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Abstract. In many applications, encryption alone does not provide enough security.
To enhance security, dedicated authenticated encryption (AE) mode are invented.
Galios Counter Mode (GCM) and Counter with CBC-MAC mode (CCM) are the
AE modes recommended by the National Institute of Standards and Technology.
To support high data rates, AE modes are usually implemented in hardware. How-
ever, natural faults reduce its reliability and may undermine both its encryption and
authentication capability. We present a low-cost concurrent error detection (CED)
scheme for 7 AE architectures. The proposed technique explores idle cycles of the
AE mode architectures. Experimental results shows that the performance overhead
can be lower than 100% for all architectures depending on the workload. FPGA im-
plementation results show that the hardware overhead in the 0.1-23.3% range and
the power overhead is in the 0.2-23.2% range. ASIC implementation results show
that the hardware overhead in the 0.1-22.8% range and the power overhead is in the
0.3-12.6% range. The underlying block cipher and hash module need not have CED
built in. Thus, it allows system designers to integrate block cipher and hash function
intellectual property from different vendors.

1 Introduction

Symmetric key encryption is widely used for confidential communications. The most widely
used symmetric key encryption is Advanced Encryption Standard [36]. However, if an at-
tacker can intercept, tamper with, and send ciphertexts to the receiver, symmetric key
encryption can fail catastrophically, allowing the attacker to partially or completely decrypt
messages [4, 6, 14, 40]. These attacks require the attacker to only see an error message from
the receiver.

A simple countermeasure for these attacks is to use message authentication code (MAC)
such as HMAC on ciphertexts [9]. Encrypting the message and then generating a MAC
is provably secure as long as the encryption and MAC have certain properties [25]. A de-
signer should also consider other critical implementation issues; i.e., the message space,
the padding, the key setup, the nonce requirement, parallelizability, whether it is online1,
preprocessing, provable security, and intellectual property restrictions. Intellectual property
restriction is a very important consideration, because companies which own encryption and
authentication primitives can combine them freely for authenticated encryption. For these
reasons, specialized block cipher modes of operation, called Authenticated Encryption (AE)
mo- des, are invented. AE modes handle both the encryption and authentication.

To satisfy the security and speed requirements of various information disciplines, e.g.,
networking, telecommunications, database systems, and mobile applications, many crypto-
graphic systems are implemented as cryptographic accelerators. The complexity of these
hardware implementations is raising concerns regarding their security and reliability. As

1 Whether one needs to know the message size before encrypting it.



VLSI technology keeps scaling, the chips will have more soft errors [33], process varia-
tion [12], and aging [3]. Cryptographic chips are sensitive to faults in hardware [7]. Radi-
ation, heat, incorrect voltages, and atypical clock rates all cause cryptographic devices to
malfunction [22].

In order to protect cryptographic hardware from fau- lts, concurrent error detection
(CED) has been developed. There are four different types of CED, i.e., hardware, time,
information, and hybrid redundancies. Hardware redundancy duplicates the function and
detects faults by comparing the outputs of two copies. Time redundancy computes the same
input twice using the same function and compares the results. Information redundancy
techniques are based on error detecting codes (EDC). A few check bits are generated from the
input message; then they propagate along with the input message and are finally validated
when the output message is generated.

For AES, information redundancy techniques such as parity and robust code are pro-
posed. Parity for AES has been studied extensively [10, 15, 29, 32, 34, 43]. Their hardware
overheads are in the range of 8-26%. Robust code provides uniform fault coverage for dif-
ferent fault distributions [23]. However, to ensure the uniform fault coverage, its hardware
overhead is over 70%. a generic hybrid redundancy scheme uses decryption to check encryp-
tion and vice versa [24]. Although this scheme has near optimal fault coverage, it requires
both encryption and decryption to be on the same chip. Although this is a reasonable as-
sumption for standalone AES chips, it is not the case if the cipher uses block cipher counter
mode (CTR), cipher block chaining mode (CBC), or cipher feedback mode (CFB) [17]. An-
other example hybrid redundancy merges the encryption and decryption datapath and time
multiplexing the encryption and decryption operations [39]. But such time multiplexing is
difficult and requires many registers to store results if the latency of round operations are
different.

For Galois Field (GF) multipliers, a parity CED for GF multipliers with arbitrary irre-
ducible polynomials is developed with a hardware overhead of 10.29% [8]. The REcomputing
using Shifted Operand (RESO) is applied to polynomial basis multipliers [27]. However, this
technique can only be used for irreducible polynomials with all ones or equally spaced ones.
Thus, it is not applicable to Galois Field (GF) multiplier-adders (GHASH).

All these schemes focuses on protecting individual cryptographic primitives. Although
one can use separate CEDs for AES and GHASH, a straightforward combination of CED-
enabled AES and CED-enabled GHASH may not yield optimal throughput and hardware
utilization. Moreover, because it is desirable that AE modes remains free of intellectual prop-
erty restrictions, one should be able to use AES and GHASH from different IP vendors inter-
changeably to build AE modes without compromising reliability. Therefore, primitive specific
CED techniques are restrictive and hence not appropriate for system-level design such as
AE modes. As more functionalities are integrated into cryptographic modules, system-level
CED trade-offs need to be made. Our contributions are:

– A low-cost CED techniques for AE modes; i.e., GCM and CCM. The proposed technique
is independent of the implementation of the underlying intellectual property so that the
designer can combine modules from different vendors.

– We improve the CED using redundant cycles to achi- eve 100% fault coverage, and the
performance overhead is in the range of 0% to 100% depending on the workload.

This paper is organized as follows: Section 2 gives the background of GCM and CCM.
Section 3 analyzes 6 GCM architectures and the proposed CEDs. Section 4 shows the fault
coverage and implementation results. Section 5 concludes the paper.



Table 1: Authenticated Encryption Modes.
Arch. Encryption Authentication

GCM CTR Multiply-add unit

CCM CTR CBC-MAC

2 Authenticated Encryption (AE) Mode

National Institute of Standards and Technology (NIST) standardized several AE modes
based on block ciphers, i.e., Galois Counter Mode (GCM), and Counter Mode with CBC
MAC (CCM) [2]. Both of them are based on block ciphers. Other AE modes that are sub-
mitted to NIST includes EAX, Carter-Wegman + CTR mode (CWC), and Offset Codebook
Mode (OCB). Alternative AE mode that uses permutation are also proposed [11]. AE mode
is an active research field and there are other initiatives for new proposals [1].

GCM is online, parallelizable, and patent-free. GCM generates ciphertexts and an au-
thentication tag simultaneously. It uses CTR mode [35] and a hash function over GF (2128)
to generate the tag. GCM mainly consists of AES modules and Galois Field (GF) multiplier-
adders (GHASH). GHASH uses GF multiplier and GF adder. Many security standards have
adopted GCM with AES as the underlying building block cipher and GHASH as the hash
function, including in-car systems [5], the IEEE 802.1AE for frame data encryption in the
ethernet [19], the IEEE P1619.1 for hard disk encryption [21], and the RFC 4106 for payload
encryption in IPSec [41]. CCM is patent-free. It is not online, which means you have to know
the size of your message before you start encrypting it. CCM with AES is adopted in IEEE
802.15.4 standard to provide link-layer security in wireless network [20]. EAX is similar to
CCM. It is patent-free. Unlike CCM, it is online. OCB has a patent on it [37]. CWC is
similar to GCM but it is much slower [26]. NIST recommended two AE modes, i.e., GCM
and CCM. Therefore we focus on GCM and CCM.

2.1 GCM

An example of GCM2 authenticated encryption is shown in Fig. 1. GCM receives a secret
key K, a 96-bit initial vector IV , m-block authentication data A1, A2,..., Am−1, A∗

m, and
n-block plaintext P1, P2,..., Pn−1, P ∗

n . Each block has 128 bits. When a final block is shorter
than 128 bits, the rest of the block is padded with zeros. The IV is concatenated with 31
zeros and a one as the initial counter value3. The v and u bits in the following equations
represent the bit width of the last blocks A∗

m and P ∗
n , respectively. The encryption result of

IV is XORed with the hash result, and the first t bits of the result become the authenticated
tag T . The authenticated encryption operation is:

H = Enc(K, 0128)

Y0 = IV ||0311

{
IV ||0311 if len(IV ) = 96
GHASH(H, {}, IV ) otherwise.

C0 = Enc(K,Y0)

Yi = Yi−1 + 1 i = 1, ..., n (1)

Ci = Pi ⊕ Enc(K,Yi) i = 1, ..., n−1

C∗
n = MSBu(Pn ⊕ Enc(K,Yi))

T = MSBt(GHASH(H,A,C)⊕ C0).

2 A comprehensive description of GCM is in [30].
3 Concatenation is denoted as ||



Fig. 1: GCM with authentication blocks m = 4 and encryption blocks n = 4.

The hash function GHASH() defined over the field repeats multiplication and addition is:

Xi=



0 i=0
(Xi−1 ⊕Ai) ·H i=1, ...,m−1
(Xm−1 ⊕ (A∗

m||0128−v) ·H i=m
(Xi−1 ⊕ Ci−m) ·H i=m+1,...,m+ n−1
(Xm+n−1 ⊕ (C∗

n||0128−u)) ·H i=m+n
(Xm+n ⊕ (len(A)||len(C))) ·H i=m+n+1

(2)

The function len() returns a 64-bit string describing the number of bits in its input, with
the least significant bit on the right. The final hash value Xm+n+1 is:

Xm+n+1 = GHASH(H,A,C) (3)

The irreducible polynomial in GF (2128) used in GCM is:

g(x) = x128 + x7 + x2 + x + 1 (4)

In decryption, the authenticated data A and the ciphertext C are used to recompute an
authenticated tag T

′
:

H = Enc(K, 0128)

Y0 = IV ||0311

C0 = Enc(K,Y0)

Yi = Yi−1 + 1 i = 1, ..., n (5)

Pi = Ci ⊕ Enc(K,Yi) i = 1, ..., n

T
′

= MSBt(GHASH(H,A,C)⊕ C0).

Then T
′

is compared with the original tag T to verify the data authenticity.

2.2 CCM

CCM receives a secret key K, a 128-bit initial vector IV , m-block authentication data A1,
A2 ,..., Am−1, Am, and n-block plaintext P1, P2, ..., Pn−1, Pn. Each block has 128 bits.
When a final block is shorter than 128 bits, the rest of the block is padded with zeros. The
v and u bits in the following equations represent the bit width of the last blocks Am and
Pn, respectively. The encryption result of IV is XORed with the hash result, and the first
t bits of the result become the authenticated tag T . The CCM authenticated encryption



(a) (b)

Fig. 2: (a) Fully pipelined AES architecture. (b) GHASH architecture with parallel GF
multiplier-adder.

operation is:

Y0 = IV

C0 = P0 ⊕ Enc(K,Y0)

Yi = Yi−1 + 1 i = 1, ..., n

Ci = Pi ⊕ Enc(K,Yi) i = 1, ..., n−1 (6)

C∗
n = MSBu(Pn ⊕ Enc(K,Yi))

T = MSBt(MAC(H,A,C)⊕ C0)

The MAC() function uses CBC MAC mode defined as:

Xi+1=


Enc(K,Ai) i=0
Enc(K,Xi ⊕Ai) i=1, ...,m−1
Enc(K,Xi ⊕A∗

m||0128−v)i=m
Enc(K,Xi ⊕ Ci) i=m+1,...,m+n−1
Enc(K,Xi ⊕ C∗

n||0128−u) i=m+n

(7)

2.3 AES primitives

We consider 128-bit AES as specified by NIST [36]. AES encrypts a 128-bit plaintext into
a 128-bit ciphertext with a user key using 10 nearly identical rounds plus an initial special
round (round 0). We use 3 different AES architectures with different throughput and area
requirements: (a) Fully pipelined (AES-P, shown in Fig. 2(a)), (b) iterative (AES-I) [38],
(c) pipelined loop (AES-PL) [38]. The throughput of the 3 techniques are 1, 10, 4 cycles,
respectively4.

2.4 GHASH primitives (GF multiplier-adders)

GCM uses a 128-bit GF (2128) multiplier-adder for the hash function GHASH defined in
equation (2). GHASH uses a customized irreducible polynomial on GF (2128), defined in (4).

4 Because once the AES architecture and GHASH architecture in GCM (or CBC MAC architecture
in CCM) is fixed, the clock frequency will be fixed. We compare the performance overhead of the
CED and its corresponding non-CED implementation using clock cycles.



Table 2: GCM hardware architectures with different AES and GHASH modules. a. The
throughput of the block multiplier-adder is 2 if i = 1 and is d i−2

4 e+ 3 if i > 1.
Arch. AES GHASH

GCM 1 [45]
1-clock AES-P

1-clock mult-add.
& 10-clock AES-I

GCM 2 [38] 1-clock AES-P 1-clock mult-add.

GCM 3 [38] 10-clock AES-I 8-clock mult-add.

GCM 4 [38] 4-clock AES-PL 4-clock mult-add.

GCM 5 [38] 10-clock AES-I × 4 4-clock mult-add.

GCM 6 [38] 1-clock AES-P × 4 4-block mult-add.a

We use 4 different GF multiplier-adders: (a) parallel multiplier-adder (shown in Fig. 2(b)),
(b) 8-clock sequential multiplier-adder [38], (c) 4-clock sequential multiplier-adder [38], (d)
block multiplier-adder [38]. A parallel multiplier-adder is shown in Fig. 2(b). It multiplies the
128-bit input A with the 128-bit constant H and sums up the 128-bit result in the register
X to calculate the intermediate hash value Xi in one clock cycle. The parallel multiplier-
adder, the 8-clock sequential multiplier-adder, and the 4-clock sequential multiplier-adder
have a throughput of 1, 8, and 4 cycles, respectively. The block multiplier-adder can process
4 128-bit data blocks simultaneously. Let i = m + n + 1, in which m is the number of
authentication data blocks and n is the number of encryption data blocks. The throughput
of the block multiplier-adder is 2 if i = 1 and is d i−2

4 e+ 3 if i > 1.

3 GCM and CCM architectures

Table 2 presents GCM architectures. Various AES and GHASH modules are used in each
architecture for different throughput and area requirements. GCM architecture 1 uses one
iterative AES-I module, one pipelined AES-P module, and GHASH with 1-clock parallel
GF multiplier-adder. GCM architecture 2 uses 1 fully pipeli- ned AES-P and GHASH with
1-clock GF multiplier-adder. GCM architecture 3 uses 1 iterative AES-I and GHASH with
8-clock sequential GF multiplier-adder. GCM architecture 4 uses 1 pipelined-loop AES and
GH- ASH with 4-clock sequential GF multiplier-adder. GCM architecture 5 uses 4 iterative
AES-I and GHASH with 4-clock sequential multiplier-adder. GCM architecture 6 uses 4
fully pipelined AES-P and GHASH with one 4-block multiplier-adder.

3.1 CED Architectures for GCM

Although one can use separate CEDs for AES and GH- ASH, a straightforward combination
of CED-enabled AES and CED-enabled GHASH may not yield optimal throughput and area.
Moreover, because it is desirable that GCM remains free of intellectual property restrictions,
one needs to be able to use AES and GHASH from different IP vendors interchangeably to
build GCM architectures without compromising reliability.

3.2 CED for GCM Architecture 1

3.2.1 Baseline Architecture Fig. 3 shows a high-performance GCM architecture. This
architecture uses a fully pipelined AES (AES-P), an iterative AES (AES-I), and GHASH
with a parallel multi- plier-adder. The data input register (DI) is a 128-bit register. Assuming
m=4 and n=4, we analyze the data dependency in Fig. 4(a). The numbers on the left or right
side of the bidirectional arrows indicate the time in clock cycles. The normal computation



Fig. 3: GCM architecture 1 with 10-clock AES-I, 1-clock AES-P and 1-clock GHASH.

results are indicated by the the oval (white), e.g., from cycle 1 to 10, AES-I takes K as
the input at cycle 1 and generates H at cycle 10. The CED checks are indicated by the
rectangle (green) which we will discuss in Section 3.2.2. Generally, a single secret key is
used for all packets processed in a given secure session. This secret key is determined during
session initiation. Hence, K and H are ready before packets are transmitted. GCM starts
computing the intermediate hash value X1−X4 when it receives a packet header as additional
authenticated data A1−A4. GHASH takes 4 cycles to generate X4, and waits until ciphertext
C1 is generated. Then, Y0 is generated by padding 32 zeros to IV , and this takes 0 cycles.
After Y0 is generated, GCM encryption starts to compute the key stream (C0, C1, ...C4).
Because the data input register is 128-bit and packet data are coming as 128-bit blocks, the
authentication data blocks are processed before the plaintexts blocks, so GCM encryption
cannot start earlier. Once AES-P has ramped up, the ciphertext Ci (1 ≤ i ≤ 4) is generated
every cycle. When C1 is generated, GHASH restarts computing until the end of the GCM
operation.

3.2.2 Idle Cycle-based CED Architecture We analyze the CED checks in Fig. 4(a).
Our idea is to use the idle hardware during the GCM operation to perform CED checks.
AES-I is idle after computing H. Then it can use 10 cycles to check one encryption. The
CED check starts at cycle 11. GHASH uses an extra 4 cycles to recompute X4 when AES-P
fills its pipeline. AES-P has 2 idle cycles before GHASH generates the final hash value. So
it uses 2 cycles to check 2 extra encryptions; e.g., C1 and C2.

In Figs. 5(a) and 5(b), we analyze the number of CED checks for AES and GHASH
when we vary m and n values. In both figures, we analyze for m = 1, 4, 8, 10, 12, 16 and
n = 4, 8, 12, 16. The results show that the GCM can check 3 to 6 encryptions and 1 to 10
hashes. We formulate the number of encryption and hash checks for various m and n values
in Table 5.

We define ending time of computation to the ending time of recomputation as the de-
tection latency. Because AES-I is only used to compute H once, in AES-I CED from cycle
10 to 20, the detection latency is 10 cycles. AES-P first computes C0. In the AES-P CED
round, the detection latency is 1 to 5 cycles. For GHASH, the detection latency is 4 cycles,
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Fig. 4: The data dependencies and CED checks (m=4, n=4) of GCM architecture (a) 1, (b)
2, (c) 3, (d) 4.

because the CED is used immediately after the normal computation. The detection latency
of different m and n values is shown in Table 3.

3.3 CED for GCM Architecture 2 to 4

GCM architecture 2 is similar to GCM architecture 1, with the exception that there is only
one AES-P module in the GCM [38]. The data dependency and the CED checks are shown
in Fig. 4(b). The detection latency for AES is between 1 and 6 cycles. The detection latency
for GHASH is between 1 and 4 cycles.

GCM architecture 3 uses an iterative AES and a 8-clock sequential multiplier-adder. The
data dependency and CED scheduling are shown in Fig. 4(c). The detection latency of AES
is between 10 to 60 cycles. GHASH recomputes the one authentication data block right after
the normal computation. Therefore, the detection latency is between 8 to 32 cycles.

GCM architecture 4 uses a pipelined-loop AES and a 4-clock sequential multiplier-adder.
The data dependency along with the CED checks are shown in Fig. 4(d). The detection
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Fig. 5: (a) Number of encryption checks and (b) number of hash checks as a function of m,
n in CED for GCM architecture 1.

latency of AES is between 4 to 24 cycles. The detection latency of GHASH is between 4 and
24 cycles.

3.4 CED for GCM Architecture 5

3.4.1 Baseline Architecture This architecture uses 4 10-clock AES-I, and a 4-clock
GHASH with a sequential GF multiplier-adder. The hardware is shown in Fig. 6(a). The
data dependency are shown in Fig. 6(b). The GCM first uses an AES-I to compute H with
the user key K in 10 cycles. After Y0 is generated, Y1−Y4 is generated by the counter (CTR)
in cycle 27 simultaneously. Then, it takes 10 cycles for the 4 AES modules to generate X1−
X4. After that, 4 AES ciphertexts is generated every 10 cycles, and every intermediate hash
value Xi is generated every 4 cycles. To generate all ciphertexts, it takes 20 cycles. The first
four intermediate hash values are generated in 16 cycles. Then it wait for the ciphertext to
be generated, Then it takes 20 cycles to generate the final hash value from cycle 37 to 56.

3.4.2 Idle Cycle-based CED Architecture The CED checks are shown in Fig. 6(b).
Because there are 3 idle AES modules when H is being computed, we use 1 idle AES to
compute H and check the results. When C0−C3 are computed, 2 hash values can be checked
in 8 cycles, After C0−C4 are generated, there are still 20 cycles before the GCM operation
finishes. So we use 20 cycles to check all 5 encryption results C0−C4. From cycle 37 to 46,
C0, C1, and C2 are recomputed. From cycle 47 to 56, C3 and C4 are computed. Therefore,
we use different AES modules to recompute the respective data to detect permanent faults.
The detection latency is 20 cycles. Because GHASH needs to wait for the counter to generate
input for AES, the detection latency is 5 cycles.
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Fig. 6: (a) GCM architecture 5. The data dependencies and CED checks (m=4, n=4) of
GCM architecture (b) 5, (c) 6.

Thus, the miminum detection latency of AES is 0 cycles. When AES computes the
ciphertexts, it needs to use 4 AES to compute 4 ciphertexts, then one AES will be used to
compute the last ciphertext. When this AES computes the last ciphertext, three other AES
can be used to recompute 3 ciphertexts. In the end, 2 AES will finish computing the last 2
ciphertexts. Thus, the detection latency is at most 20 cycles. The GHASH recomputes the
one authentication data blocks right after the normal computation. Therefore, the detection
latency is between 4 and 24 cycles.

3.5 CED for GCM Architecture 6

3.5.1 Baseline Architecture This architecture is similar to GCM architecture 5. It uses
4 pipelined AES-P and a 4-block multiplier-adder to achieve higher throughput. The data
dependencies are shown in Fig. 6(c).

3.5.2 Idle Cycle-based CED Architecture Because there are 4 AES-P modules and
4 parallel multi- plier-adders, it can detect permanent faults if we let different modules to



Table 3: Detection latency in cycles with number of authentication blocks m and number of
encryption blocks n.

Arch. Encryption Hash

GCM 1
AES-I AES-P

1 ∼ m
10 1 ∼ (n + 2)

GCM 2 1 ∼ (n + 2) 1 ∼ m

GCM 3 10× (1 ∼ (n + 2)) 8 ∼ 8×m

GCM 4 4× (1 ∼ (n + 2)) 4 ∼ 4×m

GCM 5 0 ∼ d10× (n + 1)/4e 4× (4 ∼ m) + 1

GCM 6 0 ∼ d(n + 1)/4e 0 ∼ m

check each other. When the one AES-P is computing H, one of other AES-P is used to
compute H. The detection latency is 0 cycles. After AES-P computes the first 4 ciphertexts
in 10 cycles, an AES-P computes the last ciphertext and the other AES-P can be used to
recompute three ciphertexts in the next cycle. Two other ciphertexts will be recomputed in
another cycle. So the detection latency is 2 cycles. When one GHASH computes H2 and
H4, one of the other GHASH can do the same computation. Thus, the minimum detection
latency is 0 cycles. When GHASH recompute the authentication data, it needs to wait for
the counter to generate input for the AES-P. So the detection latency is 2 cycles. Every
intermediate hash value Xi (0 ≤ i ≤ 4) is generated every cycle.

3.6 Application of the Proposed CED to CCM Mode

Counter with CBC-MAC (CCM) is the other confidentiality and authentication mode [42].
CCM with AES is adopted in IEEE 802.15.4 standard to provide link-layer security in
wireless network [20].

3.6.1 Baseline Architecture Similar to GCM, CCM also uses AES counter mode for
the encryption (EAES-I). CCM also uses AES cipher block chaining (CBC) mode for au-
thentication (AAES-I). In CBC mode, each block of plaintext is XORed with the previous
ciphertext block before being encrypted. Therefore, each ciphertext block is dependent on all
plaintext blocks processed up to that point. We implemented CCM with two iterative AES-I
as described in [28] for 4 authentication blocks and 4 plaintexts. The data dependencies are
shown in Fig. 7(a).

The authentication AES-I first computes the hash from authentication data A1−A4 in 40
cycles, and it waits for C1 to be generated. The encryption AES-I encrypts the plaintexts C0

−C4 in 50 cycles. After C1 is generated, the authentication AES-I starts to compute hashes
from the ciphertexts. Thus, it takes 50 cycles to compute the complete hash value.

3.6.2 Idle Cycle-based CED for CCM Architecture We analyze the data depen-
dency in Fig. 7(a). The encryption AES-I is idle at the beginning of the operation, thus, we
use it to recompute the hash value X1−X4 and these values are checked every cycle. Once
the encryption AES-I starts to encrypt plaintexts, the authentication AES-I waits for C1

to be generated. Therefore, we use it to check C0 and C1 simultaneously with encryption
AES-I. When the authentication AES-I computes the last hash value X8, the encryption
AES-I is idle and is used to check another encryption C3. The ASIC implementation result
shows that the CED utilizes 60,694 gates which is 3.5% hardware overhead. The CED has
23.2% power overhead. For the FPGA implementation, the CED utilizes 1,017 slices which
is 1.23% hardware overhead. The power overhead is 1.4%.
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Fig. 7: Data dependency and CED checks of CCM architecture

4 Experimental Results

In this section, we discuss two improvements for the proposed CED. We also analyze the
fault coverage and implementation results.

4.1 Fault Coverage

We analyze the fault coverage of the proposed CED for transient faults and permanent
faults as shown in Table 4. The proposed CED can detect transient faults in all the GCM
architectures. GCM 1, 5, and 6 are able to detect permanent faults in the encryption module
because it has more than one encryption engines and they can check each other. GCM 6
can also detect permanent faults in the authentication (GHASH) module because it has 4
multipliers in the block multiplier and adder architecture. CCM can detect permanent faults
in the authentication (AES) module

Recomputing with Permuted Operands (REPO) uses a permutation to recompute
the inputs, and its fault coverage is around 99.99997% for both transient and permanent
fault [17]. It also provides provable security against fault attacks [48]. Therefore, we can add
additional registers to the AES and use them to store the round input and output of the
normal computation. During the CED recomputation, we will apply the permuted input to
the AES and compare the permuted output with those previously stored. By adding REPO,
the fault coverage of the proposed scheme can detect permanent fault and the fault coverage
is the same as transient fault. The finite field multiplier can also be protected using normal
basis REPO [47].

Since the proposed CED utilizes the idle cycles in the algorithm, the fault coverage for
transient faults with various durations are shown in Table 4. We vary the number of fault
duration D from 1 to 4 × L. L is the latency of the module, e.g., the latency of AES-I
is 10 cycles. Thus, D1 represents the faults the last from 1 to L = 10 cycles in the GCM
operations. Based on our analysis, the faults coverages stays the same when faults last longer
than 4L cycles, because there are no more computations to affect in the architecture. The
fault coverage of AES increases as the fault duration increases for all architectures. The
only exception is the AES-I in architecture 1. It has 0% fault coverage if the fault duration
reached 2L. Because there are only two computations in AES-I in the first architecture, if
the faults persist during these entire two computations, the two computation generates the



Table 4: Comparisons of fault detection capability against transient and permanent faults.
† Encryption module (AES). 3 Authentication module (GHASH for GCM and AES for
CCM). ? The proposed CED can detect permanent faults if REPO is integrated.

Arch.
Transient Permanent

Enc†Auth3Enc†Auth3

GCM 1
√ √ √

GCM 2
√ √ √?

GCM 3
√ √ √?

GCM 4
√ √ √?

GCM 5
√ √ √

GCM 6
√ √ √ √

CCM
√ √ √ √

Table 5: Number of encryption and hash checks for different m and n values
Arch. Encryption Hash

GCM 1

AES-I {
m if m < 11

11 if m ≥ 11

b(m + n + 12)/10c
AES-P

2

GCM 2 3

{
m if m < 11

11 if m ≥ 11

GCM 3

{
1 if m = 1

2 if m ≥ 2

{
1 if m = 1

2 if m ≥ 2

GCM 4 3

{
m if m < 3

3 if m ≥ 3

GCM 5
b 8(n+1)

5
c − (n− 3)

{
m if m < 3

2 if m ≥ 3−(n− 3)%4

GCM 6 n + 2

{
m + 2 if m < 31

32 if m ≥ 30

same faulty results. For most architectures, the fault coverages of the GHASH increase from
22.2% to 42.9% and then drop back to 33.3%. Because we are only checking the GHASH
computation before the ciphertexts starts to generate, the fault coverage will not increase
to 50%.

Redundant cycle can be used to compute extra hashes, and it improves the fault
coverage of both the AES and GHASH modules. Although this will reduce the throughput,
the fault coverage increases significantly. Fig. 8 shows the relationships between number
of redundant cycles (x-axis), fault coverage (y-axis), and performance overhead (y-axis) of
AES and GHASH. P. O. stands for performance overhead. Even when we increase the fault
coverage to 100% by adding redundant cycles, the performance overhead is not 100%. As
shown in Fig. 8(a), if we add five additional cycles for GCM 1, the throughput overhead
will be 16.7% and the fault coverage will increase to 100% because the GCM can recompute
all the encryptions and hashes. The relationship between fault coverage and performance
of GCM 2 is similar to GCM 1 as illustrated in Fig. 8(b). In Fig. 8(c), GCM 3 needs 56
redundant cycles to reach 100% fault coverage. Although the number of redundancy cycles
required is much larger than GCM 1 and GCM 2, the performance overhead is only 54.5%,
much less than 100%. We can observe similar results for GCM 4 and GCM 5 in Fig. 8(d)
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Fig. 8: The relationships between number of redundant cycles (x-axis), fault coverage (y-
axis), and performance overhead (y-axis) of AES and GHASH. (a) GCM 1, (b) GCM 2, (c)
GCM 3, (d) GCM 4, (e) GCM 5, (f) GCM 6, (g) CCM. P.O. means performance overhead.



Table 6: Fault coverage with four different fault duration in cycles: D1 (1≤D≤L), D2

(L<D≤2L), D3 (2L<D≤3L), and D4 (3L<D≤4L).

Fault duration D1 D2 D3 D4

GCM 1

AES-P 40% 100% 100% 100%

AES-I 40% 0% 0% 0%

GHASH 44.4% 42.9% 40% 33.3%

GCM 2
AES-P 40% 100% 100% 100%

GHASH 22.2% 42.9% 40% 33.3%

GCM 3
AES-I 20% 50% 100% 100%

GHASH 22.2% 42.9% 40% 33.3%

GCM 4
AES-PL 40% 100% 100% 100%

GHASH 33.3% 42.9% 40% 33.3%

GCM 5
AES-I 100% 100% 100% 100%

GHASH 22.2% 42.9% 40% 33.3%

GCM 6
AES-PL 100% 100% 100% 100%

GHASH 50% 100% 100% 100%

Table 7: Number of redundant cycles required to achieve 100% fault coverage when n ≥ 4.

Arch. AES GHASH

GCM 1
0(AES-I)

n + 1
n− 2− bn−12

10
c(AES-P)

GCM 2 n− 1 n + 1

GCM 3 10n− 8 8(n + 3)

GCM 4 4n− 1 4(n + 3)

GCM 5 0 4(n + 3)

GCM 6 0 6 + d(n− 1)/2e
CCM 10(n− 1) 10(n− 1)

and 8(d), respectively. For GCM 6, there is no redundant cycles required to achieve 100%
fault coverage as demonstrated in Fig. 8(f).

In reality, the size of the packet varies in different applications. Therefore, it is important
to provide high performance for a large variety of packet sizes. Moreover, the authentication
data in the packets are normally header information, and they are not likely to vary. The data
which requires encryption vary significantly. In Fig. 9, we analyze the performance overhead
as the number of encryption bytes increases while maintaining 100% fault coverage. We vary
the number of encryption bytes from 0 to 8 kilo bytes (kB) while fixing the authentication
blocks to four (1kB). Most AE modes has less than 50% performance overhead while the
number of bytes are below 1kB. GCM 1 and GCM2 have less than 60% performance overhead
when the number of encryption bytes reaches 5kB. Most AE modes reach more than 80%
performance overhead after encrypting 8kB encryption bytes except GCM 1, 2, and 3. We
can conclude that the performance overhead of GCM 1, 2, and 3 scales better than the other
AE architectures.

The center of applied internet data analysis provides recent internet traffic data from
various cities such as Chicago and San Jose [46]. For example, in the Chicago area, the
mean packet size for IPv4 and IPv6 ranges from 406B to 1.11KB between 2008 and 2014.
In San Jose, it ranges from 359B to 942B between 2008 and 2014. Data from other areas
show similar results. Since the packet size is below 1KB most of the time, the performance
overhead are in the range of 25% to 65% depends on the AE architectures.
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Fig. 9: The performance overhead as the number of encryption bytes increases while main-
taining 100% fault coverage.

Table 8: Comparisons of implementation of CEDs on FreePDK 45nm ASIC library. � over-
head in percentage.

Arch.

Original With CED

Gate Freq. Thro. Eff.(Gbps Pwr Gate Freq. Thro. Eff.(Gbps Pwr (mW)

(GHz) (Gbps) /gate) (mW) (%)�(GHz) (Gbps) /gate) (%)�

GCM 1 267,099 1.0 128 0.48 23.67 271,210(2.7) 1.0 128 0.47 28.07(18.6)

GCM 2 264,071 1.0 128 0.48 21.80 274,996(3.0) 1.0 128 0.47 25.63(17.6)

GCM 3 41,145 1.36 17.4 0.42 5.20 50,748(23.3) 1.36 17.4 0.34 6.26(20.4)

GCM 4 125,785 0.37 11.84 0.09 5.14 131,407(4.5) 0.37 11.84 0.09 5.67(10.2)

GCM 5 128,643 1.35 69.1 0.54 15.19 138706(7.8) 1.35 69.1 0.50 16.48(8.5)

GCM 6 1,007,471 0.94 481.3 0.48 139.91 1,020,311(1.3) 0.94 481.3 0.42 148.33(0.6)

CCM 58,614 1.36 17.4 0.30 6.12 60,694(3.5) 1.36 17.4 0.29 7.54(23.2)

4.2 Implementation Results

We implement CCM, and six GCM architectures on ASIC and FPGA, shown in Table 8 and
9, respectively. We implemented these authenticated encryption modes in 45nm FreePDK
ASIC library as well as Xilinx Virtex-5 (xc5vlx330t-2ff1738) platform We use pipelined
distributed memories for S-boxes and inverse S-boxes similar to [16]. For both ASIC and
FPGA, we use ModelSim SE 6.5c [31] to generate the VCD file so that we can evaluate
the dynamic power consumption more accurately. For ASIC, we use Cadence RTL Compiler
(RC10.1.306) for synthesis and power evaluation [13]. The metrics include (1) the area (the
number of gate instances), (2) are overhead (ratio of number of gate instances for the ones
with CED over the ones without CED), (3) maximum clock frequency, (4) throughput,
(5) efficiency (raitio of (4) over (1)), (6) static power consumption, (7) dynamic power
consumption, and (8) dynamic power consumption overhead. For FPGA, we use Xilinx ISE
10.1 for synthesis and Xilinx XPower for power evaluation [44]. the metrics include (1) slice
utilization (the number of occupied slices), (2) slice overhead (ratio of number of slices
for the ones with CED over the ones without CED), (3) maximum clock frequency, (4)
throughput, (5) efficiency (raitio of (4) over (1)), (6) static power consumption, (7) dynamic
power consumption, and (8) dynamic power consumption overhead.

In general, the CED implementations have slightly higher hardware overhead than the
ones without CED on both ASIC and FPGA. The power consumption of the CED is slightly
larger than the one without the CED. First, let us take a look at the ASIC implementation
results. Our scheme only adds comparators at the output of AES and GHASH modules as



Table 9: Comparisons of implementation of CEDs on Xilinx Virtex-5 FPGA (xc5vlx330t).

Arch.

Original With CED

Slice Freq. Thro. Eff.(Mbps Pwr Slice Freq. Thro. Eff.(Mbps Pwr (W)

(MHz) (Gbps) /slice) (W) (overhead) (MHz) (Gbps) /slice) (overhead)

GCM 1 5,645 100.3 12.9 2.29 4.19 6,060(7.4%) 100.3 12.9 2.13 4.46(6.4%)

GCM 2 5,469 100.2 12.9 2.36 3.65 6,191(13.2%) 100.2 12.9 2.08 3.88(6.3%)

GCM 3 926 98.6 1.26 1.36 3.52 1,137(22.8%) 98.6 1.26 1.10 3.57(1.4%)

GCM 4 2,956 50 1.6 0.54 3.97 3,091(0.1%) 50 1.6 0.52 4.39(10.6%)

GCM 5 1,955 111.1 5.7 2.92 3.75 2,353(20.3%) 50 5.7 2.92 4.1(9.3%)

GCM 6 19,951 50.5 25.7 1.29 3.97 24,252(21.6%) 50.5 25.7 1.29 3.98(0.3%)

CCM 830 160.3 2.05 2.45 3.64 1,017(1.23%) 160.3 2.05 2.02 3.69(1.4%)

well as redundant flip-flops. The comparator is not in the critical path of the design, thus, it
does not change the clock frequency of the designs. It is note that the results are synthesis
results and we may expect the CED implementation have slightly higher delay because the
extra flip-flops that stores the intermediate value may increase the fanout. Because our CED
checks are only performed when the modules are idle, they do not use extra cycles to affect
the throughput of the designs. If we look at the gate utilization, GCM 1 has slightly higher
slice utilization than GCM 2 because GCM 1 has an extra iterative AES. GCM3 is the
smallest among all the GCM architectures and it also has the lowest throughput. The CED
power overhead of GCM 1, 2, and 3 are in the 17.6-20.4% range. GCM 4 only has 10.2%
power overhead because it has larger hardware which consumes more static power for both
the ones with CED and without CED. Similarly, the GCM 6, which is the largest among all
GCM architectures, has only 0.6% power overhead. We can observe similar results on the
FPGA. The static power of FPGA is much larger than the static power of ASIC because of
extra the switches and interconnects on the FPGA. Therefore, the power overhead on the
FPGA is smaller.

5 Conclusion

This paper presented an idle cycle-based CED scheme that explores the data dependency
of AE modes. It is applicable to various GCM and CCM architectures. Moreover, this tech-
nique does not assume the CED capability of the underlying cryptographic primitives. Th-
erefore, it allows the designers to integrate IPs from different vendors. The fault coverage
of the proposed CED scheme is between 20% to 100% for AES module and is between
22.2% to 44.4% for GHASH for transient faults. The fault coverage can increase to 100%
without adding 100% performance overhead. With those improvements, the fault coverage
can increase to 100%. Finally, we extend the proposed CED to CCM. Our experimental
results show that the fault coverage is 100% for both transient fault and permanent fault
with 7.2% hardware overhead. We also analyze the power consumption as well as the area
utilization. The proposed technique shows that a system-level trade-off needs to be made
when designing CED for complex cryptographic designs.
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