.1 Exponentiation (mod p;)

In Subsection 3.1 we consider the stochastic timing behaviour of the exponen-
tiations modulo p; and modulo py. More precisely, we focus on the for-loop in
Algorithm 2 when applied by Step i(c) of Algorithm 3 with M = p; for i = 1, 2.
By Step i(b) of Algorithm 3 the blinding factor r; is a randomly selected eb-
bit number, i.e. r; € {0,...,2°® — 1} for i = 1,2. We interpret the measured
execution times as realizations of random variables.

Definition 2. Random variables are denoted by capital letters, and realizations
(i.e., values taken on) of these random variables are denoted with the correspond-
ing small letter. The abbreviation ’1id’ stands for ‘independent and identically
distributed’. For a random variable Y the terms E(Y), E(Y?) and Var(Y) de-
note its expectation (mean), its second moment and its variance, respectively.
The term Y ~ N(u,02) means that the random variable N is normally distrib-
uted with mean p and variance 0. The cumulative distribution of the standard
normal distribution N(0,1) is given by ®(x) := (2m)~/2 [*_ e~t’/2 4.

The distinguisher and the attack in Section 4 consider input values of the form
y = uR~(modn). A simple calculation shows that the pre-multiplication step
in Algorithm 2 transforms the input value y into yg ; := u(mod p;) ([9], Sect. 3,
after formula (5)). Consequently, we interpret the execution time of the for-loop
in Algorithm 2 as a realization of a random variable Z;(u). With this notation

Zi(u) == (Q; + M;)c+ X, cer (2)

expresses the random computation time for the exponentiation ( mod p;) in terms
of the random variables );, M; and X;. The random variables Q); and M; de-
note the random number of squarings and multiplications within the for loop
in Step i(c) while X; quantifies the number of extra reductions (ERs) in these
squarings and multiplications (¢ = 1,2). Unfortunately, the random variables
Q;, M; and X; are not independent.

The main goal of this subsection is to calculate E(Z;(u)) and Var(Z;(u)). By
definition

E(ZPw)=>_ 3> P(Qi=q, M =my, X; =) ((g; + mx)c+ z, cor) =

q; Mg Tr

S PQi=q)) P(Mi=mi | Qi=q;)> P(Xi=um,|Qi=q;, M =my) x
qj mp Ty

X ((gi +mg)c+zcer)’ (3)

Clearly, z, € {0,...,q; + mi}, mi €{0,...,¢;} and ¢; € {k—1,..., k+eb—1}.
Lemma 1 collects several facts, which will be needed in the following. Recall that
pi < R.

Lemma 1. As in Section 2 the term y; stands for y(mod p;).
(i) For y := uR~*(modn) the MM-transformed basis for the exponentiation
(mod p;) equals u} ;= u(mod p;).



(i1) If d;p is a kj-bit integer the computation of yfi’b(mod pi) needs q; ==k} — 1
squarings and m; = ham(d; ;) — 1 multiplications where ham(-) denotes the
Hamming weight of its argument.

(iii) The (conditional) random variable (X; | Qi = qi, M; = m;) cer quantifies
the overall random execution time for all extra reductions if Q; = q; and M; =
m;. Let

/

Pi i
Pix = 3R’ Pi(u) *= i COVi MS(u)) = QP?(u/)pi* = Pi(u')Pix (4)
9 27
COVi.SM(w) = EPi(uw)Pix ~ Pi(w)Pis,  COVisS i= 71)?* - i, (5)

The random wvariable (X; | Q; = ¢;, M; = m;) is normally distributed with
expectation

E(X; | Qi = qi, My = m;) = qiDix + MiPi(u) and variance (6)
Var(X; | Qi = qi, My = m;) = qipix(1 — pix) + mipicury (1 — Piury) +
2micov; sm(uy) + 2(m; — 1)cov; msq) + 2(q: — mi)coviss (7)

(iv) The random variable (M; | Q; = q;) quantifies the random number of multi-
plications if Q; = q;. It is approximately N(q;/2,q;/4)-distributed. In particular,

E(M? | Qi=a) = ;(ai + ).
Proof. see [12], proof of Lemma 1.

Theorem 1. Combining the previous results we obtain
3 1
E(Zi(u)) = E(Q:) (20 + (pi* + Qpi(u/)) cER) (8)

and

2
Var (Z;(u)) = Var(Q;) (‘;’c + (pis + %pauq) cER)

1 1 1
+E(Q:) (102 + 5Pi(w)CCER +(pix (1 = pi) + Qpi(u’)(l — Pi(u’))

9 27 1
JFQPZ?’(u/)pi* + gpi(u/)Pf* = 2pi(u)Pix + —ph - i+ Zpi(u’))CER2)

7
Proof. see [12], proof of Theorem 1.

Lemma 2 provides explicit expressions for E(Q;) and Var(Q;), which may be
substituted into (8) and (9). Note that p; < 2% < R.

Lemma 2. Let p; be a k-bit number, and let v; := p;/2F.
(i) Unless eb is artificially small approzimately

B@)= (k1) +eb— (10)
Var(@) = > - (11)



(i1) In particular, E(Q;) is monotonously increasing in v; and assumes values in
(k—1+eb—2,k—1+eb—1). The variance Var(Q;) assumes values in (2,2.25].
The maximum value 2.25 is taken on for v; = 2/3. If 2¥ = R (typical case) then

Proof. see [12], proof of Lemma 2.
Remark 3. (i) Setting Var(Q);) = 0 and E(Q;) = k — 1 Theorem 1 provides the

formulae for non-blinded implementations.
(ii) Numerical experiments verify that (11) approximates Var(Q;) very well.

Table 1 evaluates the terms (8), (9), (10) and (11) for exemplary parameter sets.

“ — 0.0 v 0.5 “ 1.0

Pi Pi Pi

log,(R) [ eb [ 2| cEr E(Zi(u))[Var(Zi(u)) E(Zi(u))[Var(Zi(u)) E(Zi(u))[Var(Zi(u))

512] 64[0.75[0.03¢] 864.8¢] 148.5¢%] 866.4¢[ 150.2¢%] 868.0¢] 151.9¢2
512| 64/0.80(0.03¢| 865.2¢| 148.5¢%| 866.9¢| 150.3¢%| 868.7¢| 152.0¢3
512| 64/0.85(0.03¢| 865.6¢| 148.4¢%| 867.4c¢| 150.3¢%| 869.3¢| 152.2¢2
512| 64/0.75(0.05¢| 867.7¢| 148.7¢%| 870.4¢| 151.5¢%| 873.0¢| 154.3¢2
512| 64/0.80(0.05¢| 868.3¢| 148.7¢%| 871.1¢| 151.6¢%| 874.0¢| 154.6¢2
512| 64/0.85(0.05¢| 868.9¢| 148.6¢2| 871.9¢| 151.7¢%| 875.0¢| 154.9¢2
1024| 64]0.75/0.03¢| 1636.6¢| 276.6¢*| 1639.7¢| 279.7¢%| 1642.8¢| 282.8¢?
1024| 64/0.80/0.03¢| 1637.3¢| 276.6¢%| 1640.6¢| 279.9¢%| 1643.8¢| 283.2¢2
1024| 64]0.85/0.03¢| 1638.0¢| 276.5¢%| 1641.4¢| 280.0¢%| 1644.9¢| 283.5¢2
1024| 64[0.75(0.05¢| 1642.1¢| 276.9¢%| 1647.2¢| 282.1¢2| 1652.3¢| 287.4¢2
1024| 64/0.80(0.05¢| 1643.1¢| 276.8¢%| 1648.5¢| 282.4¢%| 1654.0¢| 288.0¢2
1024| 64]0.85/0.05¢| 1644.1¢| 276.8¢*| 1649.9¢| 282.7¢%| 1655.7¢| 288.6¢2

Table 1. Expectation and variance for several sets of parameters (R, eb, p;/R, cer /c)

3.2 Further Arithmetic Operations and Noise

The random variables Z;(u) and Zz(u) quantify the random timing behaviour
of the for-loop in Algorithm 2 when called in Step 1(c) and Step 2(c) of Al-
gorithm 3, respectively. However, the computation of (uR~*(modn))?(modn)
requires several further steps: Step 1(a) and Step 2(a) (reduction modulo p;),
Step 1(b) and Step 2(b) (exponent blinding), Step 1(c) and Step 2(c) (here:
pre-multiplication and post-multiplication of Algorithm 2), Step 3 (recombina-
tion), time for input and output etc. In analogy to Subsection 3.1 we view the
required overall execution time for these before-mentioned steps as a realization
of a random variable Zs(u).

It seems reasonable to assume that the time for input and output of data,
for recombination and blinding as well as the reduction (modp;) in Step 1(a)



and Step 2(a) of Algorithm 3 do not (or at most weakly) depend on u. The
postprocessing step in Algorithm 2 never needs an ER. (By [13], Theorem 1, in
Algorithm 1, after Step 3 we have s < M +temp-r~¥ < M +1, and thus s < M.
If s = M then temp = 0 after the extra reduction, which can only happen if u is
a multiple of M = p; but then yg = uR™*R = 0 mod p;, and Algorithm 2 does
not need any extra reduction at all.) In the pre-multiplication in Algorithm 2 an
ER may occur or not. Altogether, we may assume

E(Z3(u)) = z3 forall w € Z, and (12)
Var(Zs(u)) < Var(Zy(u)), Var(Zz(u)) (13)

Assumption 3. In the following we assume FE(Zs(u)) = z3 for all w and in-
terpret the centered random variable Zs(u) — Z3 as part of the noise, which
is captured by the random variable N.. If Var(N,) = o% > 0 we assume
N, ~ N(un,0%) while 03, = 0 means 'no noise’ and N, = z3 with probability
1.

Remark 4. [Justification of Assumption 3]

The part of Assumption 3, which concerns Z(u), follows from the preceding ar-
guments. Measurement errors are usually assumed to be Gaussian distributed,
and if the noise comprises of several contributions (of comparable size) the Cen-
tral Limit Theorem may be used as an additional argument for the assumption
of Gaussian noise. However, the core of our attack is a distinguisher, which sep-
arates two probability distributions with different mean values. As long as the
noise is assumed to be data-independent the distinguisher should work for arbi-
trary noise distributions (maybe the number of timing measurements varies).

3.3 The Distinguisher

Now we derive a distinguisher, which will be the core of our attack (to be devel-
oped in Section 4). With regard to the preceding the overall random execution
time for input w is described by the random variable

Z(u) = Z1(u) + Za(u) + z3 + Ne . (14)
In the following we assume
O<ur<ug<n and us — u; K p1,ps . (15)
Theorem 1 implies

E(Z(u2) = Z(u1)) = E(Z1(u2) — Z1(u1)) + E (Z2(u2) — Z2(u1))  (16)
1 2

2

7

E(Qi) (pi(u — Di(u

1

) cpr  With u(;) = uj(mod p;)

@ )

As in [9] we distinguish between three cases:
Case A: The interval {u; +1,...,u2} does not contain a multiple of p; or pa.



Case B: The interval {u; +1,...,us} contains a multiple of ps but not of ps_s.
Case C: The interval {u; + 1,...,u2} contains a multiple of p; and ps.
Let’s have a closer look at (16). By (4)

="M cgr ~ 0 Case A, Case B (for i # s)
s ) — Di(a,’ 2R
Piufy)) ~ Pifuyy) {% — % cer Case B (for i = s), Case C (17)
Further,
oki
E(Qi) =Fki+eb—1—~7t =2Medl fop 1 >
R 2k
= log,y(R) + ([logy(pi)] — logy(R)) +eb—1— R (18)
3

where [z] denotes the smallest integer > 2. At the beginning of our attack we
have no concrete information on the size of the primes p; and ps, and thus we
use the rough approximation

p1,p2 ~+/n and set 3 := % (19)

With approximation (19) formula (18) simplifies to

E(Q;) ~logy(R) +eb—1— 71 if V0.5 < 8 <1, and similarly (20)
Var(Q;) ~ 3871 — 572 if V05 < g <1 (21)

since k; = [logy(p;)] = logs(R) then. Finally (17) and (20) imply

o

in Case A
E(Z(u3) — Z(uy)) ~ —% ((logo(R) +eb—1)3—1)cgr in Case B (22)
—5 ((logy(R) +eb—1)3 —1)cgr in Case C

In the following we focus on the case /0.5 < 3 < 1, which is the most relevant
case since then 0.5R? < n < R? ie. n is a 2logy(R) bit modulus and, conse-
quently, p; and ps are logy (R)-bit numbers. We point out that the case 8 < V0.5
can be treated analogously. In (20) and (21) the parameter 3;' then should be
better replaced by 3; '2MMog2(Pi)1-log2(R)  However, the ’correction factor’ may
not be unambiguous, which might lead to some inaccuracy in the formulae, fi-
nally implying a slight loss of attack efficiency.

From (14) we obtain

Var (Z(uz) — Z(u1)) = Z (Z Var (Z;(u;)) + Var(Ne,j)> (23)

j=1 \i=1

For given R, eb,c, cgr,u the variance Var(Z;(u)) is nearly independent of p;/R
and increases somewhat when the ratio u/p; increases (see Table 1). Since the



true values p; /R and ps/R are unknown during the attack we approximate (23)
by
Var (Z(uz) — Z(w1)) = 4vargmas + 20% (24)

Here "varg,maqs’ suggestively stands for the term (9) with SR in place of p; and v/,
i.e. we replace the probabilities p;. and p;(,/) by 8/3 and 3/2, respectively. We
point out that variance (23) has no direct influence on the decision strategy of our
attack but determines the required sample size. Usually, (24) should overestimate
(23) somewhat. Moreover, decision errors can be detected and corrected (cf.
Section 4, ’confirmed intervals’). So we should be on the safe side anyway. For
fixed p; the mean F(Z;(u)) increases monotonically in u/p; (see (8)). In fact,
our attack exploits these differences.

On basis of execution times for input values (bases) y = u; R~*(mod n) (i =
1,2) the attacker has to decide for hundreds of intervals {u; +1, ..., us} whether
they contain p; or ps. By (22) the value

decbound := —é((logz(R) +eb—1)8—1)cgr (25)

is a natural decision boundary. In fact, for given u; < ug and y; := (u; R~*(mod
n) this suggests the following decision rule:

Decide for Case A iff (Time(y$(mod n)) — Time(y{(mod n)) > decbound),
and for (Case B or Case C) else. (26)

(Note that we do not need to distinguish between Case B and Case C.) Here
Time(y¢(mod n)) denotes the execution time for input value y;, which of course
depends on the blinding factors for the modular exponentiation (modp;) and
(mod ps). However, since the variance Var(Z(ugz) — Z(uy)) is too large for reli-
able decisions we consider N iid random variables Z};j(u), ..., Zyj(u) in place
of Z(u), which are distributed as Z(u) (corresponding to N exponentiations
with input value y = uR™*(modn)). Unlike for decision strategy (26) we eval-
uate the average timing difference from N pairs of timing measurements (see
Sect. 4). For N, the inequality

N, N,

N.

. ) 4var imaz T+ 20’2

Var | & Z (Z[j] (u2) — Zpj (U1)) ~ \/ B; N
Jj=1

< |decbound — 0]

implies
-
N> 7'2(4var5;max + 20'12\[) . 6472(4var6;maw + QOJQV) (27)
T= |decbound|? ((logy(R) +eb—1)8 — 1)2 CER2

Applying the above decision strategy (26) to N > N, pairs of timing differences
the Central Limit Theorem then implies

Prob(wrong decision) < @(—7). (28)

10



’ log, (R) ‘ eb ‘ CERHﬁ = %‘N2.5‘N2.7H5 = %‘NZS‘NQJ‘
512| 64(0.03¢c 0.75/1458|1701 0.85|1137|1326
512| 64(0.05¢ 0.75| 533| 622 0.85 417| 486

1024| 64/0.03 ¢ 0.75| 758| 885 0.85] 592| 690

1024| 64(0.05¢ 0.75| 277| 324 0.85| 217| 253

Table 2. Exemplary sample sizes N, for several parameter sets for o3 = 0 (no noise).
Note that $(—2.5) = 0.0062 and ¢(—2.7) = 0.0035. Larger 7 reduces the error proba-
bility for each decision but increases the sample size N;.

Table 2 evaluates (27) for several parameter sets with o% = 0. If 0% = « -
(2varg,maqz) the sample size N, increases by factor (1 + c).

At the end of Phase 1 our attack algorithm from Section 4 has found u; and
ug with p; € {ur1 +1,...,u9} for i = 1 or ¢ = 2. Thus in Phase 2 we may replace
/8 by the more precise estimate 3(9) := (u1 +u2)/(2R), which may be substituted
into the formulae (20) to (27). In particular, we obtain a new decision boundary

1
decboundyy := —g((logQ(R) +eb—1)Bw) —1)cer, (29)

which should be "better’ centered between the mean values E(Z(us) — E(uq))
for Case A and for Case B than decbound.

4 The Attack

In this section we describe and analyse the attack algorithm. Two improvements
increase its efficiency compared to [12]. We provide experimental results and
adjust our attack to table-based exponentiation algorithms. Effective counter-
measures are proposed. Amazingly, the attack algorithm and its underlying ideas
are rather similar to the attack on unprotected implementations.

4.1 The Attack Algorithm

To simplify notation we introduce the abbreviation

N
MeanTime(u, N) Z ime yJ (modn)) with y; ;= uR™'(modn) (30)
=1

That is, MeanTime(u, N) denotes the average time of N modular exponentiations
Y (modn) with bablb y = uR™'(modn). The sample size N is selected with
regard to the results from Subsection 3.3. In our simulation experiments we
used Ns 5. The attack falls into three phases. The goal of Phase 1 is to find an
interval {u; + 1,...,u2}, which contains p; or ps. In Phase 2 this interval is
successively bisected into two halves where that halve is maintained, which is
assumed to contain p;. Phase 2 ends when the attacker knows the upper half
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plus few bits of the binary representation of p;, and in Phase 3 the prime p;
is computed with Coppersmith’s algorithm, which transfers the search for p;
into a lattice problem [4]. With regard to Phase 3 one should take care that
in Phase 1 and Phase 2 indeed p; or p, are targeted and not just an integer
multiple thereof. If the most relevant case where p; > 0.5R (definitely fulfilled if
B = /n/R > +/0.5) the interval [3R, R] contains p; or ps but no multiple. The
following attack may require a pre-step in which the timing parameters ¢ and
cgr are estimated (see Remark 1).

The Attack.

Phase 1
Select an integer u somewhat smaller than B8R, set (e.g.) A:=275R
Uy = u, U = up + A
while (MeanTime(uz, N) — MeanTime(uy, N) > decbound) do*{
Ul = Ug, U = Us + A

Phase 2
while (logy(us —u1) > 0.51ogs(R) — 10) do {
us = L(ul + ’LLQ)/QJ
if(MeanTime(uz, N) — MeanTime(ug, N) > decboundyy) then ug := ug*
else uy 1= ug™}
Phase 3
Apply Coppersmiths algorithm to determine p;

* The attacker believes that Case A is correct
** The attacker believes that Case B or Case C is correct

After Phase 2 the upper = 0.5log,(p;) + 10 bits of u; and wus coincide, which
yields =~ 0.51og,(p;) + 10 bits of p;. That is, p; = p; + xo with known p; and un-
known ¢ and log,(zo) ~ 0.5log,(R) —10. The division n/p; yields an analogous
decomposition p3_; = ps—; + yo. Altogether, we obtain a bivariate polynomial
equation

f(z,y) == i+ 2)(Ps—i +y) —n=pip2—n =0, (31)

for which (zg,y0) is a ’small’ solution. Reference [4] transfers the problem into
a shortest vector problem, which can be solved with the LLL algorithm. This
requires that log,(zo),logs(yo) < 0.25logy(n). In Phase 2 we determine = 10
bits more than the upper halve of the bits of p; to speed up the execution time
of the LLL algorithm. We did not solve the lattice problem in our experiments.
We counted an attack successful if after Phase 2 p; or ps was contained in the
final interval {u; +1,...,uz2}.

Of course, if after the end of Phase 2 {u; + 1,...,us} does not contain
p1 or pg in Phase 3 the modulus n cannot be factored and thus the attack
fails. This means that all decisions until the end of Phase 2 must be correct.
For 1024 bit primes, for instance, the algorithm requires about 550 individual
decisions. Fortunately, it is very easy to check whether an intermediate interval
{u1 +1,...,u2} indeed contains a prime (cf. [9], Sect. 5).

12



Confirmed intervals (i) Assume that after Phase 1 or during Phase 2 the at-
tack algorithm has determined an interval {u;+1, ..., us}. To check whether this
interval indeed contains p; or ps one may perform 2N new timing measurements,
compute MeanTime(ug, N)—MeanTime(u;, N) and apply the above decision rule.
If the time difference is < decboundyy we are convinced that {uq+1,...,us} con-
tains py or pe, and we call {u; +1,...,u2} a’confimed interval’. If not, we repeat
the test with 2V new timing measurements: in case of '< decboundyy’ we believe
that the first test result has been false, and {u; +1, ..., us} is the new confirmed
interval. If again > decboundy;’ we believe that an earlier decision was wrong
and restart the attack at the preceding confirmed interval. Confirmed intervals
should be established after con decisions. The value con should be selected with
regard to the probability for a wrong individual decision. The first confirmed
interval should be established at the end of Phase 1.

(ii) Of course, an erroneously confirmed interval will let the attack fail. This
probability can be reduced e.g. by applying a ‘majority of three’ decision rule
where the ’original’ interval {u; + 1,...,u2} (determined by our attack algo-
rithm) unlike in (i) does not count. Alternatively, the algorithm might jump
back to the last but one confirmed interval if the preceding confirmed interval
turns out to be wrong with high probability.

Improvements compared to [12] Compared to [12] the attack algorithm fea-
tures two improvements: First of all, it aims at the larger prime, which increases
the difference E(Z(uz)) — E(Z(uy) for Case B and Case C, and in Phase 2 it
applies the readjusted decision boundary (29) in place of (25). A comparision
between the simulation results in Table 3 with those in Table 3 in [12] shows
that these improvements reduce the average number of timing measurements
significantly. Additional options to further increase the attack efficiency might
be to optimize the selection of con in dependence of 7 and to apply sequential
analysis as in [1].

Remark 5. [Scaling] We assume eb < log,(R) (typical case).

(i) By (25), (29) and (9) doubling the length of the prime factors p; and ps
roughly doubles decbound, decbound;; and varg.maz. If 0% ~ 0 by (27) N, de-
creases to approximately 50%. On the other hand, the attack needs about twice
as many individual decisions. This points to the surprising fact that the overall
number of timing measurements per attack is to a large extent independent of
the modulus length if 0%, ~ 0.

(ii) Similarly, halving cgr halves decbound and decbound;; but leaves varg.maas
nearly unchanged. If 0% ~ 0 by (27) the attack then requires about 4 times
as many timing measurements. The decision boundaries depend linearly on cgr
(25). For realistic ratios cgr /cin (9) the E(Q;)(. . .)-term, and within the bracket
the first summand dominates. Consequently, (27) implies that the number of tim-

ing measurements increases roughly like (cgr /c)~2.
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Remark 6. As its predecessors in [9,3,1] our attack and its variants for table-
based exponentiation algorithms (Subsection 4.3) are adaptive chosen input at-
tacks. We point out that our attack would also work for input values (u +
z)R~!(mod n) with |z| < n'/* in place of the input values R~ (mod n). This
property allows to meet possible minor restrictions on the input values (e.g. some
set bits), which might be demanded by the targeted RSA application.

4.2 Experimental Results

In this subsection we present experimental results. As already mentioned in
Section 2 it only depends on the quadruple (a,b, M, R) but not on any fea-
tures of the implementation whether MM(a, b; M) requires an extra reduction.
This property allows to simulate the modular exponentiations y%(modn) and
to count the number of extra reductions, which finally corresponds to an attack
under perfect timing measurements and with E(Z5(u)) = z5, Var(Zs(u)) = 0,
ie. Z3(u) = z3 for all 0 < u < n, which is an idealization of (12) and (13).
Consequently, also in the absence of noise in real-life experiments the number of
timing measurements thus should be somewhat larger than for our simulation
experiments. The impact of noise was quantified in Subsection 3.3.

In our experiments we selected the primes p; and ps pseudorandomly. The
table entry p;/R = 0.75, for instance, means that p; has been selected pseudo-
randomly in the interval [0.75 —0.025,0.75+0.025] R. The secret exponent d was
computed according to the public exponent e = 26 4 1. Table 3 provides exper-
imental results for several sets of parameters. In our experiments we assumed
0% = 0. We calculated N, with formula (27) (in Phase 2 with decboundy),
which also allows to extrapolate the number of timing measurements for any
noise level. Table 3 confirms the considerations from Remark 5. Several experi-
ments with p; /R & ps/R were conducted, which verify that the attack becomes
the more efficient the larger these ratios are. The reason is that |decbound|
and |decbound;| depend almost linearly on 8 while varg,mq, remains essentially
unchanged. To save computation time many experiments were conducted for
512-bit primes and ratio cgr /¢ & 0.05, which may seem to be relatively large
for real-world applications. Remark 5 allows the extrapolation of the simulation
results to smaller ratios cgr /c and to other modulus lengths.

The number of timing measurements, which are required for a successful at-
tack, has non-negligible variance. The reason is that if an error has been detected
the algorithm steps back to the preceding confirmed interval. We established con-
firmed intervals after the end of Phase 1, after the end of Phase 2 and regularly
after con = 40 decisions. For fixed value con a larger 7 increases the success
rate of the attack but also the number of timing measurements per individual
decision.
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[log,(R) [ ebeer | B[ E2[ Tlsuccess rate[av.#fexponentiations

Rl R
512| 64/0.02¢ |0.75]|0.85|2.5 24/25 830, 000
512| 64(0.025¢|0.75]0.85(2.5 24/25 541,000
512| 64/0.03 ¢ |0.75]0.85|2.5 24/25 395,000
512| 64/0.05¢ |0.75]0.85|2.5 25/25 140, 000
512| 64(0.05¢ [0.70]0.70(2.5 24/25 203,000
512| 64/0.05¢ |0.80]0.80|2.5 24/25 141,000
512| 64/0.05¢ |0.85]0.85|2.5 25/25 140, 000
512| 64(0.05¢ [0.90]0.90(2.5 23/25 127,000
768| 64/0.03c¢ |0.75]|0.85|2.5 23/25 382,000
768| 64(0.05¢ [0.75]0.85(2.5 23/25 139, 000

1024| 64/0.03c¢ |0.75]0.85|2.5 24/25 410,000

1024| 64/0.05¢ [0.75/0.85|2.5 24/25 152,000

Table 3. Simulated attack: experimental results. The average numbers of exponenti-
ations (rounded to thousands) refer to the successful attacks. As explained above the
primes have been selected pseudorandomly within small intervals around the values in
the fourth and fifth column.

4.3 Table-Based Exponentiation Algorithms

The timing attack against unprotected implementations can be adjusted to table-
based exponentiation algorithms [9, 3, 1]. This is also possible in case of exponent
blinding.

We first consider the fixed-window exponentiation ([7], 14.82), which is com-
bined with Montgomery’s exponentiation algorithm. The window sizeis b > 1. In
Step i(c) of Algorithm 3 (exponentiation modulo p;) for basis y = R~ ( mod p;)
the following precomputations are carried out:

Yo,i = R(mod p;),y1,; = MM(y, R*(mod p;), p;) = u(mod p;), and
Yii = MM(yj_14,y15,p;) forj=2,...,2" -1, (32)

The exponentiation modulo p; requires (2° — 3) + (logy(R) + ebr)/(b2%) Mont-
gomery multiplications by y; ; in average (table initialization 4+ exponentiation
phase; the computation of y,; is actually a squaring operation). The attack
tries to exploit these Montgomery multiplications modulo p; or po, respectively.
Compared to the s&m exponentiation algorithm the attack efficiency decreases
significantly since the percentage of 'useful’ operations (here: the multiplications
by y1) shrinks tremendously. The Montgomery multiplications by y; ; are respon-
sible for the mean timing difference between Case A and (Case B or Case C) .
In analogy to (25) for v/0.5 < 3 < 1 we conclude

decboundy, = —% (E;)(;b?) +2b — 3) \2/7]? CER (33)
1 /(1 Ry+eb—-1)p—-1
:_Z ((ng( ) b;b ) +(2b—3)5) CER .
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The computation of Vary(Z;(u)) may be organized as in the s&m case. We do not
carry out these lengthy calculations in the following but derive an approximation
(34), which suffices for our purposes. We yet give some advice how to organize
an exact calculation. First of all, the table initialisation modulo p; costs an
additional squaring. In average, there are F(Q)/b2°+2°—3 multiplications by y; 1
(responsible for exploitable timing differences), F(Q)/b2" multiplications by y; o
(do not need extra reductions) and altogether (2° — 2)E(Q)/b2° multiplications
by some y; ; with j > 1. When computing the second moment additionally to the
s&m case the covarianc COVj MM (u!) (2b — 4 times, table initialization) occur. The
term cov; nmi(u) is defined and calculated analogously to COV; SM(u!) COV4, MS(u!)
and cov; gs.

To assess the efficiency of our timing attack on b-bit fixed window expo-
nentiation we estimate the ratio of the variances Vary(Z;(u)) and Var(Z;(u))
(s&m case). Therefore, we simply count the number of Montgomery operations
in both cases (neglecting the different ratios between squarings and multiplica-
tions). This gives the rough estimate

Vary(Zi(u)  E(Q)+B(@Q)/b+2" _ 2(b+1) . 2b+1
Var(Z;(u))  E(Q)+0.5E(Q)  3b 3E(Q)

Finally, we obtain a pendant to (27)

7'2(4varﬁ;me +20%) - 72(4vargmax f1(b) + 20%)

N,, > ~ 35
b = ""decbound, 2 |decbound]|2£2 (b) (35)
with f2(b) := |decboundy,/decbound|. In particular, if 0% ~ 0 then
f1(b)
N.p~ N, . 36
=N ) )

Remark 7. In analogy to (29) after Phase 1 decbound, may be adjusted to
decboundy, 1. Replacing decboundy, and decbound by decboundy, 11 and decboundy;
should not significantly change f2(b) and N, ;. The sliding window exponentia-
tion below allows analogous considerations.

For b-bit sliding window exponentiation the table initialization the comprises
the following operations:

y1,i = MM(y, R?(mod p;), pi), y2,i := MM(y1,:,y1,4,p;) and
Yoji1,i = MM(yaj-14,Y2,i,pi) forj=1,...,2"1 1. (37)

In the exponentiation phase the exponent bits are scanned from the left to
the right. In the following we derive an estimate for the number of multipli-
cations by the table entries within an exponentiation (modp;). Assume that
the last window either ’ended’ at exponent bit d;,; or already at d;p.jte/,
followed by exponent bits d;p.jrer—1 = ... = dip; = 0. Let d;p;;—¢ denote
the next bit that equals 1. We may assume that ¢ is geometrically distrib-
uted with parameter 1/2. The next window ’ends’ with exponent bit d; p.;—¢ iff
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dipj—t—1 = =dipj—t—@p—1) = 0. In this case table entry y; ; is applied, and
this multiplication is followed by (b — 1) squarings that correspond to the expo-
nent bits d; p;j—¢—1,...,d; pj—t—(—1). Alternatively, the next window might end
with exponent bit d; p,;—+—2 (resp. with exponent bit d; p.;—¢—3,. - - ,d; pj—t—(b—1))
iff dipjt—2 =1, dipyj—t-3 = = dipj—t—@p—1) = 0 (vesp. iff djp;j_¢—3 = 1,
di,b;j—t—4 == dz Jbij—t—(b—1) = 0 -y iff di,b;jftf(bfl) = 1) Of course, if the
window ends before exponent bit dhb; j—t—(b—1) it is followed by some squarings.
Altogether, the exponent bits d; p,j_1,...,d;pj—+—(—1) need one multiplication
by some table entry. Neglecting boundary effects one concludes that sliding win-
dow exponentiation requires one multiplication by a table entry per

Zszs +(b=1)=2+b—-1=b+1 (38)

exponent bits in average. This gives the pendant to (34):

Vary sw(Zz( )) _ (1 + H%) E(Q) 4+ 9b-1 41
Var(Z;(u)) E(Q) +0.5E(Q)

C2(b+2) 2042
N 3(b+1) + 3E(Q) =t f1,50(D). (39)

where the subscript ’sw’ stands for ’sliding window’. Since there is a bijection
between the table entries and the (b—1) exponent bits (d; pj—t—1- .., di bj—t—b+1)
all table entries are equally likely. For many parameter sets (log,(R) + eb,b)
the table entry y; ; occurs less often than ys;, which is carried out 2671 — 1
times within the table initialization. (Numerical example: For (log,(R)+eb,b) =
(1024+64,5) in average E(Q)/(16(5+1)) ~ 11.3 < 15 multiplications with table
entry y;,; occur.) Then, as in [1] our attack then focuses on the Montgomery
multiplications by 2 ;. In particular, we then obtain the decision boundary

1 Vn B
deroundb sw _2 (2b ' 1) E CER = 4 (2b t- 1) B cEr (40)
(Of course, if 2~ E(Q;)/(b+1) > 2"t — 1 then in (40) the term (2°~! — 1)

should be replaced by 2=V E(Q;)/(b+1), and the attack should focus on the
multiplications by table value y; 1.) Setting

f2,5w(b) :== |decboundy, v |/decbound)| (41)

we obtain an analogous formula to (36):

fl 9w(b)
f2 sw(b>

Ezample 1. logy(R) = 1024 (i.e., 2048-bit RSA), eb = 64, 3 = 0.8, and o3, ~ 0.
(i) [b = 6] For fixed window exponentiation N,; = 59N, i.e. the overall at-
tack costs &~ 59 times the number of timing measurements for s&m. For sliding

NrbszN

(42)
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window exponentiation we obtain Ny s, &~ 240N.. We applied formula (21) to
estimate F(Q;).

(ii) [b =5] Nyp ~ 189N,, N;p sw ~ 1032N;.

(ili) [b=4] Ny p =~ 27TTN;, Ny psw =~ 322N;.

(iv) [b=3] Nyp ~ 104N, N, s ~ 54N

(V) [b = 2] N‘r,b ~ 16N7—, N7-7b75w ~ SNT.

Note: For b = 2,3,4 the timing attack on sliding window exponentiation aims
at the multiplications by y; 1, for b = 5,6 on the multiplications by 32 ; during
the table initialization. For b = 4,5,6 the attack on fixed window exponentia-
tion is more efficient than the attack on sliding window exponentiation while for
b = 2,3 the converse is true.

It is hardly possible to define a clear-cut lower bound for the number of
timing measurements from which on the attack should be viewed impractical.
The maximum number of available timing measurements clearly depends on
the concrete attack scenario. Cryptographic software on PCs and servers usually
applies a large table size b, and the timing measurements are often to some degree
noisy. Example 1 shows that for large window size b and realistic ratios cgr /c
the attack requires a gigantic number of timing measurements, all the more in
the presence of non-negligible noise. Example 1 provides these numbers relative
to the square & multiply case. The absolute numbers of timing measurements
depend on the ratios cgr /¢ and p;/R and on the level of noise (cf. Remark 5(ii),
Subsection 4.2 and Subsection 3.3).

4.4 Countermeasures

The most solid countermeasure is to avoid extra reductions entirely. In fact, one
may resign on the extra reductions within modular exponentiation if R > 4p;
([13], Theorem 3 and Theorem 6). This solution (resigning on extra reductions)
was selected for OpenSSL as response on the instruction cache attack described
in [2]. We point out that the present attack could also be prevented by combin-
ing exponent blinding with base blinding ([6], Sect. 10), for example, which in
particular would also prevent the attack from [2]. However, the first option is
clearly preferable as it prevents any type of timing attack.

5 Conclusion

It has widely been assumed that exclusive exponent blinding would prevent
timing attacks. This paper shows that this assumption is not generally true
(although exponent blinding reduces the efficiency of our timing attack signif-
icantly). In the presence of little or moderate noise our attack is a practical
threat against square & multiply exponentiation and should be considered (see
also Remark 6). Our attack can also be applied to fixed window exponentiation
and to sliding window exponentiation. However, for large window size b the at-
tack requires a very large number of timing measurements. The attack may be
practically infeasible then, in particular for small ratios cggr /¢ or in the presence
of non-negligible noise. Fortunately, effective countermeasures exist.
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