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Abstract. The HIVE hidden volume encryption system was proposed by Blass et al.
at ACM-CCS 2014. Even though HIVE has a security proof, this paper demonstrates
an attack on its implementation that breaks the main security property claimed for the
system by its authors, namely plausible hiding against arbitrary-access adversaries. Our
attack is possible because of the HIVE implementation’s reliance on the RC4 stream cipher
to fill unused blocks with pseudorandom data. While the attack can be easily eliminated
by using a better pseudorandom generator, it serves as an example of why RC4 should be
avoided in all new applications and a reminder that one has to be careful when instantiating
primitives.

1 Introduction

At ACM CCS 2014, Blass et al. [2] presented a novel “hidden volume encryption” system
called HIVE. Their system splits an encrypted disk into several volumes. The intention
of HIVE is to hide the existence of some of these volumes, and to hide the pattern of
read and write accesses to the volumes from observers.

To hide the access patterns, reading and writing has to be indistinguishable. This
is accomplished by overwriting an empty block with pseudorandom data during a read
operation to simulate an encryption. The HIVE implementation makes use of the RC4
algorithm to overwrite blocks with pseudorandom data and AES in CBC mode to per-
form encryption. This approach can be proved secure if both the ciphertexts produced
by the symmetric encryption scheme and the output of the pseudorandom generator are
indistinguishable from random. We stress that RC4 is not used to encrypt any data in
the scheme, but only to fill unused disk space with pseudorandom bytes. According to
[2], RC4 was selected for performance reasons.

We show that RC4 is a poor choice for this task: we demonstrate that its use enables
us to break the main security property claimed for HIVE in [2], namely “plausible hiding
against arbitrary-access adversaries”. In fact, we will break the even weaker notion of
plausible hiding against one-time adversaries. Our attack does not extract plaintext, but
we are able to detect the supposedly hidden volumes by only examining the disk twice.
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The supposed infeasability of this kind of attack is the main advantage claimed for HIVE
over conventional disk encryption systems and was used to justify its storage overhead
[2].

Our attack exploits biases in RC4 keystreams. While it is well-known that RC4
keystreams are biased, and therefore not indistinguishable from random byte streams
[5,3,4,1,6], it is not immediately obvious that these existing results can be applied to
break any claimed security property of HIVE. This is because previous distinguishers
[3,4] require access to either a very large amount of consecutive keystream bytes, or to a
corresponding amount of truly random bytes, whereas HIVE acts in a blockwise fashion
(with the typical block size being 4096 bytes), presenting a distinguisher with a mix of
short RC4 blocks and AES-CBC blocks.

Our adversary makes use of the Mantin biases in RC4 key-streams [4] to build a
weak blockwise distinguisher for short blocks; in contrast to previous work identifying
RC4 biases [3,4] we explicitly present an efficient and near-optimal statistical test that
can be used to implement the distinguisher. Our blockwise distinguisher is then applied
repeatedly over many blocks to estimate how many blocks on the disk are filled with
RC4 and how many are filled with AES-CBC ciphertexts; this approach seems to be
novel and not previously exploited in the literature. Finally, the estimate can be used to
decide what sequence of read and/or write accesses was performed on the disk by the
HIVE system.

Our adversary is efficient, and it needs access only to a moderate number of read/write
queries on blocks. For example, it has success rate 0.997 in an attack involving 223.7

read/write queries on a disk containing a total of 224.7 blocks and 104 GB of data.

Our approach does not involve the derivation of any new properties of RC4. However
it does illustrate that RC4 is not only unfit for use as a general purpose pseudorandom
generator (PRG), but also that it can result in systems that can be practically attacked
in scenarios where RC4’s weaknesses are not obviously problematic.

We informed the authors of [2] about our attack at a conceptual level, and, while they
updated their FAQ for the HIVE system1, they did not initially take the opportunity to
revise their source code to use a better PRG or amend their research paper describing
the system. They instead argued that RC4 is only an exchangeable building block that
can easily be replaced. We note that RC4 was the default, and it is unlikely that users
would replace it with their own implementation of a secure PRG, leaving them at risk.
Given that the authors released HIVE to the public and still claimed that it “provides
more security than all existing schemes”,2 we therefore decided to prepare this paper to
alert potential users of the HIVE implementation to the shortcomings of the system. We
are happy to note that after publication of a pre-print of this paper, RC4 was replaced
by AES-CTR in the HIVE implementation.

We again emphasise that we attack only the specific implementation of HIVE that
instantiates the PRG with RC4, and do not claim that the HIVE scheme is insecure if

1 http://hive.ccs.neu.edu/FAQ, date of access 26/10/2014
2 http://hive.css.neu.edu, date of access 26/10/2014
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instantiated with a different PRG. Indeed we consider HIVE to be a very interesting
proposal that is worthy of further (crypt)analysis.

1.1 Paper Organisation

In the next section, we provide more details on HIVE and its use of RC4. We build
an RC4 distinguisher for short blocks in Section 3. Section 4 describes how we use this
distinguisher to attack the HIVE scheme.

2 Description of the HIVE Scheme

HIVE [2] is a hidden volume encryption scheme that works on a storage device divided
into blocks. The user chooses a value l and can then configure up to l logical volumes
Vi, where each volume is encrypted with a key derived from a password Pi. Without
knowledge of the corresponding password, a volume should be undetectable. The goal is
that “a user can plausibly deny the existence of a hidden volume even if the adversary
has been able to take several snapshots of their disk and knows the password for the main
volume.”3 This makes it necessary to hide the pattern of accesses that a user makes to
the disk, which is achieved by building on a write-only oblivious RAM (ORAM) scheme.

The original paper presents several different security notions and two different schemes;
to fix the attack target, we choose a weak security notion and one scheme, which we de-
scribe below. For simplicity, we assume that all ORAMs have the same size, 1/l times
the size of the hard disk.

2.1 ORAM

The stash-optimized, write-only ORAM scheme from [2] is a logical overlay of an en-
crypted disk over a physical disk at least twice the size of the encrypted disk. It makes
use of a pseudo-random generator (PRG) and a symmetric encryption scheme with the
property that without the key, ciphertexts are indistinguishable from random strings of
the same length. The security goal for ORAM is to hide access patterns to the encrypted
disk.

The ORAM maintains a map of logical blocks to physical blocks. Initially, all logical
blocks are mapped to ⊥. At each ORAM.Write(logical block, data block) operation, the
ORAM picks K physical blocks at random (independently of the logical address) and
tries to decrypt each of them. Some may already contain data, while others may be
empty. The new data block to be written and any data blocks that were already stored
in the selected K blocks are written to memory. Specifically, they are added to a stash,
which acts as a buffer to store blocks yet to be written to disk. Then as many of the
data blocks in the stash as possible are encrypted and written back to the selected K
blocks. Because the physical disk is much larger than the logical disk, there is a good
chance that one or more of the K selected blocks were still free, so that all the blocks

3 [2], Introduction
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currently in the stash can be written to the disk. Any remaining free blocks from the
K selected blocks are overwritten with random data (generated by the PRG). The map
from logical to physical blocks is updated accordingly.

If not enough of the selected blocks were free, then some data blocks will remain in
the stash, to be written during a later write operation, when free blocks are found. In
general, the parameters of the scheme are selected so that there is a good probability
that one or more blocks will be free, so that with high probability the stash size remains
small throughout. For example, for K = 3, the probability of having more than 50 items
in the stash is bounded by 2−64.

The security argument is that since for each operation, K randomly selected blocks
are overwritten with a pseudo-random string, the operation does not leak any information
about the logical address, the data to be written, or the state of the disk (i.e. which blocks
are free).

2.2 HIVE

The security target for HIVE is that it should hide the existence of encrypted disk
volumes for which the key is not known. This is accomplished by executing a real
ORAM.Read and a dummy ORAM.Write for each Read, and a dummy ORAM.Read
and a real ORAM.Write for each Write.

It is claimed in [2] that HIVE achieves the notion of plausible hiding against arbitrary-
access adversaries. We will break the even weaker notion of plausible hiding against
one-time adversaries, which is given in Definition 1 immediately below.

Definition 1 (Plausible hiding against one-time adversaries). The experiment

Exppl-ot-bA,Σ (k) for a bit b is run between an adversary A and a challenger emulating the
scheme Σ and consists of the following phases.

1. In the setup phase, A sends l to the challenger, who chooses l passwords P1, . . . , Pl.
The challenger initializes Σ0 with l volumes and passwords, and Σ1 with l−1 volumes
and passwords P1, . . . , Pl−1 and sends P1, . . . , Pl−1 and a snapshot D0 of Σb to A.

2. In round i, A sends two accesses oi,0 and oi,1 to the challenger; the challenger executes
oi,b on Σb.

3. Finally, the adversary requests a snapshot Df of the disk, and outputs a bit b′, which
is the output of the experiment.

An access o is of the form o = (op, b, V, d). If op = w, then data d is written to block b
on volume V . If op = r, then block b from volume V is read into d. Since the adversary
knows the passwords P1, . . . , Pl−1, if one of the operations in round i is a write to one of
the volumes V1, . . . , Vl−1, then both operations must be identical. Intuitively, this means
that any access to Vl can be passed off as an access to another volume.

We define the advantage of the adversary as

Advpl-otA,Σ (k) = |Pr[1← Exppl-ot-0A,Σ (k)]− Pr[1← Exppl-ot-1A,Σ (k)]|.
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If we used an asymptotic definition, we would say that Σ is secure if for all PPT A,
Advpl-otA,Σ (k) is a negligible function. Since we want to attack a concrete instance, we use
a concrete security definition. We fix a concrete security parameter k and let

Advpl-otΣ,k (τ, q) = max
A
{Advpl-otA,Σ (k)},

where the maximum is taken over all adversaries running4 in at most τ steps and mak-
ing at most q access queries (that is, there are at most q rounds in the game, each
round involving either writing to or reading from a single block). We then say that for
a concrete parameter k, Σ is (ε, τ, q)-plausible hiding against one-time adversaries, if

Advpl-otΣ,k (τ, q) ≤ ε.

2.3 HIVE Instantiation

In HIVE, the symmetric encryption scheme is instantiated with AES-CBC using 256-bit,
password-derived keys and a fresh IV at each call. The number of blocks written to for
each operation, K (k in the original paper), is set to 3 in the implementation.5 This low
value of K necessitates the use of a stash of unwritten blocks to handle the situation
where, when K random blocks are selected, all are already in use. From the HIVE source
code it appears that a volume is not initially overwritten with random data. This will
help our adversary, since it means it will need to consider less additional data, but is not
necessary for the attack to work.

The implementation follows the good practice of using a PRG seeded once with true
randomness obtained from the OS to generate all the randomness consumed by the
cryptographic operations involved in HIVE. Specifically, the output of the PRG is used
to:

1. produce a fresh, random 16-byte IV (for use with each call to AES-CBC);
2. fill a 4096-byte sector with random bytes;
3. fill a 32-byte metadata block with random bytes. A metadata block consists of two

8-byte values and a 16-byte IV.
4. select a random sector to write to. This requires a random 8-byte value for the sector

id.

The PRG, while being properly seeded, is instantiated with RC4-drop256. According
to [2] this is for performance reasons. More specifically, RC4 is keyed using 256 bytes
of randomness obtained from the OS, the first 256 bytes of RC4 output are dropped to
avoid well-known strong biases (see for example [1] for a complete exposition of these),
some further bytes of output are used for other purposes, and then B consecutive bytes
of output are used to fill a block with “random” bytes. The HIVE implementation uses
B = 4096 (so it has 4 KB blocks), though the choice B = 256 is also discussed in [2]. Note
that we do not (and do not need to) know from precisely where in the RC4 keystream
the bytes are selected, but only that they are consecutive.

4 for an appropriate definition of running time, a problem we do not consider in this paper
5 Variable HIVE K in dm-hive.c
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3 Blockwise Distinguisher for RC4

In this section, we develop and evaluate a distinguisher D for short RC4 keystreams as
used in HIVE. This will be used in the next section as a component in building an attack
against HIVE.

3.1 RC4 Biases

We first recall the main results on biases in RC4 outputs from [4] that we will use. Other
biases, notably those in [3] are available, but not so convenient to use in the setting of
interest to us. This is because they are position-dependent, and we do not wish to make
any assumptions about exactly which positions in the RC4 keystreams the bytes we are
targeting are selected from (since this is not readily apparent from the description of
HIVE in [2] and the corresponding source code).

The following result is a restatement of Theorem 1 in [4], concerning the probability
of occurrence of byte strings of the form ABSAB in RC4 outputs, where A and B
represent bytes and S denotes an arbitrary byte string of a particular length G.

Result 1 Let G ≥ 0 be a small integer. Under the assumption that the RC4 state is a
random permutation at step r, then

Pr (Zr = Zr+G+2 ∧ Zr+1 = Zr+G+3) = 2−16

(
1 +

e(−4−8G)/256

256

)
.

Note that for a truly random byte string Zr, . . . , Zr+G3 , the probability that Zr =
Zr+G+2 and Zr+1 = Zr+G+3 is equal to 2−16. The relative bias is therefore equal to
e(−4−8G)/256/256.

The above result was experimentally confirmed in [4] for values of G up to 64, though
with quite a small sample size, and not focused on early bytes in RC4 output. We have
confirmed that the result holds to a reasonable approximation in the situation in which
we are interested, for positions 256 onwards. See Figure 1.

3.2 Discrimination and Statistical Hypothesis Testing

Given two probability distributions p and q on some set S, we define the discrimination
between p and q, denoted L(p, q), to be

∑
s∈S p(s) log p(s)/q(s). Note that discrimination

is additive: if p1, p2, q1, q2 are distributions on S, and if p1p2, q1q2 denote the product
distributions on S × S, then L(p1p2, q1q2) = L(p1, q1) + L(p2, q2). This equality extends
in the obvious way to larger products of distributions.

Next consider the distributions p and q arising from a simple “bias presence” test T
based on a Mantin “ABSAB” bias. The test T receives as input a B-byte string, looks
for a particular byte pattern of a fixed type commencing in a fixed position, and outputs
1 if the pattern is detected, and 0 otherwise (here we assume the bias is a positive one,
as is the case for all the Mantin biases). For example, the test might examine positions
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Fig. 1. Experimental validation of Mantin biases based on 228 random 256-byte keys,
4096 bytes of RC4 output per key. The x-axis depicts the value of G, the y-axis scaled
biases (γ values). Blue points denote experimentally measured values; green line denotes
theoretical values computed according to Result 1.

r, r+ 1, r+ 2, r+ 3 in the string and check whether the quartet of byte values are of the
form “ABAB” or not, an event which should happen with slightly larger than expected
probability if the input string comes from RC4 output rather than being truly random.

Let p be the output probability distribution of T if the input string comes from RC4
output and q the output probability distribution of T if the input string is truly random.
Then p(0) = 1−ρ(1 +γ), p(1) = ρ(1 +γ) and q(0) = 1−ρ, q(1) = ρ where ρ = 2−16 and
γ > 0 is the relative bias under consideration (so γ = e(−4−8G)/256/256 for some small
integer G).

Then, as shown in Lemma 3 of [4] (using different notation), L(p, q) ≈ ργ2.
The presence of different types of biases in different positions motivates us to consider

product distributions p1 · · · pt and q · · · q, where each component in the two products
corresponds to a different test Ti based on a specific bias. Here the second distribution
is always a fixed one, q, as defined above (since all the bias presence tests behave the
same way in case the input string is truly random), while the first one pi describes the
distribution of the test’s {0, 1}-valued outcome Oi. We assume we have t tests in total,
and we make the assumption that all the simple bias presence tests that we can perform
on our B-byte input are independent. This assumption seems reasonable in view of the
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different types of test being conducted, despite many of the tests involving overlapping
bytes. The same assumption was made in [3,4] when developing distinguishers for RC4.
This assumption enables us to write:

L(p1 · · · pt, q · · · q) =

t∑
i=1

L(pi, q) ≈ ρ
t∑
i=1

γ2i

where γi is the appropriate value for the i-th test performed.

Now let D denote any distinguisher based on an input that is the concatenation of the
outputs Oi of the t individual bias presence tests, and that predicts whether or not the
particular string of B bytes used in the tests was generated by RC4 or is truly random.
We assume that D outputs 1 (indicating RC4) with probability 1− β when its input is
from RC4, and that D outputs 0 (indicating truly random) with probability 1−α when
its input is truly random. In other words, α is the false positive rate for D and β is the
false negative rate for D. Then, following [3], we have that:

L(p1 · · · pt, q · · · q) ≥ β log2
β

1− α
+ (1− β) log2

1− β
α

.

Moreover equality is achieved by any optimal statistical test, such as a Neyman-Pearson
likelihood ratio test.

We next evaluate L(p1 · · · pt, q · · · q) ≈ ρ
∑t

i=1 γ
2
i for the set of tests corresponding to

all the possible Mantin biases arising in a B-byte block of consecutive keystream bytes.
From the above equation, this will then allow us to establish bounds on (α, β) for optimal
distinguishers D. We then provide an efficient and approximately optimal statistical test
based on these biases, and compute the parameters of the test in such a way as to
maximise the quantity 1− α− β, which is the usual advantage of the distinguisher D.

3.3 Computation for the Mantin Biases

In aB-byte block, we can performB−(G+3) bias presence tests with γ = e(−4−8G)/256/256
for each value of G ≥ 0. In practice, since the biases decrease in size with increasing G, we
work with values G satisfying 0 ≤ G ≤ Gmax for some value Gmax . In our experiments,
we take Gmax = 64.

Combining all of these bias presence tests, we obtain t =
∑Gmax

G=0 B−(G+3) ≈ Gmax ·B
tests such that

L(p1 · · · pt, q · · · q) = ρ
∑
G≥0

(B − (G+ 3)) · e(−4−8G)/128/216).

Direct calculation gives L(p1 · · · pt, q · · · q) ≈ 8.7276 ≈ ×10−7 for B = 256 and
Gmax = 64. For B = 4096 and Gmax = 64 we obtain L(p1 · · · pt, q · · · q) ≈ 1.4914× 10−5.
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3.4 An Efficient Statistical Test

We start with a likelihood ratio test and develop from this an efficient test which is
approximately optimal.

In the likelihood ratio test, the test statistic is computed as a ratio Λ(O) := L(θ0|O)/L(θ1|O)
where θ0 denotes the distribution arising from the hypothesis H0, θ1 denotes the dis-
tribution arising from the alternative hypothesis H1, O denotes the observed data, and
L(θi|O) := Pr(O|θi) denotes a likelihood. In the test, the hypothesis H0 is rejected (and
our distinguisher outputs 1 indicating that its input is believed to be RC4) if the ratio
of likelihoods Λ(O) is less than or equal some value η; otherwise, H0 is accepted (and
our distinguisher outputs 0 indicating that its input is believed to be truly random). In
principal η can be calculated from α, the false positive rate for the test. Specifically, η
is determined as the value such that Pr(Λ(O) ≤ η|H0) = α.

In our situation, O is a vector composed of the outcomes Oi of the individual tests
Ti with parameters γi. Hypothesis H0 is that the input sequence of B bytes is random
and H1 is the hypothesis that it is an output of RC4. Keeping in mind that γi > 0 for
all i, we can then write

L(θ0|O) =
∏

i:Oi=1

ρ
∏

i:Oi=0

1− ρ

and

L(θ1|O) =
∏

i:Oi=1

ρ(1 + γi)
∏

i:Oi=0

1− ρ(1 + γi).

Then, taking logs, using the fact that ρ and all the γi are small, manipulating the above
expressions using standard log approximations, and simplifying, we finally obtain:

logΛ(O) ≈ −
∑
i:Oi=1

γi +
∑
i:Oi=0

ργi .

Let us denote the above quantity by L. Thus a suitable, approximately optimal test is
to reject the hypothesis H0 (that the input string is a truly random string) and output
“1” if L ≤ log η, and to output “0” otherwise. Note that the test statistic L is efficient
to compute: it requires on the order of Gmax · B floating point operations and byte
comparisons.

It remains to compute appropriate values of η for a given target α. This requires us to
know the distribution of the test statistic L when O comes from distribution θ0. Now, in
this case, the outcome Oi is Bernoulli distributed with parameter ρ, i.e. Pr(Oi = 1) = ρ.
Moreover, we can group the tests into Gmax + 1 groups, each group corresponding to a
set of tests having the same value for γi. Since the number of tests in each group is large,
the sum of the corresponding terms in L can be approximated by Normal distributions
with mean and variance that can be explicitly calculated. This in principal allows the
distribution of L to be computed. We omit the details.
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3.5 Optimal Choice of Parameters

For reasons that will become clear in the next section, we wish to maximise the value
of the quantity δ := 1 − α − β over the choice of distinguisher D acting on B bytes of
input. Let us denote this value by δB. (As temporary motivation note that δ is the usual
cryptographic definition of the advantage of the distinguisher.) Since we are interested in
optimal distinguishers, our choice of parameters (α, β) is subject to the constraint that
LB = β log2

β
1−α + (1 − β) log2

1−β
α where the quantity LB was computed for different

values of B in Section 3.3. Direct maximisation using Wolfram alpha6 yields δB = 0.00055
for B = 256 (at (α, β) = (0.499459, 0.499991)) and δB = 0.002273 for B = 4096 (at
(α, β) = (0.498343, 0.499384)).

3.6 Implementation

We implemented the above statistical test to ensure that its practical performance is
in line with the theoretical analysis. As noted above the parameter η could be set by
calculating the distribution of the test statistic L when O comes from distribution θ0.
Another approach would be to generate many samples of the test statistic to estimate
the distribution of L and set η by computing the α-percentile of the sampled values.

In our experiments, we simply set η = 0, ran the test on random inputs and on
RC4 inputs, and computed the corresponding values of α, β, δ. This gives us sub-optimal
values for δ, but is sufficient to validate that the test works and gives us a distinguisher
having performance that is reasonably close to that which is theoretically obtainable.
For B = 4096 and based on 225 samples (224 for each of random input and RC4 inputs),
setting η = 0, we obtained α = 0.453706, β = 0.544646 and δ = 0.001648. Here the value
of δ compares favourably to the theoretical maximum of 0.002273. We are confident that
a closer match would be obtained by adjusting η. In our evaluation of our attack on HIVE
to follow, we present attack costs for both the ideal value of δ and our experimentally
obtained value.

4 An Attack on HIVE Based on a
Blockwise RC4 Distinguisher

We describe a family of adversaries {AB,S,T }, parameterized by the block length B and
two other parameters S and T which are defined below. Our adversaries have access to
the distinguisher D acting on B bytes from Section 3. Recall that D outputs a single bit
b; if D’s input is uniformly random bytes, DB outputs 1 with probability α; if D’s input
consists of B consecutive bytes of RC4 output, D outputs 1 with probability 1− β.

For a fixed block length B, AB,S,T is a one-time adversary against plausible hiding for
two volumes, as in Definition 1. In this simple case, there are two encrypted volumes V1,
V2 protected by passwords P1, P2, and a user wants to be able to deny the existence of V2
to an adversary who knows P1. We consider two volumes for simplicity and because two

6 http://www.wolframalpha.com/
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volumes are used in the implementation; the attack generalizes directly to any number
of volumes. We assume that each volume consists of S blocks of B bytes, so the disk has
4SB bytes in total (because it needs to be twice the size of all the volumes combined).

We overload the notation for the access operations in Definition 1 to allow reading
and writing of multiple blocks of data in a single query. In what follows, 0SB denotes an
all-zero string of SB bytes, equating to S blocks of B bytes each.

Our adversary AB,S,T then proceeds in five steps:

1. AB,S,T sends l = 2 to the challenger and receives the password P1 and a snapshot
D0 of the disk.

2. AB,S,T sends o1,0 = o1,1 = (w, 0, V1, 0
SB).

3. AB,S,T sends o2,0 = (w, 1, V2, 0
SB), o2,1 = (r, 0, V1, d, SB).

4. AB,S,T requests a snapshot Df , containing 4S blocks. AB,S,T disregards the blocks
that are the same as in D0, runs D successively on each of the remaining E used
blocks of Df and concatenates the output bits of D to form a string R ∈ {0, 1}E .

5. Finally, AB,S,T outputs 1 if W , the Hamming weight of R, is at most T ; otherwise it
outputs 0.

The following theorem is immediate (noting that reading or writing B bytes counts
as making 1 query in the security model given previously, so AB,S,T makes 2S queries
in total):

Theorem 2. Let τB,S,T denote the running time of AB,S,T and AdvB,S,T its advantage.
Then HIVE is not (AdvB,S,T , τB,S,T , 2S)-plausible hiding against one-time adversaries.

Now let us determine values for S, B and T for which the theorem gives a meaningful
attack. We consider what information AB,S,T has access to in its attack when b = 0 and
b = 1 in the security experiment. When b = 0, the disk is initialised with V1 and V2, and
o1,0 and o2,0 are executed. When b = 1, the disk is initialised only with V1, and o1,1 and
o2,1 are executed.

The adversary gets an initial snapshot of the disk before any operations are executed,
so identifying unused blocks is trivial; E denotes the number of blocks that differ between
D0 and Df . All blocks that are written to certainly differ, so we have 2S ≤ E ≤ 4S. We
call EB the effective disk size, since the other blocks are irrelevant to the attack. Note
that the expected value of E is approximately 3.1075S. (There are 4S blocks on the disk,
and in the 2S read and write operations in our attack, HIVE will choose K · 2S = 6S
blocks at random to write to. This means that we expect that, out of the total of 4S

blocks available, 4S ·
(
1− 1

4S

)6S
blocks are not written to.7 Using (1− 1/n)m ≈ e−m/n,

we get E[E] ≈ (1− e−1.5)4S ≈ 3.1075S.)

Let Wb denote the Hamming weight of the vector R constructed by AdvB,S,T in case
b. We have:

7 In reality, because of the way the stash operates, slightly fewer than S or 2S blocks of data might be
written to the disc. However, this does not materially affect our analysis. The probability of eight or
more items remaining on the stash is only 0.05 %.
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– When b = 0, 2S blocks of data are written to the disk, so it contains 2S blocks of
AES output and E−2S blocks of RC4 output. Since AES output is indistinguishable
from random (otherwise, we would have an attack on AES), the expected value for
W0 is α · 2S + (1− β) · (E − 2S).

– When b = 1, only S blocks of data are written to the disk, so it contains S blocks
of AES output and E − S blocks of RC4 output. The expected value for W1 is
α · S + (1− β) · (E − S).

The difference in the expected values of the Hamming weight of R in the two cases
is therefore (1 − α − β)S = δS, which corresponds to the S blocks of additional data
written to the disk in case 0.

Note that the output of D on each B-byte block is an independent Bernoulli random
variable with one of two possible distributions, depending on whether the block contains
output from RC4 or AES (and where we assume the latter is indistinguishable from
truly random bytes). Specifically, when a block contains RC4 output, D’s output equals
1 with probability 1− β, while, when it contains AES output, D’s output equals 1 with
probability α. Thus, when b = 0, the distribution of W is a Poisson binomial distribution
with parameters p1 = . . . = p2S = α, p2S+1 = . . . = pE = 1 − β (since the trials are
independent, the order does not matter). Similarly, when b = 1, the distribution of W is
a Poisson binomial distribution with parameters p1 = . . . = pS = α, pS+1 = . . . = pE =
1− β.

By standard results for the Poisson binomial distribution, the variance of W0 is equal
to 2Sα(1−α) + (E−2S)β(1−β), while the variance of W1 is equal to Sα(1−α) + (E−
S)β(1−β). Since α(1−α), β(1−β) ≤ 1/4 and E ≤ 4S, it follows that the two variances
are bounded by S. We define σ2 := S.

Now, given that W0 and W1 are obtained as sums of large numbers of independent
Bernoulli random variables, we can consider them to be Normally distributed to a good
approximation (here, we assume E is large, as indeed it will need to be to obtain rea-
sonable success rates for our adversary). We already established that their variances are
bounded by S, while their means are separated by δS. Note that

Advpl-otAB,S,T ,Σ
(k) = |Pr[1← Exppl-ot-0AB,S,T ,Σ

(k)]− Pr[1← Exppl-ot-1AB,S,T ,Σ
(k)]|

= |Pr[W0 ≤ T ]− Pr[W1 ≤ T ]|

where W0 and W1 are Normally distributed by assumption. We set T to be half-way
between the means; viz T = E− 1.5S− 1.5Sα− (E− 1.5S)β. This finally brings us to a
position where we can apply standard tail bounds for Normal distributions in order to
estimate the advantage of AB,S,T .

Suppose that we insist that the means of W0,W1 are 2nσ apart for some parameter
n; then by our choice of T and under our assumption of Normality (and since σ2 is an
upper bound on the variances of W0,W1) we get an advantage for our adversary which
is at least

1− erf

(
n√
2

)
12



n log2 S (ideal) log2 S (experimental) AdvB,S,T

1 19.6 20.5 0.683
2 21.6 22.5 0.954
3 22.7 23.7 0.997

Table 1. Number of blocks S required to achieve a given advantage AdvB,S,T for B =
4096.

where erf(·) is the standard error function for the Normal distribution:

erf(x) =
1√
π

∫ x

−x
e−t

2
dt.

Hence, under the condition that δS = 2nσ = 2nS1/2, the advantage AdvB,S,T of our
adversary AB,S,T will be at least the claimed value, namely 1 − erf(n/

√
2). Solving for

S, we see that we require

S =
4n2

δ2

to achieve the claimed advantage.

4.1 Concrete Numbers

To launch a concrete attack, we set B = 4096, as in [2]. Then, from the results of Section
3 we can take δ = 0.002273 as the optimal setting. Setting n = 1 in the above analysis
and solving for S, we get S = 219.6 for an advantage of 0.683. Continuing for other
values of n, we obtain the second column in Table 1. Thus we see that an adversary
with advantage very close to 1 can be achieved by setting S = 222.7, i.e. for an attack
involving 2S = 223.7 read/write queries on a disk containing a total of 4S = 224.7 blocks
and 4BS = 236.7 bytes of data (i.e. roughly 104 GB of data).

The third column in Table 1 contains estimates for S based on setting δ = 0.001648,
the value experimentally observed when setting η = 0 in the statistical test developed in
Section 3.6. The higher numbers in this column reflect the sub-optimal performance of
the blockwise distinguisher for this setting of η.

The main computational cost of implementing the attack is that of running the
blockwise distinguisher E times; since E ≤ 4S, the total cost of the attack is on the
order of Gmax ·B ·S floating point operations. In our implementation, the running time
for a single execution of the blockwise distinguisher for Gmax = 64, B = 4096 was
0.000719s (on a Macbook Air with a 1.3 GHz Intel Core i5 processor and 8GB of RAM);
the running time of the whole attack with E = 4S and S = 223.7 would then be about 11
hours. This running time could be improved by optimising the choice of η (thus allowing
a reduced value of S).

Similar calculations can be carried out with B = 256, where we can take δ = 0.00055.
We obtain Table 2. We see that S is required to be greater, reflecting the much weaker
performance of our blockwise distinguisher when the block size is small. On the other

13



n log2 S (ideal) AdvB,S,T

1 23.6 0.683
2 25.6 0.954
3 26.8 0.997

Table 2. Number of blocks S required to achieve a given advantage AdvB,S,T for B =
256.

hand, the total disk size is only moderately increased and the running time of the dis-
tinguisher is further reduced (because of the reduced block size).

5 Conclusions

We have shown that the current instantiation of HIVE using RC4 is insecure. Specifically,
there is an efficient attack involving 223.7 read/write queries on B = 4096 byte blocks for
which we can construct an adversary having advantage 0.997 in the security model for
plausible hiding against one-time adversaries. This violates the main security property
claimed for HIVE.

Our work illustrates that if a provably secure scheme is instantiated with an insecure
primitive, then all security guarantees may be lost.

HIVE can be repaired by replacing RC4 with a stronger PRG. For example, AES in
counter mode (CTR) could be used instead; as well as being more secure, the performance
will be better than that of the current RC4-based system on platforms with hardware
support for AES. More options, optimized for performance in hard- or software, are
offered by the eSTREAM project.8

We gave the authors of HIVE the opportunity to make changes to their code and to
their paper after notifying them of our initial concerns about their scheme’s reliance on
RC4. They did not avail themselves of this opportunity. In view of the fact that HIVE
had been released to the public and was promoted as“not rely[ing] on heuristics or obfus-
cation techniques, but rather strong cryptographic primitives which can be mathematically
proven” and as being able to “provide very strong security in practice”9, we decided to
refine and publish our attack to provide a clear demonstration of the shortcomings of
instantiating the system with RC4.

Shortly after publication of a pre-print version of this paper, RC4 was replaced by
AES-CTR as the default PRG in the HIVE implementation. According to the HIVE
developers, I/O performance remains unaffected.10
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