
Web Tap Payment Authentication and
Encryption With Zero Customer Effort

Henry Ng

Tap-Card-Pay Systems Corporation, Vancouver BC V5X3Y3, Canada
henryng@tapcardpay.com

Abstract. We propose a public-key authentication and encryption ap-
plication that secures the messages between Tap-Card-Pay application,
Tap-Card-Pay Systems Corporation, customers, and merchants allowing
the customer to complete transactions without requiring the customer
to input sensitive information. With authentication and encryption, the
application transfers the credit card information from the smartphone’s
near field communication device onto the merchant webpage. Security
weaknesses are also presented to show how to attack this design.

Keywords. Public-Key Cryptography, Digital Signatures, Applications.

1 Introduction

In our Tap-Card-Pay application (app), we remove the keyboarding from the
customer and add the simplicity of tapping the credit card on the smartphone
when the customer tries to checkout on the merchant’s webpage. However, with
this much simplicity, there is a cost on the computing resources needed, rather
than human effort and intervention, to securely handle sensitive information
from the customer’s credit card.

The purpose of our security application is to avoid exposing the credit card
information to adversaries, after the customer’s name, numbers, and expiry date
is read from the smartphone operating system application programming inter-
face (API), which originally reads from the near field communication (NFC) of
smartphone [2].

The Tap-Card-Pay app sends the message, containing the encrypted credit
card information, to the merchant webpage when the customer executes the app
to read and send credit card information. In order for Tap-Card-Pay app to trust
the merchant, Tap-Card-Pay Systems Corporation needs to certify the merchant,
producing a signed certificate, and the Tap-Card-Pay app needs to authenticate
this certificate.

Digital signatures are messages that use some secret known to the signer
and are based on the content of the message being signed [1]. The application
verfifies the trustworthiness of the public-keys using digital signatures. Certifi-
cation of a merchant’s public-key by Tap-Card-Pay Systems enables authenti-
cation, data-integrity, and non-repudiation. During certification, Tap-Card-Pay
Systems would need to digitally sign the merchant’s public-key.



In public-key encryption, an entity has a public-key and a private-key, where
the public-key can be known by others and the private-key needs to be secret
[1]. Public-keys can be used to encrypt data and also to verify digital signatures
[1].

For each transaction, a new, unique keypair is generated and a copy of the
merchant’s public-key is downloaded onto the Tap-Card-Pay app.

1.1 Paper Organization

In the next sections, we provide details on the public-key signature and encryp-
tion application. Section 2 lists the design requirements. Section 3 shows the key
exchange methods between entities. Section 4 shows how the app handles the
cryptography and how to verify the app. Section 5 shows the flow order during
a transaction. Finally, in section 6, we describe attacks on the application.

2 Requirements

During a transaction, the customer is required to input the credit card informa-
tion on the merchant webpage. Normally, this input is on the form by typing in
the credit card information.

With Tap-Card-Pay, the customer taps the credit card on the NFC to input
the credit card information. In an ideal situation, the NFC data containing the
credit card information is entered instantly on the webpage without transporting
plaintext through an untrusted environment where there can be any application
or system processes running on the smartphone that can capture plaintext. Refer
to Figure 1.

We use authentication and encryption in our application to securely trans-
port messages from the NFC to the webpage. Merchant web servers host the
webpages.

2.1 Limitations

We list the limitations that restrict what the proposed security application can
do.

1. The customer cannot remember passwords or secrets.
2. The app cannot store plaintext passwords or secrets.

Fig. 1. The untrusted environment is between the NFC read and the merchant web-
page. We need to transport the credit card information between these two locations.
It is unsafe to transport plaintext credit card information.

NFC Webpage
bb

Untrusted environment



3. The merchant cannot store or verify credit card information before the cus-
tomer submits the credit card information on the merchant webpage.

4. The customer should not type any credit card information into the merchant
webpage.

3 Key Exchange

We define a way to exchange public-keys between the merchants and Tap-Card-
Pay Systems.

3.1 Merchant

The merchant generates a keypair PrivM PubM and gets the public-key PubM
signed by Tap-Card-Pay Systems creating digital signature SigT .

For each transaction, the merchants generates a new, unique keypair with
private-key PrivJ and public-key PubJ . The PubJ , which will be introduced to
the app, is signed by the merchant’s private-key PrivM . Since PubM is trusted,
once it is signed by Tap-Card-Pay Systems, PubM can introduce new public-
keys.

3.2 Tap-Card-Pay Systems

Tap-Card-Pay Systems generates a keypair PrivT PubT for signing and authen-
ticating the public-keys from the merchants. PubT is installed in the Tap-Card-
Pay app.

3.3 Customer

The customer does not have any keypair. The private-key would need a password
protection.

4 App Methods

The app uses two cryptographic methods, authentication and encryption. Au-
thentication is a service related to identification and two entities entering into
a communication should identify each other [1]. We use encryption to ensure
privacy, keeping information secret from all but those who are authorized to see
it [1]. In addition, we suggest that the customer compares the hash of the app
before use. In the following subsections, we describe the details.



4.1 Authentication

During authentication of the merchant’s public-key PubM , the Tap-Card-Pay
app verifies the digital signature SigT that is attached to PubM using verification
PubT . If the signature is incorrect, the app rejects the public-key PubM and
notifies the customer. Otherwise, PubM is considered to be probably valid from
the merchant.1

Once PubM is considered probably valid, then PubM is used to authenticate
PubJ , which is signed by the private-key PrivM . Signature SigM that is attached
to PubJ is verified. PubM is the trusted introducer of PubJ and it introduces
PubJ to the app for later encryption operations.

4.2 Encryption

In our application, the receiving merchant has public-keys PubM , PubJ and
private-keys PrivM , P rivJ . The purpose of PubM , P rivM is to introduce public-
keys PubJ to the app. Our application encrypts the credit card information using
public-key PubJ , public-key encryption, symmetric key K, and block cipher.

K is pseudorandomly selected for keying a block cipher which maps n-bit
plaintext blocks to n-bit ciphertext blocks. Blocks of credit card information is
encrypted using the block cipher to produce ciphertext c1.

In addition, the symmetric key K is encrypted using PubJ and public-key
encryption to produce ciphertext c2.

The application sends the message containing c1, c2 to the webpage for de-
cryption. Using PrivJ , public-key algorithm, and block cipher, c2 is decrypted to
produce K and c1 is decrypted to produce credit card information, in sequence.

4.3 Ciphertext Message Passing

After the customer’s name, numbers, and expiry date is read from the smart-
phone operating system API, which originally reads from the NFC of smartphone
hardware, encryption is applied on the information producing ciphertext. The ci-
phertext is sent from the app to the localhost MySQL2 database, which is running
as a system service in Android. Next, the ciphertext is retrieved by a localhost
PHP3 script, which is hosted on localhost lighttpd4, through SQL statetment
information requests to the MySQL database. There is no decryption method
before the ciphertext reaches the webpage.

The PHP script presents JSON5 data to the JavaScript6, which is hosted on
the merchant website. The JavaScript decrypts c1, c2 using PrivJ , public-key
algorithm, and block cipher.

1 We show attacks in a later section.
2 http://www.mysql.com/
3 http://www.php.net/
4 http://www.lighttpd.net/
5 http://www.json.org/
6 http://www.w3schools.com/js/



Fig. 2. Transportation of public-keys and digital signatures. The merchant sends the
PubJ , SigM , PubM , SigT to webpage and app for verification and encryption. c1, c2 are
sent to webpage for decryption.

PubJ PubJ , SigM , PubM , SigT PubJ , SigM , PubM , SigT

NFC App

c1, c2

Webpage Merchant

WebpageNFC App Merchant

c1, c2 credit card info

Fig. 3. Transportation of private-key PrivJ . The merchant only needs to transport it
to the webpage, where there is decryption of c1, c2.

PrivJ

NFC App Webpage Merchant

4.4 Customer

The customer can use a one-way, unkeyed hash function to verify the app. We
define a one-way, unkeyed hash function h(x), where x is the input message,
such that the probability of h(x) = h(x′) is unlikely h(·)−1 [1]. The customer
can download a copy of the app and compute the hash of the app with the
posted hash on the Tap-Card-Pay website.7 If the download is different from the
official Tap-Card-Pay download, the computed hash should be different from the
expected hash.

5 Transaction Order of Operations

We define the order of operations when securing the credit card information. We
see in Figure 2 how the public-keys and digital signatures are transported. In
Figure 3, we see where is PrivJ located and where it is transported from.

1. Merchant generates a keypair PubJ , P rivJ .
2. Merchant posts the JavaScript with PubM , PubJ , P rivJ , SigM , SigT .
3. JavaScript calls the PHP script to insert PubM , PubJ , SigM , SigT into lo-

calhost8 MySQL database.
4. Customer clicks on the webpage link to launch the app.
5. App launches and requests that the customer tap the credit card next to the

NFC.
6. App gets the credit card information from the API.
7. App generates a random symmetric key K and encrypts the credit card

information using a block cipher to produce ciphertext c1.
8. App downloads and verifies PubJ , PubM , SigM , SigT . If verification fails,

stop and show error message.
9. App encrypts K using PubJ to produce ciphertext c2.

7 http://www.tapcardpay.com/
8 localhost translates to the IP address 127.0.1.1 on the smartphone.



10. App enters c1, c2 into MySQL database.
11. JavaScript calls PHP script to retrieve c1, c2 from MySQL database.
12. JavaScript decrypts c1, c2 and presents the credit card information on the

form and browser.
13. Customer decides whether or not to submit the credit card information to

complete the transaction.

6 How to Break Tap-Card-Pay

We describe some of the security attacks on the proposed application.

6.1 Browser Cache

If the merchant enables caching for the webpages on the customer’s (client)
browser, it is possible to read the private-key PrivJ from the browser cache.

6.2 Repudiation

The merchant can setup a second merchant website that Tap-Card-Pay Sys-
tems did not authorize. If the merchant’s public-key PubM is not compromised
and signs the public-key PubJ , the merchant can lie and repudiate the signa-
ture SigM so that transaction messages are sent to the unauthorized merchant
website. All transactions can be denied by the merchant so to avoid service
agreements with Tap-Card-Pay Systems by making fradulent claims.

The merchant A can freely distribute the keypair PubM , P rivM to another
unauthorized merchant B. All transactions can also be denied by the merchant
A. PubM can be used to certify PubJ and all transactions can be denied. A can
remain silent about the usage from and existence of B.

6.3 Compromised Extension

The adversary can decrypt the ciphertext using PrivJ1 if PrivJn = ... = PrivJ2 =
PrivJ1 . This can happen if the pseudorandom key generation is corrupt.

6.4 Interception

Before the Tap-Card-Pay app gets the NFC data, the adversary can get the data.
There is no restriction on who can read from the operating system API.

6.5 Negilence

The customer can accidentally scan the wrong credit card and submit wrong
information to the merchant. The customer can blame the Tap-Card-Pay app
for the bad transaction and demand compensation for damages.



6.6 Faulty Hardware and Operating System

Flash memory is nonvolatile memory that can be erased and reprogrammed and
and many flash failure mechanisms worsen with cycling [3]. If the hardware or
operating system fails to erase and save encrypted credit card information, wrong
credit card information can be processed and submitted. The customer can blame
the Tap-Card-Pay app for the bad transaction and demand compensation for
damages.

In addition, when the app attempts to securely erase keys in memory, mech-
anisms used to check the wipe could fail. This leaves the keys in plaintext.

6.7 Replay

The adversary can block the operating system API call for NFC data and replay
old credit card information to the Tap-Card-Pay app. The customer can blame
the Tap-Card-Pay app for the bad transaction and demand compensation for
damages.

6.8 Man-in-the-Middle

The Tap-Card-Pay website can be phished and the hash of a trojan app can be
posted. The user would download and execute the trojan that captures credit
card information.

6.9 Compromised Certificate Authority

When the adversary compromises the Tap-Card-Pay private-key PrivT , it is
possible to sign and authorize any merchant. Tap-Card-Pay Systems would need
to upload new a public-key PubT into the app; otherwise, the unauthorized
merchants could produce transactions without permission from Tap-Card-Pay
Systems.

6.10 Untrusted Keypair Generation

The limititation is that the customer should not be required to read and input
additionally information other than tapping and scanning the credit card next
to the NFC.

Keypair generation per transaction is a costly process so the merchant may
be tempted to offload this work to a third party. When offloading the keypair
generation PubJ , P rivJ to the third party, the merchant must present to the
customer the fact that the credit card information is also accessible by the third
party. With a copy of PrivJ , an entity can decrypt encrypted messages produced
with PubJ . The customer would need to provide consent. Without the consent,
the customer can blame the merchant for the breach of privacy and demand
compensation for damages.



6.11 Poor Quality Symmetric Keys

The smartphone operating environment may not provide good entropy sources
for pseudorandom number generation when generating the symmetric keys. K1,
..Kn may be predictable.

6.12 Cryptanalysis

Cryptanalysis is outside of the scope of this paper.

7 Conclusion

We presented a public-key authenication and encryption application that secure
the transactions between the merchant webpages and customers. We described
some of the attacks that can break this. It would be exciting to see performance
tests, additional attacks, or cryptanalysis before Tap-Card-Pay enters world-wide
use.

References

1. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, “Handbook of Applied Cryp-
tography,” CRC Press, 1996.

2. Android. Near Field Communication. https://developer.android.com/guide/topics/
connectivity/nfc/index.html, accessed 7 November 2014.

3. Y. Chen, “Flash Memory Reliability NEPP 2008 Task Final Report,” JPL Publi-
cation 09-9 3/09.


