
Finding shortest lattice vectors faster using quantum search

Thijs Laarhoven · Michele Mosca ·
Joop van de Pol

Abstract By applying a quantum search algorithm to various heuristic and provable
sieve algorithms from the literature, we obtain improved asymptotic quantum results
for solving the shortest vector problem on lattices. With quantum computers we can
provably find a shortest vector in time 21.799n+o(n), improving upon the classical time
complexities of 22.465n+o(n) of Pujol and Stehlé and the 22n+o(n) of Micciancio and
Voulgaris, while heuristically we expect to find a shortest vector in time 20.286n+o(n),
improving upon the classical time complexity of 20.337n+o(n) of Laarhoven. These
quantum complexities will be an important guide for the selection of parameters for
post-quantum cryptosystems based on the hardness of the shortest vector problem.

Keywords lattices · shortest vector problem · sieving · quantum search

1 Introduction

Large-scale quantum computers will redefine the landscape of computationally se-
cure cryptography, including breaking public-key cryptography based on integer fac-
torization or the discrete logarithm problem [81] or the principle ideal problem in
real quadratic number fields [36], providing sub-exponential attacks for some sys-
tems based on elliptic curve isogenies [20], speeding up exhaustive searching [34,13],
counting [16] and (with appropriate assumptions about the computing architecture)
finding collisions and claws [15, 17, 4], among many other quantum algorithmic
speed-ups [19, 82, 62].

T.M.M. Laarhoven
Eindhoven University of Technology, Eindhoven, The Netherlands. E-mail: mail@thijs.com.
M. Mosca
Institute for Quantum Computing and Department of Combinatorics & Optimization, University of
Waterloo, and Perimeter Institute for Theoretical Physics, Waterloo (Ontario), Canada,
Canadian Institute for Advanced Research, Toronto, Canada. E-mail: michele.mosca@uwaterloo.ca.
J.H. van de Pol
University of Bristol, Bristol, United Kingdom. E-mail: joop.vandepol@bristol.ac.uk.
A preliminary version of this paper was published at PQCrypto 2013 [48].

2 Thijs Laarhoven et al.

Currently, a small set of systems [10] are being studied intensely as possible sys-
tems to replace those broken by large-scale quantum computers. These systems can
be implemented with conventional technologies and to date seem resistant to sub-
stantial quantum attacks. It is critical that these systems receive intense scrutiny for
possible quantum or classical attacks. This will boost confidence in the resistance
of these systems to (quantum) attacks, and allow us to fine-tune secure choices of
parameters in practical implementations of these systems.

One such set of systems bases its security on the computational hardness of cer-
tain lattice problems. Since the late 1990s, there has been a lot of research into the
area of lattice-based cryptography, resulting in encryption schemes [38, 73], digital
signature schemes [31, 54, 23] and even fully homomorphic encryption schemes [32,
14]. Each of the lattice problems that underpin the security of these systems can be
reduced to the shortest vector problem [66]. Conversely, the decisional variant of
the shortest vector problem can be reduced to the average case of such lattice prob-
lems. For a more detailed summary on the security of lattice-based cryptography,
see [47, 66].

In this paper, we closely study the best-known algorithms for solving the shortest
vector problem, and how quantum algorithms may speed up these algorithms. By
challenging and improving the best asymptotic complexities of these algorithms, we
increase the confidence in the security of lattice-based schemes. Understanding these
algorithms is critical when selecting key-sizes and other security parameters. Any
non-trivial algorithmic advance has the potential to compromise the security of a
deployed cryptosystem, for example in [11] an improvement in the index calculus
method for finding discrete logarithms led to the break of a Diffie-Hellman system
that had been deployed in software and was in the process of being implemented in
hardware.

1.1 Lattices

Lattices are discrete subgroups of Rn. Given a set of n linearly independent vectors
B = {b1, . . . ,bn} in Rn, we define the lattice generated by these vectors as L =
{∑n

i=1 λibi : λi ∈ Z}. We call the set B a basis of the lattice L . This basis is not
unique; applying a unimodular matrix transformation to the vectors of B leads to a
new basis B′ of the same lattice L .

In lattices, we generally work with the Euclidean or `2-norm, which we will
denote by ‖ · ‖. For bases B, we write ‖B‖ = maxi ‖bi‖. We refer to a vector s ∈
L \ {0} such that ‖s‖ ≤ ‖v‖ for any v ∈ L \ {0} as a shortest (non-zero) vector
of the lattice. Its length is denoted by λ1(L). Given a basis B, we write P(B) =
{∑n

i=1 λibi : 0≤ λi < 1} for the fundamental domain of B.
One of the most important hard problems in the theory of lattices is the shortest

vector problem (SVP). Given a basis of a lattice, the shortest vector problem consists
of finding a shortest non-zero vector in this lattice. In many applications, finding a
reasonably short vector instead of a shortest vector is also sufficient. The approximate
shortest vector problem with approximation factor γ (SVPγ) asks to find a non-zero
lattice vector v ∈L with length bounded from above by ‖v‖ ≤ γ ·λ1(L).

Finding shortest lattice vectors faster using quantum search 3

Finding short vectors in a lattice has been studied for many reasons, including
the construction of elliptic curve cryptosystems [5, 27, 28], the breaking of knapsack
cryptosystems [50, 22, 69, 57] and low-exponent RSA [21, 83], and proving hardness
results in Diffie-Hellman-type schemes [12]. For appropriately chosen lattices, the
shortest vector problem appears to be hard, and may form the basis of new public-
key cryptosystems.

1.2 Finding short vectors

The approximate shortest vector problem is integral in the cryptanalysis of lattice-
based cryptography [29]. For small values of γ , this problem is known to be NP-hard
[2,43], while for certain exponentially large γ polynomial time algorithms are known
to exist that solve this problem, such as the celebrated LLL algorithm of Lenstra,
Lenstra, and Lovász [51, 57]. Other algorithms trade extra running time for a better
γ , such as LLL with deep insertions [79] and the BKZ algorithm of Schnorr and
Euchner [79].

The current state-of-the-art for classically finding short vectors is BKZ 2.0 [18],
which is essentially the original BKZ algorithm with the improved SVP subroutine
of Gama et al. [30]. Implementations of this algorithm, due to Chen and Nguyen [18]
and Aono and Naganuma [6], currently dominate the SVP and lattice challenge hall of
fame [77,52] together with a yet undocumented modification of the random sampling
reduction (RSR) algorithm of Schnorr [80], due to Kashiwabara et al.

In 2003, Ludwig [53] used quantum algorithms to speed up the original RSR
algorithm. By replacing a random sampling from a big list by a quantum search,
Ludwig achieves a quantum algorithm that is asymptotically faster than its classical
counterpart. Ludwig also details the effect that this faster quantum algorithm would
have had on the practical security of the lattice-based encryption scheme NTRU [38],
had there been a quantum computer in 2005.

1.3 Finding shortest vectors

Although it is commonly sufficient to find a short vector (rather than a shortest vec-
tor), the BKZ algorithm and its variants all require a low-dimensional exact SVP
solver as a subroutine. In theory, any of the known methods for finding a shortest
vector could be used. We briefly discuss the three main classes of algorithms for
finding shortest vectors below.

Enumeration. The classical method for finding shortest vectors is enumeration, dat-
ing back to work by Pohst [65], Kannan [42] and Fincke and Pohst [25] in the first
half of the 1980s. In order to find a shortest vector, one enumerates all lattice vec-
tors inside a giant ball around the origin. If the input basis is only LLL-reduced,
enumeration runs in 2O(n2) time, where n is the lattice dimension. The algorithm by
Kannan uses a stronger preprocessing of the input basis, and runs in 2O(n logn) time.
Both approaches use only polynomial space in n.

4 Thijs Laarhoven et al.

Sieving. In 2001, Ajtai et al. [3] introduced a technique called sieving, leading to
the first probabilistic algorithm to solve SVP in time 2O(n). Several different sieving
methods exist, but they all rely on somehow saturating the space of short lattice vec-
tors, by storing all these vectors in a long list. This list will inevitably be exponential
in the dimension n, but it can be shown that these algorithms also run in single ex-
ponential time, rather than superexponential (as is the case for enumeration). Recent
work has also shown that the time and space complexities of sieving improve when
working with ideal lattices [39], leading to the current highest record in the ideal
lattice challenge hall of fame [64].

Computing the Voronoi cell. In 2010, Micciancio and Voulgaris presented a deter-
ministic algorithm for solving SVP based on constructing the Voronoi cell of the
lattice [58]. In time 22n+o(n) and space 2n+o(n), this algorithm is able to find a shortest
vector in any lattice. Currently this is the best provable asymptotic result for classical
SVP (and CVP) solvers.

Practice. While sieving and the Voronoi cell algorithm have surpassed enumeration
in terms of classical provable asymptotic time complexities, in practice enumeration
still dominates the field. The version of enumeration that is currently used in practice
is due to Schnorr and Euchner [79] with improvements by Gama et al. [30]. It does
not incorporate the stronger version of preprocessing of Kannan [42] and hence has
an asymptotic time complexity of 2O(n2). However, due to the larger hidden constants
in the exponents and the exponential space complexity of the other algorithms, enu-
meration is actually faster than other methods for most practical values of n. That
said, these other methods are still relatively new and unexplored, so a further study
of these other methods may tip the balance.

1.4 Quantum search

In this paper we will study how quantum algorithms can be used to speed up the
SVP algorithms outlined above. More precisely, we will consider the impact of using
Grover’s quantum search algorithm [34], which considers the following problem.

Given a list L of length N and a function f : L→ {0,1}, such that the number of
elements e ∈ L with f (e) = 1 is small. Construct an algorithm “Search” that, given
L and f as input, returns an e ∈ L with f (e) = 1, or determines that (with high prob-
ability) no such e exists. We assume for simplicity that f can be evaluated in unit
time.

Classical algorithm. With classical computers, the natural way to find such an ele-
ment is to go through the whole list, until one of these elements is found. This takes
on average O(N) time. This is also optimal up to a constant factor; no classical algo-
rithm can find such an element in less than Ω(N) time.

Finding shortest lattice vectors faster using quantum search 5

Quantum algorithm. Using Grover’s quantum search algorithm [34, 13, 16], we can
find such an element in time O(

√
N). This is optimal up to a constant factor, as any

quantum algorithm needs at least Ω(
√

N) evaluations of f [8].

Throughout the paper, we will write x← Search{e ∈ L : f (e) = 1} to highlight
subroutines that perform a search in some long list L, looking for an element e ∈ L
satisfying f (e) = 1. This assignment returns true if an element e ∈ L with f (e) = 1
is found (and assigns such an element to x), and returns false if no such e exists. This
allows us to give one description for both the classical and quantum versions of each
algorithm, as the only difference between the two versions is which version of the
subroutine is used.

1.5 RAM model

For both the classical and the quantum versions of these search algorithms, we as-
sume a RAM model of computation where the jth entry of the list L can be looked up
in constant time (or polylogarithmic time). In the case that L is a virtual list where the
jth element can be computed in time polynomial in the length of j (thus polylogarith-
mic in the length of the list L), then look-up time is not an issue. When L is indeed an
unstructured list of values, for classical computation, the assumption of a RAM-like
model has usually been valid in practice. However, there are fundamental reasons
for questioning it [9], and there are practical computing architectures where the as-
sumption does not apply. In the case of quantum computation, a practical RAM-like
quantum memory (e.g. [33]) looks particularly challenging, especially for first gen-
eration quantum computers. Some authors have studied the limitations of quantum
algorithms in this context [35, 9, 40].

Some algorithms (e.g. [4]) must store a large database of information in regu-
lar quantum memory (that is, memory capable of storing quantum superpositions of
states). In contrast, quantum searching an actual list of N (classical) strings requires
the N values to be stored in quantumly addressable classical memory (e.g. as Kuper-
berg discusses in [46]) and O(logN) regular qubits. Quantumly addressable classical
memory in principle could be much easier to realize in practice than regular qubits.
Furthermore, quantum searching for a value x ∈ {0,1}n satisfying f (x) = 1 for a
function f : {0,1}n→ {0,1} which can be implemented by a circuit on O(n) qubits
only requires O(n) regular qubits, and there is no actual list to be stored in memory.
In this paper, the quantum search algorithms used require the lists of size N to be
stored in quantumly addressable classical memory and use O(logN) regular qubits
and O(

√
N) queries into the list of numbers.

In this work, we consider (conventional) classical RAM memories for the clas-
sical algorithms, and RAM-like quantumly addressable classical memories for the
quantum search algorithms. This is both a first step for future studies in assessing the
impact of more practical quantum architectures, and also represents a more conser-
vative approach in determining parameter choices for lattice-based cryptography that
should be resistant against the potential power of quantum algorithmic attacks. Future

6 Thijs Laarhoven et al.

work may also find ways to take advantage of advanced quantum search techniques,
such as those surveyed in [74].

1.6 Contributions

In this paper, we show that quantum algorithms can significantly speed up various
sieving algorithms from the literature. The constants in the time exponents generally
decrease by approximately 25%, leading to an improvement in both the best provable
and the best heuristic asymptotic result for solving the shortest vector problem:

– Provably, we can find a shortest vector in any lattice in time 21.799n+o(n).
(Without quantum search, the best provable algorithm runs in time 22.000n+o(n).)

– Heuristically, we can find a shortest vector in any lattice in time 20.286n+o(n).
(Without quantum search, the best heuristic algorithm runs in time 20.337n+o(n).)

Table 1 contains an overview of classical and quantum complexities of various SVP
algorithms, and summarizes the results in this paper. While the Voronoi cell algo-
rithm [58] is asymptotically the best algorithm in the provable classical setting, we
show that with quantum search, both the AKS-Birthday algorithm described by Han-
rot et al. [37] and the ListSieve-Birthday algorithm of Pujol and Stehlé [68]
surpass the 22n+o(n) time complexity of the Voronoi cell algorithm. While the main
focus in this paper is on sieving algorithms, we also briefly consider applying quan-
tum search to the Voronoi cell algorithm and enumeration methods, but it turns out
that applying the same techniques does not easily lead to significant speed-ups for
those algorithms.

The heuristic improvements obtained with quantum search are furthermore also
shown in Figure 1. This figure also shows the tunable trade-offs that may be obtained
with various classical and quantum sieving algorithms (rather than just the single
entries given in Table 1). As can be seen in the figure, we only obtain a useful trade-
off between the quantum time and space complexities for the HashSieve algorithm;
for other algorithms the trade-offs show that the time complexity is increasing in the
space complexity.

1.7 Outline

The outline of this paper is as follows, and can also be found in Table 1. In Section 2
we first consider the current best provable sieving algorithm for solving the shortest
vector problem, the ListSieve-Birthday algorithm of Pujol and Stehlé [68]. This
is the birthday paradox variant of the ListSieve algorithm of Micciancio and Voul-
garis [59] (which is briefly described in Section 6.2), and we get the best provable
quantum time complexity by applying quantum search to this algorithm. In Sections 3
and 4 we then consider two of the most important heuristic sieving algorithms to date,
the NV-Sieve algorithm of Nguyen and Vidick [63] and the GaussSieve algorithm
of Micciancio and Voulgaris [59]. In Section 5 we then show how we obtain the best
heuristic quantum time complexity, by applying quantum search to the very recent

Finding shortest lattice vectors faster using quantum search 7

Table 1 A comparison of time and space complexities of SVP algorithms, both classically and quantumly.
Except for the italicized algorithms, these are all results based on sieving.

Algorithm Classical Quantum Roadmap
Name [References] log2(Time) log2(Space) log2(Time) log2(Space)

Pr
ov

ab
le

(Enumeration algorithms) Ω(n logn) O(logn) Ω(n logn) O(logn) (Section 7.1)
AKS-Sieve [3, 71, 63, 59, 37] 3.398n 1.985n 2.672n 1.877n (Section 6.1)
ListSieve [59] 3.199n 1.327n 2.527n 1.351n (Section 6.2)
AKS-Sieve-Birthday [37] 2.648n 1.324n 1.986n 1.324n (Section 6.3)
ListSieve-Birthday [68] 2.465n 1.233n 1.799n 1.286n (Section 2)
(Voronoi cell algorithm) 2.000n 1.000n 2.000n 1.000n (Section 7.2)

H
eu

ri
st

ic

NV-Sieve [63] 0.415n 0.208n 0.312n 0.208n (Section 3)
GaussSieve [59] 0.415n 0.208n 0.312n 0.208n (Section 4)
2-Level-Sieve [84] 0.384n 0.256n 0.312n 0.208n (Section 6.4)
3-Level-Sieve [85] 0.378n 0.283n 0.312n 0.208n (Section 6.5)
Overlattice-Sieve [7] 0.378n 0.293n 0.312n 0.208n (Section 6.6)
HashSieve [49] 0.337n 0.337n 0.286n 0.286n (Section 5)

●

●
● ●

Ti
m
e
=
Sp
ac
e

NV
'08

M
V'
10

W
LT
B
'11

ZP
H
'13

BG
J '
14

La
a
'14

BGJ '14

Laa '14

●●

NV
'08

M
V'
10

BGJ
'14

Laa '14 La
a
'14

●

●

20.20 n 20.25 n 20.30 n 20.35 n 20.40 n
20.25 n

20.30 n

20.35 n

20.40 n

20.45 n

Space complexity

T
im
e
co
m
pl
ex
ity

Fig. 1 The heuristic space-time trade-off of various heuristic sieve algorithms from the literature (red),
and the heuristic trade-offs obtained with quantum search applied to these algorithms (blue). The op-
timized 2-Level-Sieve and 3-Level-Sieve of Wang et al. and Zhang et al. both collapse to the point
(20.208n,20.312n) as well. Dashed lines are increasing in both the time and the space complexity, and there-
fore do not offer a useful trade-off.

8 Thijs Laarhoven et al.

Algorithm 1 The ListSieve-Birthday algorithm
1: Sample a random number N′1 ∈ [0,N1]
2: Initialize an empty list L
3: for i← 1 to N′1 do
4: Sample a random perturbation vector e← Bn(0,ξ µ)
5: Compute the translated vector v′← e mod P(B)
6: while w← Search{w ∈ L : ‖v′±w‖< γ‖v′‖} do
7: Reduce v′ with w
8: Subtract the perturbation vector e: v← v′− e
9: if ‖v‖ ≥ Rµ then

10: Add the lattice vector v to the list L
11: Initialize an empty list S
12: for i← 1 to N2 do
13: Sample a random perturbation vector e← Bn(0,ξ µ)
14: Compute the translated vector v′← e mod P(B)
15: while w← Search{w ∈ L : ‖v′±w‖< γ‖v′‖} do
16: Reduce v′ with w
17: Subtract the perturbation vector e: v← v′− e
18: Add the lattice vector v to the list S
19: (s1,s2)← Search{(s1,s2) ∈ S2 : 0 < ‖s1− s2‖< µ}
20: return s1− s2

HashSieve algorithm of Laarhoven [49], which in turn builds upon the NV-Sieve
and the GaussSieve. Finally, in Section 6 we discuss quantum speed-ups for various
other sieving algorithms, and in Section 7 we discuss why quantum search does not
seem to lead to big asymptotic improvements in the time complexity of the Voronoi
cell algorithm and enumeration algorithms.

2 The provable ListSieve-Birthday algorithm of Pujol and Stehlé

Using the birthday paradox [57], Pujol and Stehlé [68] showed that the constant in the
exponent of the time complexity of the original ListSieve algorithm of Micciancio
and Voulgaris [59, Section 3.1] can be reduced by almost 25%. The algorithm is
presented in Algorithm 1. Here γ = 1− 1

n , Bn(0,ξ µ) denotes the ball centered at 0 of
radius ξ µ , and the various other parameters will be discussed below.

2.1 Description of the algorithm

The algorithm can roughly be divided in three stages, as follows.
First, the algorithm generates a long list L of lattice vectors with norms between

Rµ and ‖B‖. This ‘dummy’ list is used for technical reasons to make the proof strat-
egy work. The number of samples used for generating this list is taken as a random
variable, which again is done to make certain proof techniques work. Note that be-
sides the actual lattice vectors v, to generate this list we also consider slightly per-
turbed vectors v′ which are not in the lattice, but are at most ξ µ away from v. This is
yet again a technical modification purely aimed at making the proofs work, as exper-
iments show that without such perturbed vectors, these algorithms also work fine.

Finding shortest lattice vectors faster using quantum search 9

After generating L, we generate a fresh list of short lattice vectors S. The proce-
dure for generating these vectors is similar to that of generating T , with two excep-
tions: (i) now all sampled lattice vectors are added to S (regardless of their norms),
and (ii) the vectors are reduced with the dummy list L rather than with vectors in
S. The latter guarantees that the vectors in S are all independent and identically dis-
tributed.

Finally, when S has been generated, we hope that it contains two distinct lattice
vectors s1, s2 that are at most µ ≈ λ1(L) apart. So we search S×S for a pair (s1,s2)
of close, distinct lattice vectors, and return their difference.

2.2 Classical complexities

With a classical search applied to the subroutines in Lines 6, 15, and 19, Pujol and
Stehlé analyzed that the costs of the algorithm are:

– Cost of generating L: Õ(N1 · |L|) = 2(cg+2ct)n+o(n).
– Cost of generating S: Õ(N2 · |L|) = 2(cg+ 1

2 cb+ct)n+o(n).
– Cost of searching S for a pair of close vectors: Õ(|S|2) = 2(2cg+cb)n+o(n).
– Memory requirement of storing S and L: O(|S|+ |L|) = 2max(ct ,cg+ 1

2 cb)n+o(n).

The constants cb,ct ,cg,N1 and N2 above are defined as

cb = 0.401+ log2(R), N1 = 2(cg+ct)n+o(n), (1)

ct = 0.401+
1
2

log2

(
1+

2ξ

R−2ξ

)
, N2 = 2(cg+cb/2)n+o(n) (2)

cg =
1
2

log2

(
4ξ 2

4ξ 2−1

)
. (3)

In [68] this led to the following result on the time and space complexities.

Lemma 1 [68] Let ξ > 1
2 and R > 2ξ , and suppose µ > λ1(L). Then with prob-

ability at least 1
16 , the ListSieve-Birthday algorithm returns a lattice vector

s ∈L \{0} with ‖s‖< µ , in time at most 2ctimen+o(n) and space at most 2cspacen+o(n),
where ctime and cspace are given by

ctime = max
(

cg +2ct ,cg +
cb

2
+ ct ,2cg + cb

)
, cspace = max

(
ct ,cg +

cb

2

)
. (4)

By balancing ξ and R optimally, Pujol and Stehlé obtained the following result.

Corollary 1 [68] Letting ξ ≈ 0.9476 and R≈ 3.0169, we obtain

ctime ≈ 2.465, cspace ≈ 1.233. (5)

Thus, using polynomially many queries to the ListSieve-Birthday algorithm with
these parameters, we can find a shortest vector in a lattice with probability exponen-
tially close to 1 using time at most 22.465n+o(n) and space at most 21.233n+o(n).

10 Thijs Laarhoven et al.

2.3 Quantum complexities

Applying a quantum search subroutine to Lines 6, 15, and 19, we get the following
costs for the quantum algorithm based on ListSieve-Birthday:

– Cost of generating L: Õ(N1 ·
√
|L|) = 2(cg+ 3

2 ct)n+o(n).
– Cost of generating S: Õ(N2 ·

√
|L|) = 2(cg+ 1

2 cb+ 1
2 ct)n+o(n).

– Cost of searching S for a pair of close vectors: Õ(
√
|S|2) = 2(cg+ 1

2 cb)n+o(n).
– Memory requirement of storing S and L: O(|S|+ |L|) = 2max(ct ,cg+ 1

2 cb)n+o(n).

This leads to the following general lemma about the overall quantum time and space
complexities.

Lemma 2 Let ξ > 1
2 and R > 2ξ , and suppose µ > λ1(L). Then with probability at

least 1
16 , the ListSieve-Birthday algorithm returns a lattice vector s ∈L \ {0}

with ‖s‖ < µ on a quantum computer in time at most 2qtimen+o(n) and space at most
2qspacen+o(n), where qtime and qspace are given by

qtime = max
(

cg +
3ct

2
,cg +

cb

2
+

ct

2
,cg +

cb

2

)
, qspace = max

(
ct ,cg +

cb

2

)
. (6)

Re-optimizing the parameters ξ and R subject to the given constraints, to mini-
mize the overall time complexity, we obtain the following result.

Theorem 1 Letting ξ ≈ 0.9086 and R≈ 3.1376, we obtain

qtime ≈ 1.799, qspace ≈ 1.286. (7)

Thus, using polynomially many queries to the ListSieve-Birthday algorithm, we
can find a shortest non-zero vector in a lattice on a quantum computer with probabil-
ity exponentially close to 1, in time at most 21.799n+o(n) and space at most 21.286n+o(n).

So the constant in the exponent of the time complexity decreases by about 27%
when using quantum search.

Remark. If we generate S in parallel, we can potentially achieve a time complexity
of 21.470n+o(n), by setting ξ ≈ 1.0610 and R ≈ 4.5166. However, it would require
exponentially many parallel quantum computers of size O(n) to achieve a substantial
theoretical speed-up over the 21.799n+o(n) of Theorem 1.

3 The heuristic NV-Sieve algorithm of Nguyen and Vidick

In 2008, Nguyen and Vidick [63] considered a heuristic, practical variant of the orig-
inal AKS-Sieve algorithm of Ajtai et al. [3], which ‘provably’ returns a shortest vec-
tor under a certain natural, heuristic assumption. A slightly modified but essentially
equivalent description of this algorithm is given in Algorithm 2.

Finding shortest lattice vectors faster using quantum search 11

Algorithm 2 The NV-Sieve algorithm
1: Sample a list L0 of exponentially many random lattice vectors, and set m = 0
2: repeat
3: Compute the maximum norm Rm = maxv∈Lm ‖v‖
4: Initialize an empty list Lm+1 and an empty list of centers Cm+1
5: for each v ∈ Lm do
6: if ‖v‖ ≤ γRm then
7: Add v to the list Lm+1
8: Continue the loop
9: while w← Search{w ∈Cm+1 : ‖v±w‖ ≤ ‖w‖} do

10: Reduce v with w
11: Add v to the list Lm+1
12: Continue the outermost loop
13: Add v to the centers Cm+1

14: Increment m by 1
15: until Lm is empty
16: Search for a shortest vector in Lm−1

3.1 Description of the algorithm

The algorithm starts by generating a big list L0 of random lattice vectors with length
at most n‖B‖. Then, by repeatedly applying a sieve to this list, shorter lists of shorter
vectors are obtained, until the list is completely depleted. In that case, we go back
one step and search for the shortest vector in the last non-empty list.

The sieving step consists of splitting the previous list Lm in a set of ‘centers’ Cm+1
and a new list of vectors Lm+1 that will be used for the next round. For each vector
v ∈ Lm, the algorithm first checks if a vector w ∈Cm exists that is close to ±v. If this
is the case, then we add the vector v±w to Lm+1. Otherwise v is added to Cm+1. Since
the set Cm+1 consists of vectors with a bounded norm and any two vectors in this list
have a specified minimum pairwise distance, one can bound the size of Cm+1 from
above using a result of Kabatiansky and Levenshtein [41] regarding sphere packings.
In other words, Cm+1 will be sufficiently small, so that sufficiently many vectors are
left for inclusion in the list Lm+1. After applying the sieve, we discard all vectors in
Cm+1 and apply the sieve again to the vectors in Lm+1.

3.2 Classical complexities

In Line 9 of Algorithm 2, we have highlighted an application of a search subroutine
that could be replaced by a quantum search. Using a standard classical search al-
gorithm for this subroutine, under a certain heuristic assumption Nguyen and Vidick
give the following estimate for the time and space complexity of their algorithm. Note
that these estimates are based on the observation that the sizes of S and C are bounded
from above by 2chn+o(n), so that the total space complexity is at most O(|S|+ |C|) =
2chn+o(n) and the total time complexity is at most Õ(|S| · |C|) = 22chn+o(n), assuming
the sieve needs to be performed a polynomial number of times.

12 Thijs Laarhoven et al.

Lemma 3 [63] Let 2
3 < γ < 1 and let ch be defined as

ch =− log2(γ)− 1
2

log2

(
1− γ2

4

)
. (8)

Then the NV-Sieve algorithm heuristically returns a shortest non-zero lattice vector
s ∈ L \ {0} in time at most 2ctimen+o(n) and space at most 2cspacen+o(n), where ctime
and cspace are given by

ctime = 2ch, cspace = ch. (9)

To obtain a minimum time complexity, γ should be chosen as close to 1 as pos-
sible. Letting γ → 1 Nguyen and Vidick thus obtain the following estimates for the
complexity of their heuristic algorithm.

Corollary 2 [63] Letting γ → 1, we obtain

ctime ≈ 0.415, cspace ≈ 0.208. (10)

Thus, the NV-Sieve algorithm heuristically finds a shortest vector in time 20.415n+o(n)

and space 20.208n+o(n).

3.3 Quantum complexities

If we use a quantum search subroutine in Line 9, the complexity of this subroutine
decreases from Õ(|C|) to Õ(

√
|C|). Since this search is part of the bottleneck for the

time complexity, applying a quantum search here will decrease the overall running
time as well. Since replacing the classical search by a quantum search does not change
the internal behavior of the algorithm, the estimates and heuristics are as valid as they
were in the classical setting.

Lemma 4 Let 2
3 < γ < 1. Then the quantum version of the NV-Sieve algorithm

heuristically returns a shortest non-zero lattice vector in time at most 2qtimen+o(n) and
space at most 2qspacen+o(n), where qtime and qspace are given by

qtime =
3
2

ch, qspace = ch. (11)

Again, minimizing the asymptotic quantum time complexity corresponds to tak-
ing γ as close to 1 as possible, which leads to the following result.

Theorem 2 Letting γ → 1, we obtain

qtime ≈ 0.312, qspace ≈ 0.208. (12)

Thus, the quantum version of the NV-Sieve algorithm heuristically finds a shortest
vector in time 20.312n+o(n) and space 20.208n+o(n).

In other words, applying quantum search to Nguyen and Vidick’s sieve algorithm
leads to a 25% decrease in the asymptotic exponent of the runtime.

Finding shortest lattice vectors faster using quantum search 13

Algorithm 3 The GaussSieve algorithm
1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one)
4: while w← Search{w ∈ L : ‖v±w‖ ≤ ‖v‖} do
5: Reduce v with w
6: while w← Search{w ∈ L : ‖w±v‖ ≤ ‖w‖} do
7: Remove w from the list L
8: Reduce w with v
9: Add w to the stack S

10: if v has changed then
11: Add v to the stack S
12: else
13: Add v to the list L
14: until v is a shortest vector

4 The heuristic GaussSieve algorithm of Micciancio and Voulgaris

In 2010, Micciancio and Voulgaris [59] described a heuristic variant of their provable
ListSieve algorithm, for which they could not give a (heuristic) bound on the time
complexity, but which has a better heuristic bound on the space complexity, and has
a better practical time complexity. The algorithm is described in Algorithm 3.

4.1 Description of the algorithm

The algorithm is similar to the ListSieve-Birthday algorithm described earlier,
with the following main differences: (i) we do not explicitly generate two lists S, L to
apply the birthday paradox in the proof; (ii) we do not use a geometric factor γ < 1 but
always reduce a vector if it can be reduced; (iii) we also reduce existing list vectors
w ∈ L with newly sampled vectors, so that each two vectors in the list are pairwise
Gauss-reduced; and (iv) instead of specifying the number of iterations in advance,
we run the algorithm until we get so many collisions that we are convinced we have
found a shortest vector in our list.

4.2 Classical complexities

Micciancio and Voulgaris state that the algorithm above has an experimental time
complexity of about 20.52n and a space complexity which is most likely bounded by
20.208n due to the kissing constant [59, Section 5]. In practice this algorithm even
seems to outperform the NV-Sieve algorithm of Nguyen and Vidick [63]. It is there-
fore sometimes conjectured that this algorithm also has a time complexity of the
order 20.415n+o(n), and the apparent extra factor 20.1n in the experimental time com-
plexity may come from non-negligible polynomial factors in low dimensions. Thus
one might conjecture the following.

Conjecture 1 The GaussSieve algorithm heuristically returns a shortest non-zero
lattice vector in time at most 2ctimen+o(n) and space at most 2cspacen+o(n), where ctime

14 Thijs Laarhoven et al.

and cspace are given by

ctime ≈ 0.415, cspace ≈ 0.208. (13)

Note that this algorithm is again (conjectured to be) quadratic in the space com-
plexity, since each pair of list vectors needs to be compared and potentially reduced
at least once (and at most a polynomial number of times) to make sure that the final
list is Gauss-reduced.

4.3 Quantum complexities

To this heuristic algorithm, we can again apply the quantum speed-up using quantum
search. If the number of times a vector is compared with L to look for reductions is
polynomial in n, this then leads to the following result.

Conjecture 2 The quantum version of the GaussSieve algorithm heuristically re-
turns a shortest non-zero lattice vector in time at most 2qtimen+o(n) and space at most
2qspacen+o(n), where qtime and qspace are given by

qtime ≈ 0.312, qspace ≈ 0.208. (14)

This means that the exponent in the time complexity is again conjectured to be
reduced by about 25% using quantum search, and the exponents are the same as for
the NV-Sieve algorithm. Since the GaussSieve seems to outperform the NV-Sieve
in practice, applying quantum search to the GaussSieve will probably lead to better
practical time complexities.

5 The heuristic HashSieve algorithm of Laarhoven

5.1 Description of the algorithm

Recently, a modification of the GaussSieve and NV-Sieve algorithms was proposed
in [49], improving the time complexity by using angular locality-sensitive hashing.
By storing low-dimensional sketches of the list vectors w ∈ L in these algorithms,
it is possible to significantly reduce the number of list vectors w that need to be
compared to a target vector v at the cost of increasing the space complexity. Using
an exponential number of hash tables, where each list vector is assigned to one of the
hash buckets in each hash table, and where vectors in the same bucket are more likely
to be “close” in the Euclidean sense than vectors which are not in the same bin, we
obtain the set of candidate close(st) vectors by computing which bucket this vector
would have landed in, and taking all vectors from those bins as candidates.

Finding shortest lattice vectors faster using quantum search 15

Algorithm 4 The HashSieve algorithm
1: Initialize an empty list L and an empty stack S
2: Initialize t empty hash tables
3: Sample k · t random hash vectors
4: repeat
5: Get a vector v from the stack (or sample a new one)
6: Let the set of candidates C be those vectors that collide with v in one of the hash tables
7: while w← Search{w ∈C : ‖v±w‖ ≤ ‖v‖} do
8: Reduce v with w
9: while w← Search{w ∈C : ‖w±v‖ ≤ ‖w‖} do

10: Remove w from the list L
11: Remove w from the t hash tables
12: Reduce w with v
13: Add w to the stack S
14: if v has changed then
15: Add v to the stack S
16: else
17: Add v to the list L
18: Add v to the t hash tables
19: until v is a shortest vector

5.2 Classical complexities

With a proper balancing of the parameters, it can be guaranteed (heuristically) that
the number of candidate vectors for each comparison is of the order 20.1290n. This
roughly corresponds to having O(1) colliding vectors in each hash table, as the num-
ber of hash tables is also of the order t = 20.1290n, and this choice is optimal in the
sense that this leads to a minimal time complexity of 20.3366n; the space complexity
is also 20.3366n, and thus using even more hash tables increases the space complexity
beyond the time complexity, thus also increasing the time complexity further. The
exact choice of parameters is given below.

Lemma 5 [49, Corollary 1] Let log2(t) ≈ 0.129. Then the HashSieve algorithm
heuristically returns a shortest non-zero lattice vector in time at most 2ctimen+o(n) and
space at most 2cspacen+o(n), where ctime and cspace are given by

ctime ≈ 0.337, cspace ≈ 0.337. (15)

In other words, using t ≈ 20.129n hash tables and a hash length of k≈ 0.221n, the time
and space complexities of the HashSieve algorithm are balanced at 20.337n+o(n).

5.3 Quantum complexities

With a quantum search on the set of candidates in Lines 7 and 9, we can further reduce
the time complexity. The optimization changes in the sense that the time to search the
list of candidates with quantum search is potentially reduced from 2(2−α)cnn+o(n) to
2(3

2−
1
2 α)cnn+o(n), where cn = log2 N ≈ 0.2075 is the expected log-length of the list

L and α is defined in [49]. The numerical optimization of the parameters can be
performed again, and leads to the following result.

16 Thijs Laarhoven et al.

Theorem 3 Let log2(t) ≈ 0.078. Then the quantum HashSieve algorithm heuristi-
cally returns a shortest non-zero lattice vector in time at most 2qtimen+o(n) and space
at most 2qspacen+o(n), where qtime and qspace are given by

qtime ≈ 0.286, qspace ≈ 0.286. (16)

In other words, using t ≈ 20.078n hash tables and a hash length of k ≈ 0.134n, the
quantum time and space complexities of the algorithm are balanced at 20.286n+o(n).

It is possible to obtain a continuous trade-off between the quantum time and
space complexities, by choosing log2(t) ∈ [0,0.07843] differently. Similar to Fig-
ure 1 of [49], Figure 1 shows the resulting trade-off, and a comparison with previous
classical heuristic time complexities.

6 Other sieve algorithms

6.1 The provable AKS-Sieve of Ajtai et al.

Ajtai et al. [3] did not provide an analysis with concrete constants in the exponent
in their original paper of the AKS-Sieve. We expect that it is possible to speed up
this version of the algorithm using quantum search as well, but instead we consider
several subsequent variants that are easier to analyse.

The first of these was by Regev [71], who simplified the presentation and gave
concrete constants for the running time and space complexity. His variant is quadratic
in the list size, which is bounded by 28n+o(n), leading to a worst-case time complexity
of 216n+o(n). Using quantum search, the exponent in the runtime decreases by 25%,
which results in a run-time complexity of 212n+o(n).

Nguyen and Vidick [63] improved this analysis by carefully choosing the pa-
rameters of the algorithm, which resulted in a space complexity of 22.95n+o(n). The
running time of 25.9n+o(n) is again quadratic in the list size, and can be improved
using quantum search by 25% to 24.425n.

Micciancio and Voulgaris improve the constant as follows. Say that the initial list
contains 2c0n+o(n) vectors, the probability that a point is not a collision at the end
is p = 2−cun+o(n) and the maximum number of points used as centers is 2csn+o(n).
Each step of sieving costs 2(c0+cs)n+o(n) time. Now, after k sieving steps of the al-
gorithm the number of points will be |Pk| = Õ(2c0n− k2csn), which results in |Vk| =
Õ((2c0n− k2csn)/2cun) ≈ 2cRn+o(n) distinct non-perturbed lattice points. This set Pk
is then searched for a pair of lattice vectors such that the difference is a non-zero
shortest vector, which classically costs |Vk| · |Pk|= 2(2cR+cu)n+o(n).

Classical complexities. In the above description, we have the following correspon-
dence:

cu = log

(
ξ√

ξ 2−0.25

)
, cs = 0.401+ log

(
1
γ

)
, (17)

cR = 0.401+ log
(

ξ

(
1+

1
1− γ

))
, c0 = max{cs,cR + cu}. (18)

Finding shortest lattice vectors faster using quantum search 17

where ξ ∈ [0.5, 1
2

√
2) and γ < 1. The space complexity is 2c0n+o(n) and the time

complexity is 2cT n+o(n) with

ctime = max{c0 + cs, 2cR + cu}, cspace = c0. (19)

Optimizing ξ and γ to minimize the classical time complexity leads to ξ ≈ 0.676 and
γ ≈ 0.496 which gives space 21.985n+o(n) and time 23.398n+o(n).

Quantum complexities. Quantum searching in the sieving step speeds up this part
of the algorithm to 2(c0+ 1

2 cs)n+o(n). In the final step quantum search can be used to
speed up the search to

√
|Vk| · |Pk| =

√
2cRn · 2(cR+cu)n+o(n) = 2(3

2 cR+cu)n+o(n). Thus,
the exponents of the quantum time and space become

qtime = max
{

c0 +
1
2

cs,
3
2

cR + cu

}
, qspace = c0. (20)

Optimizing gives ξ → 1
2

√
2 and γ = 0.438, which results in a space complexity of

21.876n+o(n) and running time of 22.672n+o(n).

6.2 The provable ListSieve of Micciancio and Voulgaris

The provable ListSieve algorithm of Micciancio and Voulgaris [59] was introduced
as a provable variant of their heuristic GaussSieve algorithm, achieving a better time
complexity than with the optimized analysis of the AKS-Sieve. Instead of starting
with a big list and repeatedly applying a sieve to reduce the length of the list (and
the norms of the vectors in the list), the ListSieve builds a longer and longer list of
vectors, where each new vector to be added to the list is first reduced with all other
vectors in the list. (But unlike the GaussSieve, vectors already in the list are never
modified.) Complete details of the algorithm and its analysis can be found in [59].

Classical complexities. First, for ξ ∈ (0.5,0.7) we write

c1 = 0.401+ log2

(
ξ +

√
1+ξ 2

)
, c2 = log2

 ξ√
ξ 2− 1

4

 . (21)

Then the ListSieve algorithm has a provable complexity of at most 2(2c1+c2)n+o(n)

(time) and 2c1n+o(n) (space) for any ξ in this interval. Minimizing the time complexity
leads to ξ ≈ 0.685, with a time complexity of 23.199n+o(n) and a space complexity of
21.325n+o(n).

18 Thijs Laarhoven et al.

Quantum complexities. Using quantum search, it can be seen that the inner search of
the list of length N = 2c1n+o(n) can now be performed in time 2

1
2 c1n+o(n). Thus the

total time complexity becomes 2(3
2 c1+c2)n+o(n) now. Optimizing for ξ shows that the

optimum is at the boundary of ξ → 0.7.
Looking a bit more closely at Micciancio and Voulgaris’ analysis, we see that the

condition ξ < 0.7 comes from the condition that ξ × µ ≤ 1
2 λ 2

1 . Taking µ < 1.01λ1
then approximately leads to the given bound for ξ , and since in the classical case the
optimum does not lie at the boundary anyway, this was sufficient for Micciancio and
Voulgaris. However, now that the optimum is at the boundary, we can see that we can
slightly push the boundary further and slightly relax the condition ξ < 0.7. For any
constant ε > 0 we can also let µ < (1 + ε)λ1 without losing any performance of the
algorithm, and for small ε this roughly translates to the bound ξ < 1

2

√
2≈ 0.707.

With this adjustment in their analysis, the optimum is at the boundary of ξ →
1
2

√
2, in which case we get a quantum time complexity of 22.527n+o(n) and a space

complexity of 21.351n+o(n).

6.3 The provable AKS-Sieve-Birthday algorithm of Hanrot et al.

Hanrot, Pujol and Stehlé [37] described a speed-up for the AKS-Sieve using the
birthday paradox [57], similar to the speed-up that Pujol and Stehlé describe for
Listsieve. Recall that the AKS-Sieve consists of an initial sieving step that gener-
ates a list of reasonably small vectors, followed by a pairwise comparison of the re-
maining vectors because the difference of at least one pair is expected to be a shortest
non-zero vector. If this list of reasonably small vectors are independent and identi-
cally distributed, the number of vectors required is reduced to the square root of the
original amount by the birthday paradox. They describe how this can be done for the
AKS-Sieve, which requires fixing what vectors are used as centers for every itera-
tion. This means that when a perturbed vector does not lie close to any of the fixed
centers in the generation of the list of small vectors, it is discarded.

Classical complexities. For ξ > 1
2 and γ < 1 we write

ct = 0.401− log2(γ),cb = 0.401+ log2

(
ξ +

ξ

1− γ

)
,cg =−1

2
log2

(
1− 1

4ξ 2

)
.

(22)

The AKS-Sieve-Birthday algorithm now has a time complexity of 2ctimen+o(n) and
a space complexity of 2cspacen+o(n), where

ctime = cg +max
{

2ct ,cg + ct +
cb

2
,cg + cb

}
, cspace = cg +max

{
ct ,

cb

2

}
. (23)

Working out the details, the classically optimized constants are ξ → 1 and γ ≈ 0.609
leading to a time complexity of 22.64791n+o(n) and a space complexity of 21.32396n+o(n).

Finding shortest lattice vectors faster using quantum search 19

Quantum complexities. Replacing various steps with quantum search gives the same
space exponent qspace = cspace as in the classical case, and leads to the following time
exponent:

qtime = cg +max
{

3ct

2
,

ct

2
+

cb

2
,

cg

2
+ ct +

cb

4
,

cg

2
+

3cb

4

}
. (24)

Optimizing the parameters to obtain the lowest quantum time complexity, we get the
same constants ξ → 1 and γ ≈ 0.609 leading to a time complexity of 21.98548n+o(n)

(which is exactly a 25% gain in the exponent) and a space complexity of 21.32366n+o(n).

6.4 The heuristic 2-Level-Sieve of Wang et al.

To improve upon the time complexity of the algorithm of Nguyen and Vidick, Wang
et al. [84] introduced a further trade-off between the time complexity and the space
complexity. Their algorithm uses two lists of centers C1 and C2 and two geometric
factors γ1 and γ2, instead of the single list C and single geometric factor γ in the
algorithm of Nguyen and Vidick. For details, see [84].

Classical complexities. The classical time complexity of this algorithm is bounded
from above by Õ(|C1| · |C2| ·(|C1|+ |C2|)), while the space required is at most O(|C1| ·
|C2|). Optimizing the constants γ1 and γ2 in their paper leads to (γ1,γ2)≈ (1.0927,1),
with an asymptotic time complexity of less than 20.384n+o(n) and a space complexity
of about 20.256n+o(n).

Quantum complexities. By using the quantum search algorithm for searching the lists
C1 and C2, the time complexity is reduced to Õ(|C1| · |C2| ·

√
|C1|+ |C2|), while the

space complexity remains O(|C1| · |C2|). Re-optimizing the constants for a minimum
quantum time complexity leads to (γ1,γ2) ≈ (

√
2,1), leading to the same time and

space complexities as the quantum-version of the algorithm of Nguyen and Vidick.
Due to the simpler algorithm and smaller constants, a quantum version of the algo-
rithm of Nguyen and Vidick will most likely be more efficient than a quantum version
of the algorithm of Wang et al.

6.5 The heuristic 3-Level-Sieve of Zhang et al.

To further improve upon the time complexity of the 1-Level-Sieve (NV-Sieve) of
Nguyen and Vidick and the 2-Level-Sieve of Wang et al. [84], Zhang et al. [85]
introduced the 3-Level-Sieve, with a further trade-off between the time complexity
and the space complexity. Their algorithm generalizes the 2-Level-Sieve with two
lists of centers (with different radii) to three lists of centers. For the complete details
of this algorithm, see [85].

20 Thijs Laarhoven et al.

Classical complexities. The classical time complexity of this algorithm is bounded
by Õ(|C1| · |C2| · |C3| ·(|C1|+ |C2|+ |C3|)), while the space required is at most O(|C1| ·
|C2|·|C3|). Optimizing the constants γ1,γ2,γ3 leads to (γ1,γ2,γ3)≈ (1.1399,1.0677,1),
with an asymptotic time complexity of less than 20.378n+o(n) and a space complexity
of about 20.283n+o(n).

Quantum complexities. By using the quantum search algorithm for searching the
lists C1,2,3, the time complexity is reduced to Õ(|C1| · |C2| · |C3| ·

√
|C1|+ |C2|+ |C3|),

while the space complexity remains O(|C1| · |C2| · |C3|). Re-optimizing the constants
for a minimum time complexity leads to (γ1,γ2,γ3) ≈ (

√
2,
√

2,1), again leading to
the same time and space complexities as the quantum-version of the algorithm of
Nguyen and Vidick and the quantum version of the 2-Level-Sieve of Wang et al.
Again the hidden polynomial factors of the 3-Level-Sieve are much larger, so the
quantum version of the NV-Sieve of Nguyen and Vidick is most likely faster.

6.6 The heuristic Overlattice-Sieve of Becker et al.

The Overlattice-Sieve works by decomposing the lattice into a sequence of over-
lattices such that the lattice at the bottom corresponds to the challenge lattice, whereas
the lattice at the top corresponds to a lattice where enumerating short vectors is easy
due to orthogonality. The algorithm begins by enumerating many short vectors in the
top lattice and then iteratively moves down through the sequence of lattices by com-
bining short vectors in the overlattice to form vectors in the lattice directly below it in
the sequence. It keeps only the short non-zero vectors that are formed in this manner
and uses them for the next iteration. In the last iteration, it generates short vectors in
the challenge lattice, and these give a solution to the shortest vector problem. Since
the algorithm actually works on cosets of the lattice, it is more naturally seen as an
algorithm for the closest vector problem, which it solves as well. The algorithm relies
on the assumption that the Gaussian Heuristic holds in all the lattices in the sequence.

More specifically, at any one time the algorithm deals with β n vectors that are
divided into αn buckets with on average β n/αn vectors per bucket. These buckets are
divided into pairs such that any vector from a bucket and any vector from its paired
bucket combine into a lattice vector in the sublattice. Therefore, exactly β 2n/αn com-
binations need to be made in each iteration.

Classical complexities. The above leads to a classical running time of Õ(β 2n/αn)
and a space complexity of Õ(β n), under the constraints that

1 < α <
√

2, α
n ∈ Z, β

√
1− α2

4
≥ 1+ εn,

where εn is some function that decreases towards 0 as n grows. Optimizing α and

β for the best time complexity gives α =
√

4
3 and β =

√
3
2 for a running time of

20.3774n+o(n) and a space complexity of 20.2925n+o(n).

Finding shortest lattice vectors faster using quantum search 21

Quantum complexities. By using the quantum search algorithm to search for suitable
combinations for every vector, the running time can be reduced to Õ(β 3n/2/αn/2).

This is optimal for α → 1, β =
√

4
3 , which gives a quantum time complexity of

20.311n+o(n) and a space complexity of 20.2075n+o(n). Interestingly, in the classical case
there is a trade-off between α and β , which allows for a bigger α (reducing the
running time) at the cost of increasing β (increasing the space complexity). In the
quantum case, this trade-off is no longer possible: increasing α and β actually leads
to a larger running time as well as a larger space complexity. Thus, the resulting
quantum complexity is heuristically no better than the other sieving algorithms, but
this algorithm solves CVP as well as SVP.

7 Other SVP algorithms

7.1 Enumeration algorithms

Recall that enumeration considers all lattice vectors inside a giant ball around the
origin that is known to contain at least one lattice vector. Let L be a lattice with basis
{b1, . . . ,bn}. Consider each lattice vector u ∈L as a linear combination of the basis
vectors, i.e., u = ∑i uibi. Now, we can represent each lattice vector by its coefficient
vector (u1, . . . ,un). We would like to have all combinations of values for (u1, . . . ,un)
such that the corresponding vector u lies in the ball. We could try any combination
and see if it lies within the ball by computing the norm of the corresponding vector,
but there is a smarter way that ensures we only consider vectors that lie within the
ball and none that lie outside.

To this end, enumeration algorithms search from right to left, by identifying all
values for un such that there might exist u′1, . . . ,u

′
n−1 such that the vector correspond-

ing to (u′1, . . . ,u
′
n−1,un) lies in the ball. To identify these values u′1, . . . ,u

′
n−1, enumer-

ation algorithms use the Gram-Schmidt orthogonalization of the lattice basis as well
as the projection of lattice vectors. Then, for each of these possible values for un, the
enumeration algorithm considers all possible values for un−1 and repeats the process
until it reaches possible values for u1. This leads to a search which is serial in nature,
as each value of un will lead to different possible values for un−1 and so forth. Unfor-
tunately, we can only really apply the quantum search algorithm to problems where
the list of objects to be searched is known in advance.

One might suggest to forego the smart way to find short vectors and just search
all combinations of (u1, . . . ,un) with appropriate upper and lower bounds on the dif-
ferent ui’s. Then it becomes possible to apply quantum search, since we now have
a predetermined list of vectors and just need to compute the norm of each vector.
However, it is doubtful that this will result in a faster algorithm, because the recent
heuristic changes by Gama et al. [30] have reduced the running time of enumera-
tion dramatically (roughly by a factor 2n/2) and these changes only complicate the
search area further by changing the ball to an ellipsoid. There seems to be no simple
way to apply quantum search to the enumeration algorithms that are currently used
in practice, but perhaps the algorithms can be modified in some way.

22 Thijs Laarhoven et al.

7.2 The Voronoi cell algorithm

Consider a set of points in the Euclidean space. For any given point in this set, its
Voronoi cell is the region that contains all vectors that lie closer to this point than to
any of the other points in the set. Now, given a Voronoi cell, we define a relevant vec-
tor to be any vector in the set whose removal from the set will change this particular
Voronoi cell. If we pick our lattice as the set and we consider the Voronoi cell around
the zero vector, then any shortest vector is also a relevant vector. Furthermore, given
the relevant vectors of the Voronoi cell we can solve the closest vector problem in
22n+o(n) time.

So how can we compute the relevant vectors of the Voronoi cell of a lattice L ?
Micciancio and Voulgaris [58] show that this can be done by solving 2n−1 instances
of CVP in the lattice 2L . However, in order to solve CVP we would need the rele-
vant vectors which means we are back to our original problem. However, Micciancio
and Voulgaris show that these instances of CVP can also be solved by solving several
related CVP instances in a lattice of lower rank. They give a basic and an optimized
version of the algorithm. The basic version only uses LLL as preprocessing and solves
all these related CVP instances in the lower rank lattice separately. As a consequence,
the basic algorithm runs in time 23.5n+o(n) and in space 2n+o(n). The optimized algo-
rithm uses a stronger preprocessing for the lattice basis, which takes exponential time.
But since the most expensive part is the computation of the Voronoi relevant vectors,
this extra preprocessing time does not increase the asymptotic running time as it is ex-
ecuted only once. In fact, having the reduced basis decreases the asymptotic running
time to Õ(23n). Furthermore, the optimized algorithm employs a trick that allows it
to reduce 2k CVP instances in a lattice of rank k to a single instance of an enumera-
tion problem related to the same lattice. The optimized algorithm solves CVP in time
Õ(22n) using Õ(2n) space.

Now, in the basic algorithm, it would be possible to speed up the routine that
solves the CVP given the Voronoi relevant vectors using a quantum computer. It
would also be possible to speed up the routine that removes non-relevant vectors
from the list of relevant vectors using a quantum computer. Combining these two
changes gives a quantum algorithm with an asymptotic running time Õ(22.5n), which
is still slower than the optimized classical algorithm. It is not possible to apply these
same speedups to the optimized algorithm due to the aforementioned trick with the
enumeration problem. The algorithm to solve this enumeration problem makes use
of a priority queue, which means the search is not trivially parallellized. Once again,
there does not seem to be a simple way to apply quantum search to this special enu-
meration algorithm. However, it may be possible that the algorithm can be modified
in such a way that quantum search can be applied.

Acknowledgments.

This report is partly a result of fruitful discussions at the Lorentz Center Workshop
on Post-Quantum Cryptography and Quantum Algorithms, Nov. 5–9 2012, Leiden,
The Netherlands and partly of discussions at IQC, Aug. 2014, Waterloo, Canada.

Finding shortest lattice vectors faster using quantum search 23

In particular, we would like to thank Felix Fontein, Nadia Heninger, Stacey Jeffery,
Stephen Jordan, John M. Schanck, Michael Schneider, Damien Stehlé and Benne
de Weger for valuable discussions. Finally, we thank the anonymous reviewers of
PQCrypto 2013 for their helpful comments and suggestions.

The first author is supported by DIAMANT. The second author is supported by
Canada’s NSERC (Discovery, SPG FREQUENCY, and CREATE CryptoWorks21),
MPrime, CIFAR, ORF and CFI; IQC and Perimeter Institute are supported in part by
the Government of Canada and the Province of Ontario. The third author is supported
in part by EPSRC via grant EP/I03126X.

M. Mosca is profoundly grateful for Scott Vanstone’s generous guidance and sup-
port over his entire research career. Scott introduced him to public-key cryptography
as an undergraduate, and co-founded the Centre for Applied Cryptographic Research
at Waterloo with a vision of starting a quantum computing group within the centre.
Scott gave tremendous support for the development of Waterloos Institute for Quan-
tum Computing and quantum-safe cryptography until his most unfortunate and sad
passing.

References

1. Aharonov, D., Regev, O.: A lattice problem in quantum NP. In: FOCS, pp. 210–219 (2003)
2. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions. In: STOC, pp. 10–

19 (1998)
3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In:

STOC, pp. 601–610 (2001)
4. Ambainis, A.: Quantum walk algorithm for element distinctness. In: FOCS, pp. 22–31 (2003)
5. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Accelerated verification of

ECDSA signatures. In: SAC, pp. 307–318 (2006)
6. Aono, Y., Naganuma, K.: Heuristic improvements of BKZ 2.0. IEICE Tech. Rep. 112 (211), pp. 15–22

(2012)
7. Becker, A., Gama, N., Joux, A.: A sieve algorithm based on overlattices. In: ANTS, pp. 49–70 (2014)
8. Bennett, C. H., Bernstein, E., Brassard, G., Vazirani, V.: Strengths and weaknesses of quantum com-

puting. SIAM J. Comput. 26 (5), pp. 1510–1523 (1997)
9. Bernstein, D. J.: Cost analysis of hash collisions: Will quantum computers make SHARCs obsolete?.

In: SHARCS (2009)
10. Bernstein, D. J., Buchmann, J., Dahmen, E. (eds.): Post-quantum cryptography. Springer (2008)
11. Blake, I. F., Fuji-Hara, R., Mullin, R. C., Vanstone, S. A.: Computing logarithms in finite fields of

characteristic two. SIAM J. Algebraic Discrete Methods 5 (2), pp. 276–285 (1984)
12. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of secret keys in Diffie-

Hellman and related schemes. In: CRYPTO, pp. 129–142 (1996)
13. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der

Physik 46, pp. 493–505, (1998)
14. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping.

In: ITCS, pp. 309–325 (2012)
15. Brassard, G., Høyer P., Tapp A.: Quantum cryptanalysis of hash and claw-free functions. In: LATIN,

pp. 163–169 (1998)
16. Brassard, G., Høyer P., Mosca M., and Tapp, A.: Quantum amplitude amplification and estimation.

AMS Contemporary Mathematics Series Millennium Vol. entitled Quantum Computation & Informa-
tion, vol. 305 (2002)

17. Buhrman, B., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R.: Quantum
algorithms for element distinctness, SIAM J. Comput. 34 (6), pp. 1324–1330 (2005)

18. Chen, Y., Nguyen, P. Q.: BKZ 2.0: Better lattice security estimates. In: ASIACRYPT, pp. 1–20 (2011)
19. Childs, A. M., Van Dam, W.: Quantum algorithms for algebraic problems, Rev. Mod. Phys. 82, pp. 1–

52 (2010)

24 Thijs Laarhoven et al.

20. Childs, A. M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subexponential
time. arXiv:1012.4019 (2010)

21. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities.
Journal of Cryptology 10 (4), pp. 233–260 (1997)

22. Coster, M. J., Joux, A., LaMacchia, B. A., Odlyzko, A. M., Schnorr, C. P., Stern, J.: Improved low-
density subset sum algorithms. In: Computational Complexity 2 (2), pp. 111–128 (1992)

23. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In:
CRYPTO, pp. 40–56 (2013)

24. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model. In: CRYPTO,
pp. 335–352 (2014)

25. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including
a complexity analysis. Math. Comp. 44, pp. 463–471 (1985)

26. Fitzpatrick, R., Bischof, C., Buchmann, J., Dagdelen, Ö., Göpfert, F., Mariano, A., Yang, B.-Y.: Tun-
ing GaussSieve for speed. In: LATINCRYPT, pp. 284–301 (2014)

27. Galbraith, S. D., Scott, M.: Exponentiation in pairing-friendly groups using homomorphisms. In:
Pairing-Based Cryptography, pp. 211–224 (2008)

28. Gallant, R. P., Lambert, R. J., Vanstone, S. A.: Faster point multiplication on elliptic curves with
efficient endomorphisms. In: CRYPTO, pp. 190–200 (2001)

29. Gama, N., Nguyen, P. Q.: Predicting lattice reduction. In: EUROCRYPT, pp. 31–51 (2008)
30. Gama, N., Nguyen, P. Q., Regev, O.: Lattice enumeration using extreme pruning. In: EUROCRYPT,

pp. 257–278 (2010)
31. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic con-

structions. In: STOC, pp. 197–206 (2008)
32. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)
33. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett., vol. 100,

160501 (2008)
34. Grover, L. K.: A fast quantum mechanical algorithm for database search. In: STOC, pp. 212–219

(1996)
35. Grover, L. K., Rudolph, T.: How significant are the known collision and element distinctness quantum

algorithms? Quantum Info. Comput. 4 (3), pp. 201–206 (2004)
36. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem.

J. ACM. 54 (1), pp. 653–658 (2007)
37. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice vector problems. In:

IWCC, pp. 159–190 (2011)
38. Hoffstein, J., Pipher, J., Silverman, J.: NTRU: A ring-based public key cryptosystem. In: ANTS,

pp. 267–288 (1998)
39. Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel Gauss Sieve algorithm: Solving the SVP

challenge over a 128-dimensional ideal lattice. In: PKC, pp. 411–428 (2014)
40. Jeffery, S.: Collision finding with many classical or quantum processors. Master’s thesis, University

of Waterloo (2011)
41. Kabatiansky, G., Levenshtein, V. I.: On bounds for packings on a sphere and in space. Problemy

Peredachi Informacii 14 (1), pp. 3–25 (1978)
42. Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: STOC,

pp. 193–206 (1983)
43. Khot, S.: Hardness of approximating the shortest vector problem in lattices. In: Journal of the ACM 52

(5), pp. 789–808 (2005)
44. Kuo, P.C., Schneider, M., Dagdelen, Ö., Reichelt, J., Buchmann, J., Cheng, C.M., Yang, B.Y.: Extreme

enumeration on GPU and in clouds. In: CHES, pp. 176–191 (2011)
45. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem.

SIAM J. Comput. 35 (1), pp. 170–188 (2005)
46. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral hidden subgroup

problem. arXiv, Report 1112/3333, pp. 1–10 (2011)
47. Laarhoven, T., van de Pol, J., de Weger, B.: Solving hard lattice problems and the security of lattice-

based cryptosystems. Cryptology ePrint Archive, Report 2012/533, pp. 1–43 (2012)
48. Laarhoven, T., Mosca, M., van de Pol, J.: Solving the shortest vector problem in lattices faster using

quantum search. In: PQCrypto, pp. 83–101 (2013)
49. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-sensitive hashing. Cryp-

tology ePrint Archive, Report 2014/744, pp. 1–24 (2014)

Finding shortest lattice vectors faster using quantum search 25

50. Lagarias, J. C., Odlyzko, A. M.: Solving low-density subset sum problems. In: JACM 32 (1), pp. 229–
246 (1985)

51. Lenstra, A. K., Lenstra, H., Lovász, L.: Factoring polynomials with rational coefficients. Math.
Ann. 261 (4), pp. 515–534 (1982)

52. Lindner, R., Rückert, M., Baumann, P., Nobach, L.: Lattice Challenge. Online at http://www.
latticechallenge.org/ (2014)

53. Ludwig, C.: A faster lattice reduction method using quantum search. In: ISAAC, pp. 199–208 (2003)
54. Lyubashevsky, V.: Lattice signatures without trapdoors. In: EUROCRYPT, pp. 738-755 (2012)
55. Mariano, A., Timnat, S., Bischof, C.: Lock-free GaussSieve for linear speedups in parallel high per-

formance SVP calculation. In: SBAC-PAD (2014)
56. Mariano, A., Dagdelen, Ö., Bischof, C.: A comprehensive empirical comparison of parallel ListSieve

and GaussSieve. In: APCI&E (2014)
57. Menezes, A. J., van Oorschot, P. C., Vanstone, S. A.: Handbook of applied cryptography. CRC Press

(1996)
58. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice prob-

lems based on Voronoi cell computations. In: STOC, pp. 351–358 (2010)
59. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem. In:

SODA, pp. 1468–1480 (2010)
60. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: EUROCRYPT,

pp. 700–718 (2012)
61. Milde, B., Schneider, M.: A parallel implementation of GaussSieve for the shortest vector problem in

lattices. In: PaCT, pp. 452–458 (2011)
62. Mosca, M.: Quantum algorithms. Encyclopedia of Complexity and Systems Science, pp. 7088–7118

(2009)
63. Nguyen, P. Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical. J. Math.

Crypt. 2 (2), pp. 181–207 (2008)
64. Plantard, T., Schneider, M.: Ideal Lattice Challenge. Online at

http://latticechallenge.org/ideallattice-challenge/ (2014)
65. Pohst, M.: On the computation of lattice vectors of minimal length, successive minima and reduced

bases with applications. ACM SIGSAM Bulletin 15 (1), pp. 37–44 (1981)
66. van de Pol, J.: Lattice-based cryptography. Master’s thesis, Eindhoven University of Technology

(2011)
67. van de Pol, J., Smart, N. P.: Estimating key sizes for high dimensional lattice-based systems. In:

IMACC, pp. 290–303 (2013)
68. Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time 22.465n. Cryptology ePrint

Archive, Report 2009/605, pp. 1–7 (2009)
69. Qu, M., Vanstone, S. A.: The knapsack problem in cryptography. In: Finite Fields: Theory, Applica-

tions, and Algorithms 168, pp. 291–308 (1994)
70. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup problem with polyno-

mial space. arXiv, Report 0405/151, pp. 1–7 (2004)
71. Regev, O.: Lattices in computer science. Lecture notes for a course at the Tel Aviv University (2004)
72. Regev, O.: Quantum computation and lattice problems. SIAM J. Comput. 33 (3), pp. 738–760 (2004)
73. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–

93 (2005)
74. Santha, M.: Quantum walk based search algorithms. In: TAMC, pp. 31–46 (2008)
75. Schneider, M.: Analysis of Gauss-Sieve for solving the shortest vector problem in lattices. In: WAL-

COM, pp. 89–97 (2011)
76. Schneider, M.: Sieving for short vectors in ideal lattices. In: AFRICACRYPT, pp. 375–391 (2013)
77. Schneider, M., Gama, N., Baumann, P., Nobach, L.: SVP Challenge. Online at

http://latticechallenge.org/svp-challenge (2014)
78. Schnorr, C. P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Com-

puter Science 53 (2–3), pp. 201–224 (1987)
79. Schnorr, C. P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset

sum problems. Mathematical Programming 66 (2–3), pp. 181–199 (1994)
80. Schnorr, C. P.: Lattice reduction by random sampling and birthday methods. In: STACS, pp. 145–156

(2003)
81. Shor, P. W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer. SIAM J. Comput. 26 (5), pp. 1484–1509 (1997)

http://www.latticechallenge.org/
http://www.latticechallenge.org/
http://latticechallenge.org/ideallattice-challenge/
http://latticechallenge.org/svp-challenge

26 Thijs Laarhoven et al.

82. Smith, J., Mosca, M.: Algorithms for quantum computers. Handbook of Natural Computing,
pp. 1451–1492 (2012)

83. Vanstone, S. A., Zuccherato, R. J.: Short RSA keys and their generation. Journal of Cryptology 8 (2),
pp. 101–114 (1995)

84. Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic sieve algorithm for shortest
vector problem. In: ASIACCS, pp. 1–9 (2011)

85. Zhang, F., Pan, Y., Hu, G.: A three-level sieve algorithm for the shortest vector problem. In: SAC,
pp. 29–47 (2013)

	Introduction
	The provable ListSieve-Birthday algorithm of Pujol and Stehlé
	The heuristic NV-Sieve algorithm of Nguyen and Vidick
	The heuristic GaussSieve algorithm of Micciancio and Voulgaris
	The heuristic HashSieve algorithm of Laarhoven
	Other sieve algorithms
	Other SVP algorithms

