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Abstract

This paper presents an algebraic attack against Trivium that breaks 625 rounds using only 4096
bits of output in an overall time complexity of 242.2 Trivium computations. While other attacks
can do better in terms of rounds (799), this is a practical attack with a very low data usage (down
from 240 output bits) and low computation time (down from 262).

From another angle, our attack can be seen as a proof of concept, how far algebraic attacks
can be pushed when several known techniques are combined into one implementation. All attacks
have been fully implemented and tested; our figures are therefore not the result of any potentially
error-prone extrapolation.

Keywords: Trivium, algebraic modelling, similar variables, ElimLin, sparse multivariate algebra,
equation solving over F2

1 Introduction

Algebraic attacks against symmetric ciphers are more than a decade old. Actually, they can be traced
back to Claude Shannon [Sha49]. While being promising, they did not deliver exactly what promised
and were mostly dismissed in cryptanalytic literature.

Recently, the so-called “ElimLin” algorithm was used to attack several ciphers, in particular CTC2,
LBlock and MIBS. According to [CSSV12] from FSE 2012, only 6 rounds can be broken for CTC2.
This attack requires up to 180h on a standard PC and requires 210 guessed bits and 64 chosen cipher
texts (CC). Guessing 220 bits and 16 CP brings the attack down to 3h. For LBlock, the paper
reports 8 rounds (out of 32) for 32 guessed bits (out of 80) for 6 known plain texts (KP). For MIBS
(32 rounds), the paper reports a break for 3 to 5 rounds with 0/16/20 guessed bits, respectively. An
initial implementation of the ElimLin algorithm was employed on DES in [CB07]. Here, plain ElimLin
could break 5 rounds of DES with 3 KP and 23 guessed bits; using a SAT solver, this number can be
increased to 6 rounds for an unspecified number of KP (most likely 1) and 20 key bits fixed. In 1.2
we discuss this more detailed and referenced.

In this article, we show that ElimLin can be greatly improved when employed together with other
well known techniques from algebraic cryptanalysis such as eXtended Linearization or proper monomial
ordering. In particular, we use the Trivium stream cipher as test bed for algebraic attacks, mainly due
to its simple algebraic structure and its good scalability: Full Trivium has 1152 rounds, so we could
see the effect of adding some component to our equation solver well, cf. Sec. 3 for all building blocks.
In addition, we restricted ourselves to attacks that can be fully implemented on a nowadays computer.
Our implementation was able to break round-reduced Trivium with 625 rounds. In particular, our
data complexity is far better than for non-algebraic attacks. Non-algebraic attacks need at least 240

to 245 output bits of Trivium with 767− 799 as we present in 1.2. We are able to bring this down to
211 or 212. Further non-algebraic attacks can use up to 260 to 272 Trivium computations which is not
feasible on modern computers. This is because they are guessing a huge amount of variables.

In particular, we show that algebraic attacks become specifically efficient against Trivium if we do
not use “much” output for one instance but few output bits for many instances. However, this new
type of attack only works if we have access to a sparse equation solver over F2 that can deal with
many variables and also many equations (≈ 106 in both cases). This equation solver is the second
major contribution of this paper. To the best of our knowledge, such a solver does not exist in the
open literature yet.
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1.1 Organization

We start with a review of existing work in the area of algebraic cryptanalysis and specifically crypt-
analysis of Trivium in Sec. 1.2. In addition, we discuss several ways to solve systems over F2. This is
followed by a discussion of Trivium and the idea of “similar variables” in Sec. 2. The overall solver
and the tweaks we need to deal with a full representation of Trivium are given in Sec. 3. This is
followed by practical experiments on round reduced Trivium in Sec. 4. The paper concludes with
some remarks, open questions and directions for further research in Sec. 5.

1.2 Related Work

Before going into details about our attack, we review related work in algebraic cryptanalysis, crypt-
analysis of Trivium and solving systems of equations over F2.

Algebraic cryptanalysis. Algebraic cryptanalysis works on a simple assumption: We are able to
express any cryptographic primitive in simple non-linear equations over a finite field (e.g. F2 or F256),
cf. [BC03] for an overview on some ciphers. This part of the attack is called “modelling”. If we now use
this description and solve the overall system for a given output (stream ciphers) or a given plaintext
/ ciphertext pair (block cipher) we obtain the secret key.

Most prominently, the AES has been investigated under algebraic attacks [MR02, CP02]. While
initial research concluded that the AES may be vulnerable against algebraic attacks, this was shown
to be unlikely in later research [LK07]. In any case, there are two different models of the AES: the
first uses a modelling over F2, the second over F256, see e.g. [CMR05]. Apart from this, both are
equivalent.

However, for stream ciphers, algebraic attacks [AK03, CM03] seem to work fine, as for some public
key systems [FJ03, FOPT10] and other primitives [SKPI07]. We want to note that Trivium has
escaped all efforts to be broken by purely algebraic methods.

Attacks on Trivium. We briefly sketch some of the most important attacks against Trivium. We
want to stress that Trivium is still secure—despite its simple and elegant design; and the combined
effort of the cryptanalytic community up to now.

At first we note that the described cube attacks against Trivium using the same attack scenario
as we do. Namely this is the chosen IV scenario. Therefore our comparison to them is valid.

The attacks from [DS09, FV13] are both cube attacks. They recover the full key of a 799 round-
reduced variant of Trivium in 262 computations guessing 62 variables. The main problem here is their
way of finding new cubes. Until now, all cube attacks are equivalent to the statement: “We have found
cubes up to round X with some clever algorithm. Therefore we can break Trivium up to this round.”
This makes it difficult to see how they would evolve, say, for Trivium up to round 1152. Nevertheless,
more attacks on Trivium are known so far. The articles [KMNP11, ADMS09, Sta10] report some
distinguishers attacks based on cube testers. The best covers up to 961 rounds but only works in a
reduced key space of 226 keys (out of 280). It requires 225 Trivium computations.

Other attacks are not that succesful. For instance [KHK06] describes a fully linear attack on
Trivium breaking a 288 round-reduced variant with a likelihood of 2−72.

There exist further variants of Trivium using two instead of three shift registers [CP08]. They
are called Bivium-A and Bivium-B and were mainly used to demonstrate specific attacks that do not
work against full Trivium. In particular the purely algebraic attacks from [SFP08, T+13, SR12, Rad06]
make use of these reduced variants to highlight their method. All in all, they successfully break them
(for the full number of rounds). They fail for Trivium though, even in its round-reduced version.
Taking the insights from these papers into account, the main reason is that they use only one instance
of Trivium and plenty of output. As we see in the following, this is not the best strategy when dealing
with Trivium in an algebraic model. In our work we use many instances of Trivium, but only very
little output per instance.
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Solving systems over F2. As pointed out above, any algebraic cryptanalysis has two steps: The
first is the algebraic modelling, the second is solving the corresponding system of equations. For
simplicity, we assume that all equations are at most quadratic over F2. When we have an equation of
total degree greater or equal 3 we can introduce new intermediate variables to reduce the degree of
the equation. Further more all our algorithms work on systems of equations with higher degree. We
will explain how to adapt our algorithms when we introduce them.

Basically, the most promising algorithms come from the F-family of Gröbner basis algorithms
[Fau02b, Fau02a], see [Alb10] for an overview. They have been successfully applied in the case of
public key schemes [FJ03, FOPT10], but also stream ciphers [FA03]. The main disadvantage is the
high memory consumption. Although there are some counter examples for special cases, the running
time of Gröbner basis algorithms is inherently exponential in the number of variables. Even worse, the
memory consumption increases with O(nr) for n the number of variables and r the degree of regularity.
In particular the latter makes Gröbner bases unusable for our purpose as we have r ≥ 2 and n ≈ 220.
Still, we want to note a special and useful property of Gröbner basis algorithms that can also be found
in our solver: If the system is unsolvable, the running time becomes significantly lower. This has been
used in the so-called “hybrid strategy” to speed up the overall computation [BFP09] over F2. We will
also exploit this, cf. Sec. 3.4.

Another line of algorithms comes from the X-family of so called “XL—eXtended Linearization”
[CKPS00]. Here, the main operation is multiplying all known equations with all known variables.
While these new equations are trivially true, some of them are linearly independent and can hence
be used in a so-called Macaulay matrix to reduce the overall problem to linear algebra over F2. In a
Macaulay matrix, the rows represent polynomials while the columns represent monomials, cf. [Alb10]
for an overview of the idea. Although it has been shown that techniques from the XL-family are
strictly less efficient than from the F-family [YC04b, YC04a, AFI+04, Die04], XL does have its merits
as it is far easier to understand and also easier to adapt to different settings. Moreover, we know that
XL has a similar performance in practice [TW12]. Hence we have used a specialized version of XL in
our solver to improve its efficiency, cf. Sec. 3.

Last but not least, there is the ElimLin family [CB07, CSSV12] where linear equations are used
to eliminate variables. After that, the system is simplified with linear algebra techniques, cf. Sec. 3.1.
Although the overall technique seems trivial when compared to the ones discussed above, it does have
its merits. In particular, it can handle large (sparse) systems and it is so simple that it can easily be
tweaked for specific purposes. While this is possible—to some extent—for the XL-family, it is much
more difficult to envision for the F-family described above. We have hence used ElimLin as the core for
our solver, cf. Sec. 3.1. However, we want to stress that plain ElimLin without further modifications
is not efficient enough to deal with systems that arise from the modelling of Trivium.

1.3 Our contributions

Our first contribution are techniques to model many instances of Trivium as an quadratic equation
system. We also introduce strategies to handle the large number of variables within this model. The
modelling techniques and strategies can be applied to any symmetric cipher since the upcoming system
of equation is structured according to the update function of the cipher.

The second contribution of this paper is a solver which is able to solve structured quadratic equation
systems. Based on ElimLin and eXtended Linearization we introduce a monomial order to have more
control in the ElimLin-Step and change XL so that it preserves the monomial structure of the system.
Furthermore we introduce a method that is able to make computations with higher algebraic degree
while the result of this computations is still quadratic.

With the above mentioned techniques we settle an attack on a round reduced variant of Trivium
with R = 625 rounds in 242.2 time and 212 data complexity on an average computer.

2 Trivium

The main point of our attack is an algebraic system of equations over F2. As soon as we have it,
we will solve it with a special purpose solver, cf. Sec. 3. Trivium generates up to 264 keystream bits
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from an 80 bit IV and an 80 bit key. The cipher consists of an initialisation or “clocking” phase of R
rounds and a keystream generation phase. For R = 1152 we obtain full, otherwise reduced Trivium,
denoted by Trivium-R. There are several ways to describe Trivium—below we use the most compact
one with three quadratic, recursive equations for the state bits and one linear equation to generate
the output. The two only operations in Trivium are addition and multiplication over F2 as this can
be implemented extremely efficient in hardware via XOR, AND gates.

2.1 Definition and direct considerations

Consider three shift registers A := (ai, . . . , ai−92), B := (bi, . . . , bi−83) and C := (ci, . . . , ci−110).
They are called the state of Trivium. The state is initialized with A = (k0, . . . , k79, 0, . . . , 0), B =
(v0, . . . , v79, 0, . . . , 0) and C = (0, . . . , 0, 1, 1, 1). Here (k0, . . . , k79) is the key and (v0, . . . , v79) is the
initialization vector (IV) of Trivium. Recovering the vector A is the prime aim of attackers. Note
that the vectors B,C are actually known to an attacker. We make the additional assumption that an
attacker has control over the IV used within the cipher and obtain a stream of output bits for a fixed
key and any choice of initialization vector (IV). This is in line, e.g. with cube attacks.
The state is updated using to the following three state update functions:

bi := ai−65 + ai−92 + ai−90ai−91 + bi−77 ,
ci := bi−68 + bi−83 + bi−81bi−82 + ci−86 ,
ai := ci−65 + ci−110 + ci−108ci−109 + ai−68 .

After a clocking phase of R rounds, we additionally produce no bits of output zi for i = (R+1) . . . (R+
no). The corresponding system is now called “full”. The zi are defined by the function

zi := ci−65 + ci−110 + ai−65 + ai−92 + bi−68 + bi−83 .

To launch our attack, we use several Trivium instances that share the same key but different values
for the IV. We see in Sec. 4 that this will lead to successful attacks for round reduced Trivium.

Obviously, we need approx. 3RT +noT intermediate variables, respectively, if we want to represent
T instances of Trivium-R with no output bits each. Before discussing strategies for solving such rather
large systems, we start with an observation on Trivium.

2.2 Similar variables

As already mentioned, previous algebraic attacks such as [SFP08, T+13, SR12] are based on the
algebraic representation of Trivium given in Section 2.1. Hence, we would expect similar results.
However, we will not consider only one instance of Trivium but several (thousand). Consequently, the
relation between these instances becomes important for the overall success of our attack.

Let I ⊂ V be a subset of all IV variables V . We call I the master cube of the attack. In addition,
we consider the first no output bits of Trivium instances that are all defined by the same key and all
vectors that lie in the master cube. All other IV variables are set to zero.

We set up all Trivium instances with symbolic key variables k0, . . . , k79. Denote the current Trivium
instance by t ∈ N. We initialize these instances for a given number of rounds R and introduce three
new variables for very round i for the entries at,i, bt,i and ct,i in the three registers At, Bt and Ct. This
produces a quadratic system with a large amount of variables and monomials.

Now we take a more general point of view and introduce similar variables for generalized systems of
equations. In particular, we denote all intermediate variables by y0, y1, . . . and we write K[x1, . . . , xn]
short for K[x1, . . . , xn]/〈x21 + x1, . . . , x

2
n + xn〉

Definition 1. Let R = F2[k0, . . . , k79, y0, y1, . . .] =: F2[K,Y ] be the Boolean polynomial ring in the
key variables K and all intermediate variables Y .

We call the two intermediate variables yi and yj similar iff yi + yj = p(K,Y \{yi, yj}) where
p(K,Y \{yi, yj}) is a polynomial of degree deg (p) ≤ 1.

Furthermore if we have the set F of polynomial equations in R introducing the intermediate variables,
the so-called set of system equations, we can generalize the definition above as follows:
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Figure 1: Number of variables for T = 32 instances of Trivium and no = 66 output bits; Number of
Rounds R against number of variables ν with and without similar variables
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Definition 2. Let R = F2[k0, . . . , k79, y0, y1, . . .] =: F2[K,Y ] be the Boolean polynomial ring in the
key variables K and all intermediate variables Y . Denote by F the system equations which defines
the intermediate variables already introduced.

Denote by Yk ⊂ Y, Yk 6= ∅ for 1 ≤ k < |Y | the sets of already introduced intermediate variables
up to step k. We call the intermediate variable yi similar to the set F iff there exist a non-empty set
Yk such that yi +

∑
y∈Yk

y = p(K, (Y \Yk)\{yi}) where p(K, (Y \Yk)\{yi}) is a polynomial of degree
deg (p) ≤ 1.

With similar variables we linearize the system. Instead of using a new intermediate variables for
quadratic monomials already introduced we use a linear combination of already introduced interme-
diate variables.

In generic systems, similar variables could be not of much use. However, if all equations stem
from one algebraic model for one given cipher, we are likely to find many similarities. The following
example illustrates how we work with similar variables in the case of Trivium.

Example 1. Consider the equations defining the first two intermediate variables within the Trivium
stream cipher for instances 0 ≤ i < T :

bi,12 = k78k79 + k53
bi,13 = k77k78 + k79 + k52

in the system of equations F . Hence, we already have similar variables for bj,12 = b0,12 and bj,13 = b0,13
for 0 < j < T . Assume at some stage of the computation we have

y′ = k79k78 + k78k77 + k5 + k61 .

We have y′ = b0,12 +b0,13 +k53 +k79 +k52 +k5 +k61. So we can eliminate y′ as a new variable and can
go on computing with b0,12, b0,13. This does not only save us one variable but we also have replaced a
quadratic equation by a (potentially more useful) linear one.

The nice bit is that these variables carry through: As soon as we have identified that all variables
bi,12 for i = 0..T − 1 will always have the same value, we can replace all of them in all polynomials
by only one, say b0,12. Obviously, the same is true for bi,13 but also many other ones. And as soon as
we have replaced bi,12bi,13 by b0,12b0,13, we obtain even more similar variables. Consequently, we will
obtain a substantially smaller number of monomials than before. Note that there are different ways
to talk about similar variables. In any case, we need a solver that can first identify them and second
make use of them by replacing all linear relations within a given system.

While the above definition captures any behaviour for any system of equations, we see that it
applies very well to Trivium, see Figure 1 for some experimental results on Trivium-R. Here, we have
generated T = 32 instances of Trivium with no = 66 output bits. On the x−axis we see the number
of initialization rounds; on the y−axis we have the total number of variables in use. As we can see
the number of intermediate variables has greatly decreased; even for only 32 instances of Trivium.
For R = 600 rounds we also produce 66 · 32 = 2112 output equations. The model in [Rad06] can just
handle one instance of Trivium. So it would need 288 + 3 · 2112 = 6624 variables to produce that
amount of output equations. When using more instances of Trivium we get even more efficient.
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These systems are still out of reach for nowadays Gröbner basis implementations like PolyBoRi
[BD09]. The number of variables is simply too high. With PolyBoRi and our model we are not able
to break more than Trivium-420.

We have hence designed a solver which can handle such large numbers of equations and variables
and will describe it in the following section.

3 Solving the system

Before going into details for the experiments, we describe our strategy to solve rather sparse systems
over F2 arising from the above representation of Trivium. We have based our solver on multivariate
quadratic polynomials over F2 as this is generally enough to capture full Trivium. Specifically, our goal
was to develop a working implementation than can handle around 106 variables and 106 equations,
respectively, over F2. To the best of our knowledge, software with such special properties is not
available at the moment. Our solver is organized around a specialized C++-core that natively handles
quadratic polynomials over F2 and also the ElimLin strategy. In addition, we have used several other
building blocks which we describe in the remainder of the section. We report experimental results in
Sec. 4.

3.1 Main core

ElimLin or Elimination Linear has been investigated in [CSSV12]. We generalize it to the case of
quadratic equations and to a monomial ordering, so the algorithm becomes

1. First we generate the Macaulay matrix for the system according to some monomial ordering τ .

2. Echelonize the matrix according to τ . This naturally splits up the system into linear equations
L and quadratic equations Q.

3. For each element p ∈ L, use the leading term LT(p). If there is at least one equation in Q that
also contains the variable LT(p), eliminate LT(p) in Q.

4. If we substitute at least one variable in Q, go back to step 2.

We want to stress that ElimLin preserves the overall degree of our system Q. In addition, it automat-
ically detects all similar variables (see def. 1). Moreover ElimLin is able to deal with rather large but
sparse systems of equations.

The original ElimLin algorithm did not have any ordering but used heuristics to determine which
variable to eliminate in the non-linear part of the overall system. We found this approach fine for
small systems but difficult to use for larger ones: The likelihood to fall into local optima was simply
too high—even with advanced heuristics. Determining the correct order proved to be challenging and
required careful experiments. Hence, we used the degree reverse lexical (degrevlex) ordering. Note
that this also works well in case of Gröbner basis algorithms. In the case of Trivium, we take the
key variables first and sort the intermediate variables ascending according to rounds and instances of
Trivium. We want to stress that the ordering is crucial in our analysis. Like in Gröbner techniques
the results differ significantly depending on the ordering.

Sparse polynomial core. The core of our algorithm is substitution of variables from linear equa-
tions and echelonization. While the first requires polynomials, the second needs linear matrices. In
particular Gröbner basis algorithms would construct a so-called Macaulay matrix and go back and
forth between a matrix and a polynomial representation, see [Alb10] for an overview. In our imple-
mentation, we used the polynomials over F2 directly but also implemented matrix-like operations (e.g.
row addition) directly for polynomials. To this aim, each polynomial is stored as a (sorted) list of
monomials rather than sparse vectors over F2. To make computations fast, we also keep a dictionary
of lead terms, monomials in use by each polynomial and also a list of variables in use per polynomial.
This way, addition of two polynomials with the same lead term and elimination of variables does not
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depend on the overall number of polynomials anymore. For speed, this part of the code is written in
C++ (approx. 2500 lines).

M4RI. While the sparse strategy from above turned out to be efficient for sparse matrices, it fails
if the matrices become increasingly dense. Note that this is inevitable when solving such a system: In
all experiments, we had a degeneration from sparse to dense shortly before solving the overall system.
To remedy this, we incorporated the fastest known, open source linear algebra package for matrices
over F2, namely the Method of the 4 Russians Implementation (M4RI) [AAB+]. Experimentally, we
have found that matrices with less than ≈ 1/1000 non-zero coefficients in the corresponding matrix
over F2 should be handled by our sparse strategy described above and by M4RI otherwise.

3.2 Further building blocks

While the core is already pretty efficient, it can be made more suitable for solving systems of equations
coming from Trivium-instances when coupled with the techniques below. Note that all these techniques
except SL have been implemented in Sage [S+14] as they are neither time nor memory critical. The
full code (including test cases and comments) consists of ≈ 6500 lines.

Sparse Linearization. ElimLin cannot conclude a ∗ b + a = 1 ⇒ a = 1, b = 0 for some variables
a, b ∈ F2. Therefore we use a variant of Extended Linearization that we call Sparse Linearization.
It has been used in the past to attack different cryptographic systems [CP02]. In addition, different
variations of the basic algorithm have been described. We give a toy example here: Let p(x) be a
multivariate polynomial and v some variable. In a nutshell, we use the simple observation that the
second equation follows directly from the first one; independent of the concrete choice of p, v:

p(x) = 0⇒ v · p(x) = 0 .

While the second is only a redundant version of the first, it can be used to produce linearly independent
rows in the Macaulay matrix. This observation was used in a cryptanalysis of the HFE—Hidden Field
Equations crypto system [KS99]. For our purpose, the following specialization proved useful: Let p be
a multivariate quadratic polynomial over F2. Let Π be the list of all monomials in the current system.
Then consider all variables in quadratic monomials Var2(p) in p and compute ∀v ∈ Var2(p): vp. If
vp contains any monomial not already present in Π, delete it. Otherwise, add vp as new row to our
system. Note that this implies deg(vp) = 2 and hence v ∈ Var2(p). This way, we will not add new
monomials to the overall system (i.e. columns to the Macaulay matrix) but potentially new linearly
independent rows. So all in all, we add between 0 and 2 new polynomials for each given polynomial p
because we can only satisfy the conditions above with the variables within the quadratic monomials
of p. As it preserves sparsity, we call this technique sparse linearization.

Sparse Target Linearization or STL is a generalization of the SL technique from above. Instead
of limiting ourselves to degree 2 polynomials, we work with polynomials up to some degree d > 2. In
our calculations we are using a degree up to d = 4, which has proven optimal for equations coming
from Trivium. At the end of the STL step, we “harvest” all degree 2 equations and feed them into
our original system. In the language of Gröbner basis algorithms, we are working with a degree of
regularity higher than 2 here.

In a nutshell, the algorithm generates all polynomials that do not introduce “too many” new
monomials. This is done by selecting monomials of degree three and four that we aim to eliminate in
the overall system and then compute the corresponding polynomials. While this notion is quite loose,
we can make it more explicit by considering different cases for the polynomials we are dealing with:

p Single quadratic polynomial p: In this case, we add all polynomials vp with v ∈ Var(p). This
may introduce new monomials to the overall system. This is Extended Linearization.

p, q Consider two quadratic polynomials p, q that share one variable v in a quadratic monomial µ ∈ p
and ν ∈ q. In this case we add the polynomials (µ/v)q, (ν/v)p and (µ/v)q+(ν/v)p to our system.
This could lead to cubic polynomials in our system.
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p, q’ Consider two quadratic polynomials p, q. Compute all possible products between one polynomial
and the monomials of the other polynomial. If we can eliminate the upcoming monomials of
degree four by adding the new polynomials we add them to the system. Let µ be a monomial
of p and the polynomial q. If µ · q+ νp does not introduce a new monomial of degree four to the
overall system, add it to our system. Note that the monomial µν is not present in νp+ µq and
can hence be eliminated from the overall system. We calculate a monomial of degree four here
but we just use it in an intermediate calculation.

p, µ Consider some quadratic polynomial p and a monomial µ such that µp does not introduce new
monomials to the overall system having now degree three. Then add µp to the overall system.
Note that this monomial may come from some other polynomial q′.

Note that we calculate syzygies with a degree of regularity of three and four respectively in the second
and third step.

Moreover, we mainly add new polynomials that will not introduce new monomials to our overall
system. Our hope is that this will actually lead to more degree 2 polynomials. In addition, we
mainly keep the sparsity of the overall system. After STL is applied to the overall system of quadratic
equations, we “harvest” all newly generated degree 2 equations and apply all other solving steps. For
random systems of equations, the STL strategy is doomed to fail due to the lack of useful quadratic
equations afterwards. Our experiments show that it works fine for structured systems like Trivium,
cf. Sec. 4.

Evolutionary Strategy. While STL works fine, it has a slightly too narrow view on the system
of equations: It blindly creates new polynomials without keeping the overall goal in mind. That is:
We want to obtain (quadratic) equations that contains both key variables (xi) and output bits (zj).
More generally: these equations should cover as many rounds of Trivium as possible. That means if
we have an equation involving variables arx and ary where rx < r and ry > R with r < R and as is a
intermediate variable introduced in round s we want to maximize ry − rx.

Unfortunately, it proved difficult to implement into the STL algorithm.
Hence, we have formulated this as a goal for an evolutionary strategy (ES) which is used to figure

out the useful equations for the STL step: The more rounds are covered, the higher the score for the
corresponding polynomial. And the higher the chance that it can replicate within the evolutionary
algorithm. All equations of degree 4 or lower are then harvested from the ES and fed into the STL step.
Usually, cryptanalysis does not allow the successful application of genetic or evolutionary strategies.
In this case, however, the problem seems to have enough degrees of freedom and the optimization goal
can be formulated clearly enough so it empirically works. Note: This strategy does not work when
using degree 2 only. It requires degree 3 or higher. Otherwise, the ES does not have enough freedom
to find new equations.

Guessing. In most cryptographic attacks, we start with some (deterministic) strategy to single out
the promising keys and then bridge the gap for the full attack with brute force. We use the same
strategy here by guessing the value of some variables and feed them into the overall solver before
starting key recovery. To maximize the effect of the guessing step, we use the variables that occur
most often in all polynomials system-wide. As expected, other selection strategies did not work that
well for Trivium. More details on this idea are given in Sec. 3.4.

3.3 Big picture

Online- and Offline-Phase. Our solving algorithm is divided into an online and an offline-phase
(precomputation). The main goal is to use trade-offs between the different algorithms. For example,
the STL-step is quite powerful, but also quite slow. Hence, we only use it once and for all for a given,
general system of equations (offline-phase). Once this system has been simplified, we insert all known
output-bits, guessed variables and then recover the key. In detail we have
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Offline: Generating the raw equations, ElimLin, SL, ES, STL and determine the variables which will
be guessed later.

Online: Add guessed variables, output-bits, ElimLin and SL.

As mentioned above, the solver contains approx. 2500 lines of C++-code and approx. 6500 lines of
Sage-code. Sage is a CAS described in [S+14]. It was used on an AMD-Opteron-6276@2.3GHz with
256 nodes and 1 TB of RAM. Each node had access to at most 256 GB of RAM at a time. After the
system has been simplified, the online-phase runs on a normal PC with 16 GB RAM.

3.4 Scaling the attack

In all algebraic attacks, a big question is scalability and also comparability to the underlying cipher.
To tackle the scalability we guess some variables. This way, we can easily scale our attack and also
control its running time. We give more details below. For the second, we express both our attack and
a brute force scenario in seconds. While other bases for comparison are possible such as time-area-
product (mostly for hardware implementations), skill and resources of an attacker (e.g. see [Ecr12]) or
time-memory-product, we stick to time as the only factor for its simplicity. In particular, it is difficult
to assign a sensible number for “memory” to a hardware implementation. Moreover, “memory” does
not really speed up our attack but is a pure necessity: If we do not have enough memory, the attack
does not work at all. Up to now, there are no clever ways to trade time for memory (or vice versa)
using the solver described here.

All in all, we use a throughput oriented hardware implementation of Trivium (Table 2, Trivium64
in [GB08]) as basis for our comparison [GB08]. To the best of our knowledge, this is the fastest,
throughput oriented implementation of Trivium. The authors report a throughput ofB = 22.2996×109

bps. To implement Trivium-R, we assume that we need to clock this implementation a total of (R+2)
times on average: the first R clocks for the preclocking phase and the other 2 clocks to derive 2 output
bits on average. The last number is justified as follows: When the attacker learns the first output bit,
she can terminate the brute force attack for around 1/2 of all keys. This goes on for all further bits.
With the second output bit she can terminate the second half of all keys, with the third another half
and so on. So we need on average two output bits to make our decision for some ν = 80 . . . 100. So
we have B

R+2 Trivium applications per second.
To scale up our attack, we assume that we guess a total of r bits and achieve an overall time

complexity (in Trivium computations) of

Tp :=
B((2r − 1)Tf + Ts)

R+ 2
,

where Ts is the time of a successful computation of a solution and Tf is the time our solver needs to
recognize a failure in the guessed variables; both are average times for a given system. As we see, Tf
is dominant in our computations. This is in line with other algorithms in this area such as [BFP09].
Note that we assume that we get the data for all Trivium output as an input. So we do not calculate
it which is a quite realistic assumption. Furthermore we know that we have a unique solution, namely
the key of the cipher.

4 Experiments

This section consists of three parts. First we consider the model and we see a saturation of variables
and monomials when adding Trivium instances. Second we present on some parameter studies to
further strengthen our system of equations. Finally, we use our insights to actually attack Trivium
using the techniques described in the previous sections. We stress that the overall system of equations
can be generated before we get the actual data for the output. This way our attack splits into an
online and offline phase as outlined in Sec. 3.4. All experiments were done on the cluster described in
3.3.As we do not use any parallelizing techniques we are only using one core. Furthermore we want
to stress that the online phase only requires a standard computer with 16Gb of RAM.
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Figure 2: Saturation in the model of Trivium
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(b) Hamming Weigth against number of quadratic
monomials µ for R rounds for Trivium in a master
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Saturation. When adding different Trivium instances with identical key variables but different IV
constants that lie in the same master cube, the overall number of variables and monomials in the
quadratic monomials of the overall system tends towards a saturation point (cf. Fig. 2a–2b). More
specifically; we fix 80− i IV bits to zero and set the remaining i bits to all possible values from Fi

2.
We have plotted saturation for 32 instances in Figures 2a–2b, counting both the number of variables

and the number of quadratic monomials needed for the system consisting of all instances of Trivium.
In these figures, we have first added the IV with Hamming weight 0, then all IV with Hamming
weight 1 and so forth. Note that instances with the same Hamming weight yield the same number
of variables. As we can see in these graphs, the amount of variables needed to generate an instance
becomes significantly lower if we generate instances with higher Hamming weight.

The saturation of monomials needs a lower Hamming weight of the IV, so the saturation of mono-
mials is much flatter than the saturation of variables. Note that variables that are not in the quadratic
(saturated) part of the system are only found in the linear terms. Furthermore, we stress that Fig-
ures 2a–2b are chosen only as an example. This effect also exists if the number of rounds increases
(up to R = 1152). However, if the number of rounds grows we need to generate more instances to
see this effect; it seems that we need to generate exponentially more instances to see the saturation.
All in all, this points to a kind of “basis”: Trivium instances for IV with small Hamming weight serve
as a kind of basis for Trivium instances of higher Hamming weight. While this seems obvious when
looking at the generating equations, it is still interesting to see how strong this effect is in practice.
Unfortunately, we were unable to derive a closed formula depending on the number of instances and
rounds but have to leave this as an open question.

In conclusion, saturation means that we can obtain more defining equations from many instances
than we would expect from one instance alone. In a sense, this is the key observation to launch our
attack.

Saturation should occur in other ciphers as well since the system of equation is generated by a
repeatedly execution of an update function.

Note that we did not take the output equations into account yet but only those equations defining
the system itself. While the output introduces additional, unknown monomials it will not add new
variables as we will see in the next paragraph.

Output and parameters. While output equations clearly help us to linearize the system, the very
structure of Trivium in our model yields a lot of additional monomials. Therefore, we do not add
additional values for output equations or the output equations at all until the full (structural) system
is completely simplified. Consider the output function:

zi := ci−65 + ci−110 + ai−65 + ai−92 + bi−68 + bi−83 .

It uses 6 state bits from different rounds. If we insert for either of these state bits it produces 5 more
monomials for each occurrence of the corresponding state bit in a quadratic monomial. Hence using
more output bits per instance leads to far more monomials than we can afford.
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Figure 3: Comparing monomials with no = 1 and no = 66; Initialization rounds R against number
of quadratic monomials µ; The numbers next to the lines are the significant parts of the IV (binary).
The rest of the IV is zero. Consider the Hamming weight of these numbers.
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To produce the smallest number of monomials possible in our system we change the algorithm to
generate the system (cf. Sec 2). Instead of going forward and generating the Trivium instance we start
with the output and go backwards and just generate the variables we need. This way, we just generate
the variables and monomials we need. Note that this is contrary to earlier algebraic modellings of
Trivium such as [SR12, Rad06].

Figure 3 compares systems with T = 64 instances and increasing number of rounds R. In the
first experiment we used no = 1 and in the second no = 66. We see that many output bits do not
necessarily lead to a more useful system because we get much more monomials. Even if we use two
output equations we get a system with nearly double the number of monomials which we cannot solve
easier. Note that figure 3 reflects the monomials needed for one instance while figure 2b shows the
number of monomials needed for the whole system of equations. Therefore the saturation can also be
seen in figure 3.

When we use no = 66 output bits the number of monomials at R = 700 rounds is negligibly smaller
than the number of monomials for full Trivium (R = 1152). We choose no = 66 because for no > 66
we need to introduce new intermediate variables even for the output and that destroys the purpose
of (over)defining the system for the linearization step. For no = 1 output bits, the same effect occurs
for R = 925 rounds. Since we want to linearize our system to derive a solution we get the following
conjecture.

Conjecture 1. The complexity of our attack on Trivium does not grow after R = 925 rounds using
no = 1 output bit and after R = 700 rounds using no = 66 output bits. That means if we are able to
break R = 925 rounds with one output bit we are able to break full Trivium with one output bit.

In a nutshell: Since the number of monomials does not increase, neither does the difficulty of the
attack. Unfortunately, both settings are out of reach for a practical test at the moment.

In addition, we obtained the following result: When choosing 2i instances of Trivium, it is optimal
to arrange them in a master cube rather than sampling them “at random” from all possible 280 IV.
In particular, such a system becomes fully unsolvable with our methods.

Attacks. In this paragraph we describe the attacks and their complexities.
In Figure 3 we have illustrated the number of monomials depending on the number of output bits.

With this in mind we have specialized our attack to the case no = 1. Based on this, we generate a
system with Trivium-625 instances.

The following table shows the number of monomials and variables needed for the full system. This
also includes “dummy” variables for the output. When we add concrete data for the output bits to
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our system these numbers decrease rapidly. Furthermore we can see that there is a time-data trade-off
when guessing variables. When we guess fewer variables we need more data to launch the attack.
When we guess more variables we need less data but the time complexity increases.

R µ ν #guessed variables data complexity time complexity

625 499,741 15,869 23 211 259.7

625 1, 135, 858 32, 518 0 2 · 211 242.2

When our guess was incorrectly, it takes our solver on average 211.6 seconds to report that the
system was inconsistent. However, when we guess correctly the system is solved in 213.8 seconds on
average.

We tested 101 keys each both for correct and incorrect guesses. We only present the numbers for
the “incorrect guess”; the ones for the “correct guess” were similar: The fastest run was 210.7, the
slowest 213.48 seconds, 95% of all runs were completed in under 212.8 seconds with a variance of 1435
seconds. Using the reasoning from Sec. 3.4, our attack equals 259.7 Trivium-625 computations and is
therefore more efficient than brute force (280). We note that we do not actually compute the guessing
step of this attack since it is not feasible to do so.

When we do not guess variables, we need more data and though more instances in our symbolic
system. Generating the full symbolic system becomes a challenge due to the size of the system and
RAM usage in the offline-phase. Thus we generate two systems consisting of 211 instances each. The
two systems do not profit from each other through similar variables in the offline-phase so the number
of variables and the number of monomials is more than doubled. In the online-phase of the attack
each system is reduced due to the linear output equations and similar variables. In our example in
the table above we solved the system in 217.1 seconds which leads to 242.2 Trivium computations on
average. Again, this experiment was conducted 101 times.

Unfortunately, we are unable to find a closed formula to predict the number of instances we would
need to solve a system for a given number of rounds, as the behaviour of Trivium and the solver is
quite erratic in this respect.

The real bottleneck of our attack is the generation of a symbolic system for a useful number
of instances in the offline-phase. We can overcome this problem with a better implementation of
the linear algebra or the ElimLin algorithm. However, we still cannot really resolve the exponential
growth starting at R = 700 (Fig. 3) which works as a kind of barrier for our techniques used to attack
Trivium. We want to encourage others to further improve or enhance the techniques used in this
paper.

5 Conclusions

In this paper we have shown that algebraic attacks can be significantly improved. We achieve this by
enhancing the ElimLin algorithm with techniques from eXtended Linearization and using the proper
ordering; in particular the last proved crucial in our experiments. In addition, we have seen that using
many instances of Trivium rather than only one with a long key stream significantly improves the
attack. All in all, we were able to break a 625 round reduced version of Trivium in practical time
(242.2 Trivium computations) and a data complexity of 212. Other key recovery attacks on Trivium
can do better in terms of rounds with R = 799 but they requires a large amount of data (240 bits) and
time 262 while guessing 62 bits. It is doubtful if this rate can be achieved in practice. An advantage
of our approach is that we actually computed the full attack and did not make extrapolations from
our results, as we do not want to make promises which are hard to keep.

An open questions is the existence of weak keys. They would improve our attack by reducing the
overall number of monomials. While some experiments point at their existence they still elude a full
characterization. Another line of research is the integration of more toolboxes into our solver, most
notably SAT-solvers and more efficient sparse linear algebra packages.

While our experiments were conducted only on Trivum, we are confident that the ideas and
lessons learnt are also useful for the algebraic cryptanalysis of other symmetric primitives, such as
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block ciphers or hash functions. We want to stress that the potential of algebraic cryptanalysis can
only be unleashed if equal stress is put on modelling techniques and the corresponding solver.
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