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Abstract

We construct new leakage-resilient signature schemes. Our schemes remain unforgeable
against an adversary leaking arbitrary (yet bounded) information on the entire state of the
signer (sometimes known as fully leakage resilience).

The main feature of our constructions, is that they offer a graceful degradation of security
in situations where standard existential unforgeability is impossible. This property was
recently put forward by Nielsen et al. (PKC 2014) to deal with settings in which the secret
key is much larger than the size of a signature. One remarkable such case is the so-called
Bounded Retrieval Model (BRM), where one intentionally inflates the size of the secret key
while keeping constant the signature size and the computational complexity of the scheme.

Our main constructions have leakage rate 1−o(1), and are proven secure in the standard
model. We additionally give a construction in the BRM, relying on a random oracle. All
of our schemes are described in terms of generic building blocks, but also admit efficient
instantiations under fairly standard number-theoretic assumptions. Finally, we explain how
to extend some of our schemes to the setting of noisy leakage, where the only restriction on
the leakage functions is that the output does not decrease the min-entropy of the secret key
by too much.
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1 Introduction

Cryptography relies on secret information and random sources to accomplish its tasks. In
order for a given cryptographic primitive to be secure, it is typically required that its secrets
and randomness are well-protected, and cannot be influenced by an attacker. In practice,
however, it is not always possible to fulfil this requirement, and partial information about the
secret state of a cryptosystem can leak to an external adversary, e.g., via so-called side-channel
attacks exploiting physical characteristics of a crypto-device, such as power consumption [44],
electromagnetic radiation [55], and running times [43].

Recently a lot of effort has been put into constructing cryptographic primitives that come
along with some form of leakage resilience, meaning that the scheme should remain secure even
in case the adversary obtains some type of leakage on the secrets used within the system. A
common way to model leakage attacks, is to empower the adversary with access to a leakage
oracle, taking as input (adaptively chosen) functions fi and returning fi(st) where st is the
current secret state of the cryptosystem under attack. Clearly some restriction on the functions
fi has to be put, as otherwise there is no hope for security. By now, a plethora of leakage
models (corresponding to different ways how to restrict the functions fi) have been proposed.
We review the ones that are more relevant to our work below (and refer the reader to Section 1.3
for a bigger picture).

� Bounded leakage: One natural restriction is to just assume that the total length of the
information leaked via the functions fi is smaller than some a priori determined leakage
bound `. Usually the leakage bound ` is also related to the secret key size, so that a
relatively large fraction of the secret key can be leaked. Leakage-resilient schemes in
this model include storage schemes, public-key and identity-based encryption, signature
schemes, and more (see, e.g., [49, 42, 2, 46, 1, 19, 10, 21, 9, 39, 8, 47, 24, 34, 30, 50, 51, 16]).

� Noisy leakage: A drawback of the bounded leakage model is that physical leakage rarely
obeys to the restriction that the length of the leaked information is a priori bounded (e.g.,
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a power trace could be much longer than the secret key). A milder restriction (which
weakens the above) is to just assume that the total amount of leaked information does
not reduce the entropy of the secret key by too much. Leakage-resilient primitives in this
model include one-way relations, public-key encryption, and signature schemes [49, 21, 34].

The focus of this paper is on constructing leakage-resilient signatures in the bounded leakage
and noisy leakage model, where one demands that a signature scheme remains unforgeable even
against an adversary leaking arbitrary (yet restricted as above) information on the signing key
and the overall randomness used within the life-time of the system (this flavour is sometimes
known as fully leakage resilience). We give a more in-depth description of our contributions in
Section 1.1; an overview of our techniques can be found in Section 1.2.

1.1 Our Contribution

Note that in order for a signature scheme to remain existentially unforgeable in the bounded
leakage model, it must necessarily be the case that the length of a signature is larger than
the length of the secret key (as otherwise an adversary could simply leak a forgery). A first
consequence of this is that signatures are very long, as the goal is to enlarge the secret key to
tolerate more and more leakage, which is impractical. A second consequence is that we cannot
make any meaningful security statement (w.r.t. security in the bounded leakage model) for
schemes where the size of the secret key is much larger than the size of a single signature. One
remarkable such case is the setting of the Bounded Retrieval Model [15, 26, 27] (BRM), where
one intentionally inflates the size of the secret key while keeping constant the size of a signature
and the verification key, as well as the computational complexity of the scheme (w.r.t. signature
computation/verification).

A similar concern applies to the noisy leakage model, for those schemes where signatures
(statistically) reveal little information about the secret key. In such cases leaking a forgery is,
again, a valid leakage query, as a signature does not decrease the uncertainty of the secret key
by too much. Still, we would like to not consider a scheme completely insecure if the adversary
cannot do better than that.

A first step towards addressing the above issues, has recently been taken by Nielsen et
al. [51] (for the bounded leakage model) who introduced a “graceful degradation” property,
essentially requiring that an adversary should not be able to produce more forgeries than what
he could have leaked via leakage queries. More precisely, in order to break unforgeability, an
adversary has to produce n forgeries where n ≈ λ/(γ · s) + 1 for signatures of size s, a total of
λ bits of leakage, and a “slack parameter” γ ∈ (0, 1] measuring how close to optimal security
a scheme is. The main advantage is that one can design schemes where the size of the secret
key is independent of the signature size, leading to shorter signatures. Moreover, this flavour of
leakage resilience still allows for interesting applications (e.g., to leaky identification [51]).

New definitions. We start by generalizing the above graceful degradation property to the
setting of fully-leakage resilience (both in the bounded and noisy leakage model). Our main
notion, dubbed fully-leakage one-more unforgeability, is essentially the same as the one of [51],
with the twist that leakage functions can be applied to the entire state of the signer (both for
noisy and length-bounded leakage).

We also establish a “middle-ground” notion, which models a setting where secure erasures of
the state are available. In particular, we imagine a situation in which the random coins sampled
by the signer are completely erased after each invocation of the signing algorithm. Note that
in this setting the leakage can essentially depend only on the secret key and the random coins
used to compute a single signature. While requiring perfect erasure is a strong assumption (see,
e.g., [12]), we believe our notion might still make sense for some applications, as it in particular
allows to design simpler and more efficient schemes.
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Scheme Model G. D. Assumption Efficiency

bounded noisy fully leak |vk |
|sk |

|σ|
|sk |

DHLW10[22] 3 7 — DLIN, SXDH 1− o(1) 1 9

BSW11[8] 3 7 3 — DLIN, SXDH 1− o(1) ω(log2 κ) log2 qs ω(log2 κ) log2 qs
MTVY11[47] 3 7 3 — SXDH 1− o(1) ω(log κ) O(1)

GJS11[34]∗ 3 3 3 — SXDH 1− o(1) Ω
(
κ+ψ
ψ

)
Ω
(
|C|κ
ψ

)
NVZ14[51] 3 7 γ = O(1) DLIN 1

2 − o(1) 1
2 Ω(1/ψ)

SS†1 (§ 4) 3 3 γ = O(1/κ) DLIN 1− ε (κ+ 12 + ε−1)/ψ (24ε−1 + 90)/ψ

SS†2 (§ 4) 3 3 γ = O(1/κ) DLIN 1− ε (κ+ 30 + ε−1)/ψ (15ε−1 + 133)/ψ

SS3 (§ 5) 3 3 3 γ = O(1/qs) DLIN 1− ε (κ+ 12 + ε−1)/ψ (15 log κε−1 + 13)/ψ

ADW09[2]‡ 3 7 7 7 BDH 1
2 − ε Ω(ε−1/ψ) Ω(ε−1/ψ)

SS‡5 (§ 6) 3 3 3 γ = O(1) BDH 1− ε Ω(log κε−1/ψ) Ω(log κε−1/ψ)

Table 1: Comparison of known efficient leakage-resilient signature schemes in the bounded and noisy
leakage model. Top: Standard model schemes. Bottom: Schemes in the BRM. When there are multiple
instantiations we considered the most efficient one. The parameter ψ is the number of group elements
in the secret key; κ is the security parameter, γ is the slack parameter, and qs the number of signature
queries done by the adversary. The † symbol means the scheme relies on memory erasures. The ‡ symbol
means the scheme is in the random oracle model; [2] achieved the weaker notion of entropic unforgeability.
G.D. stands for graceful degradation. For the scheme ∗ we wrote |C| for the size of the boolean circuit
representing the NP-relation used within the scheme.

New generic constructions. Next, we present new constructions of fully leakage-resilient
signature schemes based on generic cryptographic building blocks, improving over previous work
in several directions. All of our schemes tolerate leakage on the entire state of the signer, up
to a 1− o(1) fraction of the secret key length (in the bounded leakage model). They also offer
graceful degradation, allowing to have short signatures of size independent of the size of the
secret key.

The first three schemes are secure in the standard model (the first two assuming perfect
erasures, the third one not). Our fourth scheme is secure in the BRM, but requires a random
oracle. Some of our schemes additionally maintain security in the noisy leakage model. We
refer the reader to Table 1.1 for a more detailed overview and comparison with previous works.

Concrete instantiations. We finally explain how to instantiate all building blocks required
for our generic schemes. All our instantiations are efficient, and rely on fairly standard assump-
tions. We refer the reader to Section 7 for the details.

1.2 Technical Overview

We proceed with a high level description of the rationale behind our signatures constructions.
For simplicity, we focus here on the bounded leakage model and refer the reader to Section 8
for the extension to the setting of noisy leakage.

Schemes template. All of our schemes follow a common template, which is inspired by
the construction of [51]. The main ingredients are: (1) A hybrid1 linearly homomorphic
non-interactive commitment scheme; (2) A statistical non-interactive witness indistinguishable
(NIWI) argument system. The secret key consists of two random degree d polynomials, δ(X)
and r(X), over a finite field F. The verification key includes t+ 1 verification keys for the com-

1Intuitively this is a commitment scheme which can be either unconditionally binding or equivocable, de-
pending on the distribution of the public parameters; moreover these two distributions of the parameters are
computationally indistinguishable.
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mitment scheme, which we denote by (ϑ, {ϑi}ti=1), and commitments comi to the coefficients δi
of δ(X) computed using the coefficients ri of r(X) as randomness.

To sign a message m one computes m̃ = δ(m), and commits to it in two different ways:
(1) Using verification key ϑ and randomness r̃ = r(m) (call the result ˜com); (2) Using another
verification key ϑ̄ (depending on {ϑi}ti=1 and on fresh randomness) and uniform randomness r̄
(call the result ¯com).2 A signature then consists of the commitment ¯com together with a NIWI
argument π that (m̃, r̃) and (m̃, r̄) are valid openings of, respectively, ˜com and ¯com. In order
to verify a signature, the verifier can compute the value ˜com non-interactively (using the fact
that the commitment scheme is linearly homomorphic), and hence verify the argument π.

Proof outline. To prove security, we define a series of computationally indistinguishable
hybrids experiments, where, in each experiment, we either modify the way keys are sampled,
or the way signature/leakage queries are handled. The goal is to reach a final hybrid in which
signature queries on average do not reveal information about the secret polynomial δ(X). In
order to achieve this, we set-up the keys in such a way that the verification key ϑ is always
equivocable, whereas the verification key ϑ̄ is binding with some probability p (and equivocable
with probability 1 − p); let us call Bad the event that ϑ̄ is binding. In case Bad does not
happen, we can simply commit to 0 and later equivocate the commitment to sample consistent
randomness to simulate a signature/leakage query. In case Bad happens, we will be forced to ask
an additional leakage query and reveal the value m̃ = δ(m), which allows to answer a signature
query correctly.

In the second part of the proof we analyse the uncertainty of δ(X) given the view of the
adversary in the last hybrid, and we show two facts: (1) The conditional min-entropy of δ(X)
is high with high probability; (2) There exists a predictor able to recover δ(X) with probability
depending on the advantage of the adversary in the unforgeability game. Finally one observes
that fact (2) contradicts fact (1) and, whenever the advantage is noticeable, the probability of
fact (2) is high, which cannot be true, since also the probability of fact (1) is, and thus the
scheme has to be secure.

This is the most critical part of the proof, as in particular, we cannot show directly that the
conditional average min-entropy of the random variable δ(X) is high.3 To get around this, we
use a careful averaging argument and set the slack parameter γ appropriately.

Amplifying the leakage rate. Any scheme following the above template can tolerate leakage
of at most a 1/2 − o(1) fraction of the secret key. Our actual constructions achieve optimal
leakage rate 1 − o(1), by replacing the polynomial δ(X) with a matrix of polynomials ∆ and
exploiting a commitment scheme with a message space of “higher dimension”.

1.3 Related Work

On a high level, our scheme follows the template given in [42]; our techniques are mostly related
to the ones in [8, 47]. Below, we first briefly describe the standard model scheme of [42], then
we provide a more detailed comparison of our schemes and [8, 47]. Finally, we discuss other
leakage models and constructions therein.

The signature scheme of Katz and Vaikuntanathan [42] relies on a second-preimage resistant
(SPR) function, a CPA-secure public-key encryption scheme and an unbounded simulation-
sound NIZK proof system. The secret key is a random pre-image x of a value y under the SPR
function (y is part of the public key); a signature is an encryption c of x together with a proof
that the ciphertext c is indeed an encryption of a pre-image of y (the message m is used as label
in the proof). The scheme does not achieve fully leakage resilience.

2The actual way ϑ̄ is computed varies from scheme to scheme.
3In fact it can be arbitrarily small, due to the presence of the event Bad.

5



Comparison to [8] and [47]. The first fully leakage-resilient signature schemes in the stan-
dard model, were constructed independently by [8] and [47]. In a nutshell, the signature scheme
of Boyle et al. [8] instantiates the above paradigm using a lossy tag-based public-key encryption
scheme and an admissible hash function H [5]. A signature for a message m is an encryption
c under the tag H(m) of a pre-image for an SPR function, together with a statistical NIWI
argument that the ciphertext c is indeed an encryption of a pre-image of y. The lossy public-
key encryption scheme has the property that for many tags the corresponding ciphertexts are
lossy (i.e., they do not leak information about the plaintext), while for a few other tags the
corresponding chipertexts are correctly decryptable. The admissible hash function allows to
partition lossy tags from non-lossy tags. With noticeable probability all the signature queries
will correspond to lossy tags, therefore signatures do not provide any information about the
secret key even if the randomness of the NIWI is leaked, while the forgery corresponds to a
non-lossy tag, and therefore the simulator can extract a pre-image of y that w.h.p. will be
different from the one initially sampled.

The signature scheme of [47] can be seen as an alternative instantiation of the same partition-
ing strategy. The lossy public-key encryption is removed from the construction, by observing
that Groth-Sahai NIZKs are either statistically witness indistinguishable or extractable, depend-
ing on the choice of the common reference string (CRS). The admissible function is replaced by
the Waters hash function [60], that provides a way to map the message space to a CRS. The
Waters function allows to show that with noticeable probability all signature queries correspond
to a witness indistinguishable CRS while the forgery corresponds to an extractable CRS.

We observe that the approach of [47] cannot work in case of one-more unforgeability, due to
the impossibility result of [40]; this is because finding two distinct messages that are mapped
into two extractable CRS would imply that the discrete logarithm problem is easy in the group.
Using a similar partitioning argument as the one in [8] might work, however the signature size
is proportional to the output of the hash function that grows like log2 κ · log2 qs, where qs is the
number of signature queries.

Other leakage models. Leakage-resilient signatures are constructed also in other leakage
models. The “only computation leaks” model [48], assumes that the only part of the state
subject to leakage are the ones involved in the computation. Leakage-resilient signatures in
this model were constructed in [29]. One important limitation of the “only computation leaks
information” axiom, is that it does not captures important attacks in which inactive values
in memory are still vulnerable [38]. Note that our assumption of perfect erasures might be
interpreted as a special case of only-computation leaks, as a deleted value is never used in
a computation again. The model of hard-to-invert leakage [23, 20] (a.k.a. auxiliary input
model) generalizes both the bounded and noisy leakage model by allowing the adversary to see
computationally hard-to-invert functions of the secret key. The only signature schemes secure
in this model are the ones from [28]. In the continual leakage model [22, 10, 41, 34] one can
additionally refresh the secret key without changing the verification key of the signature scheme,
while the scheme tolerates arbitrary (bounded or noisy) leakage on the entire state between two
consecutive invocations of the refreshing algorithms.

A different, but related, line of research recently proposed leakage models that better cope
with the perspective of cryptographic engineering (see, e.g., [58, 59, 33]).

1.4 Roadmap

We begin with some notation and basic definitions in Section 2. Our definitions for fully-leakage
one-more unforgeability in the bounded leakage model can be found in Section 3. Our generic
constructions are given in Section 4 (for the erasure case), Section 5 (for the non-erasure case),
and Section 6 (for the BRM). Section 7 discusses how one can instantiate our constructions
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under standard number-theoretic assumptions, and comments on efficiency. In Section 8 we
explain how to leverage our models and constructions to the noisy leakage model. Finally, we
state a few open problems and interesting directions for future research in Section 9.

2 Preliminaries

2.1 Notation

For a, b ∈ R, we let [a, b] = {x ∈ R ; a ≤ x ≤ b}; for a ∈ N we let [a] = {1, 2, . . . , a}. If x is a
string, we denote its length by |x|; if X is a set, |X | represents the number of elements in X .
When x is chosen randomly in X , we write x←$ X . When A is an algorithm, we write y ← A(x)
to denote a run of A on input x and output y; if A is randomized, then y is a random variable
and A(x; r) denotes a run of A on input x and randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the computation of
A(x; r) terminates in at most poly(|x|) steps.

Throughout the paper we let κ denote the security parameter. We say that a function
ν : N → R is negligible in the security parameter κ if ν(κ) = κ−ω(1). A function that is not
negligible is called noticeable. For two ensembles X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write
X ≡ Y if they are identically distributed and X ≈ Y to denote that the two distributions are
statistically or computationally close.

Vectors and matrices are typeset in boldface. For a vector v = (v1, . . . , vn) we sometimes
write v[i] for the i-th element of v.

2.2 Random Variables and Min-Entropy

The min-entropy of a random variable X over a set X is H∞(X) := − log maxx P [X = x] and
represents the best chance of guessing X by an unbounded adversary. Conditional average min-
entropy captures how hard it is to guess X on average, given some side information Z (possibly
related to X), and it is denoted as H̃∞(X|Z) := − logEz [maxx P [X = x|Z = z]].

We state a lemma from [42]:

Lemma 2.1. Let X be a random variable with H := H∞ (X), and fix ∆ ∈ [0, H]. Let f be
a function whose range has size 2λ, and set Y :=

{
y ∈ {0, 1}λ| H∞ (X|f(X) = y) 6 H −∆

}
.

Then
P [f(X) ∈ Y ] 6 2λ−∆.

2.3 Commitment Schemes

A (non-interactive) commitment scheme COM is a tuple of algorithms (Setup,Commit), defined
as follows: (1) Algorithm Setup takes as input the security parameter and outputs a verification
key ϑ; (2) Algorithm Commit takes as input a message m ∈ M, randomness r ∈ R, the
verification key ϑ and outputs a value com ∈ C. To open a commitment com we output (m, r);
an opening is valid if and only if com = Commit(ϑ,m; r).

A commitment scheme has two properties, known as binding and hiding:

Binding Property. Consider the following probability:

P[Commit(ϑ,m0; r0) = Commit(ϑ,m1; r1) : ϑ← Setup(1κ); ((m0, r0), (m1, r1))← A(ϑ)].

A commitment scheme is computationally binding in case the above is negligible for all
PPT adversaries A. In case the probability is 0, for all even unbounded A, the commitment
scheme is called perfectly binding.
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Hiding Property. For all messages m0,m1 ∈M, we have that

{ϑ,Commit(ϑ,m0)}κ∈N ≈ {ϑ,Commit(ϑ,m1)}κ∈N,

where the two ensembles are considered as random variables over the choice of the ran-
domness to generate ϑ ← Setup(1κ) and to compute the commitment. A commitment
scheme is statistically (resp., computationally) hiding in case ≈ refers to statistical (resp.,
computational) indistinguishability. In case the two ensembles are identically distributed,
the commitment scheme is called perfectly hiding.

Whenever M and R are a finite field F, we say that COM is linearly homomorphic in
the following sense: Given commitments com and com ′ and a field element c ∈ F, one can
compute commitments com∗ and com ′′ such that being able to open com and com ′ to m and
m′ (respectively) allows to open com∗ to m+m′ and com ′′ to c ·m. We will write the mapping
(com, com ′) 7→ com∗ as com · com ′ and the mapping (c, com) 7→ com ′′ as comc. Similarly, for
the opening information we will write the mappings as com∗ = Commit(ϑ,m + m′; r + r′) and
com ′′ = Commit(ϑ, c ·m; c · r). The above can be generalized to abstract operations over the
spaces M, R and C, but for simplicity, and to be consistent with the concrete instantiation
given in this paper, we stick to the above formulation here.

Hybrid commitments. A hybrid [13] commitment scheme COM = (Setup,Commit,ESetup,
ECommit,Equiv) is a tuple of algorithms specified as follows: (1) (Setup,Commit) is a non-
interactive commitment scheme with message spaceM, randomness space R, and commitment
space C; (2) Algorithm ESetup takes as input the security parameter and outputs a pair (ϑ, τ)←
ESetup(1κ); (3) Algorithm ECommit takes as input a pair (ϑ, τ) and outputs a pair (com, r′)←
ECommit(ϑ, τ); (4) Algorithm Equiv takes as input (τ,m, r′) and outputs r ← Equiv(τ,m, r′).

Definition 2.1. We say that COM = (Setup,Commit,ESetup,ECommit,Equiv) is a hybrid
commitment scheme if the following holds.

Perfectly Binding: The tuple (Setup,Commit) forms a perfectly binding commitment scheme;
Trapdoor Hiding: The tuple (ESetup,Commit,ECommit,Equiv) forms a trapdoor commit-

ment scheme, namely for all (ϑ, τ) ← ESetup(1κ) and for all m ∈ M the following
probability distributions are indistinghuishable:{

(com, r)

∣∣∣∣ r←$R,
c := Commit(ϑ,m; r)

}
and

{
(com, r)

∣∣∣∣ (com, r′)←$ ECommit(ϑ, τ),
r := Equiv(τ,m, r′)

}
Hybridness: The following probability distributions are computationally indistinghuishable:

{ϑ| (ϑ, τ)←$ ESetup(1κ)} and {ϑ| ϑ←$ Setup(1κ)} .

We call a verification key equivocable (resp. binding) if it is generated by the algorithm
ESetup (resp. Setup). In the same way a commitment is equivocable (resp. binding) if it is
generated using an equivocable (resp. binding) verification key.

For a hybrid linearly homomorphic commitment scheme we will require the following ad-
ditional property. Let (ϑ, τ) ← ESetup(1κ), (com1, r

′
1) ← ECommit(ϑ, τ) and (com2, r

′
2) ←

ECommit(ϑ, τ). Then we can use randomness r′1 + r′2 to equivocate com1 · com2, and random-
ness c · r′1 to equivocate comc

1 (for any c).

Consider the following experiment Expcomp−hiding
COM,A (κ) running with a PPT adversary A and

parametrized by the security parameter κ ∈ N:

1. (m0,m1)←$ A(ϑ) where ϑ←$ Setup(1κ);
2. com←$ Commit(ϑ,mb) where b←$ {0, 1};
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3. Let b′←$ A(ϑ, com), output 1 iff b = b′.

Lemma 2.2 (Adaptive Computational Hiding). Let COM be a hybrid commitment scheme.
For any PPT A there exists a negligible function negl such that:∣∣∣P [Expcomp−hiding

COM,A (κ) = 1
]
− 1/2

∣∣∣ 6 negl(κ).

Proof. The trapdoor hiding property implies that for any (ϑ, τ)←$ ESetup(1κ) and any (m0,
m1) ∈M the following two probability distributions are indistinghuishable:

{com | com←$ Commit(ϑ,m0)} and {com | com←$ Commit(ϑ,m1)} . (1)

Since Eq. (1) holds for any ϑ and any m0,m1 we can allow the messages to be chosen adaptively
after seeing the verification key. Hence, for any (ϑ, τ)← ESetup(1κ) and for any A:∣∣∣∣P [b = b′

∣∣∣∣ m0,m1←$ A(ϑ); b←$ {0, 1};
com←$ Commit(ϑ,mb); b

′←$ A(ϑ, com);

]
− 1/2

∣∣∣∣ 6 negl(κ). (2)

The hybridness property and Eq. (2) imply the lemma.

2.4 NIWI and NIZK Arguments

For a relation R ⊆ {0, 1}∗×{0, 1}∗, the language associated with R is LR = {x : ∃w s.t. (x,w) ∈
R}. A non-interactive argument system (Init,Prove,Ver) is a tuple of algorithms specified
as follows: (1) Init takes as input the security parameter and outputs a common reference
string crs ← Init(1κ); (2) Prove takes as input a pair (x,w) ∈ R, and outputs a proof π ←
Prove(crs, x, w); (3) Ver takes as input a statement x and a proof π, and outputs a bit b ←
Ver(crs, x, π). We require that for all pairs (x,w) ∈ R, and all crs ← Init(1κ), the following
holds: P[Ver(crs, x,Prove(crs, x, w))] ≥ 1 − negl(κ) (over the randomness of the prover and
verifier algorithms).

We review the notions of non-interactive witness indistinguishable and zero-knowledge ar-
gument systems for a relation R.

NIWI arguments. A non-interactive witness indistinguishable argument system satisfies two
properties known as adaptive soundness and statistical witness indistinguishability.

Definition 2.2 (Adaptive soundness). Let NIWI be an argument system for a language L.
We say that NIWI satisfies adaptive soundness, if for all PPT adversaries A there exists a
negligible function negl(·) such that

P [Ver(crs, x, π) = 1 ∧ x 6∈ L : crs← Init(1κ), (x, π)← A(1κ, crs)] ≤ negl(κ).

Definition 2.3 (Statistical witness indistinguishability). Let NIWI be an argument system
for a relation R. We say that NIWI satisfies statistical witness indistinguishability if for
any triplet (x,w,w′) such that (x,w) ∈ R and (x,w′) ∈ R, the distributions {(crs, π)|crs
← Init(1κ), π ← Prove(crs, x, w)} and {(crs, π)| crs← Init(1κ), π ← Prove(crs, x, w′)} are sta-
tistically indistinguishable.

NIZK arguments. We will need a non-interactive zero-knowledge argument system satis-
fying two properties, known as adaptive multi-theorem zero-knowledge and true-simulation
extractability [22].

Definition 2.4 (Adaptive multi-theorem zero-knowledge). Let NIZK be an argument system
for a relation R. We say that NIZK satisfies adaptive multi-theorem zero-knowledge with labels
if the following holds:
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(i) There exists an algorithm Init that outputs a CRS crs, and a simulation trapdoor τsim .

(ii) There exists a PPT simulator Sim such that, for all PPT adversaries A, we have that∣∣∣P [AProve(crs,·)(crs) = 1| crs← Init(1κ)
]
− P

[
ASIM(τsim ,·)(crs) = 1| (crs, τsim)← Init(1κ)

]∣∣∣
is negligible in κ. The simulation oracle SIM(τsim , ·) takes as input a pair (x,w) and a
label L, checks if (x,w) ∈ R, and, if true, ignores w and outputs a simulated argument
Sim(τsim , (x, L)), and otherwise outputs ⊥.

Definition 2.5 (True-simulation extractability). Let NIZK be an argument system for a re-
lation R. We say that NIZK is true-simulation extractable (tSE) with labels if the following
holds:

(i) There exists an algorithm Init that outputs a CRS crs, a simulation trapdoor τsim , and an
extraction trapdoor τext .

(ii) There exists a PPT algorithm K(τext , (x, L), π) such that, for all PPT adversaries A, we
have P[A wins] 6 negl(κ) in the following game:

� The challenger runs (crs, τsim , τext)← Init(1κ), and gives crs to A.

� A is given access to the simulation oracle SIM, which it can access adaptively.

� A outputs a tuple ((x∗, L∗), π∗).

� The challenger runs w ← K(τext , (x
∗, L∗), π). We say that A wins if: (a) the pair

(x∗, L∗) was not part of a query to the simulation oracle; (b) Ver(crs, (x∗, L∗), π∗) = 1;
and (c) (x∗, w) 6∈ R.

Oblivious sampling. For our application we will need the additional property that the Init
algorithm supports oblivious sampling (a.k.a. reference string uniformity in [56]), meaning that
the distribution of the common reference string is statistically-close to the uniform distribution.
Such property will be satisfied in our concrete instantiations based on the Groth-Sahai proof
system [36].

3 Fully-Leakage One-More Unforgeability

A signature scheme is a triple of algorithms SS = (KGen,Sign,Verify) defined as follows: (1)
The key generation algorithm takes as input the security parameter κ and outputs a verifica-
tion key/signing key pair (vk , sk)← KGen(1κ); The signing algorithm takes as input a message
m ∈ M and the signing key sk and outputs a signature σ ← Sign(sk ,m); (3) The verifi-
cation algorithm takes as input the verification key vk and a pair (m,σ) and outputs a bit
Verify(vk , (m,σ)) ∈ {0, 1}. We say that SS satisfies correctness if for all messages m ∈ M
and for all pairs of keys (vk , sk) generated via KGen, we have that Verify(vk , (m,Sign(sk ,m)))
returns 1 with overwhelming probability over the randomness of the signing algorithm.

In this section we extend the notion of one-more unforgeability [51] to a setting where all
intermediate values generated within the lifetime of the system (and not just the secret key) are
subject to leakage. As outlined in the introduction, we consider two cases depending whether
one is willing to assume perfect erasures or not.

3.1 Definition without Erasures

Given a signature scheme SS, consider the following experiment Expone−more
SS,A (κ, `, qs, γ) running

with a PPT adversary A and parametrized by the security parameter κ ∈ N, the leakage
parameter ` ∈ N, and the slack parameter γ := γ(κ):
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1. Sample r0 ∈ {0, 1}∗, run the key generation algorithm to obtain a pair (vk , sk) :=
KGen(1κ; r0), and return vk to A; let st = {r0}.

2. The adversary A can adaptively issue signing queries. Upon input a message m ∈M, the
adversary is given a signature σ := Sign(sk ,m; r) computed using fresh coins r. The state
is updated to st := st ∪ {r}.

3. The adversary A can adaptively issue leakage queries. Upon input an arbitrary function
f , the adversary is given f(st) where st is the current state.

4. Let Q be the set of signing queries issued by A, and let Λ ∈ {0, 1}λ be the total amount
of information leaked by the adversary. A outputs n pairs (m∗1, σ

∗
1), . . . , (m∗n, σ

∗
n).

5. The experiment outputs 1 if and only if the following conditions are satisfied:

(a) Verify(vk , (m∗i , σ
∗
i )) = 1 and m∗i 6∈ Q, for all i ∈ [n].

(b) The messages m∗1, . . . ,m
∗
n are pairwise distinct.

(c) n ≥ bλ/(γ · s)c+ 1, where s := |σ| is the size of a signature.

(d) λ ≤ ` and |Q| ≤ qs.

Definition 3.1. We say that SS = (KGen,Sign,Verify) is (`, qs, γ, ε)-fully-leakage one-more un-
forgeable if for every PPT adversary A asking qs signature queries we have that P[Expone−more

SS,A (κ,
`, qs, γ) = 1] ≤ ε. Whenever ε = negl(κ), qs = poly(κ), and γ does not depend on qs, we simply
say that SS is (`, γ)-fully-leakage one-more unforgeable.

Note that the number of signatures the adversary has to forge depends on the length of
the leakage he asks to see. In particular (`, γ)-fully-leakage one-more unforgeability implies
standard unforgeability for any adversary asking no leakage (λ = 0).

As pointed out in [51], the slack parameter γ specifies how close to optimal security SS is.
In particular, in case γ = 1 one-more unforgeability requires that A cannot forge even a single
signature more than what it could have leaked via leakage queries. As γ decreases, so does
the strength of the signature scheme (the extreme case being γ = |M|−1, where we have no
security).

For some of our schemes, the slack parameter will be dependent on the security parame-
ter, and in some case even on the number of signature queries asked by the adversary. We
stress, however, that as long as this dependency is polynomial, one-more unforgeability is still
meaningful for some applications (cf. [51, Section 5]).

3.2 Definition with Erasures

In the setting of Definition 3.1 the leakage is allowed to depend on the entire randomness
produced within the lifetime of the system. A more restricted (yet natural) setting is to assume
that the state is erased after each signature is generated. Although perfect erasures might
be hard to implement [12], we believe that such weakening might still be useful in practice.
Moreover, looking ahead, the ideas behind the schemes we construct assuming perfect erasures
(cf. Section 4) form the core for the scheme which does not consider erasures (cf. Section 5).

To define fully-leakage one-more unforgeability with erasures one simply modifies the exper-
iment Expone−more

SS,A (κ, `, qs, γ) by requiring that the state variable st is always equal to sk . Since
this is clearly equivalent to a setting where the adversary asks up to one leakage query after
each signature query, we can equivalently4 give A access to the following machine S̃ign(sk , ·):

4It is, in fact, easy to see that an adversary that makes multiple queries between two consecutive signature
queries can be reduced to an adversary in our model.
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� Upon input a value m ∈ M, compute σ←$ Sign(sk ,m) and return σ. We call such
invocation of the signature oracle a leak-free query.

� Upon input a pair (m, f), wherem ∈M and f is an arbitrary function, sample randomness
r←$ {0, 1}∗, compute σ := Sign(sk ,m; r) and return (σ, f(sk , r)). We call such invocation
of the signature oracle a leaky query.

A formal definition follows. Given a signature scheme SS, consider the following experi-

ment Ẽxp
one−more

SS,A (κ, `, qs, γ) running with a PPT adversary A and parametrized by the security
parameter κ ∈ N, the leakage parameters ` ∈ N, and the slack parameter γ := γ(κ):

1. The adversary can issue an initial leakage query. Upon input an arbitrary function f0, sam-
ple r0 ∈ {0, 1}∗, run the key generation algorithm to obtain a pair (vk , sk) := KGen(1κ; r0),
and return (vk , f0(r0)) to A.

2. The adversary A can adaptively access oracle S̃ign(sk , ·).

3. Let Q be the set of signing queries issued by A, and denote with Λ ∈ {0, 1}λ the total
amount of information leaked by the adversary, including the initial leakage Λ0 ∈ {0, 1}λ0
(with λ ≥ λ0). A outputs n pairs (m∗1, σ

∗
1), . . . , (m∗n, σ

∗
n).

4. The experiment outputs 1 if and only if the following conditions are satisfied:

(a) Verify(vk , (m∗i , σ
∗
i )) = 1 and m∗i 6∈ Q, for all i ∈ [n].

(b) The messages m∗1, . . . ,m
∗
n are pairwise distinct.

(c) n ≥ bλ/(γ · s)c+ 1, where s := |σ| is the size of a signature.

(d) λ ≤ `, and |Q| ≤ qs.

Definition 3.2. We say that SS = (KGen, Sign,Verify) is (`, qs, γ, ε)-fully-leakage one-more

unforgeable with perfect erasures if for every PPT adversary A we have that P[Ẽxp
one−more

SS,A (κ, `,
qs, γ) = 1] ≤ ε. Whenever ε = negl(κ), qs = poly(κ), and γ does not depend on qs, we simply
say that SS is (`, γ)-fully-leakage one-more unforgeable with perfect erasures.

4 A Scheme with Erasures

4.1 The Basic Construction

We give a construction of a fully-leakage one-more unforgeable signature scheme (cf. Defini-
tion 3.2) based on the following building blocks:

� A statistical non-interactive witness-indistinguishable argument system NIWI = (Init,
Prove,Ver) (cf. Section 2.4).

� A trapdoor hiding, linearly homomorphic commitment COM1 = (ESetup1,Commit1,
ECommit1,Equiv1) equipped with an obliviously sampleable key generation algorithm
Setup and with message space equal to Fµ (for a finite field F and a parameter µ ∈ N) and

randomness space equal to F (cf. Section 2.3). Let ρ be defined as ρ := log |Fµ|
log(|Fµ|×|F|) = µ

µ+1 .

� A hybrid, linearly homomorphic commitment scheme COM2 = (Setup2,Commit2,ESetup2,
ECommit2,Equiv2), with message space equal to Fµ and randomness space equal to Fν for
a parameter ν > µ.

� A pseudorandom generator (PRG) G : X → Y.5

Our scheme SS1 = (KGen,Sign,Verify) has message space equal to F and is described below:

5A PRG is a deterministic, efficiently computable, function such that the ensemble {G(x)| x ∈ {0, 1}κ}κ∈N is
pseudorandom.
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Key Generation. Let t, d, µ, ν ∈ N be parameters. Run crs ← Init(1κ), sample a uniform
y ∈ Y from the range of G, run ϑ ← Setup1(1κ), and ϑi ← Setup2(1κ) for all i ∈ [t].
Sample ∆←$ (Fµ)d+1 and r = (r0, . . . , rd)←$ Fd+1, and compute commitments comi =
Commit1(ϑ, δi; ri) for i ∈ [0, d], where δi ∈ Fµ is the i-th column of ∆. Output

sk = (∆, r) vk = (crs, y, ϑ, {ϑi}ti=1, {comi}di=0).

Signature. For j ∈ [µ], let δj(X) be the degree d polynomial having as coefficients the elements

in the j-th row of ∆, i.e., δj(X) :=
∑d

i=0 δj,i · Xi; similarly let r(X) be the degree d

polynomial having as coefficients the elements of r, i.e., r(X) :=
∑d

i=0 ri ·Xi. Define

∆(X) :=

δ1(X)
...

δµ(X)

 .

Consider the following polynomial-time relation:

R :=

{
(ϑ, ϑ′, ˜com, com); (m̃, r̃, r)

∣∣∣∣ ˜com = Commit1(ϑ, m̃; r̃)
com = Commit2(ϑ′, m̃; r)

}
.

together with the polynomial-time OR-relation

ROR := {(α, y); (β, x) |(α, β) ∈ R ∨ G(x) = y} .

To sign a message m ∈ F compute m̃ = ∆(m) and r̃ = r(m), and let ˜com := Commit1(ϑ,
m̃; r̃). Notice that both values m̃, r̃ can be computed efficiently as a function of the
signing key (∆, r) and the message to be signed. Pick a random index j←$ [t], and
compute com := Commit2(ϑj , m̃; r) where r←$ Fν . Using crs as common reference string,
generate a NIWI argument π for (ϑ, ϑj , ˜com, com, y) ∈ LROR , the language generated by
the above relation ROR. Output σ = (π, j, com).

Verification. Given a pair (m,σ), parse σ as (π, j, com). Output the same as:

Ver(crs, π, (ϑ, ϑj ,
d∏
i=0

(comi)
mi , com, y)).

Let us first argue that the signature scheme satisfies the correctness property. This follows
from the correctness of the NIWI argument system, and from the fact that COM is linearly
homomorphic (cf. Section 2.3), as

˜com =
d∏
i=0

(comi)
mi =

d∏
i=0

Commit1(ϑ, δi ·mi; ri ·mi) = Commit1
(
ϑ,

d∑
i=0

δi ·mi

︸ ︷︷ ︸
m̃

;

d∑
i=0

ri ·mi

︸ ︷︷ ︸
r̃

)
.

Theorem 4.1. Let µ ∈ N, and let F be a finite field of size log |F| = κ for security parameter
κ ∈ N. For any 0 < ξ 6 µ

µ+1 and t = O(κ), whenever γ = O(1/κ) the above signature scheme

is (( µ
µ+1 − ξ)|sk |, γ)-fully-leakage one-more unforgeable with perfect erasures.

Notice that the slack parameter γ is not optimal, as γ = O(1/κ). However, as pointed out
in Section 3, this is fine for some applications. The proof of Theorem 4.1 proceeds in two steps.
Let A be a PPT adversary breaking fully-leakage one-more unforgeability with probability ε(κ).
In the first step we define a series of hybrid experiments that are indistinguishable from the
original experiment defining security of the signature scheme. The purpose of these hybrids is to
reach a state in which signature queries reveal (information theoretically) as little information
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as possible on the secret matrix ∆. In the second step we analyse the uncertainty of ∆ given
the adversary’s view; in particular we show two facts: (1) The conditional min-entropy of ∆
is high with high probability; (2) There exists a predictor able to recover ∆ with probability
depending on ε(κ). Finally one observes that fact (2) contradicts fact (1) and, whenever the
advantage is noticeable, the probability of fact (2) is high, which cannot be true, since also the
probability of fact (1) is, and thus the scheme has to be secure.

The main technical challenge to overcome is that although simulated signatures should not
leak information about the secret key, the forgeries output by the adversary need to. It easy to
see that these two requirements are in contrast. To overcome this difficulty we construct the
simulator in a way that, on average, simulated signatures do not provide information about ∆,
meaning that sometimes the simulator will have to retrieve and reveal some information about
the secret key. We obtain a contradiction as soon as the forgeries reveal more information
about the secret key than the information that the adversary has leaked. Setting the slack
parameter to O(1/κ) provides us with enough signatures to overcome the bound set by the
leakage parameter and reach a contradiction.

4.2 Proof of Theorem 4.1

Let A be an adversary making q = poly(κ) leaky signature queries, such that

P[Ẽxp
one−more

SS1,A (κ, `, qs, γ) = 1] = ε(κ).

Experiment H0 : This experiment is exactly the same as the original experiment defining
fully-leakage one-more unforgeability of SS1. Note that the initial state (after key genera-
tion), is equal to st := ((∆, r), crs, ϑ, {ϑi}ti=1). (Recall that we assume oblivious sampling
for both the NIWI and the commitment scheme.) This state is used to answer the initial
leakage query f0; afterwards everything but (∆, r) is erased. Additionally at each invoca-

tion of oracle S̃ign(sk , ·) corresponding to a leaky query (m, f), the experiment produces
a signature σ = (π, j, com) following the signing algorithm, and defines the current state
to be st := ((∆, r), r, rniwi), where r is the randomness used to generate the commitment
com and rniwi is the randomness used to generate the argument π.

Denote with ((m∗1, (π
∗
1, j
∗
1 , com∗1)), . . . , (m∗n, (π

∗
n, j
∗
n, com∗n))) the set of forgeries returned by

the adversary at the end of the experiment. Let Forge0 be the event that H0 returns 1, so that
P[Forge0] = ε. Define False0 to be the event that at least one of the proofs contained in the
adversary’s forgeries is relative to a false statement, i.e., False0 is verified if in H0 there exists
some index i ∈ [1, n] for which com∗i is a well-formed commitment to a value m′i 6= ∆(m∗i ). Let
ε0 := P[Forge0 ∧ ¬False0].

Claim 4.1. ε0 > ε− negl(κ).

Proof. By adaptive computational soundness of the NIWI argument system, we must have that
P[False0] ≤ negl(κ). In fact, from an adversary A provoking False0, we can easily construct
an adversary B breaking adaptive soundness by simply emulating the entire experiment for A
and outputting one of the n proofs π∗i contained in A’s forgeries (chosen uniformly at random).
In case P[False0] is noticeable, B breaks soundness with noticeable advantage, so False0 must
happen with negligible probability. Hence,

ε0 = P [Forge0 ∧ ¬False0] = P [Forge0]− P [Forge0 ∧ False0]

≥ P [Forge0]− P [False0] ≥ ε− negl(κ),

as desired.
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We now define a series of hybrid experiments. For each hybrid Hi, we write εi for the
probability of the event Forgei ∧ ¬Falsei, and Viewi for the view of the adversary at the end
of the experiment. The first sequence of hybrids are made to switch the public key of the
signature scheme to a simulated public key. The simulated public key is generated together
with a trapdoor, and moreover does not reveal any information about the signing key.

Experiment H1.a: This experiment is the same as H0, except that during key generation the
verification key for the commitment scheme COM1 is computed using the equivocable
setup algorithm ESetup1, a random index i∗ ∈ [t] is sampled, and all verification keys for
the commitment scheme COM2 but the i∗-th are computed using the equivocable setup
algorithm ESetup2 (whereas ϑi∗ is computed as before). More precisely,

(ϑ, τ)←$ ESetup1(1κ)

(ϑi, τi)←$ ESetup2(1κ) for i 6= i∗

ϑi←$ Setup2(1κ) for i = i∗.

Note that from the point of view of the adversary, the initial state remains equal to
st := ((∆, r), crs, ϑ, {ϑi}ti=1).

Claim 4.2. ε1.a > ε0 − negl(κ).

Proof. First note the distributions of Setup1 and ESetup1 are the same. The claim follows by a
standard hybrid argument relying on the hybridness property of the commitment scheme.

Experiment H1.b: This experiment is the same as the previous hybrid, except that now the
commitments {comi}di=0 to the columns δi are replaced by equivocable commitments, i.e.
(comi, r

′
i)←$ ECommit1(ϑ, τ) for all i ∈ [0, d]. Notice that the actual randomness ri, used

to produce comi in H1.a, can be recovered efficiently as a function of the coefficients δi and
the fake randomness r′i, as ri(∆) := Equiv1(τ, δi, r

′
i). Given ri the signature computation is

identical inH1.a andH1.b; in the following we write r(∆) for the vector (r0(∆), . . . , rd(∆)).

Claim 4.3. ε1.b > ε1.a − negl(κ).

Proof. The trapdoor hiding property of the commitment scheme implies that the distribution
of each pair (comi, ri) in the two hybrids are statistically close. The claim follows by a standard
hybrid argument.

Experiment H1.c: This experiment is identical to the previous hybrid, except that the value
y contained in the verification key is now computed by sampling a random x ∈ X and by
outputting y := G(x) (instead of sampling y ∈ Y uniformly at random).

Claim 4.4. ε1.c > ε1.b − negl(κ).

Proof. It follows from the fact that G is a secure pseudorandom generator.

The next sequence of hybrids is made in order to replace all signatures returned by the
signing oracle to simulated signatures that, on average, do not reveal information about the
secret key. Looking ahead, the trapdoor information that allows the above transition to go
through consists of the tuple (i∗, τ, {τi}i 6=i∗ , {r′i}di=0, x), i.e. the index i∗ corresponding to the
perfectly binding verification key, the trapdoors for all other verification keys, the randomness
r′i used to equivocate the values comi, and the seed x of the pseudorandom generator.

Experiment H2.a: This hybrid differs from the previous one in the way leak-free signature
queries are dealt with. Specifically, for each query m ∈ F the proof π is computed using x
as witness for y = G(x) instead of β = (m̃, r̃, r) as witness for α = (ϑ, ϑj , ˜com, com) ∈ LR.
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Claim 4.5. ε2.a > ε1.c − negl(κ).

Proof. Follows from the statistical witness indistinguishability property of the argument system,
via a standard hybrid argument on the number of leak-free signature queries.

Experiment H2.b: For each leak-free signature query of the form m ∈ F, the experiment checks
whether the sampled index j←$ [t] is such that j = i∗. If this is the case, such query is
answered exactly as in the previous hybrid, and otherwise the value com in the signature
σ is computed as (com, r′)←$ ECommit2(ϑj , τj).

Claim 4.6. ε2.b > ε2.a − negl(κ).

Proof. Let σ = (π, j, com) be the answer to a leak-free signature query m ∈ F. The distribution
of the proof π and of the index j is identical in the two hybrids. The trapdoor hiding property
implies that the distribution of the commitment com in hybrid H2.b is statistically close to the
distribution of com in hybrid H2.a. The claim follows.

Experiment H2.c: This experiment behaves in the same way as the previous hybrid, with the
exception that for each leak-free query such that j = i∗ the value com is replaced with a
commitment to zero, i.e. com := Commit2(ϑi∗ , 0

µ; r) for r←$ Fν .

Claim 4.7. ε2.c > ε2.b − negl(κ).

Proof. Recall that there are three types of signature queries handled by the two hybrids H2.b

and H2.c. Specifically:

1. Both hybrids handle in the same way leaky signature queries.
2. In case of a leak-free signature query on a message m both hybrids randomly select the

index j←$ [t] and:

(a) if j 6= i∗, both hybrids handle the signature in the same way;
(b) if j = i∗, hybrid H2.b computes com as an honestly generated commitment to ∆(m),

whereas hybrid H2.c computes com by committing to zero. We call such a query
binding.

Let q′ = poly(κ) be the total number of leak-free signature queries and let K ∈ [q′] be a
random variable representing the number of such queries that are binding. Note that in case
no signature query happens to be binding the two hybrids are identically distributed, and thus
there is nothing to prove. On the other hand, we show that for any possible realization k ∈ [q′]
of the random variable K the two hybrids are computationally close. This implies the claim.

Denote with J = {j1, . . . , jk} ⊆ [q′] the set of indexes corresponding to the binding signature
queries. For an index 0 ≤ w ≤ k, consider the following series of hybrids experiments. Hybrid
Hw2.b treats the first w binding signature queries (i.e., the ones up to index jw) as H2.b does,
whereas the remaining queries (i.e., the ones going from index jw+1 to jk) are treated as in H2.c.
Note that H2.c = H0

2.b, and H2.b = Hk2.b.
By contradiction, assume that there exists an efficient distinguisher D that for some w ∈ [0, k]

can distinguish the distribution of Hw2.b and Hw+1
2.b with noticeable probability. Consider the

following adversary B (using D) attacking the adaptive computational hiding property of the
hybrid commitment scheme (cf. Lemma 2.2).

� At the beginning B receives a verification key ϑ∗ and sets-up the verification key for the
signature scheme with the same distribution as in H2.b and H2.c, and setting ϑi∗ = ϑ∗.

� All leaky signature queries, and all non-binding signature queries are treated in the same
way as in H2.b and H2.c.
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� For the first w − 1 binding signature queries (corresponding to indexes j1, . . . , jw−1), B
computes com as in H2.b.

� Let m be the message corresponding to the w-th binding signature query. At this point B
outputs (0µ,∆(m)) and sets com = com∗, where com∗ is the challenge commitment sent
to B.

� For all remaining binding signature queries (corresponding to indexes jw+1, . . . , jk), B
computes com as in H2.c.

� In case D outputs a set of forgeries (m∗1, σ
∗
1), . . . , (m∗n, σ

∗
n), B performs the same checks as

done in H2.b and H2.c.
� Finally, B outputs whatever D does.

Note that the verification key simulated by B has the correct distribution; in fact, all public keys
are set to be equivocable (as in both H2.b and H2.c) but the one corresponding to coordinate i∗,
which is taken from the reduction (and thus has the right distribution). Additionally, in case
com∗ is a commitment to ∆(m) the reduction perfectly emulates the view of Hw2.b, whereas in
case com∗ is a commitment to 0µ the reduction perfectly emulates the view of Hw+1

2.b . Thus,
B breaks the adaptive computational hiding property with noticeable probability contradicting
Lemma 2.2. This concludes the proof.

Experiment H2.d: In this experiment we modify the way leaky signature queries are answered.
Given such a query (m, f), the experiment samples the index j←$ [t] as before and, in case
j 6= i∗, computes the commitment com as (com, r′)←$ ECommit2(ϑj , τj). Notice that the
randomness r used to compute com in the previous hybrid can be obtained as a function
of the matrix ∆ by running the equivocation algorithm. In particular:

r(∆) :=

{
Equiv2(τj ,∆(m), r′) if j 6= i∗

r←$ Fν if j = i∗.

The state used to reply the current leaky query is set to st = {(∆, r), r(∆), rniwi}, where
rniwi is the randomness used to generate the NIWI argument π.

Claim 4.8. ε2.d > ε2.c − negl(κ).

Proof. Let us consider the view of the adversary in the two hybrids, consisting of the verification
key, and the answers to both leaky and leak-free signature queries. The two hybrids differ only
in the way leaky queries are treated.

Consider one such query. In case j = i∗ the two hybrids distributions are identical; in case
j 6= i∗ the trapdoor hiding property implies that the distribution of the pair (com, r) in H2.d is
statistically close to the distribution of the same pair inH2.c. Note that in both experiments, the
verification key vk , the argument π, the leakage Λ are computed as a function of ∆, r(∆) and
independent randomness. It follows that the answers to each leaky query are statistically close
in the two experiments. By a standard hybrid argument, it must be that the joint distributions
((∆, r(∆)),View2.c) and ((∆, r(∆)),View2.d) are statistically close. The claim follows.

From now on the proof is purely information theoretic, so in particular the next experiments
might no longer be efficient. Before defining the next hybrid, we state a lemma implicit in [8].

Lemma 4.1. Let R ⊆ {0, 1}∗ × {0, 1}∗ be an NP relation, and consider a statistical NIWI ar-
gument system for R. There exists a (possibly not efficient) reconstruction algorithm Rand that,
given as input a proof π for an instance x under a witness w, another witness w′ for x, and the
randomness rniwi used to generate π, outputs a value r′niwi such that π = Prove(crs, x, w′; r′niwi)
(with overwhelming probability over the choice of rniwi). Additionally, the distribution of r′niwi
is statistically close to the uniform distribution.
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Proof. For any (x,w) ∈ R, and crs←$ Init(1κ), let Πw := {π| π = Prove(crs, x, w; rniwi)}. The
statistical witness indistinguishability property implies:

Pπ←$ Prove(crs,x,w) [π ∈ Πw′ ] > 1− negl(κ).

Otherwise the event π ∈ Πw′ can be used to distinguish the ensembles Πw and Πw′ . In case
the above condition is satisfied, algorithm Rand samples r′niwi from the weighted distribution
{r| π = Prove(crs, x, w′; r)} (otherwise it aborts).

Experiment H2.e: This experiment is identical to the previous hybrid, except that (whenever
possible) it uses a different witness β′ to compute the argument corresponding to a leaky
signature query. In particular, given such a query (m, f), the experiment samples j←$ [t]
and, in case j 6= i∗ it generates the argument π by running

Prove(crs, (ϑ, ϑj , ˜com, com)︸ ︷︷ ︸
α

, (0,Equiv1(τ, 0µ, r′(m)),Equiv2(τj , 0
µ, r′)︸ ︷︷ ︸

β′

; r′niwi),

where r′(m) =
∑d

i=0 r
′
i ·mi is computed using the randomness {r′i}di=0. Notice that the

randomness rniwi used to generate the NIWI argument in the previous experiment can be
sampled (inefficiently) as a function of the witness β := (∆(m),Equiv1(τ,∆(m), r′(m)),
Equiv2(τj ,∆(m), r′)) and r′niwi. In particular:

rniwi(∆) :=

{
rniwi (as sampled by the prover) if j = i∗

Rand(π, r′niwi, β) if j 6= i∗,

where Rand is the reconstruction algorithm of Lemma 4.1. The state used to answer the
leakage query f is set to st(∆) = ((∆, r(∆)), r(∆), rniwi(∆)).

Claim 4.9. ε2.e > ε2.d − negl(κ).

Proof. The linear homomorphic property of the hybrid commitment scheme (cf. Section 2.3)
ensures that the value r′(m) is the right randomness to equivocate ˜com.

By statistical witness indistinguishability, for each leaky query such that j 6= i∗ the dis-
tribution of the argument π is statistically close in the two hybrids. The same holds for the
reconstructed state, by Lemma 4.1. It follows that ((∆, r(∆)),View2.d) and ((∆, r(∆)),View2.e)
are statistically close, which concludes the proof.

The next hybrid that we define has no direct access to the matrix ∆, but instead depends
on a leakage oracle Leak∆(·) which takes as input a function f and returns f(∆).

Experiment HLeak∆(·)
3 : This experiment is the same as the previous hybrid, with the difference

that ∆ is not sampled by the hybrid as part of the signing key, but can instead be accessed
via Leak∆(·). In particular, all leak-free signature queries and leaky signature queries
where j 6= i∗, are handled as in H2.e. For a leaky signature query (m, f) where the index j
happens to be equal to i∗, the experiment defines the leakage function f ′m,(r′0,...,r′d),r′,r′niwi

:=

(f(st(∆)),∆(m)) and queries Leak∆(·) on f ′.6 We call such query a bad query and we
let Bad denote the corresponding event. Given the value ∆(m), the signature σ can be
computed as in H2.e.

Claim 4.10. ε3 = ε2.e.

6Note that the function hard-wires the message m, and the randomness needed to reconstruct the current
state as a function of ∆ (as specified in the previous hybrids).
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Proof. The only difference between the two hybrids stems from the fact that ∆ is only accessed
via a leakage oracle in H3. Note that in H2.e the matrix ∆ is needed only to answer leaky
signature queries; in case of a bad query, H3 accesses the leakage oracle to additionally obtain
∆(m) in addition to the usual leakage on the state. Given ∆(m), the signature computation is
identical in the two hybrids.

In what follows, let View3 be the entire view of experiment H3; this includes the verification
key vk , and the answers to all leaky and leak-free signature queries. The two lemmas below
characterize the conditional min-entropy of ∆ given View3. The first lemma says that, with
high probability over the randomness in the experiment, the only information revealed on ∆
comes from the leakage and the bad queries. Recall that we assume the adversary A makes
exactly q leaky queries.

Lemma 4.2. For any β > 0 we have that

P [H∞ (∆| View3 = v) > |∆| − (2eq/t)µ log |F| − β − λ] > 1− 2−β − 2−2eq/t, (3)

where the probability is taken over the randomness of the experiment.

Proof. Let qs be the total number of signature queries made by the adversary. We write L ⊆
[qs] for the set of indexes corresponding to the leaky signature queries. Furthermore, we let
Z := {i ∈ L ∧ Badi} be the set of indexes corresponding to the bad queries. Note that the
cardinality Z of Z is a random variable, depending on the event that the index j←$ [t] (sampled
independently for each leaky query) happens to hit the index i∗.

The random variable View3 consists of the simulated verification key, the answers to all leak-
free signature queries and the answers to all leaky signature queries made by the adversary. Let
View′3 := (Λi)i∈L||(∆(mi))i∈Z) the total information leaked in H3. Recall that in H3 both
the verification key, the answers to leak-free queries and the signatures corresponding to leaky
queries where the event Bad does not happen, are completely independent on ∆. Hence,

H∞ (∆| View3 = v ) = H∞
(
∆| View′3 = v′

)
,

where for any realization of the adversary’s view v, we write v′ for the “striped-off” view that
considers only the total information retrieved via the leakage oracle.

Observe that |Z| = Z =
∑

i∈[qs]
Badi, and in particular |View′3| 6 λ + Zµ log |F|. Further-

more, note that the number of leaky queries is equal to q, so that E[Z] = q/t. Since the events
Badi are independent, we can apply a Chernoff bound and write:

P [Z > 2eq/t] < 2−2eq/t.

Setting λ′ := λ+ (2eq/t)µ log |F| and ∆ := λ′ + β, we obtain

P
[
H∞

(
∆|View′3 = v′

)
> |∆| −∆

]
> P

[
H∞

(
∆|View′3 = v′

)
> |∆| −∆

∣∣ Z 6 2eq/t
]
(1− 2−2eq/t) =

= P
[
H∞

(
∆|View′3 = v′

)
> |∆| −∆

∣∣ |View′3| 6 λ′
]
(1− 2−2eq/t). (4)

Applying Lemma 2.1 to the right hand side of the last inequality, we have:

P
[
H∞

(
∆|View′3 = v′

)
> |∆| −∆

∣∣ |View′3| 6 λ′
]
> 1− 2λ

′−∆ = 1− 2−β. (5)

The lemma follows by combining inequality (4) and (5).

Lemma 4.3. For any adversary A such that P[Ẽxp
one−more

SS1,A (κ, `, qs, γ) = 1] = ε, there exists a
constant c > 0 such that:

E [H∞ (∆| View3 = v)] 6

(
d+ 1− n− 1 + q

t

)
µ log |F| − c log ε(κ),

where the expectation is taken over the randomness of the experiment.
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Proof. To prove the lemma we define a predictor strategy P (running A) that outputs ∆ with
“high enough” probability.

Let K be the set of indexes such that i ∈ K if and only if the i-th forged signature σ∗i is
of the form (π∗i , i

∗, ˜com∗i ). W.l.o.g. let us assume that K := {1, . . . ,K} for a random variable
K ∈ [n]. The predictor P proceeds as follows:

1. At the beginning P interacts with A, playing the role of the challenger in H3. Let {mi}i∈Z
be the set of messages corresponding to the bad leaky signature queries, i.e. to the queries
for which H3 retrieved the vector ∆(mi) via the leakage oracle Leak∆(·).

2. Whenever A outputs a set of forgeries (m∗1, σ
∗
1), . . . , (m∗n, σ

∗
n), P finds, for all i ∈ [K], the

unique vector ∆(m∗i ) such that com∗i = Commit2(ϑi∗ ,∆(m∗i ); r
∗
i ) (for some randomness

r∗i ∈ Fν).
3. For each j ∈ [µ], P solves the following linear system:

1 m1 . . . md
1

. . .

1 mZ . . . md
Z

1 m∗1 . . . m∗1
d

. . .

1 m∗K . . . m∗K
d

1 m̄1 . . . m̄d
1

. . .

1 m̄d+1−K−Z . . . m̄d
d+1−Z−K


·

δj,0...
δj,d

 =



δj(m1)
...

δj(mZ)
δj(m

∗
1)

...
δj(m

∗
K)

yj,1
...

yj,d+1−Z−K


, (6)

where δj(X) is the polynomial defined by the coefficients in the j-th row of ∆. The
values y1, . . . , yd+1−Z−K are chosen uniformly at random from F, whereas the values
m̄1, . . . , m̄d+1−Z−K are chosen uniformly in F \ ({mi}i∈[Z] ∪ {m∗i }i∈[K]).

4. Output the matrix ∆′ having (δj,i)j∈[µ],i∈[0,d] as elements.

Recall that the common reference string corresponding to index i∗ is perfectly binding. Hence
P always succeeds in finding the values {∆(m∗i )}i∈[K], and these values are unique. Moreover,
since we are conditioning on False3 not happening, the extracted values contain the evaluation
of the polynomials δ1(X), . . . , δµ(X) at m∗i . Also note that the system of Eq. (6) is full-rank.

We conclude that the matrix ∆′ is equal to ∆, provided that P guessed correctly the values
yj,1, . . . , yj,d−Z−K for all j ∈ [µ], and that the forgeries output by A are such that Forge3∧¬False3

happens. The probability of the first event is equal to |F|−µ(d+1−Z−K). The probability of the
second event is equal to ε3; combining Claims 4.1—4.10 there exists a constant c such that
ε3(κ) ≥ ε(κ)c. Thus,

H∞ (∆| View3 = v) ≤ µ(d+ 1− Z −K) log |F| − c log ε(κ).

The lemma now follows by noticing that E[K] > n−1
t , which implies

E[−Z −K] ≤ −n− 1 + q

t
.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We start by computing the leakage bound. To this end, let us set the
parameters such that in Lemma 4.2 the probability that the conditional min-entropy of ∆ given
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the view in the last hybrid is at least 1. Let β > 0, for concreteness say β = 2; furthermore let
t := 2eρq

ξ(d+1) − 1 for any 0 < ξ ≤ ρ. Lemma 4.2 requires that:

λ 6 |∆| − (2eq/t)µ log |F| − 3

= |∆| − (ξ/ρ(d+ 1) + 1)µ log |F| − 3,

which is implied by:

λ 6 |∆| − (ξ/ρ)(d+ 1)µ log |F| =
= (1− ξ/ρ)|∆| = (ρ− ξ)|sk |.

W.l.o.g. let us assume λ = (ρ− ξ)|sk |; since q ≤ λ we get

t =
2eρq

ξ(d+ 1)
− 1 6

2eρλ

ξ(d+ 1)
=

2eρ(1− ξ/ρ)(d+ 1)µκ

ξ(d+ 1)
=

2eρ(1− ξ/ρ)µ

ξ
κ = O(κ).

Lemma 4.3 implies:

P

H∞ (∆| View3 = v) 6

(
d+ 1− n−1+q

t

)
µ log |F| − c log ε(κ)

1− 2−β − 2−2eq/t

 > 2−β + 2−2eq/t. (7)

Notice that Eq. (3) and Eq. (7) give, respectively, a lower bound and an upper bound on the
conditional min-entropy of the random variable ∆ given the entire view at the end of the
experiment. We show that, whenever ε(κ) is noticeable, by setting the parameters as in the
statement of the theorem the lower bound is strictly bigger than the upper bound. It follows
that the event of Eq. (3) implies the negation of the event of Eq. (7). We obtain a contradiction
by noticing that the sum of the two probabilities is strictly bigger than 1.

Hence, we need to show that the following holds:(
d+ 1− n−1+q

t

)
µ log |F| − c log ε(κ)

1− 2−β − 2−2eq/t
< (d+ 1)µ log |F| − (2eq/t)µ log |F| − 2− λ. (8)

Substituting log |F| = κ, and rearranging, we obtain:

(n− 1)µκ

t
> (2−β + 2−2eq/t − 1) · ((d+ 1− 2eq/t)µκ− 2− λ) + (d+ 1− q/t)µκ− c log ε(κ).

For the last inequality to hold it suffices that

(n− 1)µκ

t
> (d+ 1− q/t)µκ+ (2e− 1)q/t+ 4 + 2λ− c log ε.

Recall that q/t > ξ(d+1)
2eρ (d+ 1) and (d+ 1) = λ

µκ(ρ−ξ) , hence, for the last inequality to hold, it
suffices that

(n− 1)µκ

t
>

(
2 +

1− ξ/2eρ
ρ− ξ

+
2e− 1

2eρ

)
λ+ 4− c log ε(κ).

Thus, in order for Eq. (8) to hold, it suffices that

nκ

t
= Ω (λ− log ε(κ)) .

If ε(κ) is noticeable, recalling that t = O(κ) and λ = Ω(κ), we get that n is linear in λ. Since,
by definition, n ≥ b λγ·sc+ 1 and a signature consists of a constant number of group elements, it
suffices to set the slack parameter γ as γ(κ) = O(1/κ) in order for Eq. (8) to hold.
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4.3 A Variant

The construction of Section 4.1 implicitly defines an unbounded simulation sound NIZK. In fact,
the OR-proof technique resembles the unbounded simulation sound NIZK argument systems
given in [36, 35, 11]. The main drawback, as noticed in [22, 45], is that the arguments for
the relation ROR instantiated using the Groth-Sahai proof system [37] need to use quadratic
equations, and thus can be significantly less efficient than the arguments for R.

In this section we show how to avoid the expensive OR-proof trick. The technical tools we
use are:

� A trapdoor hiding, linearly homomorphic commitment scheme COM1 as in the scheme
from Section 4.1.

� A hybrid commitment COM2 as in the scheme from Section 4.1, with the additional
property that the public key space is a group G of cardinality p with log p = O(κ), and
the equivocable keys form a subgroup H of G (with cardinality p′). We also require that:
(a) for any two elements g1 ∈ G \ H, g2 ∈ H the element g1 · g2 ∈ G \ H, and (b) the
ESetup2 algorithm produces an equivocable key that is uniformly distributed in H.

� A statistical NIWI argument system NIWI = (Init1,Prove1,Ver1) for the same relation
R1 := R of the construction from Section 4.1.

� A true-simulation extractable NIZK argument system NIZK = (Init2,Prove2,Ver2) (see
Section 2.4) supporting labels, and with obvious sampling of the common reference string,
for the relation

R2 :=
{

(ϑ, ϑ1, ϑ2); (α1, α2)
∣∣ ϑ = ϑα1

1 · ϑ
α2
2

}
⊆ G3 × Z2

p. (9)

For brevity, given a vector g ∈ Gn and α ∈ Znp we write 〈g,α〉 =
∏n
i=1 g

αi
i .

Our scheme SS2 = (KGen,Sign,Verify) has message space equal to F and is described below:

Key Generation. Let t, d, µ, ν ∈ N be parameters. Run crs1 ← Init1(1κ) and crs2←$ Init2(1κ),
and sample the values ϑ, {ϑi}ti=1, ∆ ∈ (Fµ)d+1, r ∈ Fd+1, and {comi}di=1 as in the scheme
from Section 4.1. Output

sk = (∆, r) vk = (crs1, crs2, ϑ, {ϑi}ti=1, {comi}di=0).

Signature. For j ∈ [µ], let δj(X), r(X), and ∆(X) be defined as in the scheme from Section 4.1.
Consider the following polynomial-time relation:

R1 :=

{
(ϑ, ϑ′, ˜com, com); (m̃, r̃, r)

∣∣∣∣ ˜com = Commit1(ϑ, m̃; r̃)
com = Commit2(ϑ′, m̃; r)

}
.

To sign a message m ∈ F compute m̃ = ∆(m) and r̃ = r(m), and let ˜com := Commit1(ϑ,
m̃; r̃). Notice that both values m̃, r̃ can be computed efficiently as a function of the signing
key (∆, r) and the message to be signed. Then proceed as follows:

1. Pick random indexes j1, j2←$ [t] such that j1 6= j2, sample α1, α2←$ Zp and compute
ϑ′ := ϑα1

j1
· ϑα2

j2
and com := Commit2(ϑ′, m̃; r) where r←$ Fν .

2. Using crs1 as common reference string, generate a NIWI argument π1 for (ϑ, ϑ′,
˜com, com) ∈ LR1 .

3. Using crs2 as common reference string, generate a NIZK argument π2 for (ϑ′, ϑj1 ,
ϑj2) ∈ LR2 using m as a label.

4. Output σ = (j1, j2, ϑ
′, com, π1, π2).
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Verification Given a pair (m,σ), parse σ as (j1, j2, ϑ
′, com, π1, π2). Output:

Ver1(crs1, π1, (ϑ, ϑ
′,

d∏
i=1

commi

i , com)) ∧ Ver2(crs2, π2,m, (ϑ
′, ϑj1 , ϑj2)).

Theorem 4.2. Let µ ∈ N, and let F be a finite field of size log |F| = κ for security parameter
κ ∈ N. For any constant 0 < ξ 6 µ

µ+1 and t = O(κ), whenever γ = O(1/κ) the above signature

scheme is (( µ
µ+1 − ξ)|sk |, γ)-fully-leakage one-more unforgeable with perfect erasures.

The main difference with the proof of Theorem 4.1 is in the way we simulate leak-free queries.
In the previous proof the simulator knows a value y, pre-image of x under the PRG G, and
therefore it can produce a valid argument for the OR-relation and simulate correctly leak-free
queries thanks to the WI property of NIWI. Note, however, that whenever the sampled index
j←$ [t] is such that j 6= i∗ (i.e. both the verification keys for the commitment scheme are
equivocable) a valid NIWI argument can be produced by opening the commitments to 0.

Unfortunately the above strategy cannot be always used by the simulator, as the index j is
part of the signature (and thus known to the adversary). In other words, although the simulator
knows where the equivocable keys are, it cannot exploit this extra knowledge, as it needs to
sample j using the same distribution used by the real signer.

The idea of re-randomizing the verification keys each time we generate a signature, allows the
simulator to exploit the above extra knowledge. In fact, whenever the index j corresponding to
the binding verification key is chosen, the simulator can force the re-randomized verification key
ϑ′ to always be equivocable. The zero-knowledge and the hybridness property ensure that the
view of the adversary is computationally indistinguishable from the view in the real experiment;
using the message m as label avoids the simple “cut-and-paste” attack in which an adversary
re-uses a pair (ϑ′, π2) from a leak-free signature query in its forgeries.7

4.4 Proof Sketch of Theorem 4.2

The proof of Theorem 4.2 uses a hybrid argument, along the same lines of the proof of Theo-
rem 4.1. Since many of the hybrids are identical, we only give a proof sketch here.

Let A be an adversary making q = poly(κ) leaky signature queries, with advantage ε in
the fully-leakage one-more unforgeability experiment for SS2. Let H0, H1.a, H1.b, Forge0 be
the same as in the proof of Theorem 4.1. Let False1

0 be the same as False0, and define εi :=
P[Forgei∧¬False1

i ]. A reasoning similar to the one in Claim 4.1–4.3 shows that ε1.b ≥ ε−negl(κ).

Experiment H2.a: This hybrid differs from the previous one in the way leak-free signature
queries are dealt with. Specifically, during key generation the common reference string crs2
is sampled by running (crs2, τsim , τext)← Init(1κ) which additionally returns a simulation
trapdoor τsim and an extraction trapdoor τext . Moreover, for each query m ∈ F the NIZK
argument π2 is computed by running π2 ← Sim(τsim , (m, (ϑ

′, ϑj1 , ϑj2))).

Let π∗2,i be the NIZK argument contained in the i-th forgery returned by the adversary. Also,

let (α∗1,i, α
∗
2,i) ← K(τext ,m

∗
i , π
∗
2,i) be the witness extracted from such argument. Define False2

2.a

to be the event that there exists an index i ∈ [n] such that the extracted witness (α∗1,i, α
∗
2,i) is

not valid, i.e.,
ϑ′∗ 6=

〈
(ϑj∗1 , ϑj∗2 ), (α∗1,i, α

∗
2,i)
〉
.

For the hybrid H2.a, and for each of the hybrids below, we write ε′i for the probability of the
event Forgei ∧ ¬False1

i ∧ ¬False2
i .

Claim 4.11. ε′2.a > ε1.b − negl(κ).

7In this case the predictor of Lemma 4.3 does not work.

23



Proof. Note that, by true-simulation extractability, we have that P[False2
2.a] 6 negl(κ) which im-

plies ε′2.a > ε2.a−negl(κ). Furthermore, by the adaptive multi-theorem zero-knowledge property
of the NIZK argument system, we have that the views View2.a and View1.b are computationally
indistinguishable, and thus ε2.a > ε1.b − negl(κ) which implies the claim.

Experiment H2.b: The same as the previous hybrid, but now for each leak-free signature query
of the form m ∈ F, in case one of the two random indexes (say j2) is equal to i∗ then set
α2 := 0 and compute ϑ′ = ϑα1

j1
where α1←$ Zp′ .

Claim 4.12. ε′2.b > ε′2.a − negl(κ).

Proof. Note that for each leak-free signature query the verification key ϑ′ is uniformly distributed
in H, and thus it has the same distribution as a verification key output by ESetup2. The claim
follows by the hybridness property of the commitment scheme.

Experiment H2.c: The same as the previous hybrid, but now for each leak-free signature
query of the form m ∈ F, the value com of the signature σ is computed as (com, r′) ←
ECommit2(ϑ′, τ ′).

Claim 4.13. ε′2.c > ε′2.b − negl(κ).

Proof. Follows by a hybrid argument relying on the trapdoor hiding property of the hybrid
commitment scheme.

HybridsH2.d andH2.e are identical to the corresponding hybrids in the proof of Theorem 4.1.
Putting it all together we have shown ε′2.e ≥ ε− negl(κ). One can show that the equivalents of
Lemma 4.2 and Lemma 4.3 hold true with exactly the same parameters. The only difference
is in the way we show that E[K] ≥ n−1

t (in the proof of Lemma 4.3). In particular we have to
evaluate (in expectation) the number of forged signatures for which the commitment is binding.
Towards this, for a value i ∈ [n], let Bindingi2.e be the event that the verification key contained
in the j-th forged signature of hybrid H2.e is an element of G \H. It is easy to see that, for all
i ∈ [n],

P[Bindingi2.e] = P[Bindingi2.c] ≥ P[Bindingi2.b]− negl(κ),

where the inequality comes from the hybridness property of the commitment scheme. Further-
more, P[Bindingi2.b] = P[Bindingi2.a] so we are left to bound the probability of Bindingi2.a. We
have that:

P[Bindingi2.a] > P[Bindingi2.a| ¬False2
2.a] · P[¬False2

2.a]

> P[Bindingi2.a| ¬False2
2.a]− negl(κ) (10)

> P[∃k ∈ {1, 2} : jk = i∗ ∧ α∗k,i 6= 0︸ ︷︷ ︸
Hiti2.a

]− negl(κ), (11)

where i∗ is the index corresponding to the only binding verification key ϑi∗ . Eq. (10) follows
by true-simulation extractability of the NIZK argument system.8 Eq. (11) follows by the fact
that, given that the extracted witness (α∗1,i, α

∗
2,i) is valid, the key ϑ′ is binding only if the event

Hiti2.a is verified.
One observes that P[Hiti2.a] = P[Hiti1.a]. Furthermore, by the hybridness property of the

commitment scheme,

P[Hiti1.a] > P H0
i∗←$ [t]

[∃k ∈ {1, 2} : jk = i∗ ∧ α∗k,i 6= 0]− negl(κ)

≥ 1

2

(
1

t
+

1

t− 1

)
− negl(κ) >

1

t
− negl(κ).

8The forged messages were not queried to the signature oracle which means that for each forged signature
(m∗, σ∗) no simulated argument was given for the pair ((ϑ′∗, ϑj∗1 , ϑj∗2 ),m∗).
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where the last inequality follows from the fact that the random index i∗ is independent from
H0. This concludes the proof sketch.

5 A Scheme without Erasures

In this section we construct a signature scheme that is fully-leakage one-more unforgeable,
without assuming secure erasures (cf. Definition 3.1). The drawback of the scheme is that the
graceful degradation provided is not tight, as the slack parameter γ depends linearly on the
number qs of signature queries asked by the adversary. As mentioned in Section 3.1, since qs
is polynomial in the security parameter, this flavour of one-more unforgeability is still suitable
for some applications.

Our scheme, and its security analysis, is similar to the constructions of Section 4. One
additional difficulty is that we cannot distinguish anymore between leaky and leak-free signature
queries, as now a leakage query might depend on the entire state of the signer (which is never
erased).

To deal with this difficulty, we define a new simulation strategy that only rarely requires to
access the signing key in order to simulate signature queries; moreover the probability of access-
ing the signing key can be controlled by the simulator, such that, on average, the conditional
min-entropy of the signing key remains high. This feature allows the simulation to go trough.

Before coming to the scheme, we abstract away a special type of hybrid commitment scheme
whose properties will turn useful in the security proof. We call this tool a secret sharing hybrid
commitment, and we define it in Section 5.1. The signature scheme is described in Section 5.2,
and its security analysis can be found in Section 5.3.

5.1 Secret Sharing Hybrid Commitment

Let F be a finite field. For parameters µ, ν ∈ N, let COM = (Setup,Commit,ESetup,ECommit,
Equiv) be a hybrid, linearly homomorphic commitment scheme with message space equal to
Fµ and randomness space equal to Fν . Fix parameters p := log κ and t := κ, for secu-
rity parameter κ ∈ N. A secret sharing hybrid commitment scheme is a tuple of algorithms
COMss = (Setupss ,Commitss ,ESetupss ,ECommitss ,Equivss) specified as follow.

Algorithm Setupss(1
κ): For all i ∈ [t] run ϑi←$ Setup(1κ) and output the verification key

ϑ̄ := (ϑ1, . . . , ϑt).
Algorithm ESetupss(1

κ): For all i ∈ [t] generate (ϑi, τi)←$ ESetup(1κ) and output the verifi-
cation key ϑ̄ := (ϑ1, . . . , ϑt) and the trapdoor key τ̄ := (τ1, . . . , τt).

Algorithm Commitss(ϑ̄,m): Given a verification key ϑ̄ and a message m ∈ Fµ do the following:

1. Choose random shares s1, . . . , sp−1←$ Fµ and set sp := m−
∑p−1

i=1 si;
2. Choose indexes j := (j1, . . . , jp)←$ [t]p and for each i ∈ [p] compute comi←$

Commit(ϑji , si; ri) where ri←$ Fν ;
3. Output ¯com := (j, com) where com = (com1, . . . , comp), and define the randomness

(i.e., the opening) as r̄ := (j, s, r) where s = (s1, . . . , sp−1) and r = (r1, . . . , rp).

Algorithm ECommitss(ϑ̄, τ̄): Given a verification key ϑ̄ and the trapdoor τ̄ , do the following:

1. Choose indexes j = (j1, . . . , jp)←$ [t]p;
2. Run (comp, r

′
p)←$ ECommit(ϑjp , τjp) and, for each i ∈ [1, p − 1], compute comi←$

Commit(ϑji , si; ri) where si ∈ Fµ and ri←$ Fν ;
3. Output commitment ¯com := (j, com) where com = (com1, . . . , comp), and random-

ness r̄′ := (j, s, r′) where s = (s1, . . . , sp−1) and r′ = (r1, . . . , rp−1, r
′
p).

Algorithm Equivss(τ̄ ,m, r̄
′): Given a trapdoor τ̄ , a message m and randomness r̄′, do the

following:
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1. Parse the randomness as r̄′ = (j, s, r′), where r′ = (r1, . . . , rp−1, r
′
p), and the trapdoor

as τ̄ = (τ1, . . . , τt);
2. Compute sp := m−

∑p−1
i=1 si, and run rp := Equiv(ϑjp , sp, r

′
p);

3. Output randomness r̄ := (j, s, r), for r = (r1, . . . , rp−1, rp).

It is easy to see that COMss is a hybrid linearly homomorphic commitment scheme with message
space Fµ and randomness space equal to Rss := [t]p × F(p−1)µ × Fpν .

Probable binding commitment. Let COMss be a secret sharing hybrid commitment. We
equip COMss with a special tuple of algorithms that allow, once instantiated the verification
key, to generate commitments that are perfectly binding with some fixed probability. The
algorithms are specified below.

Algorithm pbSetup(1κ, c): Given the security parameter κ, and a constant c ∈ N such that
1 6 c 6 log κ, output a verification key ϑ̄ := (ϑ1, . . . , ϑt) and a trapdoor τ̄ := (τ1, . . . , τt)
defined as follows:

1. Choose I∗ random subset of [t] with cardinality n := 2−ct and for all i ∈ [t] let:{
ϑi←$ Setup(1κ) if i ∈ I∗

(ϑi, τi)←$ ESetup(1κ) else;

2. Let τ̄ :=
(
I∗, {τi}i∈[t]\I∗

)
.

Algorithm pbECommit(ϑ̄, τ̄): Choose indexes j := (j1, . . . , jp)←$ [t]p; if j is a subset of I∗

return ⊥. Otherwise w.l.o.g. let jp be the index not in I∗; the algorithm is identical to
ECommitss .

Algorithm pbEquiv(τ̄ ,m, r̄′): Parse r̄′ = (j, s, r′); in case j is a subset of I∗ return ⊥. Otherwise
the algorithm is identical to Equivss .

Note that whenever pbECommit and pbEquiv do not return ⊥, the trapdoor key τ̄ contains the
trapdoor information τjp which is needed by the algorithms ECommitss and Equivss .

We say that a commitment ¯com = (j, com) is binding iff j ⊆ I∗.

Lemma 5.1. Let COMss and (pbSetup, pbECommit, pbEquiv) be defined as above. For any
c ∈ N such that 0 < c 6 log κ the following holds.

(a) The following probability distributions are computationally indistinguishable:{
ϑ̄| (ϑ̄, τ̄)←$ pbSetup(1κ)

}{
ϑ̄| ϑ̄←$ Setupss(1

κ)
}
.

(b) For all (ϑ̄, τ̄)←$ pbSetup(1κ) and for all m ∈ Fµ the following probability distributions are
statistically indistinguishable:( ¯com, r̄)

∣∣∣∣∣∣
r̄ ←$ Rss ,

¯com := Commitss(ϑ̄,m; r̄),
¯com is not binding


( ¯com, r̄)

∣∣∣∣∣∣
( ¯com, r̄′) ← pbECommit(ϑ̄, τ̄),

r̄ := pbEquiv(τ̄ ,m, r̄′)
pbECommit doesn’t return ⊥


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(c) For all PPT adversaries A there exists a negligible function negl(κ) such that the following
holds: ∣∣∣∣∣∣ P

 ¯com is binding s.t.
(ϑ̄, τ̄)←$ pbSetup(1κ, c);
( ¯com,m, r̄)←$ A(ϑ̄);

¯com = Commitss(ϑ̄,m, r̄)

− 1

κc

∣∣∣∣∣∣ 6 negl(κ).

(d) For any (ϑ̄, τ̄)←$ pbSetup(1κ, c) the probability over the randomness r̄′ that pbECommit(ϑ̄;
r̄′) aborts is 1/κc.

Proof. Properties (a) and (b) follow, respectively, from the hybridness and the trapdoor hiding
property of COMss . To prove property (c), consider the following probability:

P

 ¯com is binding s.t.
ϑ̄←$ Setupss(1

κ), I∗←$

(
[t]
n

)
;

( ¯com,m, r̄)←$ A(ϑ̄);
¯com = Commitss(ϑ̄,m; r̄);

 .
Recall that ¯com is binding iff j ⊆ I∗. Since I∗ and the verification key ϑ̄ are uniformly and
independently sampled, the above probability is upper bounded by(n

t

)p
= 2−c log κ =

1

κc
. (12)

Property (c) easily follows by the previous equation and Property (a).
Property (d) follows directly from Eq. (12), as the algorithm ECommitss chooses the indexes

j uniformly at random.

5.2 The Signature Scheme

Let COM := COM1 be a trapdoor hiding, linearly homomorphic commitment scheme (like the
one used in the construction from Section 4.1). Let COM2 be a hybrid, linearly homomorphic
commitment scheme, and COMss be the corresponding secret sharing hybrid commitment as
described in Section 5.1. We modify the scheme SS1 from Section 4.1 in two ways: (i) we
strip off the OR-construction; and (ii) we replace the commitment com with a secret sharing
hybrid commitment. Our scheme SS3 = (KGen,Sign,Verify) has message space equal to F and
is described below:

Key Generation. Let t, d, µ ∈ N be parameters. Run crs ← Init(1κ), sample ϑ ← Setup(1κ),
and ϑ̄ := (ϑ1, . . . , ϑt)←$ Setupss(1

κ). Sample ∆←$ (Fµ)d+1 and r = (r0, . . . , rd)←$ Fd+1,
and compute commitments comi = Commit(ϑ, δi; ri) for i ∈ [0, d], where δi ∈ Fµ is the
i-th column of ∆. Output

sk = (∆, r) vk = (crs, ϑ, {ϑi}ti=1, {comi}di=0).

Signature. For j ∈ [µ], let δj(X), r(X), and ∆(X) be defined as in the scheme from Section 4.1.
Consider the following polynomial-time relation:

R :=

{
(ϑ, ϑ̄, ˜com, ¯com); (m̃, r̃, r̄)

∣∣∣∣ com = Commit(ϑ, m̃; r̃)
¯com = Commitss(ϑ̄, m̃; r̄)

}
.

To sign a message m ∈ F compute m̃ = ∆(m) and r̃ = r(m), and let ˜com := Commit(ϑ,
m̃; r̃) and ¯com := Commitss(ϑ̄, m̃; r̄) where r̄←$Rss . Using crs as common reference
string, generate a NIWI argument π for (ϑ, ϑ̄, ˜com, com) ∈ LR, the language generated by
the above relation R. Output σ = (π, ¯com).

Verification. Given a pair (m,σ), parse σ as σ = (π, ¯com). Output the same as:

Ver(crs, π, (ϑ, ϑ̄, ˜com, ¯com)).
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Theorem 5.1. Let µ ∈ N, and let F be a finite field of size log |F| = κ for security parameter
κ ∈ N. For any constant 0 < ξ 6 µ/(µ + 1) and t = O(κ) the above signature scheme is
(( µ
µ+1 − ξ)|sk |, qs, O( 1

qs·log κ), negl(κ))-fully-leakage one-more unforgeable.

Notice that, when µ grows, the leakage rate asymptotically goes to 1. The slack param-
eter γ(κ, qs) is linear in the number of signature queries, but still polynomial in the security
parameter as qs = poly(κ). As shown in [51, Section 5] this is good enough for some applications.

5.3 Proof Sketch

The proof of Theorem 5.1 requires an hybrid argument, along the same lines of the proof of
Theorem 4.1. Since many of the hybrids are the same, we only give a sketch of the proof here.

Let A be an adversary asking qs = κc (for some constant c) signature queries, such that

P[Expone−more
SS3,A (κ, `, qs, γ) = 1] = ε(κ).

Experiment H0 : This experiment is exactly the same as the original experiment defining
fully-leakage one-more unforgeability of SS3. Note that the initial state (after key gener-
ation), is equal to st := ((∆, r), crs, ϑ, ϑ̄). (Recall that we assume oblivious sampling for
both the NIWI and the commitment scheme.) At each invocation of the signing oracle
Sign(sk , ·) upon input a message m, the experiment produces a signature σ = (π, ¯com)
following the signing algorithm, and appends the randomness used to generate σ to the
current state, i.e. st := st ∪ (r̄, rniwi), where r̄ is the randomness used to generate the
commitment ¯com and rniwi is the randomness used to generate the argument π.

Denote with ((m∗1, (π
∗
1, com∗1)), . . . , (m∗n, (π

∗
n, com∗n))) the set of forgeries returned by the

adversary at the end of the experiment. Let Forge0 and False0 be defined as in the proof of
Theorem 4.1, and define ε0 := P[Forge0 ∧ ¬False0].

Claim 5.1. ε0 > ε− negl(κ).

Proof. The proof is similar to the proof of Claim 4.1 and is therefore omitted.

For each hybrid Hi, described below, we write εi for the probability of the event Forgei ∧
¬Falsei, and Viewi for the view of the adversary at the end of the experiment.

Experiment H1.a: This experiment is the same as H0, except that the verification key is com-
puted using the probable binding key generation. Namely, we run (ϑ̄, τ̄)←$ pbSetup(1κ, c)
(recall that the number of signature queries made by A is qs = κc). Note that from the
point of view of the adversary, the initial state remains equal to st := ((∆, r), crs, ϑ, ϑ̄).

Claim 5.2. ε1.a > ε0 − negl(κ).

Proof. Follows readily from Property (a) of Lemma 5.1.

Experiment H1.b: Identical to the same hybrid in the proof of Theorem 4.1.

Claim 5.3. ε1.b > ε1.a − negl(κ).

Proof. Similar to the proof of Claim 4.3, and therefore omitted.

Experiment H2.d: In this experiment we modify the way signature queries are answered.
Given such a query m, the experiment runs pbECommit(ϑ̄); in case the algorithm returns
⊥ the query is answered as before. Otherwise let ( ¯com, r̄′) be the output of pbECommit(ϑ̄);
the answer to the signature query uses ¯com as commitment. Observe that in the latter
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case the randomness r̄ used to compute ¯com in the previous hybrid can be obtained as a
function of the matrix ∆ by running the equivocation algorithm. In particular:

r̄(∆) :=

{
r̄←$Rss if ECommitss(ϑ̄) returns ⊥
Equivss(τ̄ ,∆(m), r̄′) otherwise.

The state is set to st := st ∪ {(∆, r), r̄(∆), rniwi}, where rniwi is the randomness used to
generate the NIWI argument π.

Claim 5.4. ε2.d ≥ ε2.b − negl(κ).

Proof. Follows readily from Property (b) of Lemma 5.1.

Experiment H2.e: This experiment is identical to the previous hybrid, except that (whenever
possible) it uses a different witness to compute the argument corresponding to a signature
query. In particular, given such a query m ∈ F for which pbECommit(ϑ̄) does not return
⊥, it generates the argument π by running

Prove(crs, (ϑ, ϑ̄, ˜com, ¯com)︸ ︷︷ ︸
α

, (0,Equiv(τ, 0µ, r′(m)), pbEquiv(τ̄ , 0µ, r̄′)︸ ︷︷ ︸
β′

; r′niwi),

where r′(m) =
∑d

i=0 r
′
i ·mi is computed using the randomness {r′i}di=0. Notice that the

randomness rniwi used to generate the NIWI argument in the previous experiment can
be sampled (inefficiently) as a function of the witness β := (∆(m),Equiv(τ,∆(m), r′(m)),
pbEquiv(τ̄ ,∆(m), r̄′) and r′niwi. In particular:

rniwi(∆) :=

{
rniwi (as sampled by the prover) if pbECommit(ϑ̄) returns ⊥
Rand(π, r′niwi, β) otherwise,

where Rand is the reconstruction algorithm of Lemma 4.1. The state is updated as in
st(∆) = st ∪ {r(∆), rniwi(∆)}.

Claim 5.5. ε2.e ≥ ε2.d − negl(κ).

Proof. Similar to the proof of Claim 4.9, and therefore omitted.

Experiment HLeak∆(·)
3 : This experiment is the same as the previous hybrid, with the difference

that ∆ is not sampled by the hybrid as part of the signing key, but can instead be accessed
via Leak∆(·). Note that each signature query m ∈ F for which pbECommit(ϑ̄) happens to
not return ⊥ can be answered without knowing ∆. Moreover:

� For each signature query m ∈ F where pbECommit(ϑ̄) returns ⊥, the experiment
defines the leakage function f ′m := ∆(m) and queries Leak∆(·) on f ′. We call such
query a bad query and we let Bad denote the corresponding event. Given the value
∆(m), the signature σ can be computed as in H2.e.

� For each leakage query f the experiment defines a function f ′′ and queries Leak∆(·) on
f ′′. The function f ′′ hard-wires all values necessary to reconstruct the current state
st = st(∆); this includes the trapdoor information needed in order to reconstruct r,
and all random coins used to simulate previous signature queries.

Claim 5.6. ε3 = ε2.e.

Proof. The only difference between the two hybrids stems from the fact that ∆ is only accessed
via a leakage oracle in H3. Note that in H2.e the matrix ∆ is needed only to answer bad
signature queries and leakage queries. In case of a bad query, H3 accesses the leakage oracle to
additionally obtain ∆(m) via f ′m; given ∆(m) the signature computation is identical in the two
hybrids. The distribution of the leakage is also identical in the two hybrids, as the function f ′′

perfectly reconstructs the current state st(∆).
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Lemma 5.2. For any β > 0 we have that

P [H∞ (∆| View3 = v) > |∆| − 2eµ log |F| − β − λ] > 2−β + 2−2e, (13)

where the probability is taken over the randomness of the experiment.

Proof. The proof is a straightforward adaptation of the proof of Lemma 4.2. The only difference
is in the computation of the probability of the events Badi, which is now upper bounded by
1/κc = 1/qs by Property (d) of Lemma 5.1. Note that this gives E[Z] = 1.

Lemma 5.3. For any adversary A such that P[Expone−more
SS1,A (κ, `, qs, γ) = 1] = ε, there exists a

constant c′ > 0 such that:

E [H∞ (∆| View3 = v)] 6

(
d+ 1− n

qs

)
µ log |F| − c′ log ε(κ),

where the expectation is taken over the randomness of the experiment.

Proof. The proof is a straightforward adaptation of the proof of Lemma 4.3. The only difference
is in the computation of E[X + Z]. Applying Property (c) and Property (d) of Lemma 4.2, we
get E[X + Z] ≥ n(1/qs − negl(κ)) + 1 ≥ n/qs.

Given the two lemmas above the proof of Theorem 5.1 can be derived following the same
strategy as for the proof of Theorem 4.1. In particular, one can verify that to obtain a contra-
diction we need that:

nκ

qs
= Ω(λ− log ε(κ)). (14)

Whenever ε(κ) is noticeable, since n ≥ b λγ·sc + 1, and s = Θ(κ log κ), in order for Eq. (14) to

hold it suffices to set γ = O( 1
qs·log κ) . This concludes the proof sketch.

6 A Scheme in the Bounded Retrieval Model

In this section we describe a fully-leakage one-more unforgeable signature scheme in the Bounded
Retrieval Model (BRM) [15, 26, 27]. The BRM imposes additional efficiency constraints on the
size of the public key and the computational time of the signer and verifier algorithm. The
scheme is in the random oracle model [4]. To define fully-leakage one-more unforgeability
in the BRM, we let the key generation, signature and verification algorithms additionally be
parametrized by the leakage parameter `.

Definition 6.1 (Fully-leakage one-more unforgeability in the BRM). A signature scheme SS =
(KGen,Sign,Verify) is (`, γ)-fully-leakage one-more unforgeable in the BRM if the following con-
ditions are met:

� The verification key size, signature size, signing-time and verification-time (and the num-
ber of secret-key bits read during signature computation) are independent of the leakage-
bound `. More formally, there exist polynomials vksize, sgsize, sigT, verT, such that, for
any polynomial `, and any (vk , sk)← KGen(1κ, 1`(κ)), m ∈M, σ ← Sign(sk ,m), we have
that:

– Verification key size is |vk | = O(vksize(κ)), signature size is |σ| = O(sgsize(κ, |m|)).
– Run-time of Sign(sk ,m) and the number of bits of sk accessed is O(sigT(κ, |m|)).
– Run-time of Verify(vk ,m, σ) is O(verT(κ, |m|)).

� The scheme SS is (`, γ)-fully-leakage one-more unforgeable according to Definition 3.1.
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6.1 Ingredients

Let F be a finite field with additive identity 0. For two parameter d and t, with d > t, let us
define a distribution Sparse(F, d, t) by sampling a vector c = (c1, . . . , cd) such that for all i ∈ [d]:
(i) ci←$ F with probability t/d, and (ii) ci = 0 with probability 1− t/d. We call t the locality
parameter.

We will rely on the following lemma.

Lemma 6.1. Let κ = log |F|, for security parameter κ ∈ N. For any subspace A ⊂ Fd of
dimension less then d the probability that a vector c randomly chosen over Sparse(F, d, t) lies in
the subspace A is at most 1

|F| + e−t.

Proof. Note that the bigger A is, the more likely c ∈ A, therefore the worst case is dim(A) =
d− 1. If c ∈ A then there exist α1, . . . , αd ∈ F with at least one coordinate i s.t. αi 6= 0, such
that c ∈ A if and only if Ed = 1 where Ed is the event defined as

Ed :=

{
1 if

∑d
i=0 αi · ci = 0

0 otherwise.

For any d′ ≤ d we have:

P [Ed′ ] 6
∑
x∈F

P [cd′ = x]P

[
d′−1∑
i=1

αi · ci = −αd′ · x

]

6 P [cd′ = 0]P [Ed′−1] +
∑

x∈F\{0}

P [cd′ = x] · P

[
d′−1∑
i=1

αi · ci = −αd′ · x

]

6

(
t · 2−κ

d
+ 1− t

d

)
P [Ed′−1] +

t · 2−κ

d
·
∑

x∈F\{0}

P

[
d′−1∑
i=1

αi · ci = −αd′ · x

]

6

(
t · 2−κ

d
+ 1− t

d

)
P [Ed′−1] +

t · 2−κ

d
· (1− P [Ed′−1])

6

(
1− t

d

)
P [Ed′−1] +

t · 2−κ

d
.

From the last inequality, by setting d′ := d, it follows that

P [Ed] 6

(
1− t

d

)d
P [E0] +

t · 2−κ

d

(
d−1∑
i=0

(
1− t

d

)i)

6 e−t · P [E0] +
t · 2−κ

d

(
1− (1− t

d)d

t/d

)
6 e−t +

1

|F|
.

Our construction in the BRM is based on the following ingredients:

� Two random oracles H0 : {0, 1}∗ → {0, 1}∗ and Hd,t1 : {0, 1}∗ → Sparse(F, d, t).9

9The two random oracles can be derived by a single random oracle H, e.g., by letting H0 := H(0, ·) and
H1 := H(1, ·).
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� A perfectly hiding, linearly homomorphic commitment scheme COM = (Setup,Commit),
with message space equal to Fµ and randomness space equal to F (for a finite field F and
a parameter µ ∈ N).

� A perfect zero-knowledge proof of knowledge system NIZK = (Prove,Ver) with an on-
line extractor (w.r.t. the random oracle H0), for proving knowledge of the opening of a
commitment.

We review the definition of a NIZK PoK with an online extractor below (see, e.g., [52, 32]).

Definition 6.2 (Online Extractability). We say that NIZK = (Prove,Ver) is a NIZK PoK
for a relation R (w.r.t. a random oracle H) if the following holds:

Perfect Zero-Knowledge. There exist a pair of PPT algorithms Sim = (Sim0,Sim1) (a.k.a.
the zero-knowledge simulator), such that for any pair of PPT distinguishers D = (D0,D1)
the following distributions are identical:

� Let (x,w, stD)←$ DH0 (1κ), and π←$ ProveH(x,w) if (x,w) ∈ R and π := ⊥ other-
wise. Output DH1 (π, stD).

� Let (H0, stSim)←$ Sim0(1κ), (x,w, stD)←$DH0
0 (1κ), and (H1, π)←$ Sim1(stSim, x,

yes) if (x,w) ∈ R and (H1, π)←$ Sim1(stSim, x, no) otherwise. Output DH1
1 (π, stD).

Online Extractability. There exist a probabilistic polynomial-time algorithm K (a.k.a. the on-
line extractor), such that the following holds for any algorithm A. Let (x, π)←$ AH(1κ) and
QH(A) be the sequence of queries of A to H and H’s answers. Let w←$ K(x, π,QH(A)).
Then, as a function of κ,

P
[
(x,w) 6∈ R ∧ VerH(x, π) = 1

]
6 negl(κ).

6.2 Basic Construction

We first describe a scheme that meets partially the efficiency requirements of the BRM; namely,
the signing and verification algorithms have running time independent of the leakage parameter
`, but the length of the verification key still depends on `. Later we adopt the technique of
Alwen et al. [2] to obtain a full-fledged scheme in the BRM.

Our scheme SS4 = (KGen, Sign,Verify) has M = {0, 1}∗ and is described below:

Key Generation. Let t, d, µ ∈ N be parameters; choose d to be large enough such that `(κ) <
dµ · κ. Run ϑ← Setup(1κ). Sample ∆←$ Fµ×d and r = (r1, . . . , rd)←$ Fd, and compute
commitments comi = Commit(ϑ, δi; ri) for i ∈ [d], where δi ∈ Fµ is the i-th column of ∆.
Output

sk = (∆, r) vk = (ϑ, {comi}di=1).

Signature. Consider the following polynomial-time relation:

R := {(ϑ, ˜com); (m̃, r̃) | ˜com = Commit(ϑ, m̃; r̃)} .

To sign a message m ∈ {0, 1}∗, let c := Hd,t1 (m) and compute ∆(m) := ∆ · cT and
r(m) := r · cT. Generate a proof π←$ ProveH0((ϑ, ˜com), (∆(m), r(m)), where ˜com :=
Commit(ϑ,∆(m); r(m)). Output σ := π.

Verification. Given a pair (m,σ), parse σ as σ = π and let c := Hd,t1 (m) = (c1, . . . , cd).
Output the same as:

VerH0(π, (ϑ,
d∏
i=1

(comi)
ci)).
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Notice that for t = O(κ) the efficiency constraint on the running time of signer and verifier are
met only on average. If the signature scheme needs to be always local, the signer can just re-sign
the message whenever the number of non-zero locations in c is not in the range {(1± ε)t}, for
a constant ε.

Theorem 6.1. Let F be a finite field such that log |F| = κ, for security parameter κ ∈ N. For
any ξ = ω(log κ), whenever γ = O(1) the above signature scheme is (( µ

µ+1)|sk | − ξ, γ)-fully-
leakage one-more unforgeable in the random oracle model.

We reduce to the computational binding property of the commitment scheme. The reduction
simulates the entire experiment by sampling a legitimate secret key (∆, r). Whenever the
adversary outputs its forgeries (m∗1, π

∗
1), . . . , (m∗n, π

∗
n), the reduction chooses an index i←$ [n]

uniformly at random and extracts the proof π∗i obtaining a valid witness (m̃∗i , r̃
∗
i ). Finally the

reduction outputs ( ˜comi, (m̃
∗
i , r̃
∗
i ), (∆(m∗i ), r(m

∗
i )).

It remains to argue that the conditional average min-entropy of ∆ given the view of the
adversary is high. By a counting argument, this implies that there exists an index i ∈ [n] for
which the min-entropy of the witness sitting behind each of the forged signatures is larger than
1, so that the reduction breaks the computational binding property with noticeable probability.

Proof. Let A be an adversary in the fully-leakage one-more unforgeability experiment. Define
with Forge the event that A makes the experiment output 1, and assume P[Forge] = ε.

Consider the following reduction algorithm B (based on A), attacking the computational
binding property of COM. Adversary B works as follows:

1. At the beginning B receives the public key ϑ ← Setup(1κ) for the commitment scheme.
Hence, it generates a legitimate signing/verification key pair (sk , vk) for SS4, where sk =
(∆, r) and vk = (ϑ, {comi}di=1).

2. B takes care of A’s queries to the random oracle, and keeps a list QH(A) of such queries
and the relative answers.

3. Given the above setup, B answers signature queries and leakage queries asked by A in the
natural way. Every time a signature is computed, the state is updated as st := st∪{rnizk},
where rnizk is the randomness required to generate each signature.

4. Eventually A returns a set of forgeries (m∗1, π
∗
1), . . . , (m∗n, π

∗
n). At this point B runs

K(ϑ, ˜com∗i ,Q(A)) for all i ∈ [n], where ˜com∗i = Commit(ϑ,∆(m∗i ), r(m
∗
i )), obtaining a

witness (m̃∗i , r̃
∗
i )i∈[n]. In case there exists an index i ∈ [n] such that ( ˜com∗i , (m̃

∗
i , r̃
∗
i )) 6∈ R,

the reduction B aborts.
5. B finds an index i such that (∆(m∗i ), r(m

∗
i )) 6= (m̃∗i , r̃

∗
i ). If no such index is found, B

aborts. Otherwise B outputs ( ˜com∗i , (m̃
∗
i , r̃
∗
i ), (∆(m∗i ), r(m

∗
i ))).

We say that B wins if it breaks the computational binding property of COM. Let Abort1 (resp.
Abort2) be the event that B aborts in step 4 (resp. step 5); define Abort := Abort1 ∨Abort2. By
definition of B:

P [B wins] = P[Forge ∧ ¬Abort1 ∧ ¬Abort2]

≥ P[Forge ∧ ¬Abort1]− P[Abort2]

≥ P[Forge]− P[Forge ∧ Abort1]− P[Abort2].

Claim 6.1. P[Forge ∧ Abort1] ≤ negl(κ).

Proof. Event Abort1 holds true in case there is at least one index i ∈ [n] such that K fails to
extract a valid witness for ˜com∗i . However, since Forge occurs, all proofs π∗i are valid and thus
there is at least one index i ∈ [n] for which:

Ver(ϑ, ˜com∗i , π
∗
i ) = 1 ∧ ((ϑ, ˜com∗i ), (m̃

∗
i , r̃
∗
i )) 6∈ R,

which would contradict simulation extractability of the NIZK argument system. We conclude
that P[Forge ∧ Abort1] must be negligible.
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Claim 6.2. P[Abort2] ≤ negl(κ).

Proof. Event Abort2 holds true if for all i ∈ [n] we have that (∆(m∗i ), r(m
∗
i )) = (m̃∗i , r̃

∗
i ) for

all values extracted by B. Consider the matrix M for which the i-th column is the vector
ci = Hd,t1 (m∗i ). Let FullRank be the event that M is full rank, and suppose that A makes qs
signature queries. Note that the view of A is a random variable View consisting of: (i) the
verification key vk (ii) the leakage Λ, (iii) the signatures (m1, σ1), . . . , (mqs , σqs), (iv) the set
QH(A) of random oracle calls and corresponding answers. We can write:

P[Abort2] 6 P[¬FullRank] + 2−H̃∞(∆M,rM|View;FullRank),

where H̃∞(X|Y ;E) is the average conditional min-entropy of the random variable X given the
random variable Y and conditioned on the event E.

Let qh be the number of random oracle queries made by A, we claim that:

P[¬FullRank] 6 qh ·
(

1

|F|
+ e−t

)
.

This is because the first d− 1 columns of M form a subspace of dimension less then d, and for
any subspace A ⊂ Fd of dimension less then d the probability that a vector c randomly chosen
over Sparse(F, d, t) lies in the subspace A is at most 1

|F| + e−t (by Lemma 6.1), and so the above
inequality follows by the union bound. Hence,

H̃∞(∆M, rM| View;FullRank) = H̃∞(∆, r| vk ,Λ, {mi, σi}qsi=1,QH(A)) (15)

= H̃∞(sk | vk ,Λ, {mi, σi}qsi=1)

= H̃∞(sk | vk ,Λ) (16)

> H̃∞(sk | vk)− λ (17)

> ρ|sk | − λ. (18)

Where Eq. (15) holds by the fact that M is full rank, Eq. (16) follows by perfect zero-knowledge
of NIZK, Eq. (17) follows by the chain rule on the average conditional min-entropy (see,
e.g., [25, Lemma 2.2]), and Eq. (18) holds by the fact that sk is uniform over Fd(µ+1). We
conclude that:

P[Abort2] 6 negl(κ) + 2ρ|sk |−λ 6 negl(κ) + 2−ω(log κ) = negl(κ),

as desired.

Combining Claim 6.1 and Claim 6.2 we get that P[B wins] > ε − negl(κ), and thus ε must
be negligible, finishing the proof.

6.3 The Full-Fledged Scheme

In order to reduce the size of the verification key in the scheme from the previous section,
we rephrase the idea of Alwen et al. [2, Section 4.3] using the notion of homomorphic linear
authenticator introduced in [3]. Let F be a field equipped with a function Combine(c, f) that
takes as input two vector c ∈ Zd and f ∈ Fd, and outputs a field element, concretely, we can
think of it as the scalar multiplication

∑
i fi · ci or the scalar multiplication “at the exponents”∏

i f
ci
i .

Definition 6.3 (Homomorphic linear authenticator). A public-key homomorphic linear authen-
ticator for a field F equipped with a function Combine(c, f) is a tuple of four PPT algorithms
HLA = (KGen,Tag,Auth,Ver) such that:
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(PK ,SK )← KGen(1κ) is a probabilistic algorithm used to set up the scheme. It takes as input
the security parameter and the field description F (where log |F| = κ), and outputs a public
and private key pair (PK ,SK ).

(tag, st)← Tag(SK , f) is a probabilistic algorithm that is run in order to tag a vector. It takes
as input a secret key SK and a vector f ∈ Fd, and outputs a vector of tags tag ∈ Fd and
state information st.

τ := Auth(PK , f , tag, c) is a deterministic algorithm that is run to generate tags. It takes as
input a public key PK , a vector f ∈ Fd, a tag vector tag, and a challenge vector c ∈ Zd,
and outputs a tag τ .

b := Ver(PK , st , γ, c, τ) is a deterministic algorithm that is used to verify a tag. It takes as
input a public key PK , state information st, an element γ ∈ F, a challenge vector c ∈ Zd,
and a tag τ . It outputs a bit b, where b = 1 indicates acceptance and b = 0 indicates
rejection.

For correctness, we require that for all κ ∈ N, all (PK ,SK ) output by KGen(1κ), all f ∈ Fd , all
(tag, st) output by Tag(SK , f), and all c ∈ Zd , it holds that

Ver (PK , st ,Combine(c, f), c,Auth(PK , f , tag, c)) = 1.

Definition 6.4 (Unforgeability for public-key HLAs). Let A be an adversary for the following
experiment:

1. The challenger computes (PK ,SK )← KGen(1κ).
2. Given PK and oracle access to Tag(SK , ·), adversary A outputs a vector f ∈ Fd.
3. The challenger tags f by computing (tag, st)← Tag(SK , f).
4. Given tag and st, the adversary A outputs a challenge vector c ∈ Zd, an element γ′ ∈ F,

and a tag τ .
5. The adversary succeeds if γ′ 6= Combine(c, f) and Ver(PK , st , γ′, c, τ) = 1.

We say that HLA is unforgeable if the success probability of every PPT adversary A in the
above experiment is negligible.

We are now ready to describe our signature scheme SS5 = (KGen,Sign,Verify), based on our
construction from the previous section SS4 = (KGen, Sign,Verify) and a public-key homomorphic
linear authenticator HLA = (KGen,Tag,Auth,Ver).

Key Generation. Run (vk ′, sk ′) ← SS4.KGen(1κ) and (PK ,SK ) ← HLA.KGen(1κ); parse
vk ′ as (ϑ, {comi}di=1) and define f = (com1, . . . , comd). Generate (tag, st) ← Tag(SK , f)
and output:

sk := (sk ′, tag) pk := (ϑ,PK , st).

Signature. Run π ← SS4.Sign(sk ,m), and compute ˜com =
∏d
i=1 comci

i and τ := Auth(PK , f ,

tag, c) where c = (c1, . . . , cd) = Hd,t1 (m). Output σ := ( ˜com, τ, π).

Verification Given a pair (m,σ), parse σ as ( ˜com, τ, π). Compute c := Hd,t1 (m) and output:

HLA.Ver(PK , st , ˜com, c, τ) ∧ VerH0((crs, ˜com), π).

Theorem 6.2. Let F be a finite field such that log |F| = κ, for security parameter κ ∈ N.
For any ξ = ω(log κ), whenever γ = O(1) the above signature scheme is (( µ

µ+2)|sk | − ξ, γ)-
fully-leakage one-more unforgeable in the bounded retrieval model under the condition that the
adversary does not leak from the randomness used during key generation.

Note that the scheme does not allow leakage on the coins of the key generation; these coins
have to be securely erased (together with SK ). However, after key generation is over no more
erasures are needed. We give only a proof sketch here:
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Proof. Let A be an adversary in the fully-leakage one-more unforgeability experiment for SS5.
We construct an adversary B that either breaks fully-leakage one-more unforgeability of SS4

(contradicting Theorem 6.1) or the unforgeability of HLA. Adversary B plays both games at
the same time, with challenger C1 (for SS4) and C2 (for HLA). A description of B follows:

1. At the beginning B receives as input the verification key vk ′ = (ϑ, {comi}di=1) (from
C1), and the public key for the HLA PK (from C2). Recall that there is no leakage
during the key generation phase. Thus, B queries oracle Tag(SK , ·) upon input the value
f = (com1, . . . , comd), obtaining a pair (tag, st), and returns vk = (ϑ,PK , st) to A.

2. Upon input a signature query m from A, adversary B forwards this query to C1 receiving
back a signature π. It then computes c = (c1, . . . , cd) = Hd,t1 (m), ˜com =

∏d
i=1 comci

i ,
τ = Auth(PK , f , tag, c), and returns ( ˜com, τ, π) to A.

3. Upon input a leakage query f(·) from A, adversary B defines a function f ′(·) := f(tag, ·)
and forwards such query to C1. Note that this is a perfect simulation, as the random coins
for signature generation consists only of the coins for the signing algorithm of SS4.

4. Eventually A returns n forgeries (m∗1, ( ˜com∗1, τ
∗
1 , π

∗
1), . . . ,m∗n, ( ˜com∗n, τ

∗
n, π

∗
n)). At this point

B checks, for c∗i = Hd,t1 (m∗i ), that there exists an index i ∈ [n] such that

Ver(PK , st , ˜com∗i , c
∗
i , τ
∗
i ) = 1 ∧ ˜com∗i 6= Combine(c∗i , f). (19)

In case such index is found, B outputs ( ˜com∗i , c
∗
i , τ
∗
i ) to C2. Otherwise, B outputs the

forgeries (m∗1, π
∗
1, . . . ,m

∗
n, π

∗
n) to C1.

Let Fresh be the event that Eq. (19) holds for some i ∈ [n]. Moreover, let Forge be the event
that A wins in the fully-leakage one-more unforgeability experiment. We can write:

P [Forge] = P [Forge ∧ Fresh] + P [Forge ∧ ¬Fresh] .

The two claims below conclude the proof.

Claim 6.3. P [Forge ∧ Fresh] ≤ negl(κ).

Proof. One can easily see that in case A provokes both Forge and Fresh, adversary B is successful
against C2 contradicting unforgeability of the HLA. This is because ( ˜com∗i , c

∗
i , τ
∗
i ) is verified

correctly, and moreover ˜com∗i is a fresh value different than Combine(c∗i , f).

Claim 6.4. P [Forge ∧ ¬Fresh] ≤ negl(κ).

Proof. One can easily see that in case A provokes both Forge and ¬Fresh, the forgeries output
by B against C1 are all accepting and with the right distribution, as, in particular, ˜com∗i =

Combine(c∗i , f) =
∏d
j=1 com

ci[j]
j . This contradicts fully-leakage one-more unforgeability of SS4.

7 Instantiations

In the following let G and GT be groups of prime order q, supporting oblivious sampling of group
elements, and let e : G×G→ GT be a non-degenerate efficiently computable bilinear map. Set
the field F to be Zq. For ease of notation, given three vectors g,h ∈ Gn and α ∈ Fn and an
element α ∈ F we write 〈g,α〉 for the group element

∏
i g
αi
i (as already done in Section 4.3).

We also write g · h for the vector (g1 · h1, . . . , gn · hn), gα for the vector (gα1
1 , . . . , gαnn ), gα for

the vector (gα1 , . . . , g
α
n) and ê(g, h) for (e(g1, h), . . . , e(gn, h)).

Definition 7.1 (DLIN assumption [6]). Let g1, g2, g3←$ G and r, s, z←$ F, the Decisional Lin-
ear Assumption states that the following two distributions are computationally indistinguishable:

(G, g1, g2, g3, g
r
1, g

s
2, g

r+s
3 ) and (G, g1, g2, g3, g

r
1, g

s
2, g

z
3).
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Trapdoor hiding commitment. We use the generalized Pedersen commitment [53]. Algo-
rithm ESetup outputs ϑ = gr for random r←$ Fµ+1, and sets the trapdoor to τ := r. The com-
mitment to an element m ∈ Fµ using randomness r← F is computed as c = Commit(ϑ,m; r) :=
〈ϑ, (m, r)〉.

Note that Pedersen commitment is linearly homomorphic: For com1 = Commit(m1; r1) and
com2 = Commit(m2; r2) it holds that

com1 · com2 = 〈ϑ, (m1, r1) + (m2, r2)〉 = Commit(m1 +m2; r1 + r2).

Moreover, for all constants c ∈ F we have that comc
1 = 〈ϑ, (m1, r)〉c = Commit(c · m1; c · r1).

Algorithm Setup obliviously samples an element from Gµ+1; algorithm ECommit picks r′←$ F
and returns com = gr; algorithm Equiv upon input a message m ∈ Fµ, trapdoor τ = r, and
randomness r′, returns r := r′ −

∑
i rimi.

Hybrid commitment. We use the homomorphic commitment of [37], that is secure under the
DLIN assumption. The trapdoor hiding property is derived applying the general transformation
of Damgaard and Nielsen in [18].

Let ψ : F2 → F3 be such that ψ(r1, r2) = (r1, r2, r1 + r2). The algorithms depend on global
parameters (G,g), where g←$ G3. Algorithm Setup chooses r̄←$ F3, and sets the verification
key as ϑ := gr̄; note that oblivious sampling requires that the group G itself supports oblivious
sampling. Algorithm ESetup chooses r̄←$ F2, and sets the verification and trapdoor keys as
ϑ := gψ(r̄) and τ := r̄. The hybridness property follows by the DLIN assumption.

To commit to a value m ∈ Fµ, algorithm Commit takes the verification key ϑ = h, chooses
randomness r1, . . . , rµ←$ F2, and outputs:

com := (hm1 · gψ(r1), . . . ,hmµ · gψ(rµ)).

Algorithm ECommit takes the verification key ϑ = (gψ(r̄1), . . . ,gψ(r̄µ)) and trapdoor key τ = r̄,
chooses randomness r′1, . . . , r

′
µ←$ F2, and outputs:

com := (gψ(r1), . . . ,gψ(rµ)) and r′ := (r′1, . . . , r
′
µ).

To equivocate algorithm Equiv takes as input r′ and a trapdoor key τ = r̄, and returns ri :=
r′i −mi · r̄ for each i ∈ [µ]. We note that for any message m, any i, and any verification key ϑ,
the distribution of ri is a bijective function of r′i, therefore ri is uniformly distributed on F2 as
desired.

In Section 4.2 we require the extra property that given the randomness r′1 and r′2 for two
equivocal commitments com1 and com2 (under verification key ϑ, with trapdoor information
τ = r̄), the randomness r′c := α · r′a + ·r′b can equivocate the equivocal commitment com3 :=
comα

1 · com2. This is indeed the case, as

com3 =
(
gψ(r′a,1), . . . ,gψ(r′a,µ)

)α
·
(
gψ(r′b,1), . . . ,gψ(r′b,µ)

)
=

=
(
gα·ψ(r′a,1)+ψ(r′b,1), . . . ,gα·ψ(r′a,µ)+ψ(r′b,µ)

)
=

=
(
gψ(α·r′a,1+r′b,1), . . . ,gψ(α·r′a,µ+r′b,µ)

)
=

=
(
gψ(r′c,1), . . . ,gψ(r′c,µ)

)
In Section 4.3 we require the following extra properties: (i) H = {gψ(r) : r ∈ F2} forms a

proper subgroup of G = {gr : r ∈ F3}; (ii) given ϑ1 ∈ G \ H and ϑ2 ∈ H, the product ϑ1 · ϑ2

(defined as the element-wise multiplication) is in G \ H; (iii) g
ψ(r)
1 is uniformly distributed in

H, for r←$ F2. The above properties hold by simple inspection.
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NIWI arguments. We instantiate the NIWI argument system using the powerful Groth-
Sahai proofs system [37]. Using the so-called simulated common reference string key generator,
the system is a statistical NIWI argument system.10 As pointed out in [8], the Init algorithm
admits oblivious sampling. Following [37], the number of group elements for the common
reference string is 12 group elements. The relation R in Section 4.1 can be expressed using
3µ + 1 equations with 3µ + 1 variables; the relation R in Section 5.2 can be expressed using
(3µ+ 1) log κ+ 1 equations with 4µ log κ+ 1 variables. According to Libert [45] we have:

� A NIWI argument for the scheme SS1 requires O(µ) group elements, while the number
of pairings operations for verification is Ω(µ2); the exact number of group elements is
comparable with the OR-construction of [11]. The difference is that [11] employs the
strong one-time signature of [35], which requires 2 group elements for the public key;
instead our PRG (based on DLIN) uses 3 group elements. According to [45], we estimate
that the NIWI argument of scheme SS1 requires approximately 24µ+ 90 group elements.

� A NIWI argument for the scheme SS2 requires 15µ+ 5 group elements, while the number
of pairings operations for verification is 27µ2 + 36µ+ 12.

� A NIWI argument for the scheme SS3 requires (12 log κ + 4)µ + 4µ + 5 group elements,
while the number of pairings operations for verification is Ω((µ log κ)2).

NIZK arguments. We use the tSE-NIZK based on DLIN from Dodis [22]. Their instantiation
uses a multi-message version of the Cramer-Shoup encryption scheme [14], and the Groth-Sahai
proof system. One can check that Cramer-Shoup admits oblivious sampling of the public key.

Roughly, the argument system encrypts the witness and proves that the encrypted value is a
valid witness for the relation. For the scheme SS2 presented in Section 4.3 the witness space for
the relation R2 (cf. Eq. (9)) is F2; however the Cramer-Shoup encryption scheme has message
space Gn for some n.

In order to solve the above mismatch, we instantiate the tSE-NIZK with the following
relation:

R′2 :=
{

(ϑ, ϑ1, ϑ2); (gα1 , gα2)
∣∣ ê(ϑ, g) = ê(ϑ1, g

α1) · ê(ϑ2, g
α2)

}
⊆ (G3)3 ×G2.

Following [22], the size of a tSE-NIZK argument is of 124 group elements and 6 elements in F,
while the common reference string size is of 18 group elements.

Instantiating the scheme in the BRM. We use Fischlin’s trasformation [32] for the NIZK
with online extraction. To obtain reasonable security parameters the size of a proof needs to be
Ω(log κ) times the prover’s transcript in the Sigma protocol. Hence, by using the generalized
Pedersen commitment scheme and the corresponding Sigma-protocol for proving knowledge of
an opening, we obtain that the size of a signature is log κ group elements and (µ + 1) log κ
elements in F.

For the homomorphic linear authenticator we use the scheme implicitly defined by Shacham
and Waters in [57], based on BLS signature of Boneh et al. [7].

8 Extension to Noisy Leakage

Our definitions of Section 3 are in the bounded leakage model, where the adversary is allowed to
query a leakage oracle with arbitrary polynomial-time functions, provided that the total amount

10Strictly speaking, to instantiate the NIWI argument using [37] one would have to slightly adapt Definition 2.3
in order to account for the fact that the witness indistinguishability property only holds when the CRS is generated
using an alternative initialization algorithm Init (producing a computationally indistinguishable distribution);
this is easily taken into account in the analysis by defining a further hybrid in the proofs (see Theorem 4.1,
Theorem 4.2, and Theorem 5.1), where Init is replaced by Init.
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of leakage is smaller than a global parameter `. In this section, we explain how to extend our
definitions and some of our results to a more general setting (that strictly implies the case of
bounded leakage) where the leakage functions can have a much longer output, as long as the
entropy of the secret key does not decrease by too much.

Following [21], we define a notion of a function being `-leaky.

Definition 8.1. A (possibly randomized) function f : {0, 1}∗ → {0, 1}∗ is `-leaky, if for all
κ ∈ N we have that H̃∞(Uκ|f(Uκ)) ≥ κ− `, where Uκ is the uniform distribution over {0, 1}κ.

As shown by [21][Lemma L.3] the above notion composes nicely, meaning that if two func-
tions are respectively `1- and `2-leaky, their concatenation is (`1 + `2)-leaky.

We explain how to adapt Definition 3.1 to the setting of noisy-leakage. Essentially we allow
the adversary to query the leakage oracle on arbitrary polynomial-time functions, provided that
each function is `i-leaky and

∑
i `i ≤ `, where ` is the leakage parameter. We stress that one-

more unforgeability still requires that an adversary should produce a number of forgeries strictly
larger than the ones he could have leaked (up-to the slack factor γ), however the number of
leaked signatures now might depend on the amount of information that a signature actually
carries. We distinguish two cases, depending on whether the signature algorithm (statistically)
reveals partial information on the secret key or not. In the first case, the parameter n in the
winning condition is related to the leakage parameter `, since a forgery is de-facto a leaky
function of the secret; in the second case we need to be more pessimistic, and let the parameter
n be related to the actual leakage λ performed by the adversary.

Definition 8.2. We say that a signature scheme SS = (KGen,Sign,Verify) is (`, γ)-fully-leakage
one-more unforgeable w.r.t. noisy leakage if it satisfies Definition 3.1 with the following modi-
fication to the security experiment:

5. The experiment outputs 1 if and only if conditions (a)-(b) are met and moreover:

(c) Let Sign be s̃-leaky and s := |σ| be the size of a signature, then:{
n ≥ bλ/(γ · s)c+ 1 if s̃ = 0

n ≥ b`/(γ · s̃)c+ 1 else
(20)

where λ is the total length of the leakage.

(d) Each function submitted to the leakage oracle is `i-leaky,
∑

i `i ≤ `, and |Q| ≤ qs.

The definitions for the case of perfect erasures, and in the BRM can be updated accordingly.
Note that the above formulation offers a graceful degradation of security also for schemes where
the secret key is potentially shorter than a signature, and signatures do not constrain the secret
key. In fact, for such schemes, leaking a signature is allowed, but does not directly constitute a
security breach as the adversary is required to produce at least one more forgery.

It is easy to see that the above formulation strictly implies our definitions in the bounded
leakage model. In fact, an `-bit output function is in particular `-leaky.

The theorem below shows that our signature scheme SS3 (cf. Section 4) and our schemes
SS4 and SS5 (cf. Section 6) are secure also w.r.t. noisy leakage. Unfortunately we are not
able to prove a similar statement for the schemes SS1 and SS2 (cf. Section 5). The reason for
this is that in the erasure case the simulator could be forced to leak too much information, as
the number of leaky signature queries is not anymore upper-bounded by λ, but is instead an
arbitrary polynomial. In such a case, we cannot upper bound the probability of the events Badi
in the proof of Lemma 4.2. This issue does not apply to the non-erasure case, as the simulator
can arbitrarily control the probability of the events Badi.

11

Theorem 8.1. The statement of Theorem 5.1, Theorem 6.1, and Theorem 6.2 also hold w.r.t.
noisy-leakage security, with the same leakage and efficiency parameters.

11We do not have a concrete attack on the schemes.
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8.1 Proof Sketch of Theorem 8.1

We will rely on the following technical lemma (see [25, Lemma 2.2] and [21, Lemma L.3]).

Lemma 8.1. Let X be a random variable over some domain X . The following holds:

1. For any random variable Y ∈ Y, and for any β > 0, we have that

P
[
H∞(X|Y = y) ≥ H̃∞(X|Y )− β

]
≥ 1− 2−β

(where the probability is over the choice of y).

2. For all sequences of `i-leaky functions fi : {0, 1}∗ → {0, 1}∗, such that
∑

i `i ≤ `, we have

that H̃∞(X|f1(X), f2(X), . . . , ) ≥ H∞(X)− `.

We start with the statement of Theorem 5.1. We need to show the following twist of Lemma 4.2,
where the bound now depends on ` (the amount of min-entropy left in the secret key) instead
of λ (the total length of the output of the leakage functions).

Lemma 8.2. For any β > 0 we have that

P [H∞ (∆| View3 = v) > |∆| − (1 +B)µ log |F| − `− β ] > 1− 2−β − 2−2e. (21)

Proof. Let View′3 := (fi((∆, r), sti))i∈[qs]||(∆(mi))i∈Z the total information leaked in H3, where
Z, as before, is the set of bad queries that force the simulator to leak from ∆. For any adversary’s
view v let v′ the “stripped-off ” view where we consider only the total information leaked via
the leakage oracle.

H∞ (∆| View3 = v ) = H∞
(
∆| View′3 = v′

)
We condition on the number of bad queries Z = |Z| being less than 2e, then we apply Property
(1) of Lemma 8.1:

P
[
H∞

(
∆| View′3 = v′

)
> H̃∞

(
∆| View′3

)
− β

∣∣∣ Z 6 2e
]
> 1− 2−β.

Now we can apply Property (2) of Lemma 8.1, using the fact that the function f(∆) :=
(∆(mi))i∈Z is (Zµ log |F|)-leaky:

P
[
H∞

(
∆| View′3 = v′

)
> |∆| − (2eµ log |F|+ `)− β

∣∣ Z 6 2e
]
> 1− 2−β.

Since P[Z 6 2e] > 1− 2−2e by the Chernoff bound, we obtain the statement of the lemma.

To conclude the proof, one can verify that, similarly to Theorem 5.1, in order to obtain a
contradiction we need that:

nκ

qs
= Ω(`− log ε(κ)). (22)

For ε(κ) noticeable, since n ≥ b `
γ·κc + 1 (as the signing algorithm is κ-leaky), it suffices to set

γ = O( 1
qs

) in order for Eq. (22) to hold.
We turn to the proof of the noisy-variant of Theorem 6.1 and Theorem 6.2. It suffices to

prove Theorem 6.1, as the other proof is essentially identical. The proof proceeds as before,
except that now Eq. (17) follows by a direct application of Property (2) of Lemma 8.1 (and
not by the chain rule of average conditional min-entropy). The signature algorithm is 0-leaky,
so condition (c) in the definition of fully-leakage one-more unforgeability stays the same (see
Definition 8.2). The proof follows.
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9 Conclusions and Open Problems

We have shown new constructions of fully leakage resilient signatures in the bounded and noisy
leakage model. Our schemes enjoy a graceful degradation of security in situations where the size
of a single signature is independent of the size of the secret key. This notion is still meaningful
for security, and moreover allows to obtain shorter signature tolerating a 1 − o(1) fraction of
leakage on the secret key.

Our main schemes are efficient, in the standard model, and can be instantiated under fairly
standard cryptographic assumptions. (We also built a scheme in the BRM, relying on a random
oracle.)

We conclude by highlighting a few open problems left open by our work. As for the standard
model constructions, it would be interesting to construct more efficient schemes, both in the
erasure and non-erasure model, with optima slack parameter γ = O(1). As for the scheme in
the BRM, it is a challenging open question whether it is possible to remove the random oracle.
Also it would be interesting to make the proof work without assuming online extractability
for the NIZK (e.g., using the Fiat-Shamir transform [31]). This case requires a more careful
analysis, dealing with rewinding an adversary that outputs n forgeries, and seems to require a
more general version of the forking lemma [54].

Finally, it remains open to generalize our schemes to the setting of continuous and hard-
to-invert leakage (possibly without relying on hardware assumptions, like the Floppy model
of [2, 17]).
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