
Indistinguishability Obfuscation for Turing Machines with

Unbounded Memory

Venkata Koppula
kvenkata@cs.utexas.edu

Allison Bishop Lewko
alewko@cs.columbia.edu

Brent Waters
bwaters@cs.utexas.edu∗

Abstract

We show how to build indistinguishability obfuscation (iO) for Turing Machines where the overhead
is polynomial in the security parameter λ, machine description |M | and input size |x| (with only a
negligible correctness error). In particular, we avoid growing polynomially with the maximum space of
a computation. Our construction is based on iO for circuits, one way functions and injective pseudo
random generators.

Our results are based on new “selective enforcement” techniques. Here we first create a primitive called
positional accumulators that allows for a small commitment to a much larger storage. The commitment
is unconditionally sound for a select piece of the storage. This primitive serves as an “iO-friendly” tool
that allows us to make two different programs equivalent at different stages of a proof. The pieces of
storage that are selected depend on what hybrid stage we are at in a proof.

We first build up our enforcement ideas in a simpler context of “message hiding encodings” and work
our way up to indistinguishability obfuscation.
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1 Introduction

A code obfuscator takes the description of a program P and compiles it into a functionally equivalent program
P ′ that “hides” the internal logic of P . Recently, there has been a surge of interest in obfuscation with the
introduction of the first general purpose obfuscator based on mathematically hard problems by Garg, Gentry,
Halevi, Raykova, Sahai, and Waters [GGH+13].

The candidate construction of [GGH+13] allows for obfuscation of any polynomially sized circuit. While
circuits represent a general model of computation, they have the drawback that the size of a circuit description
of a computation is proportional to the running time of a computation. This might be much longer than
the time required to simply describe the computation in a different form. For this reason, we would like
to develop and obfuscator for Turing Machines (or other similar models) where the obfuscation time grows
polynomially with the machine description size, |M |, as opposed to its worst case running time T . In
addition to serving as its own application, such a construction would pave the way for other applications
such as delegation of computation.

We begin by exploring the possibility of bootstrapping a Turing Machine obfuscator from a circuit
obfuscator. Perhaps the most natural approach is to use an obfuscated circuit to perform the step functions
of a Turing Machine. Consider the following process for a class of oblivious Turing Machines [PF79] that
all share the same tape movements. At each step, the obfuscated program will take in authenticated and
encrypted state and tape symbols. It then verifies the signature, decrypts, and calculates the next state and
tape symbols which it then encrypts, signs, and outputs. In such a construction, the encoding or obfuscation
procedure will be proportional to |M |, while the evaluation will call the obfuscated program up to T times.
Such an approach can be fairly easily analyzed and proven secure in the Virtual Black Box (VBB) model
of obfuscation where we can treat the obfuscated program as an oracle. However, Barak et al. [BGI+12]
showed that there exist some functionalities that cannot be VBB obfuscated, thus motivating the current
practice of searching for solutions that do not depend on VBB obfuscation.

A initial line of research addressed [BCP14, ABG+13] this problem using a potentially weaker definition
of security known as differing-inputs obfuscation (diO). Differing-inputs obfuscation is a “knowledge type”
assumption that assumes that if the exists an attack algorithm that distinguishes between obfuscations of two
programs P0, P1, then there must also exist an efficient extraction algorithm that can find an input x where
P0(x) 6= P1(x). This functionality is leveraged along with succinct non-interactive arguments of knowledge
(SNARKs) [BCCT13] and homomorphic encryption to prove to a short program that a long computation
was done correctly, at which point the short program will decrypt. (We remark that this general approach
was first explored in the context of witness encryption by Goldwasser et al. [GKP+13]). An advantage of
this approach is that it achieves the goal and has no a priori bound on the input size. However, knowledge
assumptions are generally considered to be a more risky class of assumptions and Garg, Gentry, Halevi and
Wichs [GGHW14] gave recent evidence that there might exist functionalities that cannot be diO obfuscated.
Thus, potentially putting diO security into a similar situation as VBB. More recently, [IPS14] proposed more
restricted form of differing inputs called public-coin differing-inputs obfuscation and showed how a circuit
obfuscator could be bootstrapped to a Turing Machine obfuscator with unbounded inputs. An advantage of
the public-coin restriction is that it circumvents the implausibility result of [GGHW14]. At the same time,
the definition still inherently has a stronger extraction flavor and it is unclear whether security reductions
to simpler assumptions under this definition are possible.

Turing Machine Obfuscation from iO

We now turn towards the problem of building TM obfuscation from indistinguishability obfuscation.
Recall that if an obfuscator is iO secure, then the obfuscation of two different programs P0, P1 are indistin-
guishable as long as the programs are functionally equivalent (i.e. ∀x P0(x) = P1(x)). This relatively weaker
definition has the advantage that there are no known impossibility (or implausibility) results and there exists
progress on proving security under simple assumptions such as multilinear subgroup elimination [GLSW14].
On the other hand, working with “just” iO presents a new set of challenges since we cannot leverage an
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oracle interface or an extractor. Instead we must design new tools and techniques that guarantee program
functional equivalence at different stages of a proof.

One interesting recent direction is to build an iterated circuit construction where each iteration will
take in a machine’s previous configuration and output the configuration at the next step. Indeed three
recent works [LP14, BGT14, CHJV14] give this approach with the major difference being that [LP14] and
[BGT14] use obfuscation of a single program to generate garbled circuits for each iteration and do the garbled
evaluation outside of the obfuscated program. In contrast, the first construction (of two) by [CHJV14] does
the evaluation inside the obfuscation, which performs an authenticated encryption of the next configuration.
For proving security the above constructions roughly work in a hybrid where at proof step i the intermediate
computations up to step i are erased and the state at step i is programmed in. The full programming is
possible since all of the state is passed on each iteration.

The primary limitation of the above approaches is that the circuit size and thus time both to obfuscate
and perform an iteration grows with the maximum configuration size or space of the computation. This is
not a problem for computations whose maximum space is close to the size of the machine description or
input, but becomes problematic for computations where the space grows significantly larger. Canetti et al.
[CHJV14] give a second novel construction where the core obfuscation function only takes in a small memory
read at a time, thus an iteration on evaluation is only polynomially dependent on the machine description
and the log of the maximum running time T . From a qualitative perspective, the evaluation looks close to
mimicking a RAM computation with the step function executed by an obfuscated circuit. However, time to
obfuscate the entire RAM program and size of the obfuscated code is still polynomial in the maximum space
of the computation. Here the time to initialize the encoding is proportional to the maximum space. For
proving security they also use a hybrid which erases the computation’s footprint starting from the beginning.
However, during the proof instead of programming the i-th state in the i-th slot it can be encoded in the
initial setup.

Our Approach

We begin our exploration by realizing a primitive that we call message-hiding encoding. Suppose a party
has a TM M , an input x, and a message msg and wishes to give an encoding that will disclose the message
to any decoder if M(x) = 1. This problem can be considered as a deliberate weakening of garbling or
randomized encodings [Yao82, IK00, AIK06] as in Ishai and Wee[IW14] to leak part of the input.1 Clearly,
the encoder could simply evaluate M(x) himself and encode msg if M(x) = 1 and ⊥ otherwise. However, the
computation of computing M(x) might be significantly longer than the description of the machine and input.
In order to minimize the work of the encoder, we are interested in solutions where the encoding overhead is
polynomial in the security parameter λ, machine description |M |, maximum input size |x|, and lg(T ), where
T is a maximum time bound on the computation.2 In particular, the obfuscating or encoding time and
program size only grows polylogarithmically with the maximum space, S, of the computation. Since T > S
we do not explicitly include S in our statement.3 Such a solution gives rise to applications where we want to
disclose information based on certain conditions. In addition, the message hiding primitive is sufficient for
the application of delegation of computation. To delegate a computation of M(x), the verifier simply needs
to perform a message hiding encryption of a random value r of sufficient length. The prover will decode and
recover r if the computation accepts, which is sufficient to convince the verifier. To make a scheme publicly
verifiable, we can also release f(r) for OWF f on encoding. We note that [LP14, BGT14, CHJV14] make
similar observations on delegation of computation. We refer the reader to [KRR14] for further exposition on
advances in delegation.

In our approach, we return to the initial idea of having an obfuscated circuit simply perform each TM
computation step and sign the input for the next iteration of the computation. In our proof we will proceed

1The application of “conditional disclosure” was considered in prior work [GIKM98, AIR01], but solutions were more of a
secret sharing type flavor where the conditions were based on which parties combined their shares.

2For now and in our constructions we consider a time bound T , but we will shortly discuss ways to remove it.
3For simplicity we assume that messages are of length λ. In practice, we could always encode an encryption key K as the

message and then use this to tightly encrypt msg.
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in a sequence of hybrids where in Hybrid i the program is “hardwired” to demand at timestep t = i that
the output mout match the honestly computed value m∗i . The goal is to iterate the proof hardwiring until
the step t∗ where the honest computation will hit the reject state and halt. As we move along from Hybrid
i to Hybrid i + 1, it is important that the proof will “clean up” the hardwiring on step i as it places new
hardwiring on step i+ 1. Otherwise, the final circuit of the proof would contain hardwirings for all t∗ steps
of the computation. If this occured, the obfuscated step circuit of the real computation would need to be
padded to this length to make iO arguments go through, which would defeat the entire point of aiming for
Turing Machines.

A central difficulty comes from the fact that each computational step i will not only require the signed
TM state computed at step i−1, but also needs a tape symbol that may have been written at a much earlier
time period. The main challenge is how to enforce that the hardwiring of the output of step i − 1 can be
translated into a correct wiring of step i without having the obfuscated program pass the entire storage (i.e.
tape configuration) at each step. In addition, we wish to avoid any encoding which requires programming
proportional to the maximum storage.

To overcome this challenge, we introduce our technique of “selective enforcement”. Here we first create
a primitive called a positional accumulator that allows for a small commitment to a much larger storage.
The commitment is unconditionally sound for a select piece of the storage. Moreover, we are able to
computationally hide which portion of the storage is unconditionally enforced. The idea of the selective
enforcement primitive is to use such an “iO-friendly” tool that allows us to make two different programs
equivalent at different stages of a proof. In particular, if we are at hybrid step i which reads tape position
pos, then we want unconditional soundness at this tape position.

More specifically, a positional accumulator behaves somewhat similarly to standard notations of accu-
mulators [BdM93]. It has a setup algorithm Setup-Acc(1λ, S) that takes in a security parameter (in unary)
and a maximum storage size S in binary. It outputs parameters PP, an initial accumulator value w0, and
storage value store0. In addition, the system has algorithms for writing to the storage, updating the ac-
cumulator to reflect writes, and proving and verifying reads. Writes will be of a message m to an index in
[0, S − 1] and reads will be from a certain index. The accumulator value will stay small while the storage
will grow with the number of unique indices written to. Similarly, the update and verify read algorithms
should be polynomial in lg(S) and λ. In addition to the normal setup, there is a separate setup algorithm
Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗). This algorithm takes in a sequence
of message and index pairs as well as a special index∗. Informally, this setup has the property that if one
writes the messages in the order given (and updates the accumulator from w0 to wk honestly) then it is
unconditionally impossible to give a false proof for ∗ on accumulator value wk. Moreover, the output of this
setup algorithm is computationally indistinguishable from the output of a standard setup. There is also an
analogous setup algorithm for selectively enforcing correct updates on the accumulator. Our construction
uses iO, puncturable PRFs, and public key encryption — thus it can be done from iO and one way func-
tions. The construction uses a form of a Merkle hash tree that fills out the Merkle tree dynamically, using
an obfuscated circuit as the main hash function. We defer further details to Section 4.

With these ideas in place, we can describe our main proof steps at a high level. At Hybrid i the obfuscated
step circuit will be hardwired to only output a “good” signature if the derived output is the correct tuple
(stout, wout, voutposout) representing the correct output TM state, positional accumulator value, iterator value,
and tape position.4

We next transition to an intermediate hybrid where (stout, wout, voutposout) are hardwired into the input
of the next stage i + 1. Thus the changes from this proof step move across iterations. Executing this
step involves many small hybrids and the use of another iO friendly tool that we introduce called splittable
signatures. We again defer further details to the main body, but we emphasize that we execute this transition
without utilizing complexity leveraging and loose only polynomial factors in the reduction.

To complete the hybrid argument we need to be able to transition from hardwiring the inputs of step
i + 1 to hardwiring the outputs. This is where the selective enforcement enters the picture. In general,

4We also define a second tool of an iterator that is allows for a different kind of selective enforcement. We defer further
explanation to the main body.
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using a normal setup does not guarantee the equivalence of hardwiring the correct inputs versus hardwiring
the correct outputs. However, if we first (indistinguishably) change the accumulator and iterator to be
unconditionally enforcing at the right places, then we can use iO to change the hardwiring from the input
to the output. We then cleanup by changing the accumulator and iterator to normal setup. In contrast to
the last, this proof step makes its hardwiring changes within a timestep.

Taken all together, our proof can iterate through these hybrids until we can change the hardwiring to the
step t∗ and then use iO to erase the message from the program. We make a few remarks. The first is that
in message hiding encoding, the decoder can learn the machine’s computation and state — only the message
needs to be hidden. Therefore, our computation can follow the real one rather closely and there is no need
to absorb the additional overhead of making the computation oblivious. Second, for concreteness we chose
our construction to be in the Turing Machine model, however, we believe it could be fairly easily adjusted
to a different model such as RAM by simply letting the next position be a function of the state into [0, S-1]
as opposed to moving the head position. In particular, our proof structure would remain the same with this
minor change to the construction.

Finally, we consider the time bound T . In practice we could set T to be 2λ. Since the overhead of
obfuscating is a fixed polynomial in lg(T ) and λ, applying this setting would give a fixed polynomial in λ. At
the same time the construction would then work for computations whose running time was any polynomial in
λ. Note that this may result in a negligible correctness error. Consider a class of computations whose running
time is some polynomial function p(·). There must exists some constant λ0 such that for all λ ≥ λ0 we have
p(λ) ≤ 2λ and the system will be correct for all those values. Thus a particular poly-time computation will
only incorrect for a constant number of λ values and have neglgible error asymptotically.

We can also remove the time bound altogether if there exists an encryption scheme that is secure against
all attackers running in time polynomial in λ, but where the ciphertexts can be decrypted by an algorithm
running in time polynomial in 2λ. Systems such as Elliptic-Curve ElGamal are believed to have this property.
The idea is to create a side encryption of msg under the encryption system. During decoding the computation
will run the regular system for up to T = 2λ steps, if the computation still has not halted it will switch to
brute force decrypting the side ciphertext which will take polynomial in T time.

Hiding the Computation

We now move toward the more complex case of hiding the computation. Here we consider a primitive we
call machine hiding encoding. We consider Turing Machines whose tape movements can be calculated by a
function d(t) of the time step. A party will have M and an input x and wishes to encode M(x). The security
property we desire is that if there exist two machines M0 and M1 that share the same tape movement function
d() and M0(x) = M1(x), and they halt in the same number of steps t∗, then it is difficult to tell apart an
encoding of (M0, x) from (M1, x). We note this problem can be viewed as indistinguishability obfuscation
of Turing Machines restricted to one input. In addition, it can readily be realized by a randomized encoding
scheme (with similar efficiency properties) using a Universal Turing Machine. We found this formulation
easiest to work with for our construction.

Our new construction follows the previous one closely, but with two important differences. First, the
tape movement is a function d() of the time step. By translating to Oblivious Turing Machines [PF79] we
can make all head movements the same. Second, instead of writing the state and tape symbols in the clear
they will be encrypted by the obfuscated step circuit under a public key derived (via a puncturable PRF)
from the time step t on which they were written.

To prove security we will show that an encoding of (M0, x) and also (M1, x) are both indistinguishable
from a simulated encoding that does not reflect either computation other than the common output, input,
tape movement, and time taken. Therefore both encodings will be indistinguishable from each other.

We will prove this by a hybrid which erases both the machine logic inside the obfuscated program as well
as the state and tape symbols it writes out. The high level strategy is to iteratively replace the normal logic
at step i with a program that on any valid signature will simply output an encryption of a distinct erase
symbol erase to both the state and tape. We first observe that such a hybrid strategy will not work well if it
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follows the computation in the forward direction from start to finish. Suppose we have just erased the logic
of the i-th step, then the i-th step will write erase to a tape position which is read at some later time step
j > i. However, since time step j has not yet been changed, it will not know how to handle the erase symbol
and the proof cannot proceed.

For this reason, our proof proceeds in the reverse direction from Hybrid t∗ to Hybrid 0, where t∗ is the
number of steps both computations take. At Hybrid i all steps j where i ≤ j < t∗ are hardwired to be
erasing. Step t∗ is wired to the output M0(x) and steps j > t∗ simply abort. Steps j < i are as in the real
construction.

The proof proceeds with two major steps. First we define an intermediate variant of Hybrid i where
steps j ≥ i are erasing as describe above and steps j < i − 1 are as in the normal scheme. The significant
change is that step i − 1 is hardwired to the correct output of the computation. We do this by essentially
using our proof techniques from the message-hiding case as a subroutine for hardwiring the correct output at
i−1. Next, we use the security of the encryption scheme plus some iO tricks to switch i−1 from the correct
computation to an erasing one, thus moving down to Hybrid i− 1. Once we get to the bottom hybrid step,
the proof is complete. The main theme is that the enforcement ideas from before plus a little additional
encryption is enough to hide the computation.

Going to Indistinguishability Obfuscation

We finally complete things by sketching how machine hiding encoding implies indistinguishability ob-
fuscation for Turing Machines. To do so we use the notion of positional indistinguishability obfusca-
tion [GLSW14, GLW14] adapted to Turing Machines. The process is fairly straightforward and similar
transformation are seen in [LP14, BGT14, CHJV14]. Here an obfuscator takes in two Turing Machine
descriptions M0,M1 (of bounded input size) with a common tape movement function d() and an index
j ∈ [0, 2x] to produce an obfuscated program P . The program P (x) should output M0(x) for all inputs
x ≥ j and output M1(x) for all inputs x < j. Such a scheme will be positionally secure if for all inputs
j where M0(j) = M1(j) that take the same number of time steps to halt, it should be hard to distinguish
between an obfuscation to index j and j + 1. It can be shown by a simple hybrid argument that posi-
tional indistinguishability obfuscation implies standard iO with a 2|x| loss in the hybrid. To compensate
for the exponential loss, we must use complexity leveraging and an underlying positional iO scheme with
subexponential hardness.

We observe that our machine hiding encoding and iO for circuits give immediate rise to positional iO.
Simply obfuscate the following program: on input x create a machine hiding encoding for (Mb, x) where the
bit b = 0 iff b ≥ j, where j is the index for obfuscation. The encoding is done with randomness derived from
a puncturable PRF.

1.1 Organization

In Section 2 we give preliminaries. In Sections 3, 4 and 5 we give the definitions, constructions and proofs
of the respective building blocks of iterators, positional accumulators, and splittable signatures. In Section
6 we give our message hiding encoding construction and proof. In Section 7 we show how to do machine
hiding encoding.

2 Preliminaries

2.1 Notations

In this work, we will use the following notations for Turing machines.

Turing machines A Turing machine is a 7-tuple M = 〈Q,Σtape,Σinp, δ, q0, qacc, qrej〉 where Q and Σtape

are finite sets with the following properties:
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- Q is the set of finite states.

- Σinp is the set of input symbols.

- Σtape is the set of tape symbols. We will assume Σinp ⊂ Σtape and there is a special blank symbol
‘ ’ ∈ Σtape \ Σinp.

- δ : Q× Σtape → Q× Σtape × {+1,−1} is the transition function.

- q0 ∈ Q is the start state.

- qacc ∈ Q is the accept state.

- qrej ∈ Q is the reject state, where qacc 6= qrej.

For any i ≤ T , we define the following variables:

- MT
tape,i ∈ ΣTtape : A T dimensional vector which gives the description of tape before ith step.

- MT
pos,i : An integer which describes the position of Turing machine header before ith step.

- MT
state,i ∈ Q : This denotes the state of the Turing machine before step i.

Initially, MT
tape,1 = ( )T , MT

pos,1 = 0 and MT
state,1 = q0. At each time step, the Turing machine reads

the tape at the head position and based on the current state, computes what needs to be written on
the tape, the next state and whether the header must move left or right. More formally, let (q, α, β) =
δ(MT

state,i,M
T
tape,i[M

T
pos,i]). Then, MT

tape,i+1[MT
pos,i] = α, MT

pos,i+1 = MT
pos,i + β and MT

state,i+1 = q. M

accepts at time t if MT
state,t+1 = qacc. Given any Turing machine M and time bound T , let ΠT

M = 1 if M

accepts within T steps, else ΠT
M = 0.

2.2 Puncturable Pseudorandom Functions

The notion of constrained PRFs was introduced in the concurrent works of [BW13, BGI14, KPTZ13].
Punctured PRFs, first termed by [SW14] are a special class of constrained PRFs.

A PRF F : K × X → Y is a puncturable pseudorandom function if there is an additional key space Kp
and three polynomial time algorithms F.setup, F.eval and F.puncture as follows:

• F.setup(1λ) is a randomized algorithm that takes the security parameter λ as input and outputs a
description of the key space K, the punctured key space Kp and the PRF F .

• F.puncture(K,x) is a randomized algorithm that takes as input a PRF key K ∈ K and x ∈ X , and
outputs a key Kx ∈ Kp.

• F.eval(Kx, x
′) is a deterministic algorithm that takes as input a punctured key Kx ∈ Kp and x′ ∈ X .

Let K ∈ K, x ∈ X and Kx ← F.puncture(K,x). For correctness, we need the following property:

F.eval(Kx, x
′) =

{
F (K,x′) if x 6= x′

⊥ otherwise

In this work, we will only need selectively secure puncturable PRFs. The selective security game between
the challenger and the adversary A consists of the following phases.

Challenge Phase A sends a challenge x∗ ∈ X . The challenger chooses uniformly at random a PRF key
K ← K and a bit b ← {0, 1}. It computes K{x∗} ← F.puncture(K,x∗). If b = 0, the challenger sets
y = F (K,x∗), else y ← Y. It sends K{x∗}, y to A.
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Guess A outputs a guess b′ of b.

A wins if b = b′. The advantage of A is defined to be AdvFA(λ) = Pr[A wins].

Definition 2.1. The PRF F is a selectively secure puncturable PRF if for all probabilistic polynomial time
adversaries A, AdvFA(λ) is negligible in λ.

2.3 Obfuscation

We recall the definition of indistinguishability obfuscation from [GGH+13, SW14].

Definition 2.2. (Indistinguishability Obfuscation) Let C = {Cλ}λ∈N be a family of polynomial-size circuits.
Let iO be a uniform PPT algorithm that takes as input the security parameter λ, a circuit C ∈ Cλ and
outputs a circuit C ′. iO is called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies the
following conditions:

• (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that C ′(x) = C(x) where C ′ ← iO(1λ, C).

• (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT distinguisher B = (Samp,D),
there exists a negligible function negl(·) such that the following holds: if for all security parameters
λ ∈ N,Pr[∀x,C0(x) = C1(x) : (C0;C1;σ)← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(1λ, C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(1λ, C1)) = 1 : (C0;C1;σ)← Samp(1λ)]| ≤ negl(λ).

In a recent work, [GGH+13] showed how indistinguishability obfuscators can be constructed for the cir-
cuit class P/poly. We remark that (Samp,D) are two algorithms that pass state, which can be viewed
equivalently as a single stateful algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.

3 Iterators

In this section, we define the notion of cryptographic iterators and show a construction based on indistin-
guishability obfuscators, selectively secure puncturable PRFs, and IND-CPA secure PKE . A cryptographic
iterator essentially consists of a small state that is updated in an iterative fashion as messages are received.
An update to apply a new message given current state is performed via some public parameters.

Since states will remain relatively small regardless of the number of messages that have been iteratively
applied, there will in general be many sequences of messages that can lead to the same state. However, our
security requirement will capture that the normal public parameters are computationally indistinguishable
from specially constructed “enforcing” parameters that ensure that a particular single state can be only be
obtained as an output as an update to precisely one other state, message pair. Note that this enforcement
is a very localized property to a particular state, and hence can be achieved information-theoretically when
we fix ahead of time where exactly we want this enforcement to be.

Syntax Let ` be any polynomial. An iterator I with message space Mλ = {0, 1}`(λ) and state space Sλ
consists of three algorithms - Setup-Itr, Setup-Itr-Enforce and Iterate defined below.

Setup-Itr(1λ, T ) The setup algorithm takes as input the security parameter λ (in unary), and an integer
bound T (in binary) on the number of iterations. It outputs public parameters PP and an initial state
v0 ∈ Sλ.
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Setup-Itr-Enforce(1λ, T,m = (m1, . . . ,mk)) The enforced setup algorithm takes as input the security pa-
rameter λ (in unary), an integer bound T (in binary) and k messages (m1, . . . ,mk), where each
mi ∈ {0, 1}`(λ) and k is some polynomial in λ. It outputs public parameters PP and a state v0 ∈ S.

Iterate(PP, vin,m) The iterate algorithm takes as input the public parameters PP, a state vin, and a message
m ∈ {0, 1}`(λ). It outputs a state vout ∈ Sλ.

For simplicity of notation, we will drop the dependence of ` on λ. Also, for any integer k ≤ T , we will use
the notation Iteratek(PP, v0, (m1, . . . ,mk)) to denote Iterate(PP, vk−1,mk), where vj = Iterate(PP, vj−1,mj)
for all 1 ≤ j ≤ k − 1.

Security Let I = (Setup-Itr,Setup-Itr-Enforce, Iterate) be an interator with message space {0, 1}` and state
space Sλ. We require the following notions of security.

Definition 3.1 (Indistinguishability of Setup). An iterator I is said to satisfy indistinguishability of Setup
phase if any PPT adversary A’s advantage in the security game Exp-Setup-Itr(1λ, I,A) at most is negligible
in λ, where Exp-Setup-Itr is defined as follows.

Exp-Setup-Itr(1λ,I,A)

1. The adversary A chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈ {0, 1}` to the challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (PP, v0) ← Setup-Itr(1λ, T ). Else, it

outputs (PP, v0)← Setup-Itr-Enforce(1λ, T, 1k,m = (m1, . . . ,mk)).
4. A sends a bit b′.

A wins the security game if b = b′.

Definition 3.2 (Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), k < T and m1, . . . ,mk ∈ {0, 1}`. Let
(PP, v0) ← Setup-Itr-Enforce(1λ, T,m = (m1, . . . ,mk)) and vj = Iteratej(PP, v0, (m1, . . . ,mj)) for all 1 ≤
j ≤ k. Then, I = (Setup-Itr, Setup-Itr-Enforce, Iterate) is said to be enforcing if

vk = Iterate(PP, v′,m′) =⇒ (v′,m′) = (vk−1,mk).

Note that this is an information-theoretic property.

3.1 Construction

We will now describe our iterator construction. The main idea is that states (generated by the normal setup
algorithm) will correspond to ciphertexts encrypting 0 in a PKE scheme, and the public parameters will be
an obfuscated program that computes randomness for a new encryption by evaluating a puncturable PRF on
the current state. To enforce the information-theoretic property at a particular state, we will use a sequence
of hybrids to switch to using a punctured key, replace the randomness at that punctured point with a fresh
value, and exchange a hardwired fresh encryption of 0 with a fresh encryption of 1. Perfect correctness for
the PKE scheme will ensure that this value cannot be obtained at any other input, since all other inputs
will produce encryptions of 0.

Let iO be an indistinguishability obfuscator, PKE = (PKE.setup,PKE.enc,PKE.dec) a public key en-
cryption scheme with message space {0, 1} and ciphertext space CPKE. We will assume PKE.enc uses
r bits of randomness. Let F a puncturable pseudorandom function with key space K, punctured key
space Kp, domain {0, 1}λ, range {0, 1}r and algorithms F.setup, F.eval, F.puncture. Our iterator I =
(Setup-Itr,Setup-Itr-Enforce, Iterate) with message space {0, 1}` and state space CPKE×N is defined as follows.

• Setup-Itr(1λ, T ): The setup algorithm chooses (PK,SK) ← PKE.setup(1λ) and puncturable PRF key
K ← F.setup(1λ). It sets PP ← iO(Prog{K,PK}), where Prog is defined in Figure 1. Let ct0 ←
PKE.enc(pk, 0). The initial state v0 = (ct0, 0).
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Program Prog

Constants: Puncturable PRF key K, PKE public key PK.
Input: State vin = (ctin, j) ∈ CPKE × [T ], message m ∈ {0, 1}`.

1. Compute r = F (K, (vin,m)).

2. Let ctout = PKE.enc(PK, 0; r). Output vout = (ctout, j + 1).

Figure 1: Program Prog

• Setup-Itr-Enforce(1λ, T, 1k,m = (m1, . . . ,mk)): The ‘enforced’ setup algorithm chooses (PK,SK) ←
PKE.setup(1λ). Next, it chooses K ← F.setup(1λ). It computes ct0 ← PKE.enc(PK, 0) and sets
v0 = (ct0, 0). For j = 1 to k − 1, it computes rj = F (K, (vj−1,mj)), ctj = PKE.enc(PK, 0; rj)
and sets vj = (ctj , j). It computes a punctured key K{(vk−1,mk)} ← F.puncture(K, (vk−1,mk)),
chooses rk ← {0, 1}r and sets ctk = PKE.enc(PK, 1; rk). Finally, it computes the public parameters
PP← iO(Prog-Enforce{k, vk−1,mk,K{(vk−1,mk)}, ctk,PK}), where Prog-Enforce is defined in Figure
2.

Program Prog-Enforce

Constants: Integer k ∈ [T ], state vk−1, message mk ∈ {0, 1}`, Puncturable PRF key K{(vk−1,mk)},
ctk ∈ CPKE, PKE public key PK.
Input: State vin = (ctin, j) ∈ CPKE × [T ], message m ∈ {0, 1}`.

1. If vin = vk−1 and m = mk, output vout = (ctk, k)

2. Else, compute r = F (K, (vin,m)).

3. Let ctout = PKE.enc(PK, 0; r). Output vout = (ctout, j + 1).

Figure 2: Program Prog-Enforce

• Iterate(PP, vin,m): The iterator algorithm simply outputs PP(vin,m).

Efficiency The construction runs in time polynomial of lg(T ) and λ.

3.2 Security

We will now show that the construction described in Section 3.1 satisfies indistinguishability of Setup phase
and is enforcing.

Lemma 3.1 (Indistinguishability of Setup Phase). Assuming iO is a secure indistinguishability obfuscator,
PKE is a IND-CPA secure public key encryption scheme and F is a selectively secure puncturable pseu-
dorandom function, any PPT adversary A has at most negligible advantage in the Exp-Setup-Itr security
game.

Proof. In order to prove this lemma, we will define a sequence of intermediate hybrid experiments Hyb0, . . . ,Hyb3.
Hyb0 corresponds to the case where the challenger sends public parameters PP generated using Setup-Itr,
while Hyb3 corresponds to the case where the challenger sends PP generated using Setup-Itr-Enforce.

Hyb0 In this experiment, the challenger computes PP using Setup-Itr.

1. A sends T ∈ Θ(2λ).
2. A sends k messages m1, . . . ,mk ∈ {0, 1}`.
3. Challenger chooses (PK,SK)← PKE.setup(1λ) and K ← F.setup(1λ).

It chooses r0 ← {0, 1}r, sets ct0 = PKE.enc(PK, 0; r) and v0 = (ct0, 0).
It sets PP← iO(Prog{K,PK}) and sends (PP, v0) to A.

4. A sends a bit b′.
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Hyb1 This experiment is similar to the previous one, except that the challenger sends an obfuscation of
Prog-Enforce. The program Prog-Enforce uses a punctured PRF key, and has the PRF output hardwired at
the punctured point.

1. A sends T ∈ Θ(2λ).
2. A sends k messages m1, . . . ,mk ∈ {0, 1}`.
3. Challenger chooses (PK,SK)← PKE.setup(1λ) and K ← F.setup(1λ).

It chooses r0 ← {0, 1}r, sets ct0 = PKE.enc(PK, 0; r0) and v0 = (ct0, 0).
Next, it computes rj = F (K, (vj−1,mj)), sets ctj = PKE.enc(PK, 0; rj) and vj = (ctj , j) for all j ≤ k.

It computes a punctured PRF key K{(vk−1,mk−1)} ← F.puncture(K, (vk−1,mk−1)).
It sets PP← iO(Prog-Enforce{k, vk−1,mk−1,K{(vk−1,mk−1)}, ctk,PK}) and sends (PP, v0) to A.

4. A sends a bit b′.

Hyb2 In this hybrid experiment, the ciphertext ctk is computed using true randomness, instead of a pseu-
dorandom string.

1. A sends T ∈ Θ(2λ).
2. A sends k messages m1, . . . ,mk ∈ {0, 1}`.
3. Challenger chooses (PK,SK)← PKE.setup(1λ) and K ← F.setup(1λ).

It chooses r0 ← {0, 1}r, sets ct0 = PKE.enc(PK, 0; r0) and v0 = (ct0, 0).
Next, it computes rj = F (K, (vj−1,mj)), sets ctj = PKE.enc(PK, 0; rj) and vj = (ctj , j) for all j < k.
For j = k, it chooses rk ← {0, 1}r, sets ctk = PKE.enc(PK, 0; rk) and vk = (ctk, k).
It computes a punctured PRF key K{(vk−1,mk−1)} ← F.puncture(K, (vk−1,mk−1)).
It sets PP← iO(Prog-Enforce{k, vk−1,mk−1,K{(vk−1,mk−1)}, ctk,PK}) and sends (PP, v0) to A.

4. A sends a bit b′.

Hyb3 In this experiment, the challenger outputs PP computed using Setup-Itr-Enforce. It is similar to the
previous experiment, except that ctk is an encryption of 1.

1. A sends T ∈ Θ(2λ).
2. A sends k messages m1, . . . ,mk ∈ {0, 1}`.
3. Challenger chooses (PK,SK)← PKE.setup(1λ) and K ← F.setup(1λ).

It chooses r0 ← {0, 1}r, sets ct0 = PKE.enc(PK, 0; r0) and v0 = (ct0, 0).
Next, it computes rj = F (K, (vj−1,mj)), sets ctj = PKE.enc(PK, 0; rj) and vj = (ctj , j) for all j < k.
For j = k, it chooses rk ← {0, 1}r, sets ctk = PKE.enc(PK, 1; rk) and vk = (ctk, k).
It computes a punctured PRF key K{(vk−1,mk−1)} ← F.puncture(K, (vk−1,mk−1)).
It sets PP← iO(Prog-Enforce{k, vk−1,mk−1,K{(vk−1,mk−1)}, ctk,PK}) and sends (PP, v0) to A.

4. A sends a bit b′.

Claim 3.1. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A,

Pr[A outputs 0 in Hyb0]− Pr[A outputs 0 in Hyb1] ≤ negl(λ).

Proof. Here, the behavior of Prog and Prog-Enforce are identical, as the hardwired value ctk for Prog-Enforce
is computed precisely as it is computed in Prog.

Claim 3.2. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A,

Pr[A outputs 0 in Hyb1]− Pr[A outputs 0 in Hyb2] ≤ negl(λ).

Proof. Here, the only difference is that the value of the F at the punctured point is replaced by a fresh
random string. Since A is only receiving PP formed from a punctured key, this follows immediately from
the selective security of F .
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Claim 3.3. Assuming PKE is an IND-CPA secure public key encryption scheme, for any PPT adversary A,

Pr[A outputs 0 in Hyb2]− Pr[A outputs 0 in Hyb3] ≤ negl(λ).

Proof. The only difference between these two hybrids is that ctk changes from a fresh encryption of 0 to a
fresh encryption of 1. Hence this follows immediately from the IND-CPA security of PKE .

In summary, it follows that if iO is a secure indistinguishability obfuscator, F is a selectively secure
puncturable PRF, and PKE is IND-CPA secure, then any PPT adversary A has negligible advantage in
Exp-Setup-Itr(1λ, I,A).

Lemma 3.2 (Enforcing). Assuming PKE is a perfectly correct public key encryption scheme, I = (Setup-Itr,Setup-Itr-Enforce, Iterate)
is enforcing.

Proof. This follows immediately from perfect correctness of PKE because the hardwired value ctk in Prog-Enforce
is an encryption of 1, and all other states produced by Prog-Enforce are encryptions of 0.

4 Positional Accumulators

We will now define the notion of positional accumulators, and then show a construction based on iO,
puncturable PRFs, and public key encryption.

Intuitively, a positional accumulator will be a cryptographic data structure that maintains two values:
a storage value and an accumulator value. The storage value will be allowed to grow comparatively large,
while the accumulator value will be constrained to be short. Messages can be written to various positions
in the the underlying storage, and new accumulated values can be computed as a stream, knowing only the
previous accumulator value and the newly written message and its position in the data structure. Since
the accumulator values are small, one cannot hope to recover everything written in the storage from the
accumulator value alone. However, we define “helper” algorithms that essentially allow a party who is
maintaining the full storage to help a more restricted party who is only maintaining the accumulator values
recover the data currently written at an arbitrary location. The helper is not necessarily trusted, so the
party maintaining the accumulator values performs a verification procedure in order to be convinced that
they are indeed reading the correct messages.

A positional accumulator for message space Mλ consists of the following algorithms.

Setup-Acc(1λ, T )→ PP, w0, store0 The setup algorithm takes as input a security parameter λ in unary and
an integer T in binary representing the maximum number of values that can stored. It outputs public
parameters PP, an initial accumulator value w0, and an initial storage value store0.

Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗)→ PP, w0, store0 The setup enforce
read algorithm takes as input a security parameter λ in unary, an integer T in binary representing the
maximum number of values that can be stored, and a sequence of symbol, index pairs, where each
index is between 0 and T − 1, and an additional index∗ also between 0 and T − 1. It outputs public
parameters PP, an initial accumulator value w0, and an initial storage value store0.

Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk))→ PP, w0, store0 The setup enforce write
algorithm takes as input a security parameter λ in unary, an integer T in binary representing the
maximum number of values that can be stored, and a sequence of symbol, index pairs, where each
index is between 0 and T − 1. It outputs public parameters PP, an initial accumulator value w0, and
an initial storage value store0.

Prep-Read(PP, storein, index)→ m,π The prep-read algorithm takes as input the public parameters PP,
a storage value storein, and an index between 0 and T − 1. It outputs a symbol m (that can be ε)
and a value π.
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Prep-Write(PP, storein, index)→ aux The prep-write algorithm takes as input the public parameters PP,
a storage value storein, and an index between 0 and T − 1. It outputs an auxiliary value aux.

Verify-Read(PP, win,mread, index, π)→ {True, False} The verify-read algorithm takes as input the public
parameters PP, an accumulator value win, a symbol, mread, an index between 0 and T −1, and a value
π. It outputs True or False.

Write-Store(PP, storein, index,m)→ storeout The write-store algorithm takes in the public parameters,
a storage value storein, an index between 0 and T − 1, and a symbol m. It outputs a storage value
storeout.

Update(PP, win,mwrite, index, aux)→ wout or Reject The update algorithm takes in the public parame-
ters PP, an accumulator value win, a symbol mwrite, and index between 0 and T − 1, and an auxiliary
value aux. It outputs an accumulator value wout or Reject.

In general we will think of the Setup-Acc algorithm as being randomized and the other algorithms as
being deterministic. However, one could consider non-deterministic variants.

Correctness We consider any sequence (m1, index1), . . . , (mk, indexk) of symbols m1, . . . ,mk and in-
dices index1, . . . , indexk each between 0 and T − 1. We fix any PP, w0, store0 ← Setup-Acc(1λ, T ).
For j from 1 to k, we define storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj).
We similarly define auxj and wj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and wj :=
Update(PP, wj−1,mj , indexj , auxj). Note that the algorithms other than Setup-Acc are deterministic, so
these definitions fix precise values, not random values (conditioned on the fixed starting values PP, w0, store0).

We require the following correctness properties:

1. For every index between 0 and T − 1, Prep-Read(PP, storek, index) returns mi, π, where i is the
largest value in [k] such that indexi = index. If no such value exists, then mi = ε.

2. For any index, let (m,π)← Prep-Read(PP, storek, index). Then Verify-Read(PP, wk,m, index, π) =
True.

Remarks on Efficiency In our construction, all algorithms will run in time polynomial in their input
sizes. More precisely, Setup-Acc will be polynomial in λ and log(T ). Also, accumulator and π values should
have size polynomial in λ and log(T ), so Verify-Read and Update will also run in time polynomial in λ and
log(T ). Storage values will have size polynomial in the number of values stored so far. Write-Store, Prep-Read,
and Prep-Write will run in time polynomial in λ and T .

Security Let Acc = (Setup-Acc, Setup-Acc-Enforce-Read, Setup-Acc-Enforce-Write, Prep-Read, Prep-Write,
Verify-Read, Write-Store, Update) be a positional accumulator for symbol set M. We require Acc to satisfy
the following notions of security.

Definition 4.1 (Indistinguishability of Read Setup). A positional accumulator Acc is said to satisfy indistin-
guishability of read setup if any PPT adversary A’s advantage in the security game Exp-Setup-Acc(1λ,Acc,A)
is at most negligible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈M and k indices index1, . . . ,
indexAk ∈ {0, . . . , T − 1} to the challenger.

3. The challenger chooses a bit b. If b = 0, the challenger outputs (PP, w0, store0)← Setup-Acc(1λ, T ).
Else, it outputs (PP, w0, store0)← Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk)).

4. A sends a bit b′.
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A wins the security game if b = b′.

Definition 4.2 (Indistinguishability of Write Setup). A positional accumulator Acc is said to satisfy indistin-
guishability of write setup if any PPT adversaryA’s advantage in the security game Exp-Setup-Acc(1λ,Acc,A)
is at most negligible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈M and k indices index1, . . . ,
indexAk ∈ {0, . . . , T − 1} to the challenger.

3. The challenger chooses a bit b. If b = 0, the challenger outputs (PP, w0, store0)← Setup-Acc(1λ, T ).
Else, it outputs (PP, w0, store0)← Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)).

4. A sends a bit b′.

A wins the security game if b = b′.

Definition 4.3 (Read Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,mk ∈M, index1, . . . , indexk ∈
{0, . . . , T − 1} and any index∗ ∈ {0, . . . , T − 1}.

Let (PP, w0, st0)← Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗). For j from 1
to k, we define storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj). We similarly define
auxj and wj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and wj := Update(PP, wj−1,mj , indexj , auxj).
Acc is said to be read enforcing if Verify-Read(PP, wk,m, index

∗, π) = True, then either index∗ /∈ {index1, . . . , indexk}
and m = ε, or m = mi for the largest i ∈ [k] such that indexi = index∗. Note that this is an information-
theoretic property: we are requiring that for all other symobls m, values of π that would cause Verify-Read
to output True at index∗ do no exist.

Definition 4.4 (Write Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,mk ∈M, index1, . . . , indexk ∈
{0, . . . , T − 1}. Let (PP, w0, st0) ← Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)). For j
from 1 to k, we define storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj). We similarly
define auxj and wj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and wj := Update(PP, wj−1,mj , indexj , auxj).
Acc is said to be write enforcing if Update(PP, wk−1,mk, indexk, aux) = wout 6= Reject, for any aux, then
wout = wk. Note that this is an information-theoretic property: we are requiring that an aux value producing
an accumulated value other than wk or Reject deos not exist.

4.1 Construction

In this section, we will construct a positional accumulator Acc = (Setup-Acc, Setup-Acc-Enforce-Read,
Setup-Acc-Enforce-Write, Prep-Read, Prep-Write, Verify-Read, Write-Store, Update) for the symbol set M :=
{0, 1}`′ . Let iO be an indistinguishability obfuscator and let F be a selectively secure puncturable PRF with
key space K, punctured key space Kp, domain {0, 1}≤2`+d, range {0, 1}z, and algorithms F.setup, F.puncture,
and F.eval. We let PKE = (PKE.setup,PKE.enc,PKE.dec) denote a public key encryption scheme with mes-
sage space {0, 1} that is perfectly correct and uses z bits of randomness for encryption. We set ` to be
sufficiently large so that ciphertext produces by PKE , the special sympbol ⊥, and all symbols in M are
represented as unique `-bit strings.

Without loss of generality, we assume that T = 2d for some integer d = poly(λ). Our storage will take
the form of a binary tree containing up to T leaves, with each node indexed by a binary string of length
≤ d. A node in the tree indexed by a binary string x1x2 . . . xj ∈ {0, 1}≤d is a child of the node indexed by
x1 . . . xj−1. An internal node contains an `-bit string, as well as pointers to its left and right children. If
either child does not exist, the pointer takes a default value ⊥. A leaf node contains a symbol ∈ M. The
accumulated values will correspond to the ` bit strings stored at the root node.

• Setup-Acc(1λ, T ) The setup algorithm chooses a random key K for the puncturable PRF, and a secret
key, public key pair SK,PK← PKE.setup. We let H denote the program in Figure 8.
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Program H

Constants: Puncturable PRF key K, PKE public key PK.
Input: h1 ∈ {0, 1}`, h2 ∈ {0, 1}`, index ∈ {0, 1}<d

1. Compute r = F (K, (h1, h2, index)).

2. Output PKE.enc(PK, 0; r).

Figure 3: Program H

The public parameters are PP := iO(H). The initial value w0 is ⊥, and the initial store0 is a single
root node with value ⊥.

• Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗) → PP, w0, store0 The setup
algorithm chooses a random keyK for the puncturable PRF, and a secret key, public key pair SK,PK←
PKE.setup. It creates ciphertexts ct0, . . . , ctd−1 by encrypting 1 using PKE.enc with d independently
sampled values for the randomness. For notational convenience, we also define ctd := mi∗ where i∗ is
the largest integer such that i∗ = index∗. If no such i∗ exists, ctd := ε.

It defines store0 to be a single root node with value ⊥ and w0 := ⊥. It then defines the program H as
in Setup-Acc above, and iteratively runs Write-Store(H, storei−1, indexi,mi) → storei to produce
storek. We let index∗j denote the j-bit prefix of index.

We let H ′ denote the program in Figure 8.

Program H ′

Constants: Puncturable PRF key K, PKE public key PK, index∗, values of nodes in storek for prefixes
of index∗ and their siblings, {ctj}dj=0.
Input: h1 ∈ {0, 1}`, h2 ∈ {0, 1}`, index ∈ {0, 1}<d

1. If index is a prefix of index∗ of length j < d, check if the value among {h1, h2} corresponding to the
child that is a length j + 1 prefix of index is equal to ctj+1, and the other value among {h1, h2} is
checked against the corresponding node value in storek. If both of these comparisons yield equality,
output ctj .

2. Otherwise, compute r = F (K, (h1, h2, index)) and output PKE.enc(PK, 0; r).

Figure 4: Program H ′

The public parameters are PP := iO(H ′).

• Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk))→ PP, w0, store0 This algorithm sim-
ply calls Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗ = indexk).

• Prep-Read(PP, storein, index) → m,π Here, index is interpreted as a d-bit string. We let j ∈
{1, . . . , d} denote the largest value such that the node in storein corresponding to the length j prefix
of index is defined (i.e. not ⊥). If j = d, then the leaf node corresponding to index is defined, and
contains some symbol which is assigned to m. Otherwise, m := ε. π is formed as an ordered tuple of
the `-bit strings stored from the root down the path to the ancestor of index at level j, as well as the
strings stored at each sibling of a node along this path.

• Prep-Write(PP, storein, index) → aux Similarly to Prep-Read, we interpret index as a d-bit string,
and let j ∈ {1, . . . , d} be the largest value such that the node in storein corresponding to the length
j prefix of index is defined. aux is formed as ordered tuple of the `-bit strings stored from the root
down the path to the ancestor of index at level j, as well as the strings stored at each sibling of these
nodes.

• Verify-Read(PP, win,mread, index, π) → {True, False} If the value of j reflected in π is < d and
mread 6= ε, then the Verify-Read algorithm outputs False. Otherwise, for each level i from 0 to j − 1,

14



the algorithm defines h1,i+1 and h2,i+1 to the be `-bit strings given in π for the two children on level
i+ 1 of the node at level i on the path to index. It computes PP(h1,i+1, h2,i+1, indexi), where indexi
denotes the i-bit prefix of index. If this output does not equal the `-bit string given in π for this node,
it outputs False. Similarly, if the root value given in π does not match win, it outputs False. If all
of these checks pass, it outputs True. Note that when j = d, the value mread is one of the input `-bit
strings for the check at level d− 1.

• Write-Store(PP, storein, index,m)→ storeout First, if there are any nodes corresponding to prefixes
of index or siblings of prefixes of index that are not yet initialized in storein, they are initialized
with ⊥ values. Next, the `-bit string associated with the node index is set to m. For each i from 0 to
d− 1, we define h1,i+1, h2,i+1 denote the `-bit strings (or ⊥) values associated with the two children of
the node corresponding to the i-bit prefix of index. We iteratively update the values for the prefixes
of index, starting with i = d−1 and setting the value at the i-bit prefix equal to PP(h1,i, h2,i, indexi)
(again, indexi denotes the i-bit prefix of index). After these changes are made all the way up through
the root, the resulting tree is output as storeout.

• Update(PP, win,mwrite, index, aux) → wout or Reject The update algorithm first performs the same
checks as described in the Verify-Read algorithm. If any of these fail, it outs Reject. Otherwise, using
the values in aux, it re-computes the `-bit values for the nodes whose prefixes of index as described
in the Write-Store algorithm, starting by replacing the value at index itself with mwrite (note that the
values given in aux suffice for this). It outputs the new root value as wout.

4.1.1 Correctness

We consider any sequence (m1, index1), . . . , (mk, indexk) of symbolsm1, . . . ,mk and indices index1, . . . , indexk
each between 0 and T − 1. We fix any PP, w0, store0 ← Setup-Acc(1λ, T ). For j from 1 to k, we define
storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj). We similarly define auxj and wj
iteratively as auxj := Prep-Write(PP, storej−1, indexj) and wj := Update(PP, wj−1,mj , indexj , auxj).

By definition of the algorithm Write-Store, it is immediate that a leaf of storek corresponding to any
index contains the value mi for the largest i such that indexi = index if such an i exists, otherwise it is
uninitialized or has the ⊥ value. The Prep-Read algorithm therefore correctly returns mi or ε in these cases
respectively. This ensures correctness property 1.

To see that correctness property 2 also holds, we observe that every call of Write-Store maintains the
invariant that for any initialized internal node (at some index) the `-bit string that it stores is equal to
PP(h1, h2, index), where h1 and h2 are the values stored at its children. Thus, the checks performed by
Verify-Read will pass because the output path produced by Prep-Read maintains this invariant.

4.1.2 Security

We now prove our construction above satisfies indistinguishability of read and write setup:

Lemma 4.1. Assuming that F is a selectively secure puncturable PRF and iO is an indistinguishability
obfuscator, our construction satisfies indistinguishability of read setup.

Proof. We let Exp-Setup-Acc0 denote the version of the security experiment where b = 0 (i.e. we are running
the real Setup-Acc algorithm), and Exp-Setup-Acc1 denote the version of the security experiment where
b = 1 (i.e. we are running the Setup-Acc-Enforce-Read algorithm). We will show these two experiments are
computationally indistinguishably using a hybrid argument that gradually transitions from Exp-Setup-Acc0
to Exp-Setup-Acc1.

Our intermediary experiments will be parameterized by a depth parameter z between 0 and d− 1. In all
experiments, the challenger will choose K,PK,SK as is common to the Setup-Acc,Setup-Acc-Enforce-Read
algorithms, and will define ct0, . . . , ctd, storek as in the Setup-Acc-Enforce-Read algorithm. The experiments
will differ only in the program to be obfuscated to form the public parameters.

We first define:
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Exp-Setup-Acc0.1,z In this experiment, the program to be obfuscated is defined as follows. We first set
r∗ := F (K,h1,z, h2,z, index

∗
z), where index∗z denotes the length z prefix of index∗, whichever of {h1,z, h2,z}

corresponds to the length z+1 prefix of index∗ is set to be Cz+1, and the other is set equal to the correspond-
ing value in storek. We also compute K{(h1,z, h2,z, index∗z)} ← F.puncture(K, (h1,z, h2,z, index

∗z)).

Program H0.1,z

Constants: Punctured PRF key K{(h1,z, h2,z, index
∗z)}, PKE public key PK, randomness r∗, h1,z, h2,z,

index∗, values of nodes in storek for prefixes of index∗ and their siblings, {ctj}dj=0.
Input: h1 ∈ {0, 1}`, h2 ∈ {0, 1}`, index ∈ {0, 1}<d

1. If index is a prefix of index∗ of length z < j < d, check if the value among {h1, h2} corresponding to
the child that is a length j+ 1 prefix of index is equal to ctj+1, and the other value among {h1, h2} is
checked against the corresponding node value in storek. If both of these comparisons yield equality,
output ctj .

2. If index is a prefix of index∗ of length z, h1 = h1,z, and h2 = h2,z, output PKE.enc(PK, 0; r∗).

3. Otherwise, compute r = F (K, (h1, h2, index)) and output PKE.enc(PK, 0; r).

Figure 5: Program H0.1,z

We next define:

Exp-Setup-Acc0.2,z In this experiment, the program to be obfuscated is defined as follows. We again let
index∗z denote the length z prefix of index∗, whichever of {h1,z, h2,z} corresponds to the length z+1 prefix of
index∗ is set to be Cz+1, and the other is set equal to the corresponding value in storek. We also compute
K{(h1,z, h2,z, index∗z)} ← F.puncture(K, (h1,z, h2,z, index

∗z)). We set r∗ to be a fresh random string.

Program H0.2,z

Constants: Punctured PRF key K{(h1,z, h2,z, index
∗z)}, PKE public key PK, randomness r∗, h1,z, h2,z,

index∗, values of nodes in storek for prefixes of index∗ and their siblings, {ctj}dj=0.
Input: h1 ∈ {0, 1}`, h2 ∈ {0, 1}`, index ∈ {0, 1}<d

1. If index is a prefix of index∗ of length z < j < d, check if the value among {h1, h2} corresponding to
the child that is a length j+ 1 prefix of index is equal to ctj+1, and the other value among {h1, h2} is
checked against the corresponding node value in storek. If both of these comparisons yield equality,
output ctj .

2. If index is a prefix of index∗ of length z, h1 = h1,z, and h2 = h2,z, output PKE.enc(PK, 0; r∗).

3. Otherwise, compute r = F (K, (h1, h2, index)) and output PKE.enc(PK, 0; r).

Figure 6: Program H0.2,z

We then define:

Exp-Setup-Acc0.3,z In this experiment, the program to be obfuscated is defined as follows. We again let
index∗z denote the length z prefix of index∗, whichever of {h1,z, h2,z} corresponds to the length z+ 1 prefix
of index∗ is set to be Cz+1, and the other is set equal to the corresponding value in storek. We also
compute K{(h1,z, h2,z, index∗z)} ← F.puncture(K, (h1,z, h2,z, index

∗z)). We set r∗ to be a fresh random
string.

Lastly, we define:

Exp-Setup-Acc0.4,z In this experiment, the program to be obfuscated is defined as follows. We again let
index∗z denote the length z prefix of index∗, whichever of {h1,z, h2,z} corresponds to the length z+ 1 prefix
of index∗ is set to be Cz+1, and the other is set equal to the corresponding value in storek. We set r∗ to
be a fresh random string.
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Program H0.3,z

Constants: Punctured PRF key K{(h1,z, h2,z, index
∗z)}, PKE public key PK, randomness r∗, h1,z, h2,z,

index∗, values of nodes in storek for prefixes of index∗ and their siblings, {ctj}dj=0.
Input: h1 ∈ {0, 1}`, h2 ∈ {0, 1}`, index ∈ {0, 1}<d

1. If index is a prefix of index∗ of length z < j < d, check if the value among {h1, h2} corresponding to
the child that is a length j+ 1 prefix of index is equal to ctj+1, and the other value among {h1, h2} is
checked against the corresponding node value in storek. If both of these comparisons yield equality,
output ctj .

2. If index is a prefix of index∗ of length z, h1 = h1,z, and h2 = h2,z, output PKE.enc(PK, 1; r∗).

3. Otherwise, compute r = F (K, (h1, h2, index)) and output PKE.enc(PK, 0; r).

Figure 7: Program H0.3,z

Program H0.4,z

Constants: Punctured PRF key K, PKE public key PK, randomness r∗, h1,z, h2,z, index
∗, values of nodes

in storek for prefixes of index∗ and their siblings, {ctj}dj=0.
Input: h1 ∈ {0, 1}`, h2 ∈ {0, 1}`, index ∈ {0, 1}<d

1. If index is a prefix of index∗ of length z < j < d, check if the value among {h1, h2} corresponding to
the child that is a length j+ 1 prefix of index is equal to ctj+1, and the other value among {h1, h2} is
checked against the corresponding node value in storek. If both of these comparisons yield equality,
output ctj .

2. If index is a prefix of index∗ of length z, h1 = h1,z, and h2 = h2,z, output PKE.enc(PK, 1; r∗).

3. Otherwise, compute r = F (K, (h1, h2, index)) and output PKE.enc(PK, 0; r).

Figure 8: Program H0.4,z

Now that we have these experiments defined, we will argue that we can start with Exp-Setup-Acc0, transi-
tion to Exp-Setup-Acc0.1,d−1, then to Exp-Setup-Acc0.2,d−1, then to Exp-Setup-Acc0.3,d−1, then to Exp-Setup-Acc0.4,d−1,
then to Exp-Setup-Acc0.1,d−2, and so on. We finally arrive at Exp-Setup-Acc0.4,0, which is identical to
Exp-Setup-Acc1.

We make the following claims for each z from d − 1 to 0. For notational convenience, we consider
Exp-Setup-Acc0.4,d to be another name for Exp-Setup-Acc0.

Claim 4.1. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A,

Pr[A outputs 0 in Exp-Setup-Acc0.4,z+1]− Pr[A outputs 0 in Exp-Setup-Acc0.1,z] ≤ negl(λ).

Proof. To see this, note that the hardwired value r∗ in the program H0.1,z is the same that will be computed
from the unpunctured key in the program H0.4,z+1. We also note that the ciphertext produces in line 2. of
H0.4,z+1 is distributed identically to ctz+1, so hardwired the randomness in H0.4,z+1 and hard-coding ctz+1

in H0.1,z does not cause a difference. The input/output behavior of H0.1,z and H0.4,z+1 are hence identical,
so the iO security applies.

Claim 4.2. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A,

Pr[A outputs 0 in Exp-Setup-Acc0.1,z]− Pr[A outputs 0 in Exp-Setup-Acc0.2,z] ≤ negl(λ).

Proof. The only change being made between H0.1,z and H0.2,z is that the hardwired output of F at the
punctured point is replaced by a freshly random, hardwired r∗ value. Computationally indistinguishability
then follows immediately from the selective security of F .

Claim 4.3. Assuming PKE is an IND-CPA secure public key encryption scheme, for any PPT adversary
A,

Pr[A outputs 0 in Exp-Setup-Acc0.1,z]− Pr[A outputs 0 in Exp-Setup-Acc0.2,z] ≤ negl(λ).
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Proof. This follows immediately from the definition of CPA security, as the only change is that a (freshly
random) encryption of 0 is replaced by a (freshly random) encryption of 1.

Claim 4.4. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A,

Pr[A outputs 0 in Exp-Setup-Acc0.3,z]− Pr[A outputs 0 in Exp-Setup-Acc0.4,z] ≤ negl(λ).

Proof. Here, the behavior of the programs H0.3,z and H0.4,z are identical, because the punctured point value
is never computed. Hence the iO security guarantee applies.

Lemma 4.2. Assuming that F is a selectively secure puncturable PRF and iO is an indistinguishability
obfuscator, our construction satisfies indistinguishability of write setup.

Proof. This follows immediately from Lemma 4.1, as the Setup-Acc-Enforce-Write algorithm simply calls an
instance of the Setup-Acc-Enforce-Read algorithm.

We now establish that our construction satisfies the required information-theoretic enforcement proper-
ties:

Lemma 4.3. Our construction is Read Enforcing.

Proof. We consider a sequence (m1, index1), . . . , (mk, indexk) and a index∗, and we let PP, w0, store0 ←
Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗). We let wk, storek denote the re-
sulting accumulator and storage values after then storing and updating this sequence using PP, starting
from w0, store0. The “right” m to be read at index∗ is mi for the largest i ∈ {1, . . . , k} such that
indexi = index∗, if such an i exists. Otherwise, m := ε.

We suppose (for contradiction) that for some m̃ 6= m, there exists a value π̃ such that
Verify-Read(PP, wk, m̃, index

∗, π̃) = True. Now, by definition of the program H ′ that is obfuscated to form
PP, wk will be the value ct0 (the value stored at the root of the tree in storek). Since this is an encryption
of 1 and the scheme PKE is perfectly correct, it will never be an output produced by line 2. of the program
H. Hence, the only values for its children that will pass the check performed by Verify-Read are the unique
values that are checked in line 1. of H ′. Applying this reasoning iteratively down the tree, we see that the
values in π must match the true values stored in the tree in storek at these nodes, and hence this applies
also at the leaf where m is stored (or where the path to index∗ reaches a ⊥). Thus, we cannot have m̃ 6= m
and still have a successful verification.

Lemma 4.4. Our construction is Write Enforcing.

Proof. As in the proof of Lemma 4.3, we have that the only value of aux that will pass the checks performed
by the Update algorithm is the true values along the relevant path as stored in storek. This will then
deterministically produce wk as the output of Update.

5 Splittable Signatures

In this section, we will define the syntax and correctness/security properties of splittable signatures and then
show a construction based on indistinguishability obfuscation and pseudorandom generators.

A splittable signature scheme will essentially consist of a normal signature scheme, augmented by some
additional algorithms that produce alternative signing and verification keys with differing capabilities. More
precisely, there will be “all but one” keys that work correctly except for a single message m∗, and there will
be ”one” keys that work only for m∗. There will also be a reject-verification key that always outputs reject
when used to verify a signature.
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Our required security properties will be closer in spirit to the typical security properties of MACs as
opposed to signatures, since we do not provide access to a signing oracle in our security games. Our
properties are nonetheless sufficient for our application, and avoiding unnecessary signing oracles makes it
possible to argue that these different kinds of verification keys are computationally indistinguishable, the
attacker is not provided with a signature on which they behave differently.

Syntax A splittable signature scheme S for message space M consists of the following algorithms:

Setup-Spl(1λ) The setup algorithm is a randomized algorithm that takes as input the security parameter λ
and outputs a signing key SK, a verification key VK and reject-verification key VKrej.

Sign-Spl(SK,m) The signing algorithm is a deterministic algorithm that takes as input a signing key SK and
a message m ∈M. It outputs a signature σ.

Verify-Spl(VK,m, σ) The verification algorithm is a deterministic algorithm that takes as input a verification
key VK, signature σ and a message m. It outputs either 0 or 1.

Split(SK,m∗) The splitting algorithm is randomized. It takes as input a secret key SK and a message
m∗ ∈ M. It outputs a signature σone = Sign-Spl(SK,m∗), a one-message verification key VKone, an
all-but-one signing key SKabo and an all-but-one verification key VKabo.

Sign-Spl-abo(SKabo,m) The all-but-one signing algorithm is deterministic. It takes as input an all-but-one
signing key SKabo and a message m, and outputs a signature σ.

Correctness Letm∗ ∈M be any message. Let (SK,VK,VKrej)← Setup-Spl(1λ) and (σone,VKone,SKabo,VKabo)←
Split(SK,m∗). Then, we require the following correctness properties:

1. For all m ∈M, Verify-Spl(VK,m,Sign-Spl(SK,m)) = 1.

2. For all m ∈M,m 6= m∗, Sign(SK,m) = Sign-Spl-abo(SKabo,m).

3. For all σ, Verify-Spl(VKone,m
∗, σ) = Verify-Spl(VK,m∗, σ).

4. For all m 6= m∗ and σ, Verify-Spl(VK,m, σ) = Verify-Spl(VKabo,m, σ).

5. For all m 6= m∗ and σ, Verify-Spl(VKone,m, σ) = 0.

6. For all σ, Verify-Spl(VKabo,m
∗, σ) = 0.

7. For all σ and all m ∈M, Verify-Spl(VKrej,m, σ) = 0.

Security We will now define the security notions for splittable signature schemes. Each security notion is
defined in terms of a security game between a challenger and an adversary A.

Definition 5.1 (VKrej indistinguishability). A splittable signature scheme S is said to be VKrej indistin-
guishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKrej(1
λ,S,A):

1. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ) .Next, it chooses b ← {0, 1}. If b = 0, it sends
VK to A. Else, it sends VKrej.

2. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A never receives any signatures and has no ability to produce them.
This is why the difference between VK and VKrej cannot be tested.
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Definition 5.2 (VKone indistinguishability). A splittable signature scheme S is said to be VKone indistin-
guishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKone(1
λ,S,A):

1. A sends a message m∗ ∈M.
2. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ). Next, it computes (σone, VKone, SKabo,

VKabo) ← Split(SK,m∗). It chooses b ← {0, 1}. If b = 0, it sends (σone,VKone) to A. Else, it
sends (σone,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A only receives the signature σone on m∗, on which VK and VKone

behave identically.

Definition 5.3 (VKabo indistinguishability). A splittable signature scheme S is said to be VKabo indistin-
guishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKabo(1λ,S,A):

1. A sends a message m∗ ∈M.
2. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ). Next, it computes (σone, VKone, SKabo,

VKabo) ← Split(SK,m∗). It chooses b ← {0, 1}. If b = 0, it sends (SKabo,VKabo) to A. Else, it
sends (SKabo,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A does not receive or have the ability to create a signature on m∗. For
all signatures A can create by signing with SKabo, VKabo and VK will behave identically.

Definition 5.4 (Splitting indistinguishability). A splittable signature scheme S is said to be splitting in-
distinguishable if any PPT adversary A has negligible advantage in the following security game:

Exp-Spl(1λ,S,A):

1. A sends a message m∗ ∈M.
2. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ), (SK′,VK′,VK′rej) ← Setup-Spl(1λ). Next, it

computes (σone, VKone, SKabo, VKabo)← Split(SK,m∗), (σ′one, VK′one, SK′abo, VK′abo)← Split(SK′,m∗).
. It chooses b ← {0, 1}. If b = 0, it sends (σone,VKone,SKabo,VKabo) to A. Else, it sends
(σ′one,VK′one,SKabo,VKabo) to A.

3. A sends its guess b′.

A wins if b = b′.

In the game above, A is either given a system of σone,VKone,SKabo,VKabo generated together by one
call of Setup-Spl or a “split” system of (σ′one,VK′one,SKabo,VKabo) where the all but one keys are generated
separately from the signature and key for the one message m∗. Since the correctness conditions do not link
the behaviors for the all but one keys and the one message values, this split generation is not detectable by
testing verification for the σone that A receives or for any signatures that A creates honestly by signing with
SKabo.
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5.1 Construction

LetM be the message space. For simplicity of notations, we will assumeM = {0, 1}`, where ` is polynomial
in the security parameter λ. Let F be a puncturable pseudorandom function with key space K, punctured
key space Kp, domainM, range {0, 1}λ and algorithms F.setup, F.puncture and F.eval. Finally, we will also
use an indistinguishability obfuscator iO and an injective pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
(The pseudorandom generator will be used in the proof, but will not be needed in the actual scheme.) We
will now define the algorithms Setup-Spl, Sign-Spl, Verify-Spl, Split and Sign-Spl-abo.

• Setup-Spl(1λ) The setup algorithm takes as input security parameter λ and chooses puncturable PRF
keys K1 ← F.setup(1λ) and K2 ← F.setup(1λ). Next, it chooses x← {0, 1}λ. The secret key SK is set
to be (K1,K2, x), the verification key is an obfuscation of the program Prog-VK defined in Figure 9;
VK← iO(Prog-VK), and VKrej ← iO(Prog-VKrej), where Prog-VKrej is defined in Figure 10.

Prog-VK

Constants Puncturable PRF keys K1,K2 ∈ K, x ∈ {0, 1}λ.
Inputs Message m ∈M, signature σ = (σ1, σ2).

1. If σ1 = (F (K1,m)⊕ x) and σ2 = F (K2,m) output 1. Else output 0.

Figure 9: Prog-VK

Prog-VKrej

Inputs: Message m ∈M, signature σ = (σ1, σ2).

1. Output 0.

Figure 10: Prog-VKrej

• Sign-Spl(SK,m) The signing algorithm takes as input the secret key SK = (K1,K2, x) and message
m ∈M. It outputs σ = (F (K1,m)⊕ x, F (K2,m)).

• Verify-Spl(VK,m, σ) The verification algorithm simply executes the verification key with inputs m and
σ. It outputs VK(m,σ).

• Split(SK,m∗) The splitting algorithm takes as input secret key SK = (K1,K2, x) and a message
m∗ ∈ M. It computes σone = Sign(SK,m∗). Next, it computes VKone ← iO(Prog-VKone), SKabo ←
iO(Prog-SKabo) and VKabo ← iO(Prog-VKabo), where the programs Prog-VKone, Prog-SKabo and
Prog-VKabo are defined in Figures 11, 12 and 13 respectively.

Prog-VKone

Constants Signature components s1, s2 ∈ {0, 1}λ, message m∗ ∈M.
Inputs Message m ∈M, signature σ = (σ1, σ2) ∈ {0, 1}2λ.

1. If m 6= m∗ output 0.
2. If σ1 = s1 and σ2 = s2 output 1. Else output 0.

Figure 11: Prog-VKone

Correctness For correctness, note that Properties 1, 3, 5 and 6 follow directly from construction, while
Properties 2 and 4 follow from the correctness of puncturable PRF keys.

5.1.1 Proofs of Security

We will now show that S = (Setup-Spl,Sign-Spl,Verify-Spl,Split,Sign-Spl-abo) satisfies VKrej indistinguisha-
bility, VKone indistinguishability, VKabo indistinguishability and splitting indistinguishability.
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Prog-SKabo

Constants Message m∗ ∈M, punctured PRF keys K1{m∗},K2{m∗} ∈ Kp, x ∈ {0, 1}λ.
Inputs Message m ∈M.

1. If m = m∗, output ⊥.
2. Compute σ1 = F.eval(K1{m∗},m)⊕ x and σ2 = F.eval(K{m∗},m). Output σ = (σ1, σ2).

Figure 12: Prog-SKabo

Prog-VKabo

Constants Message m∗ ∈M, punctured PRF keys K1{m∗},K2{m∗} ∈ K, x ∈ {0, 1}λ.
Inputs message m ∈M, signature σ = (σ1, σ2).

1. If m = m∗, output 0.
2. If σ1 = F.eval(K1{m∗},m)⊕ x and σ2 = F.eval(K2{m∗},m) output 1. Else output 0.

Figure 13: Prog-VKabo

Lemma 5.1. Assuming iO is a secure indistinguishability obfuscator and PRG an injective pseudorandom
generator, any PPT adversary A has negligible advantage in Exp-VKrej(1

λ,S,A).

Proof. We will define a sequence of hybrid experiments Hyb0, . . . ,Hyb3, and then show that the outputs of
each hybrid are computationally indistinguishable.

Hyb0 In this experiment, the challenger sends VK to A.

1. Challenger chooses puncturable PRF keys K1 ← F.setup(1λ), K2 ← F.setup(1λ) and x ← {0, 1}λ. It
sends VK← iO(Prog-VK{K1,K2, x}) to A.

Hyb1 In this experiment, the challenger outputs an obfuscation of Prog-VK′rej (defined in Figure 14).

1. Challenger chooses puncturable PRF keys K1 ← F.setup(1λ), K2 ← F.setup(1λ) and x ← {0, 1}λ. It
computes y = PRG(x) sends VK← iO(Prog-VK′rej{K1,K2, y}) to A.

Prog-VK′rej

Constants Puncturable PRF keys K1,K2 ∈ K, y ∈ {0, 1}2λ.
Inputs Message m ∈M, signature σ = (σ1, σ2).

1. If y = PRG(F (K1,m)⊕ σ1) and σ2 = F (K2,m) output 1. Else output 0.

Figure 14: Prog-VK′rej

Hyb2 This experiment is similar to the previous one, except that the challenger chooses y as a uniformly
random λ bit string.

1. Challenger chooses puncturable PRF keysK1 ← F.setup(1λ), K2 ← F.setup(1λ). It chooses y ← {0, 1}2λ

and sends VK← iO(Prog-VK′rej{K1,K2, y}) to A.

Hyb3 In this experiment, the challenger outputs an obfuscation of Prog-VKrej.

1. Challenger sends VK← iO(Prog-VKrej) to A.
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Analysis Let pA,i denote the probability that A outputs 1 in Hybi.

Claim 5.1. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversaryA, |pA,0−pA,1| ≤
negl(λ).

Proof. This follows from the fact that PRG is injective, and hence the programs Prog-VK{K1,K2, x} and
Prog-VK′rej{K1,K2, y} are functionally identical. As a result, their obfuscations are computationally indis-
tinguishable by the iO security requirement.

Claim 5.2. Assuming PRG is a secure pseudorandom generator, for any PPT A, |pA,1 − pA,2| ≤ negl(λ).

Proof. Now that the pre-image x is no longer referenced in the verification program, the fact that a random
image y can be replaced by a uniformly random value in {0, 1}2λ follows directly from the security of PRG.

Claim 5.3. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversaryA, |pA,2−pA,3| ≤
negl(λ).

Proof. Note that since y is chosen uniformly at random in Hyb2, with overwhelming probability, it does
not lie in the range of PRG. As a result, Prog-VK′rej outputs 0 on all inputs, making it functionally iden-
tical to Prog-VKrej. Therefore, their obfuscations are computationally indistinguishable by the iO security
requirement.

Lemma 5.2. Assuming iO is a secure indistinguishability obfuscator, F a secure puncturable PRF and PRG
a secure pseudorandom generator, any PPT adversary A has negligible advantage in Exp-VKone(1

λ,S,A).

Proof. To prove this lemma, we will define a sequence of hybrid experiments Hyb0, . . . ,Hyb7.

Hyb0 In this experiment, the challenger computes (σone,VK) as in the original scheme.

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1,K2 ← F.setup(1λ), x← {0, 1}λ.

It sets s1 = F (K1,m
∗)⊕ x, s2 = F (K2,m

∗), σone = (s1, s2), VK← iO(Prog-VK{K1K2, x}) and sends
(σone,VK) to A.

Hyb1 This experiment is similar to the previous one, except that the challenger hardwires a punctured PRF
key instead of K1 in the verification key VK, and y = PRG(x) is used to check instead of x itself:

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1,K2 ← F.setup(1λ), x← {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗), s1 = F (K1,m

∗)⊕ x, s2 = F (K2,m
∗), σone = (s1, s2).

It sets y = PRG(x),VK← iO(Prog-VK-Alt{m∗,K1{m∗},K2, y, σone}) (Prog-VK-Alt is defined in Fig-
ure 15) and sends (σone,VK) to A.

Hyb2 In this experiment, F (K1,m
∗) is set to be a uniformly random string in {0, 1}λ.

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1,K2 ← F.setup(1λ), x← {0, 1}λ.

It computesK1{m∗} ← F.puncture(K1,m
∗), chooses r ← {0, 1}λ and sets s1 = r ⊕ x, s2 = F (K2,m

∗),
σone = (s1, s2).
It sets y = PRG(x),VK← iO(Prog-VK-Alt{m∗,K1{m∗},K2, y, σone}) and sends (σone,VK) to A.
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Prog-VK-Alt

Constants Message m∗ ∈ M, punctured PRF key K1{m∗} ∈ Kp, PRF key K2 ∈ K, y ∈ {0, 1}2λ,
s ∈ {0, 1}λ × {0, 1}λ.
Inputs Message m ∈M, Signature tuple σ = (σ1, σ2) ∈ {0, 1}2λ.

1. If m 6= m∗

(a) If y = PRG((F.eval(K1{m∗},m)⊕ σ1)) and σ2 = F (K2,m) output 1. Else output 0.

2. Else if m 6= m∗

(a) If s = (σ1, σ2) output 1. Else output 0.

Figure 15: Prog-VK-Alt

Hyb3 In this experiment, s1 is chosen uniformly at random from {0, 1}λ.

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1,K2 ← F.setup(1λ), x← {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗), chooses s1 ← {0, 1}λ, sets s2 = F (K2,m

∗), σone =
(s1, s2).
It sets y = PRG(x),VK← iO(Prog-VK-Alt{m∗,K1{m∗},K2, y, σone}) and sends (σone,VK) to A.

Hyb4 This experiment is identical to the previous one, except that the challenger sets y to be a uniformly
random 2λ bit string, instead of PRG(x).

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1,K2 ← F.setup(1λ), x← {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗), chooses s1 ← {0, 1}λ, sets s2 = F (K2,m

∗), σone =
(s1, s2).
It chooses y ← {0, 1}2λ, sets VK ← iO(Prog-VK-Alt{m∗,K1{m∗},K2, y, σone}) and sends (σone,VK)
to A.

Hyb5 In this experiment, the challenger outputs an obfuscation of Prog-VKone.

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1,K2 ← F.setup(1λ), x← {0, 1}λ.

It chooses s1 ← {0, 1}λ, sets s2 = F (K2,m
∗), σone = (s1, s2).

It sets VK← iO(Prog-VKone{m∗, σone}) and sends (σone,VK) to A.

Hyb6 This experiment is identical to the previous one, the only difference being a syntactical change. It
chooses r ← {0, 1}λ, x← {0, 1}λ and sets s1 = r ⊕ x.

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1,K2 ← F.setup(1λ), x← {0, 1}λ.

It computesK1{m∗} ← F.puncture(K1,m
∗), chooses r, x← {0, 1}λ and sets s1 = r ⊕ x, s2 = F (K2,m

∗),
σone = (s1, s2).
It sets VK← iO(Prog-VKone{m∗, σone}) and sends (σone,VK) to A.

Hyb7 In this experiment, the challenger sets s1 = F (K1,m
∗)⊕ x.

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1,K2 ← F.setup(1λ), x← {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗), chooses x ← {0, 1}λ and sets s1 = F (K1,m

∗)⊕ x, s2 =
F (K2,m

∗), σone = (s1, s2).
It sets VK← iO(Prog-VKone{m∗, σone}) and sends (σone,VK) to A.
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Analysis Let pA,i denote the probability that A outputs 1 in Hybi.

Claim 5.4. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversaryA, |pA,0−pA,1| ≤
negl(λ).

Proof. To use the security of iO, we need to argue that Prog-VK{K1,K2, x} and Prog-VK-Alt{m∗,K1{m∗},K2, y, σone}
have identical functionality. However, this follows directly from the correctness of F and the fact that PRG
is injective.

Claim 5.5. Assuming F is a secure puncturable PRF, for any PPT A, |pA,1 − pA,2| ≤ negl(λ).

Proof. Now that the program being obfuscated only depends upon the punctured key K1{m∗}, we can
replace F (K1,m

∗) with a random value by invoking the security of the punctured PRF.

Claim 5.6. Hyb2 and Hyb3 are identical, and hence, pA,2 = pA,3.

Proof. This follows immediately because we have merely made a syntactic change and re-parameterized the
same uniform distribution over {0, 1}λ.

Claim 5.7. Assuming PRG is a secure pseudorandom generator, for any PPT A, |pA,3 − pA,4| ≤ negl(λ).

Proof. Now that the preimage x is no longer referenced, we can rely on the security of PRG to change y
from being a random image of PRG to a uniformly random string in {0, 1}2λ.

Claim 5.8. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |pA,4−pA,5| ≤ negl(λ).

Proof. Note that with overwhelming probability, a uniformly random y does not lie in the range of PRG, and
hence Step 1(a) of Prog-VK-Alt always outputs 0. Therefore Prog-VK-Alt and Prog-VKone are functionally
identical with all but negligible probability, and in this case the iO security guarantee applies.

Claim 5.9. Hyb5 and Hyb6 are identical, and hence, pA,5 = pA,6.

Proof. This is simply a reversal of our prior syntactic change.

Claim 5.10. Assuming F is a secure puncturable PRF, for any PPT A, |pA,6 − pA,7| ≤ negl(λ).

Proof. This is again simply a reversal of our prior change, and follows analogously from the security guarantee
of the puncturable PRF.

Combining the above claims, it follows that

|Pr[A outputs 1 in Exp-VKone|b = 0]− Pr[A outputs 1 in Exp-VKone|b = 0]| ≤ negl(λ).

Lemma 5.3. Assuming iO is a secure indistinguishability obfuscator, F a secure puncturable PRF and PRG
a secure pseudorandom generator, any PPT adversary A has negligible advantage in Exp-VKabo(1λ,S,A).

Proof. Let A be a PPT adversary such that Exp-VKabo(1λ,S,A) = ε. As in the previous proof, we
will define a sequence of hybrids Hyb0, . . . ,Hyb4, where Hyb0 and Hyb4 correspond to the two modes of
Exp-VKabo(1λ,S,A).
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Hyb0 In this experiment, the challenger outputs (SKabo,VK) as in the original scheme.

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1 ← F.setup(1λ), K2 ← F.setup(1λ) and x← {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗),K2{m∗} ← F.puncture(K2,m

∗).
It computes SKabo ← iO(Prog-SKabo{m∗,K1{m∗},K2{m∗}, x}) and VK← iO(Prog-VK{K1,K2, x}).
It sends (SKabo,VK) to A.

Hyb1 In this experiment, the challenger uses the program Prog-VK-Alt′ (defined in Figure 16) to compute
the verification key VK.

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1 ← F.setup(1λ), K2 ← F.setup(1λ) and x← {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗),K2{m∗} ← F.puncture(K2,m

∗).
It sets w = PRG(F (K2,m

∗)). It computes SKabo ← iO(Prog-SKabo{m∗,K1{m∗},K2{m∗}, x}) and

VK′ ← iO(Prog-VK-Alt′{m∗,K1,K2{m∗}, w, x}).
It sends (SKabo,VK) to A.

Prog-VK-Alt′

Constants Message m∗ ∈M, punctured PRF keys K1,K2{m∗} ∈ Kp, w ∈ {0, 1}2λ, x ∈ {0, 1}λ.
Inputs Message m ∈M, signature σ = (σ1, σ2) ∈ {0, 1}λ × {0, 1}λ.

1. If m 6= m∗

(a) If σ1 = F (K1,m)⊕ x and σ2 = F.eval(K2{m∗},m) output 1. Else output 0.

2. Else,

(a) If σ1 = F (K1,m)⊕ x and w = PRG(σ2) output 1. Else output 0.

Figure 16: Prog-VK-Alt′

Hyb2 This hybrid is similar to the previous one, except that the challenger computes w = PRG(r) for some
random r ← {0, 1}λ.

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1 ← F.setup(1λ), K2 ← F.setup(1λ) and x← {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗),K2{m∗} ← F.puncture(K2,m

∗).
it chooses r ← {0, 1}λ and sets w = PRG(r), computes SKabo ← iO(Prog-SKabo{m∗,K1{m∗},K2{m∗}, x})
and VK′ ← iO(Prog-VK-Alt′{m∗,K1,K2{m∗}, w, x}).
It sends (SKabo,VK) to A.

Hyb3 In this experiment, the challenger chooses a uniformly random 2λ bit for w instead of using PRG to
compute it.

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1 ← F.setup(1λ), K2 ← F.setup(1λ) and x← {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗),K2{m∗} ← F.puncture(K2,m

∗).
Next, it chooses w ← {0, 1}2λ. It computes SKabo ← iO(Prog-SKabo{m∗,K1{m∗},K2{m∗}, x}) and

VK′ ← iO(Prog-VK-Alt′{m∗,K1,K2{m∗}, w, x}).
It sends (SKabo,VK) to A.
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Hyb4 This experiment is similar to the previous one except that the challenger outputs an obfuscation of
Prog-VKabo as the verification key.

1. A sends a message m∗ ∈M.
2. Challenger chooses puncturable PRF keys K1 ← F.setup(1λ), K2 ← F.setup(1λ) and x← {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗),K2{m∗} ← F.puncture(K2,m

∗).
It computes VKabo ← iO(Prog-VKabo{m∗,K1{m∗},K2{m∗}, x}), SKabo ← iO(Prog-SKabo{m∗,K1{m∗},
K2{m∗}, x}).
It sends (SKabo,VK) to A.

Analysis Let pi,A denote the probability that A outputs 1 in Hybi.

Claim 5.11. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |p0,A −
p1,A| ≤ negl(λ).

Proof. Note that since PRG is injective and F satisfies the correctness property of puncturable PRFs,
circuits Prog-VK{K1,K2, x} and Prog-VK-Alt{m∗,K1,K2{m∗}, x} are functionally identical. As a result,
their obfuscations are computationally indistinguishable by iO security, and hence |p0,A − p1,A| ≤ negl(λ).

Claim 5.12. Assuming F is a secure puncturable PRF, for any PPT adversary A, |p1,A − p2,A| ≤ negl(λ).

Proof. This follows directly from the selective security definition of puncturable PRFs, as only the punctured
key K2{m∗} is reflected in the programs given to A.

Claim 5.13. Assuming PRG is a secure pseudorandom generator, for any PPT adversary A, |p2,A−p3,A| ≤
negl(λ).

Proof. This follows immediately from the security of PRG, as the preimage r is uniformly random and only
w is hardwired into the verification program.

Claim 5.14. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |p3,A −
p4,A| ≤ negl(λ).

Proof. Note that since w is chosen uniformly at random, with overwhelming probability, it does not lie in
the range of PRG. In this case, Prog-VK-Alt′{m∗,K1,K2{m∗}, w, x} outputs 0 on all inputs with message
component m∗. Hence, Prog-VK-Alt′{m∗,K1,K2{m∗}, w, x} and Prog-VKabo{m∗,K1{m∗},K2{m∗}, x} are
functionally identical (with overwhelming probability).

Combining the above claims, it follows that any PPT adversary has negligible advantage in Exp-VKabo.

Lemma 5.4. Assuming iO is a secure indistinguishability obfuscator, F a secure puncturable PRF and
PRG a secure pseudorandom generator, any PPT adversary A has negligible advantage in Exp-Spl(1λ,S,A).

Proof. Let A be a PPT adversary with advantage ε in Exp-Spl(1λ,S,A). We will define a sequence of hybrids
Hyb0, . . . ,Hyb4 and compare A’s advantage in each of these hybrids.
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Hyb0 In this experiment, the challenger sends all components corresponding to the same singing key, veri-
fication key pair.

1. A sends message m∗ ∈M.
2. Challenger chooses PRF keys K1 ← F.setup(1λ), K2 ← F.setup(1λ) and x ∈ {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗), K2{m∗} ← F.puncture(K2,m

∗).
Next, it computes σone = (F (K1,m

∗)⊕x, F (K2,m
∗)), VKone ← iO(Prog-VKone{m∗, σone}), SKabo ←

iO(Prog-SKabo{m∗,K1{m∗},K2{m∗}, x}) and VKabo ← iO(Prog-VKabo{m∗,K1{m∗},K2{m∗}, x}).
It sends (σone,VKone,SKabo,VKabo) to A.

Hyb1 In this hybrid, the challenger replaces F (K1,m
∗) and F (K2,m

∗) with uniformly random λ bit strings.

1. A sends message m∗ ∈M.
2. Challenger chooses PRF keys K1 ← F.setup(1λ), K2 ← F.setup(1λ) and x ∈ {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗), K2{m∗} ← F.puncture(K2,m

∗).
Next, it chooses r1 ← {0, 1}λ, r2 ← {0, 1}λ and sets σone = (r1 ⊕ x, r2).
It computes VKone ← iO(Prog-VKone{m∗, σone}), SKabo ← iO(Prog-SKabo{m∗,K1{m∗},K2{m∗}, x})
and VKabo ← iO(Prog-VKabo{m∗,K1{m∗},K2{m∗}, x}) and sends (σone,VKone,SKabo,VKabo) to A.

Hyb2 This experiment is exactly identical to the previous one, except for a notational change, where the
first component of σone is set to be uniformly random.

1. A sends message m∗ ∈M.
2. Challenger chooses PRF keys K1 ← F.setup(1λ), K2 ← F.setup(1λ) and x ∈ {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗), K2{m∗} ← F.puncture(K2,m

∗).
Next, it chooses r1 ← {0, 1}λ, r2 ← {0, 1}λ and sets σone = (r1, r2).
It computes VKone ← iO(Prog-VKone{m∗, σone}), SKabo ← iO(Prog-SKabo{m∗,K1{m∗},K2{m∗}, x})
and VKabo ← iO(Prog-VKabo{m∗,K1{m∗},K2{m∗}, x}) and sends (σone,VKone,SKabo,VKabo) to A.

Hyb3 In this experiment, the challenger chooses x′ ← {0, 1}λ and uses x′ to compute the first component
of σone. This is a notational change, and this hybrid is identical to the previous one.

1. A sends message m∗ ∈M.
2. Challenger chooses PRF keys K1 ← F.setup(1λ), K2 ← F.setup(1λ) and x ∈ {0, 1}λ, x′ ← {0, 1}λ.

It computes K1{m∗} ← F.puncture(K1,m
∗), K2{m∗} ← F.puncture(K2,m

∗).
Next, it chooses r1 ← {0, 1}λ, r2 ← {0, 1}λ and sets σone = (r1 ⊕ x′, r2).
It computes VKone ← iO(Prog-VKone{m∗, σone}), SKabo ← iO(Prog-SKabo{m∗,K1{m∗},K2{m∗}, x})
and VKabo ← iO(Prog-VKabo{m∗,K1{m∗},K2{m∗}, x}) and sends (σone,VKone,SKabo,VKabo) to A.

Hyb4 In this experiment, the challenger chooses keys K ′1,K
′
2 and computes the signature σone using K ′1,K

′
2.

1. A sends message m∗ ∈M.
2. Challenger chooses PRF keysK1 ← F.setup(1λ), K2 ← F.setup(1λ), K ′1 ← F.setup(1λ), K ′2 ← F.setup(1λ)

and x ∈ {0, 1}λ, x′ ← {0, 1}λ.
It computes K1{m∗} ← F.puncture(K1,m

∗), K2{m∗} ← F.puncture(K2,m
∗).

Next, it sets σ′one = (F (K ′1,m
∗)⊕ x′, F (K ′2,m

∗)).

It computes VK′one ← iO(Prog-VKone{m∗, σ′one}), SKabo ← iO(Prog-SKabo{m∗,K1{m∗},K2{m∗}, x})
and VKabo ← iO(Prog-VKabo{m∗,K1{m∗},K2{m∗}, x}) and sends (σ′one,VK′one,SKabo,VKabo) to A.
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Analysis We will now analyse A’s advantage in the above experiments. As before, let pi,A denote the
probability that A outputs 1 in Hybi.

Claim 5.15. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, |p0,A−p1,A| ≤
negl(λ).

Proof. Since only the punctured keys are reflected in the programs given to A, it follows from the security of
the puncturable PRF that we can replace F (K1,m

∗) and F (K2,m
∗) with uniformly random strings.

Claim 5.16. Experiments Hyb1 and Hyb2 are identical, and therefore, p1,A = p2,A.

Proof. This is just a notation change, as the distribution of σone is the same.

Claim 5.17. Experiments Hyb2 and Hyb3 are identical, and therefore, p2,A = p3,A.

Proof. This is similarly just a notation change that does not affect the distribution of σone.

Claim 5.18. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, |p3,A−p4,A| ≤
negl(λ).

Proof. Here, we can apply the selective security for the puncturable PRF in reverse, replace random strings
with the values F (K ′1,m

∗) and F (K ′2,m
∗) at the punctured points.

Noting that Hyb0 and Hyb4 represent the two scenarios in Exp-Spl(1λ,S,A) and combining the above
claims, it follows that any PPT adversary A has negligible advantage in Exp-Spl(1λ,S,A).

6 Message Hiding Encodings

We will now describe a simpler primitive called message hiding encodings for Turing machines. Let M be
a Turing machine, inp an input to M , and T an integer. Recall that ΠT

M (inp) denotes whether M accepts
inp within T steps. A message hiding encoding scheme MHE for message space M consists of algorithms
MHE.enc and MHE.dec described as follows.

MHE.enc(1λ,M, T, inp,msg) The encoding algorithm takes as input the security parameter λ (in unary),
the description of a Turing machine M , time bound T (in binary), input inp and message msg ∈ M.
It outputs an encoding enc.

MHE.dec(1λ,M, inp, T, enc) The decoding algorithm takes as input the security parameter λ (in unary),
the description of a Turing machine M , time bound T and encoding enc. It outputs either a message
msg ∈M or ⊥.

Correctness For all Turing machines M , time bounds T , inputs inp and messages msg ∈M, if ΠT
M (inp) =

1, then
MHE.dec(1λ,M, inp, T,MHE.enc(1λ,M, T, inp,msg)) = msg.

Efficiency For efficiency, we require that both MHE.enc should run in time poly(λ, |M|, |inp|, lgT), while
MHE.dec’s running time is bounded by poly(λ, |M|, |inp|, lgT, t∗), where t∗ is the time at which M halts on
input inp. Note that this implies the size of encoding enc is bounded by poly(λ, |M|, |inp|, lgT).
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Security The security notion for message hiding encoding schemes can be formalized as follows.

Definition 6.1. A message hiding encoding scheme MHE for message space M is secure if for all secu-
rity parameters λ, messages msg0,msg1 ∈ M, Turing machines M , time bounds T , inputs inp such that
ΠT
M (inp) = 0, for all PPT adversaries A,

|Pr[A(MHE.enc(1λ,M, T, inp,msgb)) = b]− 1/2| ≤ negl(λ).

6.1 Construction

We now describe our message hiding encoding scheme for Turing machines and message spaceM. We will as-
sume the number of states of any input Turing machine, and the input time bound T are polynomial in λ, and
therefore expressible using λ bits. Let Acc = (Setup-Acc, Setup-Acc-Enforce-Read, Setup-Acc-Enforce-Write,
Prep-Read, Prep-Write, Verify-Read, Write-Store, Update) be an accumulator for message space Σtape with
accumulated value of size `Acc bits, Itr = (Setup-Itr, Setup-Itr-Enforce, Iterate) an iterator for message space
{0, 1}2λ+`Acc with iterated value of size `Itr bits and S = (Setup-Spl,Sign-Spl,Verify-Spl,Split,Sign-Spl-abo) a
splittable signature scheme with message space {0, 1}`Itr+`Acc+2λ. We will assume that Setup-Spl uses `rnd bits
of randomness. Let F a puncturable PRF with key space K, punctured key space Kp, domain {0, 1}λ, range
{0, 1}`rnd and algorithms F.setup, F.puncture, F.eval. The algorithms MHE.enc and MHE.dec are defined as
follows.

• MHE.enc(1λ,M, T, inp,msg) The encoding algorithm first computes (PPAcc, w̃0, s̃tore0)← Setup-Acc(1λ, T ).

Let `inp = |inp|. It computes s̃torej = Write-Store(PPAcc, s̃torej−1, j−1, inpj), auxj = Prep-Write(PPAcc,

s̃torej−1, j−1), w̃j = Update(PPAcc, w̃j−1, inpj , j−1, auxj) for 1 ≤ j ≤ `inp. Finally, it sets w0 = w̃`inp
and s0 = s̃tore`inp .

Next, it computes (PPItr, v0) ← Setup-Itr(1λ, T ), chooses a puncturable PRF key KA ← F.setup(1λ),
and computes an obfuscation P ← iO(Prog{M,T,PPAcc,PPItr,KA}) where Prog is defined in Figure
17.

Let rA = F (KA, 0), (SK0,VK0) = Setup-Spl(1λ; rA) and σ0 = Sign-Spl(SK0, (v0, q0, w0, 0)). It outputs
enc = (P,w0, v0, σ0, store0).

Program Prog

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF key KA ∈ K.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. Let F (KA, t− 1) = rA. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA).
3. Let min = (vin, stin, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
4. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
5. If stout = qrej output ⊥.
6. If stout = qacc output msg.
7. Compute wout = Update(PPAcc, win, symout, posin, aux). If wout = Reject, output ⊥.
8. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
9. Let F (KA, t) = r′A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′A).

10. Let mout = (vout, stout, wout, posout) and σout = Sign-Spl(SK′A,mout).
11. Output symout, posout, stout, wout, vout, σout.

Figure 17: Program Prog

30



• MHE.dec(1λ,M, inp, 1T , enc) Let M = 〈Q,Σtape, δ, q0, qacc, qrej〉 and enc = (P,w0, v0, σ0, store0). Let
pos0 = 0, st0 = q0.

For i = 1 to T , compute

1. Let (symi−1, πi−1) = Prep-Read(PPAcc, storei−1, posi−1).
2. Compute auxi−1 ← Prep-Write(PPAcc, store−1, posi−1).
3. Let out = P (i, symi−1, posi−1, sti−1, wi−1, vi−1, πi−1, auxi−1). If out ∈M∪ {⊥} output out.

Else parse out as (symw,i, posi, sti, wi, vi, σi).
4. Compute storei = Write-Store(PPAcc, storei−1, posi−1, symw,i).

The basic idea of this construction is that input can accumulated as a preprocessing step, and then an
initial signature is produced. This then allows for the main program to step through the computation, taking
one transition of the Turing Machine at a time. We note that the decryption only takes t∗ steps rather than
T , as we have a condition in line 3. above that breaks out of the for loop when the computation is finished.

Remark 6.1. All obfuscated programs are padded appropriately to be of the same size as the largest
program in the corresponding proof hybrids.

Remark 6.2. Note that Prog could receive ‘ε’ as the symbol input. We will assume Prog interprets ‘ε’ as
‘ ’.

6.2 Proof of Security

Theorem 6.1. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions 3.1 and 3.2, Acc is an accumulator satisfying Definitions 4.1,
4.2, 4.3 and 4.4, S is a splittable signature scheme satisfying security Definitions 5.1, 5.2, 5.3 and 5.4, MHE
is a secure message hiding encoder.

Proof. Suppose there exists a security parameter λ, machine M, time bound T , input inp, messages msg0,msg1
and a PPT adversary A such that Pr[A(MHE.enc(1λ,M, T, inp,msgb)) = 1]−1/2 = ε which is non-negligible.
To arrive at a contradiction, we will first define a sequence of outer hybrid experiments Hyb0, . . . ,Hyb4 and
then show that any two consecutive hybrid experiments are computationally indistinguishable. Let us assume
M accepts/rejects inp at time t∗ < T .

Hyb0 This hybrid corresponds to the real security game.

Hyb1 This hybrid is similar to the previous one, except that the challenger chooses another PRF key KB to
be used for signing/verifying ‘B’ type signature. The challenger computes KB ← F.setup(1λ) and outputs an
obfuscation of Prog-1{M , T , PPAcc, PPItr, KA, KB}. (defined in Figure 18). In this program, the program
checks for ‘B’ type signatures, and if the incoming message has a ‘B’ type signature, then the program signs
the outgoing message as a ‘B’ type signature. Also, if the incoming signature is ‘B’ type and t < t∗, then
the program rejects if state is qrej or qacc.

We will now define 2t∗ hybrids Hyb2,i and Hyb′2,i for 0 ≤ i < t∗ as follows.

Hyb2,i In this hybrid, the challenger first computes the ‘correct message’ mi to be signed at step i. The
message mi is computed as follows:

Let st0 = q0, pos0 = 0. For j = 1 to i:

1. (symj , πj) = Prep-Read(PPAcc, storej−1, posj−1).
2. auxj = Prep-Write(PPAcc, storej−1, posj−1).
3. (stj , symw,j , β) = δ(stj−1, symj−1).
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Prog-1

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KA,KB ∈ K.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. Let F (KA, t − 1) = rA, F (KB , t − 1) = rB . Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and t > t∗ output ⊥.
6. If α 6= ‘A’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’, output ⊥.
Else if stout = qacc and α =‘A’, output msg.

11. Compute wout = Update(PPAcc, win, symout, posin, aux).
12. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
13. Let r′A = F (KA, t), r

′
B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).

14. Let mout = (vout, stout, wout, posout) and σout = Sign-Spl(SK′α,mout).
15. Output posout, symout, stout, wout, vout, σout.

Figure 18: Prog-1

4. wj = Update(PPAcc, wj−1, symw,j , posj−1, auxj).
5. vj = Iterate(PPItr, vj−1, (stj−1, wj−1, posj−1)).
6. storej = Write-Store(PPAcc, storej−1, posj−1, symw,j).
7. posj = posj−1 + β.

It setsmi = (vi, sti, wi, posi) and computes the obfuscation of Prog-2-i{i,M, T,msgb,PPAcc,PPItr,KA,KB ,mi}
(defined in Figure 19), which accepts only ‘A’ type signatures for the first i time steps. Also, if the state
output is qacc in the first i steps, it outputs ⊥ instead of outputting message. For the output, if t = i and
the message to be signed is the ‘correct message’, it outputs an ‘A’ type signature, else it outputs a ‘B’ type
signature. For t > i, the type of signature output is the same as type of signature input.

Hyb′2,i In this hybrid, the challenger outputs the obfuscation of Prog′-2-i{i, M , T , msgb, PPAcc, PPItr, KA,
KB , mi} (defined in Figure 20), which accepts only ‘A’ type signatures for the first i+ 1 time steps. If the
state is qacc at (i+ 1)th step, it outputs ⊥. For the output, if t = i+ 1 and the input message is the ‘correct
message’, it outputs an ‘A’ type signature, else it outputs a ‘B’ type signature. For t > i + 1, the type of
signature output is the same as type of signature input.

Hyb3 In this hybrid, the challenger outputs an obfuscation of P3 = Prog-3{M,T, t∗,PPAcc,PPItr,msgb,KA,
KB} (described in Figure 21). Note that F (KA, t

∗) will not be computed in this hybrid. Also, the only
inputs for which a ‘B’ type signature can possibly be output correspond to t = t∗.

Hyb4 In this hybrid, the challenger outputs the obfuscation of Pb = Prog-4{M,T, t∗,PPAcc,PPItr,KA, KB}
(defined in Figure 22), a program that outputs ⊥ for all t > t∗, including the case when the signature is a
valid ‘A’ type signature. As a result, it doesn’t output msg at any instant, and hence P0 and P1 are identical.
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Prog-2-i

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KA,KB ∈ K, message
mi.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. Let rA = F (KA, t − 1), rB = F (KB , t − 1). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i) output ⊥.
6. If α 6= ‘A’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’, output ⊥.
Else if stout = qacc and α = ‘A’ and t ≤ i, output ⊥.
Else if stout = qacc, output msg.

11. Compute wout = Update(PPAcc, win, symout, posin, aux). If wout = Reject, output ⊥.
12. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
13. Let r′A = F (KA, t), r

′
B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
14. Let mout = (vout, stout, wout, posout).

If t = i and mout = mi, σout = Sign-Spl(SK′A,mout) .

Else if t = i and mout 6= mi, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
15. Output symout, posout, stout, wout, vout, σout.

Figure 19: Prog-2-i

Analysis Let AdvxA denote the advantage of adversary A in Hybx, and Adv
′x
A the advantage of A in Hyb′x.

Lemma 6.1. Assuming iO is a secure indistinguishability obfuscator, F is a secure puncturable PRF and S
is a splittable signature scheme satisfying Definition 5.1, for any PPT adversary A, |Adv0A−Adv1A| ≤ negl(λ).

The proof of this lemma is contained in Appendix A.1.

Claim 6.1. Assuming iO is a secure indistinguishability obfuscation, for any PPT A, |Adv1A − Adv2,0A | ≤
negl(λ).

Proof. Programs Prog-2-0 and Prog-1 are functionally identical. As a result, their obfuscations are compu-
tationally indistinguishable, by the security requirement of iO.

Lemma 6.2. Let 1 ≤ i ≤ t∗. Assuming iO is a secure indistinguishability obfuscator, F is a selectively
secure puncturable PRF and S is a splittable signature scheme satisfying definitions 5.1, 5.2, 5.3 and 5.4,

for any PPT adversary A, |Adv2,iA − Adv
′2,i
A | ≤ negl(λ).

The proof of this lemma is contained in Appendix A.2.

Lemma 6.3. Let 1 ≤ i ≤ t∗. Assuming iO is a secure indistinguishability obfuscator, Itr is an iterator
satisfying indistinguishability of Setup (Definition 3.1) and is enforcing (Definition 3.2), and Acc is an
accumulator satisfying indistinguishability of Read/Write Setup (Definitions 4.1 and 4.2) and is Read/Write

enforcing (Definitions 4.3 and 4.4), for any PPT adversary A, |Adv
′2,i
A − Adv2,i+1

A | ≤ negl(λ).
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Prog′-2-i

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗, message msg,
Public parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KA,KB ∈ K, message mi.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. Let F (KA, t − 1) = rA, F (KB , t − 1) = rB . Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i+ 1) output ⊥.
6. If α 6= ‘A’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’, output ⊥.
Else if stout = qacc and α = ‘A’ and t ≤ i+ 1 output ⊥.
Else if stout = qacc output msg.

11. Compute wout = Update(PPAcc, win, symout, posin, aux). If wout = Reject, output ⊥.
12. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
13. Let r′A = F (KA, t), r

′
B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
14. Let mout = (vout, stout, wout, posout).

If t = i+ 1 and min = mi, σout = Sign-Spl(SK′A,mout) .

Else if t = i+ 1 and min 6= mi, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
15. Output posout, symout, stout, wout, vout, σout.

Figure 20: Prog′-2-i

The proof of this lemma is contained in Appendix A.3.

Lemma 6.4. Assuming iO is a secure indistinguishability obfuscator and Acc satisfies indistinguishability

of Read Setup (Definition 4.1), for any PPT adversary A, |Adv
′2,t∗−1
A − Adv3A| ≤ negl(λ).

The proof of this lemma is contained in Appendix A.4.

Lemma 6.5. Assuming S satisfies VKrej indistinguishability (Definition 5.1), iO is a secure indistinguisha-
bility obfuscator and F is a selectively secure pseudorandom function, for any adversary A, |Adv3A−Adv4A| ≤
negl(λ).

The proof of this lemma is contained in Appendix A.5.

Claim 6.2. Any adversary A has 0 advantage in Hyb4.

Proof. Prog-4{M,T, t∗,PPAcc,PPItr,KA, KB} is independent of message msgb. As a result, any adversary
has 0 advantage in guessing b.
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Prog-3

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗, message msg, Public
parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KA,KB ∈ K.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. Let F (KA, t − 1) = rA, F (KB , t − 1) = rB . Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
3. Let min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 0 output ⊥.
5. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
6. If stout = qrej output ⊥.
7. If stout = qacc and t ≤ t∗ output ⊥.

Else if stout = qacc output msg.
8. Compute wout = Update(PPAcc, win, symout, posin, aux). If wout = Reject, output ⊥.
9. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).

10. Let r′B = F (KB , t), compute (SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
11. Let mout = (vout, stout, wout, posout).

If t = t∗, σout = Sign-Spl(SK′B ,mout).

Else let r′A = F (KA, t),
compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),
σout = Sign-Spl(SK′A,mout).

12. Output posout, symout, stout, wout, vout, σout.

Figure 21: Prog-3

Prog-4

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KA,KB ∈ K.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗ output ⊥.
2. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
3. Let F (KA, t − 1) = rA, F (KB , t − 1) = rB . Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
4. Let min = (vin, stin, win, posin).
5. If Verify-Spl(VKA,min, σin) = 0 output ⊥.
6. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
7. If stout = qrej output ⊥.
8. If stout = qacc output ⊥.
9. Compute wout = Update(PPAcc, win, symout, posin, aux). If wout = Reject, output ⊥.

10. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
11. Let r′A = F (KA, t), r

′
B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
12. Let mout = (vout, stout, wout, posout).

If t = t∗, σout = Sign-Spl(SK′B ,mout).
Else σout = Sign-Spl(SK′A,mout).

13. Output posout, symout, stout, wout, vout, σout.

Figure 22: Prog-4

7 Machine Hiding Encodings

In this section, we will describe machine hiding encodings. Let M be a Turing machine, x an input to the
Turing machine, and T the time bound. As before, let ΠT

M (x) be a function runs M on input x for at most
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T steps, and if M does not halt in T steps, it outputs 0. A machine hiding encoding scheme McHE consists
of algorithms Mc.enc and Mc.dec described below.

Mc.enc(1λ,M, T, x) The encoding algorithm is a randomized algorithm that takes as input the security
parameter λ (in unary), the description of a Turing machine M , time bound T (in binary) and an
input x. It outputs an encoding enc.

Mc.dec(1λ,M, T, x, enc) The decoding algorithm takes as input the security parameter λ (in unary), the
description of Turing machine M , time bound T (in binary), input x and an encoding enc. It outputs
0/1.

Correctness Fix any security parameter λ, Turing machine M , input x and time bound T . Then, the
following holds:

Mc.dec(1λ,M, x,Mc.enc(1λ,M, T, x)) = ΠT
M (x).

Efficiency We require that Mc.enc outputs the encoding in time poly(λ, |M|, |x|, lgT) (which implies the
size of encoding is poly(λ, |M|, |x|, lgT)), while Mc.dec runs in time poly(λ, |M|, |x|, t∗), where t∗ is the running
time of M on input x.

Security We consider the following indistinguishability based security notion. Let M0,M1 be any Turing
machines, T a time bound and x an input to the Turing machines. M0 and M1 are said to be conforming
on input x if M0(x) = M1(x) and both halt in t∗ < T steps.

Definition 7.1. A machine hiding encoding scheme McHE is said to be secure if for all PPT adversaries A,
for all security parameters λ, machines M0,M1 with equally-sized descriptions, time bounds T and inputs x
such that M0 and M1 are conforming on input x,

|Pr[A(Mc.enc(1λ,Mb, T, x)) = b]− 1/2| ≤ negl(λ).

Here, when we say that M0 and M1 are “conforming” on x, we mean that M0(x) = M1(x), and both
halt at the same time t∗.

Remark 7.1. For our construction, we will assume the encoding function also receives as input the tape
movement function for machine M on input x, and that M0 and M1 have identical tape movement functions
on input x; that is tmfM0,x and tmfM1,x are identical functions. We can make this assumption without loss
of generality because both M0 and M1 can be compiled into oblivious Turing machines OTM0 and OTM1

such that they have identical tape movement functionality. The overhead associated with converting them
into oblivious Turing machines is only polylog(T ) [PF79].

7.1 Construction

In this section, we will construct a machine hiding encoding scheme McHE = (Mc.enc,Mc.dec). This construc-
tion is similar to the message hiding encoding scheme construction described in Section 6.1. As mentioned
in Remark 7.1, we will assume the encoding function is also given the tape movement function tmfM (·).

Let PKE = (Setup-PKE,Enc-PKE,Dec-PKE) be a public key encryption scheme. We will assume Setup-PKE
uses `1 = `1(λ) bits of randomness, and Enc-PKE uses `2 = `2(λ) bits of randomness, where `1 and `2 are
polynomials and let `rnd = `1 + 2`2. We will let `3 denote the bit length of ciphertexts produced by
Enc-PKE. Let iO be a secure indistinguishability obfuscator, Acc =(Setup-Acc, Setup-Acc-Enforce-Read,
Setup-Acc-Enforce-Write, Prep-Read, Prep-Write, Verify-Read, Write-Store, Update) a positional accumulator
scheme with message space {0, 1}`3+lg T and producing accumulator values of bit length `Acc, Itr = (Setup-Itr,
Setup-Itr-Enforce, Iterate) an iterator for message space {0, 1}`3+`Acc+lg T with iterated value of size `Itr bits
and S = (Setup-Spl,Sign-Spl,Verify-Spl,Split,Sign-Spl-abo) a splittable signature scheme with message space
{0, 1}`Itr+`3+`Acc+lg T . For simplicity of notation, we will assume Setup-Spl uses `rnd(λ) bits of randomness.
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Let F a puncturable PRF with key space K, punctured key space Kp, domain [T ], range {0, 1}`rnd(λ) and
algorithms F.setup, F.puncture, F.eval. The algorithms Mc.enc and Mc.dec are defined as follows.

• Mc.enc(1λ,M, T, x, tmf) The encoding algorithm first chooses puncturable PRF keysKE ← F.setup(1λ),
KA ← F.setup(1λ). KE will be used for computing an encryption of the symbol and state, and KA

to compute the secret key/verification key for signature scheme. Let (r0,1, r0,2, r0,3) = F (KE , 0),
(pk, sk) = Setup-PKE(1λ; r0,1).

It computes (PPAcc, w̃0, s̃tore0)← Setup-Acc(1λ, T ). Let `inp = |x|. It encrypts each bit of x separately;
that is, it computes cti = Enc-PKE(pk, xi) for 1 ≤ i ≤ `inp. These ciphertexts are ‘accumulated’

using the accumulator. It computes s̃torej = Write-Store(PPAcc, s̃torej−1, j − 1, (ctj , 0)), auxj =

Prep-Write(PPAcc, s̃torej−1, j−1), w̃j = Update(PPAcc, w̃j−1, inpj , j−1, auxj) for 1 ≤ j ≤ `inp. Finally,

it sets w0 = w̃`inp and s0 = s̃tore`inp .

Next, it computes (PPItr, v0)← Setup-Itr(1λ, T ), Finally, it computes an obfuscation P ← iO(Prog{M ,
T , PPAcc, PPItr, KE , KA}) where Prog is defined in Figure 23.

It computes ctst ← Enc-PKE(pk, q0). Let rA = F (KA, 0), (SK0,VK0) = Setup-Spl(1λ; rA) and σ0 =
Sign-Spl(SKA, (v0, ctst, w0, 0)). It outputs enc = (P,w0, v0, σ0, store0).

Program Prog

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , Public parameters for accumu-
lator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KE ,KA ∈ K.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Let posin = tmf(t− 1) and posout = tmf(t).
2. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t, output ⊥.
3. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
4. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
5. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
6. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
7. Let (st′, sym′, β) = δ(st, sym).
8. If stout = qrej output 0.
9. If stout = qacc output 1.

10. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =
Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

11. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
12. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
13. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
14. Let mout = (vout, ctst,out, wout, posout) and σout = Sign-Spl(SK′A,mout).
15. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 23: Program Prog

• Mc.dec(enc) The decoding algorithm receives as input enc = ((P, ctst,0, w0, v0, σ0, store0)). Let pos0 =
0. For i = 1 to T ,

1. Let ((ctsym,lw, lw), π) = Prep-Read(PPAcc, storei−1, posi−1).
2. Let aux = Prep-Write(PPAcc, storei−1, posi−1).
3. Compute (posi, (ctsym,i, lw), ctst,i, wi, vi, σi) = P (t, (ctsym,lw, lw), ctst,i−1, wi−1, vi−1, σi−1, aux, π).

If P has output 0, 1, or ⊥, then output the same.
4. Otherwise, compute storei = Write-Store(PPAcc, storei−1, posi, (ctsym,i, i)).
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7.2 Proof of Security

Theorem 7.1. Assuming PKE is IND-CPA secure, iO is a secure indistinguishability obfuscator, F is a
selectively secure puncturable PRF, Itr is an iterator satisfying Definitions 3.1 and 3.2, Acc is an accumulator
satisfying Definitions 4.1, 4.2, 4.3 and 4.4, S is a splittable signature scheme satisfying security Definitions
5.1, 5.2, 5.3 and 5.4, McHE is a secure machine hiding encoding scheme (Definition 7.1).

Proof. Consider any Turing machines M0 and M1, input x and time bound T such that M0 and M1 are
conforming on input x. Let tmf(·) be the tape movement function corresponding to M0 and M1, and let
t∗ < T be the instance at which the machines halt on input x. For the proof, we wil define a sequence of
‘outer’ hybrid experiments Hyb0, . . . ,Hyb, and then show that any two outer hybrids are computationally
indistinguishable.

Hyb0 This hybrid corresponds to the real security game. The challenger chooses b ← {0, 1} and honestly
computes enc← Mc.enc(1λ,Mb, T, x, tmf(·)). It sends enc to A and A sends its guess b′.

Hyb1 In this hybrid, the challenger outputs an obfuscation of Prog-1{t∗,KA,KE , b
∗} (defined in Figure 24)

as part of the encoding. This program is similar to Prog, however, for input t > t∗, it outputs ⊥. At t = t∗,
it outputs b∗, which is hardwired by the challenger to be Mb(x).

Prog-1

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , message msg,
Public parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA ∈ K, output b∗.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
5. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
6. If t = t∗, output b∗.

7. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
8. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
9. Let (st′, sym′, β) = δ(st, sym).

10. If stout = qrej output 0.
11. If stout = qacc output 1.
12. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).
13. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
14. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
15. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
16. Let mout = (vout, ctst,out, wout, posout) and σout = Sign-Spl(SK′A,mout).
17. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 24: Prog-1

Next, we define a sequence of hybrids Hyb2,i and Hyb′2,i, where 1 ≤ i ≤ t∗. Let erase be a symbol not
present in Σtape.

Hyb2,i In this hybrid, the challenger outputs an obfuscation of Prog-2-i{i, t∗,KE ,KA, b
∗} as part of the

encoding. Prog-2-i also rejects on input t > t∗, and outputs b∗ on t∗ if the signature is the correct one. For
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t < i, its input output behavior is similar to that of Prog. However, for i ≤ t < t∗, on receiving a valid
signature, it simply outputs encryptions of erase as the encryption of the state and symbol. It accumulates
and iterates accordingly.

Prog-2-i

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Public
parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KE ,KA ∈ K,
output b∗.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
5. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
6. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
7. If t = t∗, output b∗.
8. If i ≤ t < t∗

(a) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1).

ctsym,out = Enc-PKE(pk′, erase; rt,2) and ctst,out = Enc-PKE(pk′, erase; rt,3).

9. Else

(a) Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym =
Dec-PKE(sklw, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =
Dec-PKE(skst, ctst,in).

(c) Let (st′, sym′, β) = δ(st, sym).
(d) If stout = qrej output 0.
(e) If stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

10. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
11. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
12. Let mout = (vout, ctst,out, wout, posout) and σout = Sign-Spl(SK′A,mout).
13. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 25: Prog-2-i

Hyb′2,i In this hybrid, the challenger chooses b ∈ {0, 1}, runs Mb for i − 1 steps and computes the state

st∗ and symbol sym∗ written at (i − 1)th step. Next, it computes (ri−1,1, ri−1,2, ri−1,3) = F (KE , i − 1),
(pk, sk) = Setup-PKE(1λ; ri−1,1), ct1 = Enc-PKE(pk, sym∗; ri−1,2) and ct2 = Enc-PKE(pk, st∗; ri−1,3). It then
computes the obfuscation of Wi,b = Prog′-2-i{i, t∗,KE ,KA, ct1, ct2, b

∗}, which has the ciphertexts ct1 and
ct2 hardwired. On input corresponding to step i−1, Wi,b checks if the signature is valid, and if so, it outputs
ct1 and ct2 without decrypting.

Analysis Let AdvxA denote the advantage of adversary A in hybrid Hybx, and Adv
′x
A the advantage of A

in Hyb′x.

Lemma 7.1. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions 3.1 and 3.2, Acc is an accumulator satisfying Definitions 4.1,
4.2, 4.3 and 4.4, S is a splittable signature scheme satisfying security Definitions 5.1, 5.2, 5.3 and 5.4, for
any PPT adversary A, Adv0A − Adv1A ≤ negl(λ).
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Prog′-2-i

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Public
parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KE ,Kst ∈ K,
output b∗, ciphertexts ct1, ct2.
Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in ∈ Q,
accumulator value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value
aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
5. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
6. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
7. If t = t∗, output b∗.
8. If i ≤ t < t∗

(a) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =
Enc-PKE(pk′, erase; rt,2) and ctst,out = Enc-PKE(pk′, erase; rt,3).

9. Else if t = i− 1,

(a) Set ctsym,out = ct1 and ctst,out = ct2.

10. Else

(a) Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym =
Dec-PKE(sklw, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =
Dec-PKE(skst, ctst,in).

(c) Let (st′, sym′, β) = δ(st, sym).
(d) If stout = qrej output 0.
(e) If stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

11. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
12. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
13. Let mout = (vout, ctst,out, wout, posout) and σout = Sign-Spl(SK′A,mout).
14. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 26: Prog′-2-i

The proof of this lemma is contained in Appendix B.1.

Claim 7.1. Assuming iO is a secure indistinguishability obfuscator, for any adversary A, Adv1A−Adv2,t
∗

A ≤
negl(λ).

Proof. We note that the programs Prog-1 and Prog-2-t∗ are functionally identical.

Lemma 7.2. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions 3.1 and 3.2, Acc is an accumulator satisfying Definitions 4.1,
4.2, 4.3 and 4.4, S is a splittable signature scheme satisfying security Definitions 5.1, 5.2, 5.3 and 5.4, for

any PPT adversary A, Adv2,iA − Adv
′2,i
A ≤ negl(λ).

The proof of this lemma is contained in Appendix B.2.

Lemma 7.3. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable

PRF, PKE is IND-CPA secure, for any adversary A, Adv
′2,i
A − Adv2,i−1A ≤ negl(λ).
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The proof of this lemma is contained in Appendix B.3.

To conclude, we note that Adv2,1A = 0, as the differences between M0 and M1 have all been “erased.”

7.3 Extensions and Variations

SInce our proof is aimed at achieving machine hiding, it does not erase the input. However, the proof could
be easily extended at the end to do this via a simple IND-CPA based hybrids. Note that at the end of
our current proofs the no steps actually decrypt the cipertexts. If we add this step of hiding the input, the
construction can serve as a secure randomized encoding.
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A Proofs for Section 6

A.1 Proof of Lemma 6.1

Proof Intuition Let us consider the differences between Prog and Prog-1.

1. For inputs corresponding to t > t∗, both programs are identical.
2. For inputs corresponding to t ≤ t∗, Prog-1 first checks if it is an ‘A’ type signature. If not, it checks

if it a ‘B’ type signature. If the incoming signature is a ‘B’ type signature, then the program cannot
output msg; instead, it aborts if stout = qacc. However, if stout is neither qacc nor qrej, then the output
signature is of the same type as the input one.

So, we need to allow ‘B’ type signatures for steps 1 ≤ t ≤ t∗. We do this in a ‘top-down’ manner, and
define intermediate hybrid experiments Ht∗ , . . . ,H0, where Hi outputs Prog-0-i, which allows only ‘A’ type
signatures for t ≤ i or t > t∗.

First, note that Prog-0-i can be modified into another functionally equivalent program which uses a
‘reject’ verification key if t = i and ‘A’ verification fails. While using this reject verification key, we can add
additional logic to the program, ensuring that it rejects if it verifies a ‘B’ type signature at t = i and it reaches
qacc (the program never reaches this piece of code and hence functionality is preserved). Finally, we observe
that Prog-0-i does not require F (KB , i− 1), so KB can be punctured at i− 1; ensuring that the adversary
has no information about the secret key derived from F (KB , i− 1). Using VKrej indistinguishability, we can
replace the reject verification key with a valid verification key.

Formal proof We will first define t∗ intermediate hybrids H0, . . . ,Ht∗ , and then show that any two
consecutive hybrids are computationally indistinguishable.

Hybrid Hi In this experiment, the challenger outputs an obfuscation of Prog-0-i{i,M , T , PPAcc, PPItr,
KA, KB} (defined in Figure 27).

Clearly, Ht∗ corresponds to Hyb0 and H0 to Hyb1. Therefore, it suffices to show that Hi and Hi−1 are
computationally indistinguishable. Let AdviA denote the advantage of A in Hi.

Claim A.1. Assuming iO is a secure indistinguishability obfuscator, F is a secure puncturable PRF and S is
a splittable signature scheme satisfying Definition 5.1, for any PPT adversary A, |AdviA−Advi−1A | ≤ negl(λ).

Proof. We will first define intermediate hybrid experiments Hi,a, . . . ,Hi,f .

Hybrid Hi,a In this hybrid, the challenger outputs an obfuscation of Prog-0-i-a{i,M , T , PPAcc, PPItr, KA,
KB} (described in Figure 28), which is functionally identical to Prog-0-i{i,M , T , PPAcc, PPItr, KA, KB}.

Hybrid Hi,b In this hybrid, the challenger first punctures the PRF key KB on input i − 1. It computes
KB{i − 1} ← F.puncture(KB , i − 1). Next, it computes rC = F (KB , i − 1) and (SKC ,VKC ,VKC,rej) =
Setup-Spl(1λ; rC). It hardwires KB{i− 1} and VKC,rej in the program Prog-0-i-b{i,M , T , PPAcc, PPItr, KA,
KB{i− 1}, VKC,rej} (defined in Figure 29).
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Prog-0-i

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parame-
ters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KA,KB ∈ K.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. Let F (KA, t − 1) = rA, F (KB , t − 1) = rB . Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i) output ⊥.
6. If α = ‘-’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’, output ⊥.
Else if stout = qacc and α =‘A’, output msg.

11. Compute wout = Update(PPAcc, win, symout, posin, aux).
12. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
13. Let r′A = F (KA, t), r

′
B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
14. Let mout = (vout, stout, wout, posout) and σout = Sign-Spl(SK′α,mout).
15. Output posout, symout, stout, wout, vout, σout.

Figure 27: Prog-0-i

Prog-0-i-a

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parame-
ters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KA,KB ∈ K.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. Let F (KA, t − 1) = rA, F (KB , t − 1) = rB . Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB), VK = VKB,rej.
3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i− 1) output ⊥.
6. If α =‘-’ and t = i and Verify-Spl(VK,min, σin) = 0 output ⊥.
7. If α = ‘-’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
8. If α =‘-’, output ⊥ .
9. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

10. If stout = qrej output ⊥.
11. If stout = qacc and α =‘B’, output ⊥.

Else if stout = qacc and α =‘A’, output msg.
12. Compute wout = Update(PPAcc, win, symout, posin, aux).
13. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
14. Let r′A = F (KA, t), r

′
B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
15. Let mout = (vout, stout, wout, posout) and σout = Sign-Spl(SK′α,mout).
16. Output posout, symout, stout, wout, vout, σout.

Figure 28: Prog-0-i-a
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Prog-0-i-b

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public
parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KA ∈ K,
Punctured PRF key KB{i− 1} ∈ Kp, verification key VKC .

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. If t 6= i, let F (KA, t − 1) = rA, F.eval(KB{i− 1}, t− 1) = rB . Compute (SKA,VKA,VKA,rej) =

Setup-Spl(1λ; rA), (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB), VK = VKB,rej.
Else VK = VKC .

3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i− 1) output ⊥.
6. If α =‘-’ and t = i and Verify-Spl(VK,min, σin) = 0 output ⊥.
7. If α = ‘-’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
8. If α =‘-’, output ⊥ .
9. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

10. If stout = qrej output ⊥.
11. If stout = qacc and α =‘B’, output ⊥.

Else if stout = qacc and α =‘A’, output msg.
12. Compute wout = Update(PPAcc, win, symout, posin, aux).
13. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
14. Let r′A = F (KA, t), r

′
B = F.eval(KB{i− 1}, t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
15. Let mout = (vout, stout, wout, posout) and σout = Sign-Spl(SK′α,mout).
16. Output posout, symout, stout, wout, vout, σout.

Figure 29: Prog-0-i-b

Hybrid Hi,c This experiment is similar to Hi,b, except that rC is chosen uniformly at random from {0, 1}λ.
More formally, the challenger computes KB{i − 1} as before. However, it chooses (SKC ,VKC ,VKC,rej) ←
Setup-Spl(1λ). The obfuscated program has VKC,rej hardwired as before.

Hybrid Hi,d In this hybrid, the challenger chooses (SKC ,VKC ,VKC,rej)← Setup-Spl(1λ) as before. How-
ever, instead of hardwiring VKC,rej, it hardwires VKC .

Hybrid Hi,e In this hybrid, the challenger uses a pseudorandom string to compute (SKC ,VKC ,VKC,rej).
More formally, the challenger computes rC = F (KB , i− 1), (SKC ,VKC ,VKC,rej) = Setup-Spl(1λ; rC).

Hybrid Hi,f This experiment corresponds to Hi−1.

Analysis Let Advi,xA denote the advantage of A in Hi,x, and let AdviA denote the advantage of A in Hi.

Claim A.2. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |AdviA − Advi,aA | ≤
negl(λ).

Proof. First, since Verify-Spl(VKB,rej,min, σin) = 0 for all min, σin, both programs output ⊥ when α =‘B’
and t = i. For inputs corresponding to t 6= i or t > t∗, both programs have same functionality. Therefore,
both programs have identical functionality, and their obfuscations are computationally indistinguishable.
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Claim A.3. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Advi,aA − Advi,bA | ≤
negl(λ).

Proof. The only difference between Prog-0-i-a and Prog-0-i-b is that the latter uses a punctured PRF key
KB{i − 1} at steps 2 and 14. At step 2, functionality is preserved since the correct verification key is
hardwired as VKC in the hybrid. Next, note that step 14 functionality can possibly differ only if t = i − 1
and α =‘B’. However, by definition of the program, this case is not possible.

Claim A.4. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, |Advi,bA −
Advi,cA | ≤ negl(λ).

Proof. Note that both programs depend only on KB{i− 1}. As a result, we can replace F (KB , i− 1) with a
random value. From the security of puncturable PRFs, it follows that these two hybrids are computationally
indistinguishable.

Claim A.5. Assuming S is a splittable signature scheme satisfying VKrej indistinguishability (Definition

5.1), for any PPT adversary A, |Advi,cA − Advi,dA | ≤ negl(λ).

Proof. Here, we rely crucially on the fact that SKC was not hardwired in the program. As a result, given
only VKC or VKC,rej, the experiments are indistinguishable.

Claim A.6. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, |Advi,dA −
Advi,eA | ≤ negl(λ).

Proof. This step is similar to the proof of Claim A.4, and follows analogously from the security of the
puncturable PRF.

Claim A.7. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Advi,eA − Advi,fA | ≤
negl(λ).

Proof. The only difference between Hi,e and Hi,f is that Hi,e uses a PRF key KB{i − 1} punctured at
i− 1, while Hi,f uses KB itself. Using the correctness property of puncturable PRFs, we can argue that the
programs output in Hi,e and Hi,f are functionally identical, and therefore Hi,e and Hi,f are computationally
indistinguishable (implied by the security of iO).

To conclude, for any PPT adversary A, if A has advantage Adv0A in Hyb0 and Adv1A in Hyb1, then
|Adv0A − Adv1A| ≤ negl(λ).

A.2 Proof of Lemma 6.2

Proof Intuition Let us first note the differences between Prog-2-i and Prog′-2-i.
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Input corr. to Prog-2-i Prog′-2-i
t > t∗ or t < i Verify ‘A’ signatures only, output ⊥ if

stout ∈ {qacc, qrej}, else output ‘A’ sig-
nature.

Verify ‘A’ signatures only, output ⊥ if
stout ∈ {qacc, qrej}, else output ‘A’ sig-
nature.

t = i Verify ‘A’ signature only, output ⊥ if
stout ∈ {qacc, qrej}, else output ‘A’ sig-
nature if mout = mi, ‘B’ signature if
mout 6= mi.

Verify ‘A’ signatures only, output ⊥ if
stout ∈ {qacc, qrej}, else output ‘A’ sig-
nature.

t = i+ 1 Verify ‘A/B’ signatures, output ⊥ if ‘B’
type signature and stout = qacc, output
signature of same type as incoming sig-
nature.

Verify ‘A’ signature only, output ⊥ if
stout ∈ {qacc, qrej}, else output ‘A’ sig-
nature if min = mi, ‘B’ signature if
min 6= mi.

i+ 2 ≤ t ≤ t∗ − 1 Verify ‘A/B’ signatures, output ⊥ if ‘B’
type signature and stout = qacc, output
signature of same type as incoming sig-
nature.

Verify ‘A/B’ signatures, output ⊥ if ‘B’
type signature and stout = qacc, output
signature of same type as incoming sig-
nature.

In hybrid Hyb2,i the challenger outputs a program P2,i, while in hybrid Hyb′2,i, the challenger outputs a
program P ′2,i. We need to show that P2,i and P ′2,i are indistinguishable, even though their programs could
differ at inputs corresponding to i, i+ 1. The first step in this direction is to transform P2,i into a program
Q1 that, at time t = i + 1, ensures that if a signature passes the ‘A’ verification, then the message signed
must be mi - the correct input message. This is achieved using properties of splittable signatures.

Next, we enforce that if Q1 verifies an ‘A’ type signature for mi at time i+ 1, then the output state must
not be qacc. Note that during correct evaluation, we will not reach state qacc, and therefore, this can be
enforced using the accumulator security property. At this point, Q1 accepts both ‘A/B’ type signatures at
time i+ 1 and still outputs ‘A/B’ type signatures at time i. Let VKi+1

A ,VKi+1
B be the verification keys used

at time i+ 1, and SKi
A,SKi

B the secret keys used at time i. Using the properties of splittable signatures, we
change it so that it uses only VKi+1

A at step i+ 1, and only SKi
A at step i. This completes our proof.

Formal Proof To prove Lemma 6.2, we will first define a sequence of hybrids H0, . . . ,H13, where H0

corresponds to Hyb2,i and H13 corresponds to Hyb′2,i.

Hybrid H0 This experiment corresponds to Hyb2,i.

Hybrid H1 In this experiment, the challenger punctures key KA,KB at input i, uses F (KA, i) and
F (KB , i) to compute (SKC ,VKC) and (SKD,VKD) respectively. More formally, it computes KA{i} ←
F.puncture(KA, i), rC = F (K, i), (SKC ,VKC ,VKC,rej) = Setup-Spl(1λ; rC) and KB{i} ← F.puncture(KB , i),
rD = F (K, i), (SKD,VKD,VKD,rej) = Setup-Spl(1λ; rD).

It then hardwires KA{i},KB{i}, SKC ,VKC ,SKD,VKD in an altered program P = Prog-2-i-1{KA{i},
KB{i}, SKC , VKC , SKD, VKD, mi}(defined in Figure 30) and outputs its obfuscation. P is identical to
Prog-2-i, except that it uses a punctured PRF key KA{i} instead of KA, and KB{i} instead of KB . On
input corresponding to i, P uses the hardwired keys.

Hybrid H2 In this hybrid, the challenger chooses rC , rD uniformly at random instead of computing
them using F (KA, i) and F (KB , i). In other words, the secret key/verification key pairs are sampled as
(SKC ,VKC)← Setup-Spl(1λ) and (SKD,VKD)← Setup-Spl(1λ).

Hybrid H3 In this hybrid, the challenger computes constrained signing keys using the Split algorithm. As
in the previous hybrids, it first computes the ith message mi. Then, it computes (σC,one, VKC,one, σC,abo,
VKC,abo) = Split(SKC ,mi) and (σD,one, VKD,one, σD,abo, VKD,abo) = Split(SKD,mi).
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Prog-2-i-1

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, punctured PRF keys KA{i},KB{i} ∈ Kp,
secret/verification keys SKC ,SKD,VKD,VKD, message mi.

Input: Time t ∈ [T ], position posin ∈ [T ], symbol symin ∈ Σtape, state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. If t 6= i+ 1, let rA = F.eval(KA{i}, t− 1), rB = F.eval(KB{i}, t− 1). Compute (SKA, VKA, VKA,rej)

= Setup-Spl(1λ; rA), (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
Else set VKA = VKC ,VKB = VKD.

3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i) output ⊥.
6. If α = ‘-’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’ output ⊥.
Else if stout = qacc and α = ‘A’ and t ≤ i output ⊥.
Else if stout = qacc and α =‘A’ output msg.

11. Compute wout = Update(PPAcc, win, symout, posout, aux).
12. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
13. If t 6= i, let r′A = F.eval(KA{i}, t), r′B = F.eval(KB{i}, t). Compute (SK′A, VK′A, VK′A,rej) =

Setup-Spl(1λ; r′A), (SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
Else set SK′A = SKC , SK′B = SKD.

14. Let mout = (vout, stout, wout, posout).
If t = i and mout = mi, σout = Sign-Spl(SK′A,mout) .

Else if t = i and mout 6= mi, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
15. Output posout, symout, stout, wout, vout, σout.

Figure 30: Prog-2-i-1

It then hardwires σC,one, SKD,abo in P = Prog-2-i-2{KA{i}, KB{i}, σC,one, VKC , SKD,abo, VKD, mi}
(defined in Figure 31) and outputs an obfuscation of P . Note that the only difference between Prog-2-i-2
and Prog-2-i-1 is that Prog-2-i-1, on input corresponding to step i, signs the outgoing message m using SKC

if m = mi, else it signs using SKD. On the other hand, at step i, Prog-2-i-2 outputs σC,one if the outgoing
message m = mi, else it signs using SKC,abo.

Hybrid H4 This hybrid is similar to the previous one, except that the challenger hardwires VKC,one in
Prog-2-i-2 instead of VKC ; that is, it computes (σC,one, VKC,one, σC,abo, VKC,abo) = Split(SKC ,mi) and
(σD,one, VKD,one, σD,abo, VKD,abo) = Split(SKD,mi) and outputs an obfuscation of W4 = Prog-2-i-2{KA{i},
KB{i}, σC,one, VKC,one, SKD,abo, VKD, mi}).

Hybrid H5 In this hybrid, the challenger hardwires VKD,abo instead of VKD. As in the previous hybrid,
it uses Split to compute (σC,one, VKC,one, σC,abo, VKC,abo) and (σD,one, VKD,one, σD,abo, VKD,abo) from
SKC and SKD respectively. However, it outputs an obfuscation of W5 = Prog-2-i-2{KA{i}, KB{i}, σC,one,
VKC,one, SKD,abo, VKD,abo, mi}.

Hybrid H6 In this hybrid, the challenger outputs an obfuscation of P = Prog-2-i-3{KA{i}, KB{i}, σC,one,
VKC,one, SKC,abo,VKC,abo,mi} (described in Figure 32). This program performs extra checks before com-

48



Prog-2-i-2

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, punctured PRF keys KA{i},KB{i} ∈ Kp,
constrained secret/verification keys σC,one,VKC , SKabo,D,VKD, message mi.

Input: Time t ∈ [T ], position posin ∈ [T ], symbol symin ∈ Σtape, state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. If t 6= i+ 1, let rA = F.eval(KA{i}, t− 1), rB = F.eval(KB{i}, t− 1). Compute (SKA, VKA, VKA,rej)

= Setup-Spl(1λ; rA), (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
Else set VKA = VKC ,VKB = VKD.

3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i) output ⊥.
6. If α = ‘-’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’ output ⊥.
Else if stout = qacc and α = ‘A’ and t ≤ i output ⊥.
Else if stout = qacc and α =‘A’ output msg.

11. Compute wout = Update(PPAcc, win, symout, posout, aux).
12. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
13. If t 6= i, let r′A = F.eval(KA{i}, t), r′B = F.eval(KB{i}, t). Compute (SK′A, VK′A, VK′A,rej) =

Setup-Spl(1λ; r′A), (SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
Else set SK′A = σC,one, SK′B = SKabo,D.

14. Let mout = (vout, stout, wout, posout).
If t = i and mout = mi, σout = σC,abo .

Else if t = i and mout 6= mi, σout = Sign-Spl-abo(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
15. Output posout, symout, stout, wout, vout, σout.

Figure 31: Prog-2-i-2

puting the signature. In particular, the program additionally checks if the input corresponds to step i + 1.
If so, it checks whether min = mi or not, and accordingly outputs either ‘A’ or ‘B’ type signature.

Hybrid H7 In this hybrid, the challenger makes the accumulator ‘read enforcing’. It computes the first i
‘correct inputs’ for the accumulator. Initially, the state is st0 = q0. Let tape be a T dimensional vector, the
first `inp entries of tape correspond to the input inp. The remaining are ‘ ’. Let sym0 = tape[0] and pos0 = 0.
For j = 1 to i

1. Let (stj , symw,j , β) = δ(stj−1, symj−1).
2. Set tape[posj−1] = symw,j , posj = posj−1 + β, symj = tape[posj ].

Let enf = ((inp1, 0), . . . , (inp`inp , `inp − 1), (symw,1, pos0), . . . , (symw,i, posi−1)). The challenger computes

(PPAcc, w̃0, s̃tore0)← Setup-Acc-Enforce-Read(1λ, T, enf, posi).

Hybrid H8 In this hybrid, the challenger outputs an obfuscation of program W8 = Prog-2-i-4{KA{i},
KB{i}, σC,one, VKC,one, SKD,abo, VKD,abo, mi} (defined in Figure 33). This program outputs ⊥ if on
(i + 1)th step, the input signature ‘A’ verifies, and the output state is qacc. Note that the accumulator is
‘read enforced’ in this hybrid.
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Prog-2-i-3

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, punctured PRF keys KA{i},KB{i} ∈ Kp,
constrained secret/verification keys σC,one,VKC , SKabo,D,VKD, message mi.

Input: Time t ∈ [T ], position posin ∈ [T ], symbol symin ∈ Σtape, state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. If t 6= i+ 1, let rA = F.eval(KA{i}, t− 1), rB = F.eval(KB{i}, t− 1). Compute (SKA, VKA, VKA,rej)

= Setup-Spl(1λ; rA), (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
Else set VKA = VKC ,VKB = VKD.

3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i) output ⊥.
6. If α = ‘-’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’ output ⊥.
Else if stout = qacc and α = ‘A’ and t ≤ i output ⊥.
Else if stout = qacc and α =‘A’ output msg.

11. Compute wout = Update(PPAcc, win, symout, posout, aux).
12. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
13. If t 6= i, let r′A = F.eval(KA{i}, t), r′B = F.eval(KB{i}, t). Compute (SK′A, VK′A, VK′A,rej) =

Setup-Spl(1λ; r′A), (SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
Else set SK′A = σC,one, SK′B = SKabo,D.

14. Let mout = (vout, stout, wout, posout).
If t = i and mout = mi, σout = σC,abo .
Else if t = i and mout 6= mi, σout = Sign-Spl-abo(SK′B ,mout).
Else if t = i+ 1 and min = mi, σout = Sign-Spl(SK′A,mout).

Else if t = i+ 1 and min 6= mi, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
15. Output posout, symout, stout, wout, vout, σout.

Figure 32: Prog-2-i-3

Hybrid H9 In this hybrid, the challenger uses normal setup for the accumulator related parameters; that
is, it computes (PPAcc, w0, store0) ← Setup-Acc(1λ, T ). The remaining steps are exactly identical to the
corresponding ones in the previous hybrid.

Hybrid H10 In this hybrid, the challenger computes (σC,one,VKC,one, σC,abo,VKC,abo) = Split(SKC ,mi),
but does not compute (SKD,VKD). Instead, it outputs an obfuscation of W10 = Prog-2-i-4{KA{i}, KB{i},
σC,one, VKC,one, SKC,abo,VKC,abo,mi}. Note that the hardwired keys for verification/signing (that is, σC,one,
VKC,one, SKC,abo,VKC,abo) are all derived from the same signing key SKC , whereas in the previous hybrid,
the first two components were derived from SKC while the next two from SKD.

Hybrid H11 In this hybrid, the challenger obfuscates a program Prog-2-i-5 (defined in Figure 34) which
has a secret key, verification key pair hardwired, instead of the four components in Prog-2-i-4. More formally,
the challenger chooses (SKC ,VKC)← Setup-Spl(1λ) and outputs an obfuscation of W11 = Prog-2-i-5{KA{i},
KB{i}, SKC ,VKC}.

Hybrid H12 In this hybrid, the challenger chooses the randomness rC used to compute (SKC ,VKC)
pseudorandomly; that is, it sets rC = F (KA, i).
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Prog-2-i-4

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, punctured PRF keys KA{i},KB{i} ∈ Kp,
constrained secret/verification keys σC,one,VKC , SKabo,D,VKD, message mi.

Input: Time t ∈ [T ], position posin ∈ [T ], symbol symin ∈ Σtape, state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. If t 6= i+ 1, let rA = F.eval(KA{i}, t− 1), rB = F.eval(KB{i}, t− 1). Compute (SKA, VKA, VKA,rej)

= Setup-Spl(1λ; rA), (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
Else set VKA = VKC ,VKB = VKD.

3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i) output ⊥.
6. If α = ‘-’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’ output ⊥.
Else if stout = qacc and α = ‘A’ and t ≤ i+ 1 output ⊥.
Else if stout = qacc and α =‘A’ output msg.

11. Compute wout = Update(PPAcc, win, symout, posout, aux).
12. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
13. If t 6= i, let r′A = F.eval(KA{i}, t), r′B = F.eval(KB{i}, t). Compute (SK′A, VK′A, VK′A,rej) =

Setup-Spl(1λ; r′A), (SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
Else set SK′A = σC,one, SK′B = SKabo,D.

14. Let mout = (vout, stout, wout, posout).
If t = i and mout = mi, σout = σC,abo .
Else if t = i and mout 6= mi, σout = Sign-Spl-abo(SK′B ,mout).
Else if t = i+ 1 and min = mi, σout = Sign-Spl(SK′A,mout).
Else if t = i+ 1 and min 6= mi, σout = Sign-Spl(SK′B ,mout).
Else σout = Sign-Spl(SK′α,mout).

15. Output posout, symout, stout, wout, vout, σout.

Figure 33: Prog-2-i-4

Hybrid H13 This corresponds to the hybrid Hyb′2,i.

Analysis Let AdviA denote the advantage of A in hybrid experiment Hi.

Claim A.8. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv0A −
Adv1A| ≤ negl(λ).

Proof. The only difference between H0 and H1 is that H0 uses program Prog-2-i, while H1 uses Prog-2-i-1.
From the correctness of puncturable PRFs, it follows that both programs have identical functionality for
t 6= i. For t = i, the two programs have identical functionality because (SKC ,VKC) and (SKD,VKD) are
correctly computed using F (KA, i) and F (KB , i) respectively. Therefore, by the security of iO, it follows
that the obfuscations of the two programs are computationally indistinguishable.

Claim A.9. Assuming F is a selectively secure puncturable PRF, for any adversary A, |Adv1A − Adv2A| ≤
negl(λ).

Proof. We will construct an intermediate experiment H, where rC is chosen uniformly at random, while
rD = F (KB , i). Now, if an adversary can distinguish between H1 and H, then we can construct a reduction
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Prog-2-i-5

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, punctured PRF keys KA{i},KB{i} ∈ Kp,
constrained secret/verification keys SKC ,VKC , message mi.

Input: Time t ∈ [T ], position posin ∈ [T ], symbol symin ∈ Σtape, state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. If t 6= i+ 1, let rA = F.eval(KA{i}, t− 1), rB = F.eval(KB{i}, t− 1). Compute (SKA, VKA, VKA,rej)

= Setup-Spl(1λ; rA), (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
Else set VKA = VKC .

3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i+ 1) output ⊥.
6. If α = ‘-’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’ output ⊥.
Else if stout = qacc and α = ‘A’ and t ≤ i+ 1 output ⊥.
Else if stout = qacc and α =‘A’ output msg.

11. Compute wout = Update(PPAcc, win, symout, posout, aux).
12. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
13. If t 6= i, let r′A = F.eval(KA{i}, t), r′B = F.eval(KB{i}, t). Compute (SK′A, VK′A, VK′A,rej) =

Setup-Spl(1λ; r′A), (SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
Else set SK′A = SKC .

14. Let mout = (vout, stout, wout, posout).
If t = i, σout = Sign-Spl(SK′A,mout) .

Else if t = i+ 1 and min = mi, Sign-Spl(SK′A,mout).
Else if t = i+ 1 and min 6= mi, Sign-Spl(SK′B ,mout).
Else σout = Sign-Spl(SK′α,mout).

15. Output posout, symout, stout, wout, vout, σout.

Figure 34: Prog-2-i-5

algorithm that breaks the security of F . The reduction algorithm sends i as the challenge, and receives
KA{i}, r. It then uses r to compute (SKC ,VKC) = Setup-Spl(1λ; r). Depending on whether r is truly
random or not, B simulates either hybrid H or H1. Clearly, if A can distinguish between H1 and H with
advantage ε, then B breaks the PRF security with advantage ε.

Claim A.10. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv2A −
Adv3A| ≤ negl(λ).

Proof. This follows from correctness property 2 of splittable signatures. This correctness property ensures
that Prog-2-i-1 and Prog-2-i-2 have identical functionality.

Claim A.11. Assuming S satisfies VKone indistinguishability (Definition 5.2), for any PPT adversary A,
|Adv3A − Adv4A| ≤ negl(λ).

Proof. Suppose there exists an adversary A such that |Adv3A−Adv4A| = ε. Then we can construct a reduction
algorithm B that breaks the VKone indistinguishability of S. B sends mi to the challenger. The challenger
chooses (SKC ,VKC ,VKC,rej) ← Setup-Spl(1λ), (σC,one,VKC,one,SKC,abo,VKC,abo) and receives (σ,VK),
where σ = σC,one and VK = VKC or VKC,one. It chooses the remaining components (including SKD,abo and
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VKD), and computes Prog-2-i-2{KA{i}, KB{i}, σ, VK, SKD,abo, VKD,mi}. Now, note that B perfectly
simulates either H4 or H5, depending on whether the challenge message was a

Claim A.12. Assuming S satisfies VKabo indistinguishability (Definition 5.3), for any PPT adversary A,
|Adv4A − Adv5A| ≤ negl(λ).

Proof. This proof is similar to the previous one. If there exists an adversary A such that Adv4A −Adv5A = ε,
then there exists a reduction algorithm B that breaks the VKabo security of S with advantage ε. In this
case, the reduction algorithm uses the challenger’s output to set up SKD,abo and VK, which is either VKD

or VKD,abo.

Claim A.13. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv5A −
Adv6A| ≤ negl(λ).

Proof. Let P0 = Prog-2-i-2{KA{i}, KB{i}, σC,one, VKC,one, SKD,abo, VKD,abo, mi} and P1 = Prog-2-i-3{KA{i},
KB{i}, σC,one, VKC,one, SKC,abo,VKC,abo,mi}, where the constants of both programs are computed identi-
cally. It suffices to show that P0 and P1 have identical functionality. Note that the only inputs where P0 and
P1 can possibly differ correspond to step i+ 1. Fix any input (i+ 1,min = (vin, stin, win, posin), symin, π, aux.
Let us consider two cases:

(a) min = mi. In this case, using the correctness properties 1 and 3, we can argue that for both
programs, α =‘A’. Now, P0 outputs Sign-Spl(SK′α,mout), while P1 is hardwired to output Sign-Spl(SK′A,mout.
Therefore, both programs have the same output in this case.

(b) min 6= mi. Here, we use the correctness property 5 to argue that α 6=‘A’, and correctness properties
2, 1 and 6 to conclude that α =‘B’. P1 is hardwired to output Sign-Spl(SK′B ,mout), while P0 outputs
Sign-Spl(SK′α,mout).

Claim A.14. Assuming Acc satisfies indistinguishability of Read Setup (Definition 4.1), for any PPT ad-
versary A, |Adv6A − Adv7A| ≤ negl(λ).

Proof. This follows from Definition 4.1. Suppose, on the contrary, there exists an adversary A such that
|Adv6A − Adv7A| = ε which is non-negligible in λ. We will construct an algorithm B that uses A to break the
Read Setup indistinguishability of Acc. B first computes the first i tuples to be accumulated. It computes
(symw,j , posj) for j ≤ i as described in Hybrid H7, and sends (symw,j , posj) for j < i, and posi to the

challenger, and receives (PPAcc, w̃0, s̃tore0). B uses these components to compute the encoding. Note that
the remaining steps are identical in both hybrids, and therefore, B can simulate them perfectly. Finally,
using A’s guess, B guesses whether the setup was normal or read-enforced.

Claim A.15. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv7A −
Adv8A| ≤ negl(λ).

Proof. Let P0 = Prog-2-i-3{KA{i}, KB{i}, σC,one, VKC,one, SKC,abo,VKC,abo,mi} and P1 = Prog-2-i-4{KA{i},
KB{i}, σC,one, VKC,one, SKC,abo,VKC,abo,mi}. We need to show that P0 and P1 have identical functionality.
Note the only difference could be in the case where t = i + 1. If Verify-Spl(VKC,one,min, σin) = 1 and the
remaining inputs are such that stout = qacc, then both programs can have different functionality. We will
show that this case cannot happen.

From the correctness property 5, it follows that if Verify-Spl(VKC,one,min, σin) = 1, then min = mi. As
a result, win = wi, posin = posi, stin = sti. Therefore, (symin = ε or Verify-Read(PPAcc, symin, wi, posi, π) =
1) =⇒ symin = symi, which implies stout = sti+1. However, since M is not accepting, sti+1 6= qacc.
Therefore, t = i+ 1 and Verify-Spl(VKC,one, min, σin) = 1 and stout = qacc cannot take place.

Claim A.16. Assuming Acc satisfies indistinguishability of Read Setup (Definition 4.1), for any PPT ad-
versary A, |Adv8A − Adv9A| ≤ negl(λ).
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Proof. This step is a reversal of the step from H6 to H7, and therefore the proof of this claim is similar to
that of Claim A.14.

Claim A.17. Assuming S satisfies splitting indistinguishability (Definition 5.4), for any PPT adversary A,
|Adv9A − Adv10A | ≤ negl(λ).

Proof. We will use the splittable indistinguishability property (Definition 5.4) for this claim. Assume
there is a PPT adversary A such that |Adv9A − Adv10A | = ε. We will construct an algorithm B that uses
A to break the splitting indistinguishability of S. B first receives as input from the challenger a tuple
(σone,VKone,SKabo,VKabo), where either all components are derived from the same secret key, or the first
two are from one secret key, and the last two from another secret key. Using this tuple, B can define the
constants required for Prog-2-i-4. It computes KA{i},KB{i}, PPAcc,PPItr, mi as described in hybrid H9

and hardwires σone,VKone,SKabo,VKabo in the program. In this way, B can simulate either H9 or H10, and
therefore, use A’s advantage to break the splitting indistinguishability.

Claim A.18. Assuming S satisfies splitting indistinguishability (Definition 5.4), for any PPT adversary A,
Adv10A − Adv11A ≤ negl(λ).

Proof. This claim follows from correctness properties of S. Note that the programs W10 and W11 can possibly
differ only if t = i + 1. Let us consider all the possible scenarios. Each of those can be addressed using
one/more of the correctness properties of S.

1. Signatures verify and stin = qacc. Both programs output ⊥.
2. Verify-Spl(VKC,one,min, σin) = 1 and stout 6= qacc. In this case, W10 outputs Sign-Spl(SK′A,mout).

Note that using correctness properties 3 and 5, we get that min = mi, and therefore, W11 outputs
Sign-Spl(SK′A,mout).

3. Verify-Spl(VKC,one,min, σin) = 0 but Verify-Spl(VKC,abo,min, σin) = 1. In this case, W10 sets α =‘B’,
and therefore the program outputs Sign-Spl(SK′B ,mout). Using property 6, it follows that min 6= mi,
and hence W11 also gives the same output.

4. Signatures do not verify at both steps. In this case, both programs output ⊥.

Claim A.19. Assuming F is a selectively secure puncturable PRF scheme, for any PPT adversary A,
|Adv11A − Adv12A | ≤ negl(λ).

Proof. The proof of this claim is identical to the proof of Claim A.9.

Claim A.20. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv12A −
Adv13A | ≤ negl(λ).

Proof. This proof is identical to the proof of Claim A.8; it follows directly from the correctness of puncturable
PRFs.

A.3 Proof of Lemma 6.3

Proof Intuition The only difference between Prog′-2-i and Prog-2-i + 1 is for inputs corresponding to
t = i + 1. Both programs accept only ‘A’ type signatures at t = i + 1, and both output either ‘A’ or ‘B’
type signatures. However, Prog′-2-i outputs an ‘A’ type signature at t = i + 1 iff the input message min is
the correct one (that is, mi). On the other hand, Prog-2-i + 1 checks if the outgoing message mout is the
correct one (that is, mi+1). Therefore, we need to argue that the adversary cannot find an input such that
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min 6= mi but mout = mi+1, or min = mi but mout 6= mi+1. To show this, we will use the enforcement
properties of the accumulator and the iterator.

Let Q1 be the program which outputs an ‘A’ signature at t = i+1 iff min = mi+1 and the state, position,
iterator values output are also the correct ones. By read enforcing the accumulator, we can ensure that if the
accumulated value verifies, then the input symbol symin is the correct one. If min = mi, then the input state,
symbol and position are all correct, implying that the output state, symbol and position are also correct.
So, no adversary can distinguish between Prog′-2-i and Q1.

But it is possible that the adversary could send as input a ‘fake’ auxiliary input for the accumulator that
results in the final accumulated value being wrong, even though min = mi and the output state, symbol
and position are correct. To avoid this, we use write enforcing of the accumulator. Let Q2 be a program
which checks whether min = mi and mout = mi+1. From the above discussion, it follows that Q1 and Q2

are computationally indistinguishable.
Finally, we need to remove the min = mi condition from Q2. For this, we use the enforcing property of

the iterator. This ensures that min = mi and mout = mi+1 iff mout = mi+1. This completes our proof.

Formal Proof We will first define a sequence of hybrid experiments H0, . . . ,H8, where H0 corresponds to
Hyb′2,i and H9 corresponds to Hyb2,i+1.

Hybrid H0 This corresponds to Hyb′2,i.

Hybrid H1 In this hybrid, the challenger uses ‘read enforced’ setup for the accumulator. The challenger
computes the first `inp + i ‘correct tuples’ for the accumulator. Initially, the state is st0 = q0. Let tape be a
T dimensional vector, the first `inp entries of tape correspond to the input inp. The remaining are ‘ ’. Let
sym0 = tape[0] and pos0 = 0. For j = 1 to i

1. Let (stj , symw,j , β) = δ(stj−1, symj−1).
2. Set tape[posj−1] = symw,j , posj = posj−1 + β, symj = tape[posj ].

Let enf = ((inp[0], 0), . . . , (inp[`inp−1], `inp−1), (symw,1, pos0), . . . , (symw,i, posi−1)). The challenger com-

putes (PPAcc, w̃0, s̃tore0)← Setup-Acc-Enforce-Read(1λ, T, enf, posi). The remaining steps are same as in the
previous hybrid.

Hybrid H2 In this hybrid, the challenger uses program P2 (defined in Figure 35), which is similar to
Prog′-2-i. However, in addition to checking ifmin = mi, it also checks if (vout, posout, stout) = (vi+1, posi+1, sti+1).

Hybrid H3 In this experiment, the challenger uses normal setup instead of ‘read enforced’ setup for the
accumulator.

Hybrid H4 In this hybrid, the challenger ‘write enforces’ the accumulator. As in hybrid H1, the challenger
computes the first `inp+i+1 ‘correct tuples’ to be accumulated. Let symw,j , posj be the symbol output and the

position after the jth step. The challenger computes (PPAcc, w̃0, s̃tore0)← Setup-Acc-Enforce-Write(1λ, T, enf),
where enf = ((inp[0], 0), . . . , (inp[`inp − 1], `inp − 1), (symw,1, pos0), . . . , (symw,i, posi−1), (symw,i+1, posi)). The
remaining computation is same as in previous step.

Hybrid H5 In this experiment, the challenger outputs an obfuscation of P5 = P5{i,KA,KB ,mi,mi+1},
which is similar to P2. However, on input where t = i + 1, before computing signature, it also checks if
wout = wi+1. Therefore, it checks whether min = mi and mout = mi+1.

Hybrid H6 This experiment is similar to the previous one, except that the challenger uses normal setup
for accumulator instead of ‘enforcing write’.
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P2

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KA,KB ∈ K, message
mi, iterator value vi+1, position posi+1 ∈ [T ] , state sti+1 ∈ Q.

Input: Time t ∈ [T ], position posin ∈ [T ], symbol symin ∈ Σ′tape, state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. Let F (KA, t − 1) = rA, F (KB , t − 1) = rB . Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i+ 1) output ⊥.
6. If α 6= ‘A’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’ output ⊥.
11. Else if stout = qacc and α = ‘A’ and t ≤ i+ 1 output ⊥.
12. Else if stout = qacc and α =‘A’ output msg.
13. Compute wout = Update(PPAcc, win, symout, posin, aux).
14. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
15. Let r′A = F (KA, t), r

′
B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
16. Let mout = (vout, stout, wout, posout).

If t = i+ 1 and min = mi and (vout, posout, stout) = (vi+1, posi+1, sti+1), σout = Sign-Spl(SK′A,mout).

Else if t = i + 1 and (min 6= mi or (vout, posout, stout) 6= (vi+1, posi+1, sti+1)), σout =

Sign-Spl(SK′B ,mout).
Else σout = Sign-Spl(SK′α,mout).

17. Output posout, symout, stout, wout, vout, σout.

Figure 35: P2

Hybrid H7 This experiment is similar to the previous one, except that the challenger uses enforced setup
for iterator instead of normal setup. It first computes PPAcc, w0, store0 as in the previous hybrid. Next, it
computes the first i+ 1 ‘correct messages’ for the iterator. Let st0 = q0 and pos0 = 0. For j = 1 to i+ 1

1. (symj , πj) = Prep-Read(PPAcc, storej−1, posj−1).
2. Let (stj , symw,j , β) = δ(stj−1, symj−1).
3. auxj = Prep-Write(PPAcc, storej−1, posj−1).
4. wj = Update(PPAcc, wj−1, symw,j , posj−1, auxj).
5. storej = Write-Store(PPAcc, storej−1, posj−1, symw,j).
6. posj = posj−1 + β.

Let enf = ((st0, w0, pos0), . . . , (sti, wi, posi)). It computes (PPItr, v0)← Setup-Itr-Enforce(1λ, T, enf). The
remaining hybrid proceeds as the previous one.

Hybrid H8 In this experiment, the challenger outputs an obfuscation of P8 = P8{i,KA,KB ,mi+1} (defined
in Figure 37), which is similar to P5, except that it only checks if mout = mi+1.

Hybrid H9 This corresponds to Hyb2,i+1. The only difference between this experiment and the previous
one is that this uses normal Setup for iterator.
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P5

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KA,KB ∈ K, message
mi, mi+1.

Input: Time t ∈ [T ], position posin ∈ [T ], symbol symin ∈ Σ′tape, state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. Let F (KA, t − 1) = rA, F (KB , t − 1) = rB . Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i+ 1) output ⊥.
6. If α 6= ‘A’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’ output ⊥.
11. Else if stout = qacc and α = ‘A’ and t ≤ i+ 1 output ⊥.
12. Else if stout = qacc and α =‘A’ output msg.
13. Compute wout = Update(PPAcc, win, symout, posin, aux).
14. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
15. Let r′A = F (KA, t), r

′
B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
16. Let mout = (vout, stout, wout, posout).

If t = i+ 1 and min = mi and mout = mi+1, σout = Sign-Spl(SK′A,mout) .
Else if t = i+ 1 and (min 6= mi or mout 6= mi+1), σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
17. Output posout, symout, stout, wout, vout, σout.

Figure 36: P5

A.3.1 Analysis

Let AdviA denote the advantage of A in hybrid Hi.

Claim A.21. Assuming Acc satisfies indistinguishability of Read Setup (Definition 4.1), for any PPT ad-
versary A, |Adv0A − Adv1A| ≤ negl(λ).

Proof. This proof is identical to the proof of Claim A.14; it follows from Read Setup indistinguishability
(Definition 4.1) of Acc.

Claim A.22. Assuming Acc is Read enforcing (Definition 4.3) and iO is a secure indistinguishability ob-
fuscator, for any PPT adversary A, |Adv1A − Adv2A| ≤ negl(λ).

Proof. In order to prove this claim, it suffices to show that P0 = Prog′-2-i{i,M, T,msgb,PPAcc,PPItr,KA,KB ,mi}
and P1 = Prog-2-i-b{i,M, T,msgb,PPAcc,PPItr,KA,KB ,mi, vi+1, posi+1, sti+1} are functionally identical. P0

and P1 are functionally identical iff min = mi =⇒ (vout, posout, stout) = (vi+1, posi+1, sti+1). Here, we will
use the Read enforcing property. Note that min = mi =⇒ win = wi, vin = vi, stin = sti and posin = posi.
From Definition 4.3 and the definition of H1/H2, it follows that if Verify-Read(PPAcc, wi, symin, posin, π) = 1,
then symin = symi. This, together with stin, vin, posin implies that vout = vi+1, posout = posi+1 and
stout = sti+1. This completes our proof.

Claim A.23. Assuming Acc satisfies indistinguishability of Read Setup (Definition 4.1), for any PPT ad-
versary A, |Adv2A − Adv3A| ≤ negl(λ).
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P8

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , message msg, Public parameters
for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KA,KB ∈ K, message
mi+1.

Input: Time t ∈ [T ], position posin ∈ [T ], symbol symin ∈ Σ′tape, state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. Let F (KA, t − 1) = rA, F (KB , t − 1) = rB . Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
3. Let α =‘-’ and min = (vin, stin, win, posin).
4. If Verify-Spl(VKA,min, σin) = 1 set α =‘A’ .
5. If α =‘-’ and (t > t∗ or t ≤ i+ 1) output ⊥.
6. If α 6= ‘A’ and Verify-Spl(VKB ,min, σin) = 1, set α =‘B’.
7. If α =‘-’, output ⊥ .
8. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
9. If stout = qrej output ⊥.

10. If stout = qacc and α =‘B’ output ⊥.
11. Else if stout = qacc and α = ‘A’ and t ≤ i+ 1 output ⊥.
12. Else if stout = qacc and α =‘A’ output msg.
13. Compute wout = Update(PPAcc, win, symout, posin, aux).
14. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
15. Let r′A = F (KA, t), r

′
B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
16. Let mout = (vout, stout, wout, posout).

If t = i+ 1 and mout = mi+1 set σout = Sign-Spl(SK′A,mout).
Else if t = i+ 1 and (mout 6= mi+1), set σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
17. Output posout, symout, stout, wout, vout, σout.

Figure 37: P8

Proof. This step is a reversal of the step from H0 to H1; its proof is identical to that of Claim A.8.

Claim A.24. Assuming Acc satisfies indistinguishability of Write Setup (Definition 4.2), for any PPT
adversary A, |Adv3A − Adv4A| ≤ negl(λ).

Proof. This proof follows from the Write Setup indistinguishability (Definition 4.2) of Acc. Suppose there
exists an adversary A such that Adv3A − Adv4A = ε. We will construct an algorithm B that uses A to break
the Write Setup indistinguishability of Acc. B first computes the first `inp + i+ 1 tuples to be accumulated
- enf = ((inp[0], 0), . . . , (inp[`inp − 1], `inp − 1), (symw,1, pos0), . . . , (symw,i+1, posi)). Next, it sends enf to the

challenger, and receives PPAcc, w̃0, s̃tore0. The remaining encoding computation is identical in both hybrids,
and therefore, B can simulate it perfectly using PPAcc, w̃0, s̃tore0. In this manner, B can perfectly simulate
either H3 or H4, depending on the challenger’s input, and then use A’s response to win the security game
with non-negligible advantage.

Claim A.25. Assuming Acc is Write enforcing (Definition 4.4) and iO is a secure indistinguishability
obfuscator, for any PPT adversary A, |Adv4A − Adv5A| ≤ negl(λ).

Proof. Let P0 = Prog-2-i-b{msgb,mi, vi+1, posi+1, sti+1} and P1 = Prog-2-i-c{msgb,mi,mi+1}. In order to
prove that P0 and P1 have identical functionality, it suffices to show thatmin = mi and (vout, posout, stout)=(vi+1,
posi+1, sti+1) =⇒ wout = wi+1. Here, we will use the Write enforcing property (Definition 4.4). Using the
Write enforcing property, we can conclude that wout = Update(PPAcc, wi, symw,i+1, posi, aux) =⇒ wout =
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wi+1 or wout = Reject. In either case, we get that the functionality of P0 and P1 is identical, therefore
implying that their obfuscations are indistinguishable.

Claim A.26. Assuming Acc satisfies indistinguishability of Write Setup (Definition 4.2), for any PPT
adversary A, |Adv5A − Adv6A| ≤ negl(λ).

Proof. This step is a reversal of the step from H3 to H4; its proof is identical to that of Claim A.24.

Claim A.27. Assuming Itr satisfies indistinguishability of Setup (Definition 3.1), for any PPT adversary A,
|Adv6A − Adv7A| ≤ negl(λ).

Proof. Suppose there exists an adversary A such that |Adv6A − Adv7A| is non-negligible. We will construct
an algorithm B that breaks the Setup indistinguishability of Itr (Definition 3.1). B computes the first i+ 1
tuples to be ‘iterated’ upon. Let stj , wj and posj be the state, accumulated value and position after jth step
(as described in hybrid H7). B sets enf = ((st0, w0, pos0), . . . , (sti, wi, posi)) and sends it to the Itr challenger.
It receives PPItr, v0 from the challenger. The remaining computation is identical in both hybrids. Finally, it
sends the encoding to A and using A’s response, it computes the output to challenger. Since |Adv6A−Adv7A|
is non-negligible, B’s advantage is also non-negligible.

Claim A.28. Assuming Itr is enforcing (Definition 3.2) and iO is a secure indistinguishability obfuscator,
for any PPT adversary A, |Adv7A − Adv8A| ≤ negl(λ).

Proof. In order to prove this claim, we need to argue that P5 = P5{i,KA,KB ,mi,mi+1} and P8 =
P8{i,KA,KB ,mi+1} are computationally indistinguishable. If we can show that P5 and P8 are functionally
identical, then using iO security, we can argue that their obfuscations are computationally indistinguishable.
Note that the only difference between P5 and P8 is in Step 16: P5 checks if (min = mi) and (mout = mi+1),
while P8 only checks if (mout = mi+1). Therefore, we need to show that mout = mi+1 =⇒ min = mi.
This follows directly from the enforcing property of Itr (recall in both hybrids, PPItr, v0 are computed using
Setup-Itr-Enforce). Since vout = vi+1, it implies vin = vi and (stin, win, posin) = (sti, wi, posi). This concludes
our proof.

Claim A.29. Assuming Itr satisfies indistinguishability of Setup (Definition 3.1), for any PPT adversary A,
|Adv8A − Adv9A| ≤ negl(λ).

Proof. This is a reversal of the step from H7 to H8, and its proof is similar to that of Claim A.27.

A.4 Proof of Lemma 6.4

Proof Intuition The only differences between Prog′-2-t∗−1{M,T , t∗, PPAcc, PPItr, msgb, KA, KB , mt∗−1}
and Prog-3{M,T , t∗, PPAcc, PPItr, msgb, KA, KB} are:

1. Prog-3 does not have the condition ‘(t > t∗ or t ≤ t∗)’ in the verification step, since this always holds
true.

2. Prog-3 never outputs an ‘A’ type signature on inputs corresponding to t = t∗. Prog′-2-t∗ − 1, by
definition, can output an ‘A’ type signature if min = mt∗−1. Intuitively, Prog′-2-t∗ − 1 never reaches
to that point, since if min = mt∗ − 1, then the next state should be qrej. To enforce this, we use
Read-Enforce Setup for the accumulator.

Formal Proof We will now describe a sequence of hybrids, where H0 corresponds to Prog′-2-t∗− 1{M,T ,
t∗, PPAcc, PPItr, msgb, KA, KB , mt∗−1} and H corresponds to Prog-3{M,T , t∗, PPAcc, PPItr, msgb, KA,
KB}.
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Hybrid H1 In this hybrid, the challenger computes the parameters for the accumulator using read-enforced
setup at position post∗−1. It first computes the first t∗ − 1 ‘correct inputs’ to be accumulated. Initially, the
state is st0 = q0. Let tape be a T dimensional vector, the first `inp entries of tape correspond to the input
inp. The remaining are ‘ ’. Let sym0 = tape[0] and pos0 = 0. For j = 1 to t∗ − 1

1. Let (stj , symw,j , β) = δ(stj−1, symj−1).

2. Set tape[posj−1] = symw,j , posj = posj−1 + β, symj = tape[posj ].

Let enf = ((inp[0], 0), . . . , (inp[`inp−1], `inp−1), (symw,1, pos0), . . . , (symw,t∗−1, post∗−2)) and let (PPAcc, w̃0, s̃tore0)←
Setup-Acc-Enforce-Read(1λ, T, enf, post∗−1). The remaining hybrid proceeds as Hyb′2,t∗−1.

Hybrid H2 In this hybrid, the challenger outputs an obfuscation of W2 = Prog-3{M,T , t∗, PPAcc, PPItr,
msgb, KA, KB}.

Hybrid H3 In this program, the challenger uses Setup-Acc for Acc instead of using Setup-Acc-Enforce-Read.
Note that this corresponds to Hyb3.

A.4.1 Analysis

Let AdviA denote the advantage of an adversary A in hybrid Hi.

Claim A.30. Assuming Acc satisfies indistinguishability of Read Setup (Definition 4.1), for any PPT ad-
versary A, Adv0A − Adv1A ≤ negl(λ).

Proof. This proof is identical to the proof of Claim A.14; it follows from Read Setup indistinguishability
(Definition 4.1) of Acc.

Claim A.31. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, Adv1A −
Adv2A ≤ negl(λ).

Proof. To prove this claim, we need to argue that W1 = Prog′-2-t∗ − 1{M,T , t∗, PPAcc, PPItr, msgb, KA,
KB , mt∗−1} and W2 = Prog-3{M,T , t∗, PPAcc, PPItr, msgb, KA, KB} have identical functionality. The only
possible reason for differing functionality is that W1 could output ‘A’ type signature when min = mt∗−1,
while W2 could output ‘B’ type signature. The critical observation here is that since min = mt∗−1, both
programs output ⊥. Since min = mt∗−1, win = wt∗−1, posin = post∗−1 and stin = stt∗−1. If we can show
that symin = symt∗−1, then it follows that stout = stt∗ = qrej.

Since setup is read enforced at post∗−1, there are two possibilities:

1. Verify-Read(PPAcc, wt∗−1, symin, post∗−1, π) = 0, in which case both programs output ⊥.
2. Verify-Read(PPAcc, wt∗−1, symin, post∗−1, π) = 1, in which case, symin = symt∗−1. This implies stout =
qrej, and therefore, both programs output ⊥.

Hence, both programs have identical functionality. As a result, by the security of iO, their obfuscations are
computationally indistinguishable.

Claim A.32. Assuming Acc satisfies indistinguishability of Read Setup (Definition 4.1), for any PPT ad-
versary A, Adv2A − Adv3A ≤ negl(λ).

Proof. This step is a reversal of the step from H0 to H1; the proof is identical to the proof of Claim A.14.
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A.5 Proof of Lemma 6.5

Proof Intuition Note that Prog-3 does not output ‘A’ type signatures at time t = t∗. As a result, it
is possible to modify the program so that the adversary has no information about the ‘A’ type secret key
used at step t∗. Having done so, we can then replace the ‘A’ verification key used at step t∗ + 1 with a
reject-verification key that always outputs ⊥. This ensures the program outputs ⊥ at t = t∗ + 1.

Continuing in this manner, suppose we have a program that outputs ⊥ for all t∗ < t ≤ i. Then, we can
modify it to remove the ‘A’ type secret key used at time t = i, and therefore replacing a normal ‘A’ type
verification key at step i + 1 with a reject verification key. In this manner, we can get to Prog-4, which
outputs ⊥ for all t > t∗.

Formal Proof We will define t̃ = T − t∗ + 1 hybrids H0, . . . ,Ht̃, and show that they are computationally
indistinguishable.

Hi In this hybrid, the challenger outputs an obfuscation of Prog-3-i{i,msgb,KA,KB ,mt∗−1} (defined in
Figure 38).

Prog-3-i

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗, message msg,
Public parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KA,KB ∈ K, mt∗−1.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. Let F (KA, t − 1) = rA, F (KB , t − 1) = rB . Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).
3. Let α =‘A’ and min = (vin, stin, win, posin).
4. If t∗ < t ≤ i output ⊥.
5. If Verify-Spl(VKA,min, σin) = 0 output ⊥.
6. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
7. If stout = qrej output ⊥.
8. If stout = qacc and t ≤ t∗ output ⊥.

Else if stout = qacc output msg.
9. Compute wout = Update(PPAcc, win, symout, posin, aux). If wout = Reject, output ⊥.

10. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
11. Let r′A = F (KA, t), r

′
B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
12. Let mout = (vout, stout, wout, posout).

If t = t∗, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
13. Output posout, symout, stout, wout, vout, σout.

Figure 38: Prog-3-i

Clearly, programs Prog-3 and Prog-3-t∗ are functionally identical, and therefore Hyb3 and Ht∗ are com-
putationally indistinguishable. In order to show that Hi and Hi+1 are computationally indistinguishable,
we will define intermediate hybrid experiments Hi,a, . . . ,Hi, such that Hi,a corresponds to Hi and Hi,f

corresponds to Hi+1.

Hi,a This corresponds to Hi.
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Hi,b In this hybrid, the challenger first punctures the PRF keyKA at input i; that is, KA{i} ← F.puncture(KA, i).
Next, it computes rC = F (KA, i), (SKC ,VKC ,VKC,rej) = Setup-Spl(1λ; rC) and finally, outputs an obfus-
cation of Pi,b = Prog-3-i-b{i,msgb, KA, KB{i}, mt∗−1, VKC} (defined in Figure 39). It has verification key
VKC hardwired.

Prog-3-i-b

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗, message msg,
Public parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Punctured PRF keys
KA{i} ∈ Kp, Puncturable PRF key KB ∈ K, VK.

Input: Time t ∈ [T ], symbol symin ∈ Σtape, position posin ∈ [T ], state stin ∈ Q, accumulator value
win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If Verify-Read(PPAcc, win, symin, posin, π) = 0 output ⊥.
2. If t 6= i+ 1, let rA = F.eval(KA{i}, t− 1), rB = F (KB , t− 1). Compute (SKA,VKA,VKA,rej) =

Setup-Spl(1λ; rA).
Else let VKA = VK.

3. Let α =‘A’ and min = (vin, stin, win, posin).
4. If t∗ < t ≤ i output ⊥.
5. If Verify-Spl(VKA,min, σin) = 0 output ⊥.
6. Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
7. If stout = qrej output ⊥.
8. If stout = qacc and t ≤ t∗ output ⊥.

Else if stout = qacc output msg.
9. Compute wout = Update(PPAcc, win, symout, posin, aux). If wout = Reject, output ⊥.

10. Compute vout = Iterate(PPItr, vin, (stin, win, posin)).
11. Let r′A = F.eval(KA{i}, t), r′B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) = Setup-Spl(1λ; r′A),

(SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).
12. Let mout = (vout, stout, wout, posout).

If t = t∗, σout = Setup-Spl(SK′B ,mout).
Else σout = Sign-Spl(SK′α,mout).

13. Output posout, symout, stout, wout, vout, σout.

Figure 39: Prog-3-i-b

Hi,c In this hybrid, the challenger chooses (SKC ,VKC ,VKC,rej) ← Setup-Spl(1λ) using true randomness
instead of pseudorandom string. It then hardwires VKC in Prog-3-i-b.

Hi,d In this hybrid, the challenger chooses (SKC ,VKC ,VKC,rej)← Setup-Spl(1λ) as before, but instead of
hardwiring VKC , it hardwires VKC,rej in Prog-3-i-b; that is, it outputs an obfuscation of Prog-3-i-b{i,msgb,
KA, KB{i}, mt∗−1, VKC,rej}.

Hi,e In this hybrid, the challenger chooses (SKC ,VKC ,VKC,rej) using F (K, i). It computes rC = F (K, i),
(SKC ,VKC ,VKC,rej) = Setup-Spl(1λ; rC), iO(Prog-3-i-b{i,msgb, KA, KB{i}, mt∗−1, VKC,rej}).

Hi,f This hybrid corresponds to Hi+1.

A.5.1 Analysis

We will first show that Hi and Hi+1 are computationally indistinguishable. Let AdviA denote the advantage
of adversary A in H0.

Claim A.33. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, Advi,aA −
Advi,bA ≤ negl(λ).
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Proof. The only difference between Hi,a and Hi,b is that Hi,a outputs an obfuscation of Prog-3-i, while Hi,b

outputs an obfuscation of Prog-3-i-b. Prog-3-i uses puncturable PRF key KA, while Prog-3-i-b uses punctured
key KA{i} punctured at i. Prog-3-i-b also has verification key VKC hardwired, which is computed using
F (KA, i). For t 6= i + 1, both programs have identical functionality (this follows from the correctness of
puncturable PRFs). For t = i + 1, the verification part is identical, since VKC hardwired is computed
correctly. Also, note that the corresponding secret key is not required at t = i (for t = i, both programs do
not output an ‘A’ type signature). As a result, the programs have identical functionality. Therefore, this
claim follows from the security of iO.

Claim A.34. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, Advi,bA −
Advi,cA ≤ negl(λ).

Proof. The proof of this claim follows from the security of puncturable PRFs.

Claim A.35. Assuming S satisfies VKrej indistinguishability, for any PPT adversary A, Advi,cA − Advi,dA ≤
negl(λ).

Proof. Note that the secret key SKC is not used in both the hybrids. As a result, if there exists a PPT
adversary A such that Advi,cA − Advi,dA is non-negligible, then there exists a PPT algorithm that breaks the
VKrej indistinguishability of S. B receives a verification key VK from the challenger, which is either a normal
verification key or a reject-verification key. It hardwires VK in Prog-3-i-b. The remaining steps are identical
in both hybrids. Based on A’s guess, B guesses whether VK is a normal verification key or if it always
rejects. Since Advi,cA − Advi,dA is non-negligible, B’s advantage is also non-negligible.

Claim A.36. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, Advi,dA −
Advi,eA ≤ negl(λ).

Proof. This step is the reverse of the step from Hi,b to Hi,c; the proof follows from the security of puncturable
PRFs.

Claim A.37. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, Advi,eA −
Advi,fA ≤ negl(λ).

Proof. The only differences between the programs Prog-3-i-b and Prog-3-i+ 1 are:

1. Prog-3-i-b uses a punctured PRF key KA{i}, and has the reject-verification key computed using
F (KA, i). As a result, it outputs ⊥ for all inputs corresponding to t = i + 1. Prog-3-i + 1, on
the other hand, uses a puncturable PRF key KA, and for inputs corresponding to t = i + 1, directly
outputs ⊥.

Using the correctness of puncturable PRFs, and the fact that VKrej always outputs ⊥, we get that the two
programs are functionally identical, and therefore, Hi,e and Hi,f are computationally indistinguishable.

B Proofs for Section 7

B.1 Proof Outline for Lemma 7.1

Proof Intuition The main differences between Prog and Prog-1 is that Prog-1 has the halt-time t∗ and the
correct output b∗ also hardwired, along with other constants. It outputs ⊥ for all inputs corresponding to t >
t∗. At t∗, it checks if the input passes the verification of accumulator and the verification of signature. If so,
it outputs b∗, without decrypting the ciphertext. In order to show that Prog and Prog-1 are computationally
indistinguishable, we will break this into two big steps. First, we will modify Prog into a program Pabort.
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Pabort is identical to Prog, except that it outputs b∗ if the signature and accumulator verification passes.
The next step is to transform Pabort so that it aborts for all t > t∗.

For the first step, our strategy is very similar to the proof of Theorem 6.15. For the second step, our
approach is very similar to the approach in the proof of Lemma 6.5. Note that at step t∗, Pabort does
not output an ‘A’ signature. As a result, we can replace the verification key at step t∗ + 1 with a ‘reject’
verification key. Continuing this way, we can ensure that it is fine to output ⊥ for all t > t∗.

Proof Outline We will first define hybrid experiments Hint, H
′
int and Habort.

Hybrid Hint In this hybrid, the challenger first computes the correct message mt∗−1 output at time t∗−1.
Next, it outputs an obfuscation of Pint = Pint{t∗,KE ,KA,KB ,mt∗−1} (defined in Figure 40) which has
mt∗−1 hardwired. It accepts only ‘A’ type signatures. However, at t = t∗ − 1, it checks if the outgoing
message is mt∗−1. If so, it outputs an ‘A’ type signature, else it outputs a ‘B’ type signature.

Program Pint

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ∈ [T ], Public param-
eters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KE ,KA,KB ∈ K,
message mt∗−1.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Let posin = tmf(t− 1) and posout = tmf(t).
2. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
3. Let rS,A = F (KA, t − 1), rS,B = F (KB , t − 1). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A)

and (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rS,B).
4. Let min = (vin, ctst,in, win, posin).
5. If Verify-Spl(VKA,min, σin) = 0 output ⊥.
6. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
7. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
8. Let (st′, sym′, β) = δ(st, sym).
9. If stout = qrej output 0, else if stout = qacc output 1.

10. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =
Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

11. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
12. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
13. Let r′S,A = F (KA, t), r

′
S,B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) ← Setup-Spl(1λ; r′S,A),

(SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).
14. Let mout = (vout, ctst,out, wout, posout).

If t = t∗ − 1 and mout = mt∗−1, σout = Sign-Spl(SK′A,mout).

Else if t = t∗ − 1 and mout 6= mt∗−1, σout = Sign-Spl(SK′B ,mout).

Else, σout = Sign-Spl(SK′A,mout).
15. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 40: Program Pint

Hybrid H ′int This hybrid is similar to Hint, except that the challenger also computes b∗ = Mb(x) and
outputs an obfuscation of P ′int = P ′int{t∗,KE ,KA,KB ,mt∗−1, b

∗} (defined in Figure 41). This program is
identical to Pint, except for inputs corresponding to t = t∗. At t = t∗, the program verifies the validity of
signature, and then outputs b∗ (which it has hardwired). It does not decrypt the ciphertexts.

5There is a slight difference between the approach here and the one in the proof of Theorem 6.1. There, we allowed the final
program to output ‘B’ type signatures. Here, in order to remove the ‘B’ signatures completely, we use additional t∗ hybrids
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Program P ′int

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ∈ [T ], Public param-
eters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KE ,KA,KB ∈ K,
message mt∗−1, bit b∗.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Let posin = tmf(t− 1) and posout = tmf(t).
2. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
3. Let rS,A = F (KA, t − 1), rS,B = F (KB , t − 1). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A)

and (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rS,B).
4. Let min = (vin, ctst,in, win, posin).
5. If Verify-Spl(VKA,min, σin) = 0 output ⊥.
6. If t = t∗ output b∗.

7. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
8. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
9. Let (st′, sym′, β) = δ(st, sym).

10. If stout = qrej output 0, else if stout = qacc output 1.
11. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).
12. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
13. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
14. Let r′S,A = F (KA, t), r

′
S,B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) ← Setup-Spl(1λ; r′S,A),

(SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).
15. Let mout = (vout, ctst,out, wout, posout).

If t = t∗ − 1 and mout = mt∗−1, σout = Sign-Spl(SK′A,mout).
Else if t = t∗ − 1 and mout 6= mt∗−1, σout = Sign-Spl(SK′B ,mout).
Else, σout = Sign-Spl(SK′A,mout).

16. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 41: Program P ′int

Hybrid Habort In this hybrid, the challenger outputs an obfuscation of Pabort{t∗,KA,KE , b
∗} (defined in

Figure 42). This program is similar to P ′int, except that it does not output ‘B’ type signatures.

Let AdvintA , Adv
′int
A , AdvabortA be the advantages of an adversary A in Hint, H

′
int and Habort respectively.

Recall Adv0A and Adv1A denote A’s advantage in Hyb0 and Hyb1 respectively.

Lemma B.1. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions 3.1 and 3.2, Acc is an accumulator satisfying Definitions 4.1,
4.2, 4.3 and 4.4, S is a splittable signature scheme satisfying security Definitions 5.1, 5.2, 5.3 and 5.4,
|Adv0A − AdvintA | ≤ negl(λ).

Proof. The proof of this lemma is very similar to the proof of Theorem 6.1. Therefore, in this section, we
will give outline of the proof, consisting of the outer hybrids, and refer to proof of Theorem 6.1. We will
first define intermediate hybrids H0, H1 and H2,j , H

′
2,j for 0 ≤ j < t∗.

Hybrid H0 The challenger outputs P0 = Prog{t∗, KE , KA}.

Hybrid H1 The challenger outputs P1 = P1{t∗, KE , KA,KB} (defined in Figure 43). This is similar to
Prog-1 defined in Figure 18. This program has PRF key KB hardwired and accepts both ‘A’ and ‘B’ type
signatures for t < t∗. If the incoming signature is of type α, then so is the outgoing signature.

that ‘undo’ the step from Prog to Pabort.
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Program Pabort

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ∈ [T ], Public param-
eters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KE ,KA ∈ K, bit b∗.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Let posin = tmf(t− 1) and posout = tmf(t).
2. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
3. Let rS,A = F (KA, t− 1). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
4. Let min = (vin, ctst,in, win, posin).
5. If Verify-Spl(VKA,min, σin) = 0 output ⊥.
6. If t = t∗ output b∗.

7. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
8. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
9. Let (st′, sym′, β) = δ(st, sym).

10. If stout = qrej output 0, else if stout = qacc output 1.
11. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).
12. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
13. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
14. Let r′S,A = F (KA, t). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
15. Let mout = (vout, ctst,out, wout, posout).

σout = Sign-Spl(SK′A,mout).
16. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 42: Program Pabort

Next, we define 2t∗ intermediate circuits - P2,j , P
′
2,j for 0 ≤ j ≤ t∗ − 1. These programs are analogous to

Prog-2-i and Prog′-2-i in the proof of Theorem 6.1.

Hybrid H2,j In this hybrid, the challenger outputs an obfuscation of P2,j = P2,j{j, t∗,KE ,KA,KB ,mj}.
This circuit, defined in Figure 44, accepts ‘B’ type signatures only for inputs corresponding to j + 1 ≤ t ≤
t∗ − 1. It also has the correct output message for step j - mj hardwired. If an input has j + 1 ≤ t ≤ t∗ − 1,
then the output signature, if any, is of the same type as the incoming signature. If t = j, the program
outputs an ‘A’ type signature if mout = mj , else it outputs a ‘B’ type signature.

Hybrid H ′2,j In this hybrid, the challenger outputs an obfuscation of P ′2,j = P ′2,j{j, t∗,KE ,KA,KB ,mj}.
This circuit, defined in Figure 45, accepts ‘B’ type signatures only for inputs corresponding to j + 2 ≤ t ≤
t∗ − 1. It also has the correct input message for step j + 1 - mj hardwired. If t = j + 1 and min = mj it
outputs an ‘A’ type signature, else it outputs a ‘B’ type signature. If an input has j + 2 ≤ t ≤ t∗ − 1, then
the output signature, if any, is of the same type as the incoming signature.

Analysis

Claim B.1. Assuming iO is a secure indistinguishability obfuscator, F is a secure puncturable PRF and S
is a splittable signature scheme satisfying Definition 5.1, for any PPT adversary A, |Adv0A−Adv1A| ≤ negl(λ).

The proof of this claim is similar to the proof of Lemma 6.1.

Claim B.2. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv1A −
Adv2A| ≤ negl(λ).

Note that P1 and P2,0 have identical functionality.
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P1

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA,KB ∈ K, output b∗.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
5. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
6. Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rS,B).

7. Let F (KB , t) = r′S,B . Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).

8. Let min = (vin, ctst,in, win, posin) and α =‘-’.
If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.
If α =‘-’ and t ≥ t∗ output ⊥.
If α = ‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.
If α = ‘-’ output ⊥.

9. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
10. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
11. Let (st′, sym′, β) = δ(st, sym).
12. If stout = qrej output 0.
13. If stout = qacc output 1.
14. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).
15. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
16. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
17. Let mout = (vout, ctst,out, wout, posout) and σout = Sign-Spl(SK′α,mout).
18. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 43: P1

Claim B.3. Let 0 ≤ j ≤ t∗ − 1. Assuming iO is a secure indistinguishability obfuscator, F is a selectively
secure puncturable PRF and S is a splittable signature scheme satisfying definitions 5.1, 5.2, 5.3 and 5.4,

for any PPT adversary A, |Adv2,jA − Adv
′2,j
A | ≤ negl(λ).

The proof of this claim is similar to the proof of Lemma 6.2.

Claim B.4. Let 0 ≤ j ≤ t∗ − 2. Assuming iO is a secure indistinguishability obfuscator, Itr is an iterator
satisfying indistinguishability of Setup (Definition 3.1) and is enforcing (Definition 3.2), and Acc is an ac-
cumulator satisfying indistinguishability of Read/Write Setup (Definitions 4.1 and 4.2) and is Read/Write

enforcing (Definitions 4.3 and 4.4), for any PPT adversary A, |Adv
′2,j
A − Adv2,j+1

A | ≤ negl(λ). indistinguish-
able.

The proof of this claim is similar to the proof of Lemma 6.3.

Claim B.5. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv2,t
∗−1

A −
AdvintA | ≤ negl(λ).

Note that P2,t∗−1 and Pint are functionally identical circuits. This completes the proof of our lemma.
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P2,j

Constants: j, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA,KB ∈ K, output b∗, message mj .

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Let posin = tmf(t− 1) and posout = tmf(t).
2. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
3. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
4. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
5. Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rS,B).
6. Let F (KB , t) = r′S,B . Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).
7. Let min = (vin, ctst,in, win, posin) and α =‘-’.

If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.
If α =‘-’ and (t ≥ t∗ or t ≤ j) output ⊥.
If α = ‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.
If α = ‘-’ output ⊥.

8. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
9. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
10. Let (st′, sym′, β) = δ(st, sym).
11. If stout = qrej output 0.
12. If stout = qacc output 1.
13. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).
14. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
15. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
16. Let mout = (vout, ctst,out, wout, posout).

If t = j and mout = mj , σout = Sign-Spl(SK′A,mout).

Else if t = j and mout 6= mj , σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
17. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 44: P2,j
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P ′2,j

Constants: j, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA,KB ∈ K, output b∗, message mj .

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Let posin = tmf(t− 1) and posout = tmf(t).
2. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
3. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
4. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
5. Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rS,B).
6. Let F (KB , t) = r′S,B . Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).
7. Let min = (vin, ctst,in, win, posin) and α =‘-’.

If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.
If α =‘-’ and (t ≥ t∗ or t ≤ j + 1) output ⊥.
If α = ‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.
If α = ‘-’ output ⊥.

8. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
9. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
10. Let (st′, sym′, β) = δ(st, sym).
11. If stout = qrej output 0.
12. If stout = qacc output 1.
13. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).
14. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
15. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
16. Let mout = (vout, ctst,out, wout, posout).

If t = j + 1 and min = mj , σout = Sign-Spl(SK′A,mout).

Else if t = j + 1 and min 6= mj , σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
17. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 45: P ′2,j

69



Lemma B.2. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions 3.1 and 3.2, Acc is an accumulator satisfying Definitions 4.1,
4.2, 4.3 and 4.4, S is a splittable signature scheme satisfying security Definitions 5.1, 5.2, 5.3 and 5.4,

|AdvintA − Adv
′int
A | ≤ negl(λ).

Proof. To prove this lemma, we will define a sequence of hybrid experiments and show that they are com-
putationally indistinguishable.

Hybrid H0 In this experiment, the challenger outputs an obfuscation of P0 = Pint{t∗, KE , KA, KB ,
mt∗−1}.

Hybrid H1 In this hybrid, the challenger first computes the constants for program P1 as follows:

1. PRF keys KA and KB are punctured at t∗ − 1 to obtain KA{t∗ − 1} ← F.puncture(KA, t
∗ − 1) and

KB{t∗ − 1} ← F.puncture(KB , t
∗ − 1).

2. Let rc = F (KA, t
∗−1), (SKC ,VKC ,VKC,rej) = Setup-Spl(1λ; rC), rD = F (KB , t

∗−1), (SKD,VKD,VKD,rej) =
Setup-Spl(1λ; rD).

It then outputs an obfuscation of P1 = P1{t∗,KE ,KA{t∗ − 1},KB{t∗ − 1},VKC ,SKC ,SKD,mt∗−1}
(defined in 46). P1 is identical to P0 on inputs corresponding to t 6= t∗ − 1, t∗. For t = t∗ − 1, it uses the
hardwired signing keys. For t = t∗, it uses the hardwired verification key.

P1

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA{t∗ − 1},KB{t∗ − 1} ∈ K, output b∗, message mt∗−1, VKC , SKC , SKD.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Let posin = tmf(t− 1) and posout = tmf(t).
2. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
3. If t 6= t∗, let rS,A = F.eval(KA{t∗ − 1}, t− 1). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).

Else VKA = VKC .
4. If t 6= t∗ − 1, let r′S,A = F.eval(KA{t∗ − 1}, t). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).

5. If t 6= t∗ − 1, r′S,B = F.eval(KB{t∗ − 1}, t). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).

6. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
7. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
8. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
9. Let (st′, sym′, β) = δ(st, sym).

10. If stout = qrej output 0.
11. If stout = qacc output 1.
12. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).
13. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
14. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
15. Let mout = (vout, ctst,out, wout, posout).
16. If t = t∗ − 1 and mout = mt∗−1, σout = Sign-Spl(SKC ,mout).

Else if t = t∗ − 1 and mout 6= mt∗−1 σout = Sign-Spl(SKD,mout).

Else σout = Sign-Spl(SK′A,mout).
17. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 46: P1
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Hybrid H2 In this hybrid, rC and rD are chosen uniformly at random; that is, the challenger computes
(SKC ,VKC)← Setup-Spl(1λ) and (SKD,VKD)← Setup-Spl(1λ).

Hybrid H3 In this hybrid, the challenger computes constrained secret/verification keys. It computes
(σC,one,VKC,one,SKC,abo,VKC,abo)← Split(SKC ,mt∗−1) and (σD,one,VKD,one,SKD,abo,VKD,abo)← Split(SKD,mt∗−1).
It then outputs an obfuscation of P3 = P3{i, t∗,KE ,KA{t∗−1},KB{t∗−1},VKC,one, σC,one,SKD,abo,mt∗−1}
(defined in Figure 47). Note that SKC ,VKC , SKD,VKD are not hardwired in this program.

P3

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA{t∗ − 1},KB{t∗ − 1} ∈ K, output b∗, message mt∗−1, VKC,one, σC,one, SKD,abo.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Let posin = tmf(t− 1) and posout = tmf(t).
2. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
3. If t 6= t∗, let rS,A = F.eval(KA{t∗ − 1}, t− 1). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).

Else VKA = VKC,one.

4. If t 6= t∗ − 1, let r′S,A = F.eval(KA{t∗ − 1}, t). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).

5. If t 6= t∗ − 1, r′S,B = F.eval(KB{t∗ − 1}, t). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).

6. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
7. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
8. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
9. Let (st′, sym′, β) = δ(st, sym).

10. If stout = qrej output 0.
11. If stout = qacc output 1.
12. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).
13. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
14. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
15. Let mout = (vout, ctst,out, wout, posout).
16. If t = t∗ − 1 and mout = mt∗−1, σout = σC,one.

Else if t = t∗ − 1 and mout 6= mt∗−1 σout = Sign-Spl-abo(SKD,abo,mout).

Else σout = Sign-Spl(SK′A,mout).
17. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 47: P3

Hybrid H4 In this hybrid, the challenger chooses PPAcc, w0, store0 using Setup-Acc-Enforce-Read. It then
uses PPAcc, w0, store0, and proceeds as in previous experiment. It outputs an obfuscation of P3{i, t∗, PPAcc,
KE , KA{t∗ − 1}, KB{t∗ − 1}, VKC,one, σC,one, SKD,abo, mt∗−1}

Hybrid H5 In this hybrid, the challenger first computes b∗ = Mb(x).
It then outputs an obfuscation of P5 = P5{i, t∗, PPAcc, KE , KA{t∗ − 1}, KB{t∗ − 1}, VKC,one, σC,one,

SKD,abo, mt∗−1, b
∗} (defined in Figure 48). This program differs from P3 for inputs corresponding to t = t∗.

Instead of decrypting, computing the next state and then encrypting, the program uses the hardwired output
b∗.

Hybrid H6 In this experiment, the challenger uses normal setup for Acc (that is, Setup-Acc) instead of
Setup-Acc-Enforce-Read.
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P5

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA{t∗ − 1},KB{t∗ − 1} ∈ K, output b∗, message mt∗−1, VKC,one, σC,one, SKD,abo, ciphertexts ct1, ct2.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. Let posin = tmf(t− 1) and posout = tmf(t).
2. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
3. If t 6= t∗, let rS,A = F.eval(KA{t∗ − 1}, t− 1). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).

Else VKA = VKC,one.
4. If t 6= t∗ − 1, let r′S,A = F.eval(KA, t). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
5. If t 6= t∗ − 1, r′S,B = F.eval(KB , t). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).
6. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
7. If t = t∗ output b∗.

8. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
9. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
10. Let (st′, sym′, β) = δ(st, sym).
11. If stout = qrej output 0.
12. If stout = qacc output 1.
13. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).
14. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
15. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
16. Let mout = (vout, ctst,out, wout, posout).
17. If t = t∗ − 1 and mout = mt∗−1, σout = σC,one.

Else if t = t∗ − 1 and mout 6= mt∗−1 σout = Sign-Spl-abo(SKD,abo,mout).
Else σout = Sign-Spl(SK′A,mout).

18. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 48: P5

Hybrid H7 This hybrid is identical to H ′int. In this experiment, the challenger outputs an obfuscation of
W ′int.

Analysis Let AdvxA denote the advantage of adversary A in hybrid Hx.

Claim B.6. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Adv0A − Adv1A| ≤
negl(λ).

Proof. The only difference between P0 and P1 is that P0 uses puncturable PRF keys KA,KB , while P1 uses
keys KA{t∗−1},KB{t∗−1} punctured at t∗−1. It also has the secret key/verification key pair (SKC ,VKC)
hardwired, which is computed using F (KA, t

∗− 1) and the secret key (SKD) computed using F (KB , t
∗− 1).

From the correctness of puncturable PRFs, it follows that the two programs have identical functionality, and
therefore their obfuscations are computationally indistinguishable.

Claim B.7. Assuming F is a selectively secure puncturable PRF, for any PPT A, |Adv1A−Adv2A| ≤ negl(λ).

Proof. The proof of this claim is similar to the proof of Claim A.4; it follows from the selective security of
puncturable PRF F .

Claim B.8. Assuming iO is a secure indistinguishability obfuscator and S satisfies VKone indistinguisha-
bility (Definition 5.2), for any PPT A, |Adv2A − Adv3A| ≤ negl(λ).
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Proof. In order to prove this claim, we consider an intermediate hybrid program in which only the constrained
secret keys σC,one and SKD,abo are hardwired, while VKC is hardwired as the verification key. Using the
security of iO, we can argue that the intermediate step and H2 are computationally indistinguishable.
Next, we use VKone indistinguishability to show that the intermediate step and H3 are computationally
indistinguishable.

Claim B.9. Assuming Acc satisfies indistinguishability of Read Setup (Definition 4.1), for any PPT A,
|Adv3A − Adv4A| ≤ negl(λ).

Proof. The proof of this claim follows from Read Setup indistinguishability (Definition 4.1); it is similar to
the proof of A.14.

Claim B.10. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Adv4A − Adv5A| ≤
negl(λ).

Proof. This proof is similar to the proof of Claim A.15. Note that since PPAcc is read enforced, and VKC,one

accepts only signatures for mt∗−1. As a result, if min = mt∗−1 and PPAcc is read enforced, then stout = stt∗ ,
which implies that the output is b∗.

Claim B.11. Assuming Acc satisfies indistinguishability of Read Setup (Definition 4.1), for any PPT A,
|Adv5A − Adv6A| ≤ negl(λ).

Proof. The proof of this claim follows from Read Setup indistinguishability (Definition 4.1); it is similar to
the proof of A.14.

Claim B.12. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF and S satisfies VKone indistinguishability (Definition 5.2), for any PPT A, |Adv6A − Adv7A| ≤ negl(λ).

This step is the reverse of the step from H0 to H3. Therefore, using similar intermediate hybrid experi-
ments, a similar proof works here as well.

Lemma B.3. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions 3.1 and 3.2, Acc is an accumulator satisfying Definitions 4.1,
4.2, 4.3 and 4.4, S is a splittable signature scheme satisfying security Definitions 5.1, 5.2, 5.3 and 5.4,

|Adv
′int
A − AdvabortA | ≤ negl(λ).

The proof of this lemma is almost identical to the proof of Lemma B.1.

Lemma B.4. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure PRF and S
satisfies VKrej indistinguishability (Definition 5.1), for any PPT adversary A, |AdvabortA − Adv1A| ≤ negl(λ).

Proof. Note that at t = t∗, Pabort either outputs b∗ or outputs ⊥. This allows us to use VKrej indistinguisha-
bility to output ⊥ for all t > t∗. More formally, we will define T − t∗ + 1 hybrids Habort,i for t∗ ≤ i ≤ T . In
hybrid Habort,i, the challenger outputs an obfuscation of Pabort,i{t∗,KE ,KA,KB , b

∗} (defined in Figure 49)
which aborts if the input corresponds to t > i.

Clearly, Pabort and Pabort,T−1 are functionally identical, and Prog-1 and Pabort,t∗ are functionally identical.
Therefore, all that remains to show is that Habort,i and Habort,i−1 are computationally indistinguishable.

Claim B.13. Assuming S satisfies VKrej indistinguishability (Definition 5.1), iO is a secure indistinguisha-

bility obfuscator and F is a selectively secure pseudorandom function, for any adversary A, |Advabort,iA −
Advabort,i−1A | ≤ negl(λ).
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Program Pabort,i

Constants: Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ∈ [T ], Public param-
eters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KE ,KA,KB ∈ K,
message mt∗−1, bit b∗.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > i, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. Let rS,A = F (KA, t − 1), rS,B = F (KB , t − 1). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A)

and (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rS,B).
5. Let min = (vin, ctst,in, win, posin).
6. If Verify-Spl(VKA,min, σin) = 0 output ⊥.
7. If t = t∗ output b∗.
8. Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym = Dec-PKE(sklw, ctsym,in).
9. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =

Dec-PKE(skst, ctst,in).
10. Let (st′, sym′, β) = δ(st, sym).
11. If stout = qrej output 0, else if stout = qacc output 1.
12. Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).
13. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
14. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
15. Let r′S,A = F (KA, t), r

′
S,B = F (KB , t). Compute (SK′A,VK′A,VK′A,rej) ← Setup-Spl(1λ; r′S,A),

(SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).
16. Let mout = (vout, ctst,out, wout, posout).

σout = Sign-Spl(SK′α,mout).
17. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 49: Program Pabort,i

The proof of this claim is similar to the proof of Lemma 6.5.
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B.2 Proof of Lemma 7.2

Proof Intuition The main difference between W2,i = Prog-2-i{i, t∗, KE , KA} and W ′2,i = Prog′-2-i{i, t∗,
KE , KA, ct1, ct2} is their behavior on inputs corresponding to t = i − 1. W2,i, on an input corresponding
to t = i− 1, checks if the signature verifies, then decrypts the two ciphertexts ctst,in, ctsym,in and outputs an
encryption of the next state and symbol. W ′2,i, on the other hand, does not decrypt the incoming ciphertexts.
If the signatures verify, then it sets the ciphertexts to be the ‘correct ciphertexts’ (which are hardwired in
W ′2,i).To show that the obfuscations of W2,i and W ′2,i are computationally indistinguishable, we will define
two intermediate program Wint and W ′int. The following table illustrates the differences:

Input corr. to Wint W ′int
t > t∗ Output ⊥. Output ⊥.
t = t∗ Output b∗. Output b∗.
i ≤ t < t∗ Verify σin using ‘A’ verification key. Set

ctsym,out and ctst,out to be encryptions of
erase.

Verify σin using ‘A’ verification key. Set
ctsym,out and ctst,out to be encryptions of
erase.

t = i− 1 Verify σin using ‘A’ verification key.
Decrypt ciphertexts, compute the next
state/symbol, encrypt. If min = mi−2
sign using ‘A’ secret key, else sign using
‘B’ secret key. secret key.

Verify σin using ‘A’ verification key. Set
outgoing ciphertexts to be hardwired
constants ct1, ct2.

t = i− 2 Verify σin using ‘A’ verification key.
Decrypt ciphertexts, compute the next
state/symbol, encrypt. If min = mi−2
sign outgoing message using ‘A’ secret
key, else sign using ‘B’ secret key.

Verify σin using ‘A’ verification key.
Decrypt ciphertexts, compute the next
state/symbol, encrypt. If min = mi−2
sign outgoing message using ‘A’ secret
key, else sign using ‘B’ secret key.

t < i− 2 Verify σin using ‘A’ verification key.
Decrypt ciphertexts, compute the next
state/symbol, encrypt, sign using ‘A’
secret key.

Verify σin using ‘A’ verification key.
Decrypt ciphertexts, compute the next
state/symbol, encrypt, sign using ‘A’
secret key.

Note that W2,i, Wint differ at step i− 2, Wint, W
′
int at step i− 1 and W ′int, W

′
2,i at inputs corresponding

to t = i−2. We will first argue that W2,i and Wint are computationally indistinguishable. This proof is very
similar to the proof of Theorem 6.1. Next, we will show that Wint and W ′int are indistinguishable. Intuitively,
in order to distinguish between the two programs, one must send an input corresponding to t = i − 1 with
an ‘A’ type signature on a message min 6= mi−2. But since both programs output an ‘A’ type signature only
for mout = mi−2, we can replace the verification key by a restricted one that accepts only if the signature
corresponds to min = mi−2. Then, using the enforcing properties of the accumulator and iterator, we can
argue that both programs are indistinguishable. Finally, note that the argument from W ′int to W ′2,i is very
similar to the one from W2,i to Wint.

Proof Outline As discussed in the intuition above, we will first define the programs Wint = Prog-2-iint{i,
t∗, KE , KA, KB , mi−2} (defined in Figure 50) and W ′int = Prog′-2-iint{i, t∗, KE , KA, KB , mi−2, ct1, ct2}
(defined in 51). Both the programs have the correct message for the (i−2)th step - mi−2 hardwired, and also
have a PRF key KB for ‘B’ type signatures. In addition, W ′int also has ciphertexts ct1 and ct2 hardwired.
These are encryptions of the state and symbol output at (i − 1)th step, computed as described in hybrid
Hyb′2,i.
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Wint

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA,KB ∈ K, output b∗, message mi−2.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
5. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
6. Let F (KB , t) = r′S,B . Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).

7. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
8. If t = t∗, output b∗.
9. If i ≤ t < t∗

(a) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1).
ctsym,out = Enc-PKE(pk′, erase; rt,2) and ctst,out = Enc-PKE(pk′, erase; rt,3).

10. Else

(a) Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym =
Dec-PKE(sklw, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =
Dec-PKE(skst, ctst,in).

(c) Let (st′, sym′, β) = δ(st, sym).
(d) If stout = qrej output 0.
(e) If stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

11. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
12. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
13. Let mout = (vout, ctst,out, wout, posout).

If t = i− 2 and mout = mi−2, σout = Sign-Spl(SK′A,mout).

Else if t = i− 2 and mout = mi−2, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′A,mout).
14. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 50: Wint
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W ′int

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA,KB ∈ K, output b∗, message mi−2, ciphertexts ct1, ct2.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
5. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
6. Let F (KB , t) = r′S,B . Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).
7. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
8. If t = t∗, output b∗.
9. If i ≤ t < t∗

(a) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1).
ctsym,out = Enc-PKE(pk′, erase; rt,2) and ctst,out = Enc-PKE(pk′, erase; rt,3).

10. Else if t = i− 1, set ctsym,out = ct1, ctst,out = ct2.
11. Else

(a) Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym =
Dec-PKE(sklw, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =
Dec-PKE(skst, ctst,in).

(c) Let (st′, sym′, β) = δ(st, sym).
(d) If stout = qrej output 0.
(e) If stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

12. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
13. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
14. Let mout = (vout, ctst,out, wout, posout).

If t = i− 2 and mout = mi−2, σout = Sign-Spl(SK′A,mout).
Else if t = i− 2 and mout = mi−2, σout = Sign-Spl(SK′B ,mout).
Else σout = Sign-Spl(SK′A,mout).

15. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 51: W ′int
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Let Hint be a hybrid experiment in which the challenger outputs an obfuscation of Wint, along with other
elements of the encoding. Similarly, let H ′int be the hybrid experiment in which the challenger outputs W ′int.

For any PPT adversaryA, let Adv2,iA , AdvintA , Adv
′int
A , Adv

′2,i+1
A denote the advantage ofA in Hyb2,i, Hint, H

′
int

and Hyb′2,i respectively.

Lemma B.5. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions 3.1 and 3.2, Acc is an accumulator satisfying Definitions 4.1,
4.2, 4.3 and 4.4, S is a splittable signature scheme satisfying security Definitions 5.1, 5.2, 5.3 and 5.4,
|Adv2,iA − AdvintA | ≤ negl(λ).

Proof. The proof of this lemma is along the same lines as the proof of Lemma B.1. We will define similar
hybrid experiments here.

Hybrid H0 The challenger outputs P0 = Prog-2-i{i, t∗, KE , KA}.

Hybrid H1 The challenger outputs P1 = P1{i, t∗, KE , KA,KB}. This is similar to Prog-1 defined in
Figure 18. This program has PRF key KB hardwired and accepts both ‘A’ and ‘B’ type signatures for
t ≤ i− 2. If the incoming signature is of type α, then so is the outgoing signature. It is defined in Figure 52.

Next, we define 2(i− 1) intermediate circuits - P2,j , P
′
2,j for 0 ≤ j ≤ i− 2. These programs are analogous

to Prog-2-i and Prog′-2-i in the proof of Theorem 6.1.

Hybrid H2,j In this hybrid, the challenger outputs an obfuscation of P2,j = P2,j{i, j, t∗,KE ,KA,KB ,mj}.
This circuit, defined in Figure 53, accepts ‘B’ type signatures only for inputs corresponding to j+1 ≤ t ≤ i−2.
It also has the correct output message for step j - mj hardwired. If an input has j + 1 ≤ t ≤ i− 2, then the
output signature, if any, is of the same type as the incoming signature.

Hybrid H ′2,j In this hybrid, the challenger outputs an obfuscation of P ′2,j = P ′2,j{i, j, t∗,KE ,KA,KB ,mj}.
This circuit, defined in Figure 54, accepts ‘B’ type signatures only for inputs corresponding to j+2 ≤ t ≤ i−2.
It also has the correct input message for step j + 1 - mj hardwired. If t = j + 1 and min = mj it outputs an
‘A’ type signature, else it outputs a ‘B’ type signature. If an input has j + 2 ≤ t ≤ i − 2, then the output
signature, if any, is of the same type as the incoming signature.

Analysis Let AdvxA denote the advantage of adversary A in hybrid Hx.

Claim B.14. Assuming iO is a secure indistinguishability obfuscator, F is a secure puncturable PRF and
S is a splittable signature scheme satisfying Definition 5.1, Adv0A − Adv1A ≤ negl(λ).

Proof. The proof of this claim is similar to the proof of Lemma 6.1.

Claim B.15. Assuming iO is a secure indistinguishability obfuscator, Adv1A − Adv2,0A ≤ negl(λ).

Proof. Note that P1 and P2,0 have identical functionality.

Claim B.16. Let 0 ≤ j ≤ i− 2. Assuming iO is a secure indistinguishability obfuscator, F is a selectively
secure puncturable PRF and S is a splittable signature scheme satisfying definitions 5.1, 5.2, 5.3 and 5.4,

Adv2,jA − Adv
′2,j
A ≤ negl(λ).

Proof. The proof of this claim is similar to the proof of Lemma 6.2.
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P1

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA,KB ∈ K, output b∗.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
5. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
6. Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rS,B).

7. Let F (KB , t) = r′S,B . Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).

8. Let min = (vin, ctst,in, win, posin) and α =‘A’.
If Verify-Spl(VKA,min, σin) = 0 and t ≥ i− 1 output ⊥.
Else if Verify-Spl(VKA,min, σin) = 0 set α =‘B’.
If α =‘B’ and Verify-Spl(VKB ,min, σin) = 0 output ⊥.

9. If t = t∗, output b∗.
10. If i ≤ t < t∗

(a) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1).
ctsym,out = Enc-PKE(pk′, erase; rt,2) and ctst,out = Enc-PKE(pk′, erase; rt,3).

11. Else

(a) Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym =
Dec-PKE(sklw, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =
Dec-PKE(skst, ctst,in).

(c) Let (st′, sym′, β) = δ(st, sym).
(d) If stout = qrej output 0.
(e) If stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

12. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
13. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
14. Let mout = (vout, ctst,out, wout, posout) and σout = Sign-Spl(SK′α,mout).
15. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 52: P1

Claim B.17. Let 0 ≤ j ≤ i − 3. Assuming iO is a secure indistinguishability obfuscator, Itr is an iterator
satisfying indistinguishability of Setup (Definition 3.1) and is enforcing (Definition 3.2), and Acc is an
accumulator satisfying indistinguishability of Read/Write Setup (Definitions 4.1 and 4.2) and is Read/Write

enforcing (Definitions 4.3 and 4.4), Adv
′2,j
A − Adv2,j+1

A ≤ negl(λ).

Proof. The proof of this claim is similar to the proof of Lemma 6.3.

Claim B.18. Assuming iO is a secure indistinguishability obfuscator, Adv2,i−2A − AdvintA ≤ negl(λ).

Proof. Note that P2,i−2 and Wint are functionally identical circuits.
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P2,j

Constants: i, j, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T ,
Public parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA,KB ∈ K, output b∗, message mj .

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
5. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
6. Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rS,B).
7. Let F (KB , t) = r′S,B . Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).
8. Let min = (vin, ctst,in, win, posin) and α =‘A’.

If Verify-Spl(VKA,min, σin) = 0 and (t ≤ j or t ≥ i− 1) output ⊥.
Else if Verify-Spl(VKA,min, σin) = 0 set α =‘B’.
If Verify-Spl(VKB ,min, σin) = 0 output ⊥.

9. If t = t∗, output b∗.
10. If i ≤ t < t∗

(a) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1).
ctsym,out = Enc-PKE(pk′, erase; rt,2) and ctst,out = Enc-PKE(pk′, erase; rt,3).

11. Else

(a) Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym =
Dec-PKE(sklw, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =
Dec-PKE(skst, ctst,in).

(c) Let (st′, sym′, β) = δ(st, sym).
(d) If stout = qrej output 0.
(e) If stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

12. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
13. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
14. Let mout = (vout, ctst,out, wout, posout).

If t = j and mout = mj , σout = Sign-Spl(SK′A,mout).

Else if t = j and mout 6= mj , σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
15. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 53: P2,j

Lemma B.6. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions 3.1 and 3.2, Acc is an accumulator satisfying Definitions 4.1,
4.2, 4.3 and 4.4, S is a splittable signature scheme satisfying security Definitions 5.1, 5.2, 5.3 and 5.4,

|AdvintA − Adv
′int
A | ≤ negl(λ).

Proof. The proof of this lemma is similar to the proof of Lemma B.2. To prove this lemma, we will define a
sequence of hybrid experiments and show that they are computationally indistinguishable.

Hybrid H0 In this experiment, the challenger outputs an obfuscation of P0 = Wint = Prog-2-i{i, t∗, KE ,
KA, KB , mi−2}.
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P ′2,j

Constants: i, j, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T ,
Public parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA,KB ∈ K, output b∗, message mj .

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
5. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
6. Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rS,B).
7. Let F (KB , t) = r′S,B . Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).
8. Let min = (vin, ctst,in, win, posin) and α =‘A’.

If Verify-Spl(VKA,min, σin) = 0 and (t ≤ j + 1 or t ≥ i− 1) output ⊥.
Else if Verify-Spl(VKA,min, σin) = 0 set α =‘B’.
If Verify-Spl(VKB ,min, σin) = 0 output ⊥.

9. If t = t∗, output b∗.
10. If i ≤ t < t∗

(a) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1).
ctsym,out = Enc-PKE(pk′, erase; rt,2) and ctst,out = Enc-PKE(pk′, erase; rt,3).

11. Else

(a) Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym =
Dec-PKE(sklw, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =
Dec-PKE(skst, ctst,in).

(c) Let (st′, sym′, β) = δ(st, sym).
(d) If stout = qrej output 0.
(e) If stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

12. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
13. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
14. Let mout = (vout, ctst,out, wout, posout).

If t = j + 1 and min = mj , σout = Sign-Spl(SK′A,mout).

Else if t = j + 1 and min 6= mj , σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).
15. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 54: P ′2,j

Hybrid H1 In this hybrid, the challenger first computes the constants for program P1 as follows:

1. PRF keys KA and KB are punctured at i − 2 to obtain KA{i − 2} ← F.puncture(KA, i − 2) and
KB{i− 2} ← F.puncture(KB , i− 2).

2. Let rc = F (KA, i−2), (SKC ,VKC ,VKC,rej) = Setup-Spl(1λ; rC), rD = F (KB , i−2), (SKD,VKD,VKD,rej) =
Setup-Spl(1λ; rD).

It then outputs an obfuscation of P1 = P1{i, t∗,KE ,KA{i−2},KB{i−2},VKC,one,SKC,one,SKD,abo,mi−2}
(defined in 55). P1 is identical to P0 on inputs corresponding to t 6= i−1, i−2. However, for i−2, its output
signature is computed using either SKC or SKD. For inputs corresponding to t = i− 1, it uses VKC for the
verification.
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P1

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA{i− 2},KB{i− 2} ∈ K, output b∗, message mi−2, VKC , σC , SKD.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. If t 6= i− 1, let rS,A = F.eval(KA{i− 2}, t− 1). Compute (SKA,VKA,VKA,rej) =

Setup-Spl(1λ; rS,A).
Else VKA = VKC,one.

5. If t 6= i− 2, let r′S,A = F.eval(KA{i− 2}, t). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).

6. If t 6= i− 2, r′S,B = F.eval(KB{i− 2}, t). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).

7. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
8. If t = t∗, output b∗.
9. If i ≤ t < t∗

(a) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1).
ctsym,out = Enc-PKE(pk′, erase; rt,2) and ctst,out = Enc-PKE(pk′, erase; rt,3).

10. Else

(a) Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym =
Dec-PKE(sklw, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =
Dec-PKE(skst, ctst,in).

(c) Let (st′, sym′, β) = δ(st, sym).
(d) If stout = qrej output 0.
(e) If stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

11. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
12. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
13. Let mout = (vout, ctst,out, wout, posout).
14. If t = i− 2 and mout = mi−2, σout = Sign-Spl(SKC ,mout).

Else if t = i− 2 and mout 6= mi−2 σout = Sign-Spl(SKD,mout).

Else σout = Sign-Spl(SK′A,mout).
15. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 55: P1

Hybrid H2 In this hybrid, rC and rD are chosen uniformly at random; that is, the challenger computes
(SKC ,VKC)← Setup-Spl(1λ) and (SKD,VKD)← Setup-Spl(1λ).

Hybrid H3 In this hybrid, the challenger computes constrained secret/verification keys. It computes
(σC,one,VKC,one,SKC,abo,VKC,abo)← Split(SKC ,mi−2) and (σD,one,VKD,one,SKD,abo,VKD,abo)← Split(SKD,mi−2).
It then outputs an obfuscation of P3 = {i, t∗,KE ,KA{i−2},KB{i−2},VKC,one, σC,one,SKD,abo,mi−2} (de-
fined in Figure 56). Note that SKC ,VKC , SKD,VKD are not hardwired in this program.

Hybrid H4 In this hybrid, the challenger chooses PPAcc, w0, store0 using Setup-Acc-Enforce-Read. It then
uses PPAcc, w0, store0, and proceeds as in previous experiment. It outputs an obfuscation of P1{i, t∗, PPAcc,
KE , KA{i− 2}, KB{i− 2}, VKC,one, σC,one, SKD,abo, mi−2}
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P3

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA{i− 2},KB{i− 2} ∈ K, output b∗, message mi−2, VKC,one, σC,one, SKD,abo.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. If t 6= i− 1, let rS,A = F.eval(KA{i− 2}, t− 1). Compute (SKA,VKA,VKA,rej) =

Setup-Spl(1λ; rS,A).
Else VKA = VKC,one.

5. If t 6= i− 2, let r′S,A = F.eval(KA{i− 2}, t). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).

6. If t 6= i− 2, r′S,B = F.eval(KB{i− 2}, t). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).

7. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
8. If t = t∗, output b∗.
9. If i ≤ t < t∗

(a) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1).
ctsym,out = Enc-PKE(pk′, erase; rt,2) and ctst,out = Enc-PKE(pk′, erase; rt,3).

10. Else

(a) Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym =
Dec-PKE(sklw, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =
Dec-PKE(skst, ctst,in).

(c) Let (st′, sym′, β) = δ(st, sym).
(d) If stout = qrej output 0.
(e) If stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

11. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
12. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
13. Let mout = (vout, ctst,out, wout, posout).
14. If t = i− 2 and mout = mi−2, σout = σC,one.

Else if t = i− 2 and mout 6= mi−2 σout = Sign-Spl-abo(SKD,abo,mout).

Else σout = Sign-Spl(SK′A,mout).
15. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 56: P3

Hybrid H5 In this hybrid, the challenger first computes ciphertexts ct1 and ct2 as described in Hyb′2,i.
It then outputs an obfuscation of P5 = P5{i, t∗, PPAcc, KE , KA{i − 2}, KB{i − 2}, VKC,one, σC,one,

SKD,abo, mi−2, ct1, ct2} (defined in Figure 57). This program differs from P3 for inputs corresponding to
t = i − 1. Instead of decrypting, computing the next state and then encrypting, the program uses the
hardwired ciphertexts.

Hybrid H6 In this experiment, the challenger uses normal setup for Acc (that is, Setup-Acc) instead of
Setup-Acc-Enforce-Read.

Hybrid H7 In this experiment, the challenger outputs an obfuscation of W ′int.

Analysis Let AdvxA denote the advantage of adversary A in hybrid Hx.
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P5

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Pub-
lic parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys
KE ,KA{i− 2},KB{i− 2} ∈ K, output b∗, message mi−2, VKC,one, σC,one, SKD,abo, ciphertexts ct1, ct2.

Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in, accumulator
value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. If t 6= i− 1, let rS,A = F.eval(KA{i− 2}, t− 1). Compute (SKA,VKA,VKA,rej) = Sign-Spl(1λ; rS,A).

Else VKA = VKC,one.
5. If t 6= i− 2, let r′S,A = F.eval(KA, t). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
6. If t 6= i− 2, r′S,B = F.eval(KB , t). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′S,B).
7. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
8. If t = t∗, output b∗.
9. If i ≤ t < t∗

(a) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1).
ctsym,out = Enc-PKE(pk′, erase; rt,2) and ctst,out = Enc-PKE(pk′, erase; rt,3).

10. Else if t = i− 1 set ctsym,out = ct1 and ctst,out = ct2.
11. Else

(a) Let (rlw,1, rlw,2, rlw,3) = F (KE , lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym =
Dec-PKE(sklw, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =
Dec-PKE(skst, ctst,in).

(c) Let (st′, sym′, β) = δ(st, sym).
(d) If stout = qrej output 0.
(e) If stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

12. Compute wout = Update(PPAcc, win, (ctsym,out, t), posin, aux). If wout = Reject, output ⊥.
13. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
14. Let mout = (vout, ctst,out, wout, posout).
15. If t = i− 2 and mout = mi−2, σout = σC,one.

Else if t = i− 2 and mout 6= mi−2 σout = Sign-Spl-abo(SKD,abo,mout).
Else σout = Sign-Spl(SK′A,mout).

16. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 57: P5

Claim B.19. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Adv0A − Adv1A| ≤
negl(λ).

Proof. In hybrid H0, program P0 is used, while in H1, program P1 is used. The only difference between the
two programs is that P1 uses punctured PRF keys KA{i−2} and KB{i−2}. It also has the secret/verification
keys computed using F (KA, i− 2) and F (KB , i− 2). As a result, using correctness of puncturable PRFs, it
follows that the two programs have identical functionality. Therefore, by security of iO, their obfuscations
are computationally indistinguishable.

Claim B.20. Assuming F is a selectively secure puncturable PRF, for any PPT A, |Adv1A−Adv
2
A| ≤ negl(λ).

Proof. The proof of this claim is similar to the proof of Claim A.4; it follows from the selective security of
puncturable PRF F .
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Claim B.21. Assuming iO is a secure indistinguishability obfuscator and S satisfies VKone indistinguisha-
bility (Definition 5.2), for any PPT A, |Adv2A − Adv3A| ≤ negl(λ).

Proof. In order to prove this claim, we consider an intermediate hybrid program in which only the constrained
secret keys σC,one and SKD,abo are hardwired, while VKC is hardwired as the verification key. Using the
security of iO, we can argue that the intermediate step and H2 are computationally indistinguishable.
Next, we use VKone indistinguishability to show that the intermediate step and H3 are computationally
indistinguishable.

Claim B.22. Assuming Acc satisfies indistinguishability of Read Setup (Definition 4.1), for any PPT A,
|Adv3A − Adv4A| ≤ negl(λ).

Proof. The proof of this claim follows from Read Setup indistinguishability (Definition 4.1); it is similar to
the proof of A.14.

Claim B.23. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Adv4A − Adv5A| ≤
negl(λ).

Proof. This proof is similar to the proof of Claim A.15. The only additional property we require here is
the correctness of decryption of PKE . Also note that the outputs are identical because the encryption is
deterministic once KE is fixed.

Claim B.24. Assuming Acc satisfies indistinguishability of Read Setup (Definition 4.1), for any PPT A,
|Adv5A − Adv6A| ≤ negl(λ).

Proof. This step is reverse of the step from H3 to H4, and its proof is similar to the proof of Claim A.14.

Claim B.25. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF and S satisfies VKone indistinguishability (Definition 5.2), for any PPT A, |Adv6A − Adv7A| ≤ negl(λ).

This step is the reverse of the step from H0 to H3. Therefore, using similar intermediate hybrid experi-
ments, a similar proof works here as well.

Lemma B.7. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions 3.1 and 3.2, Acc is an accumulator satisfying Definitions 4.1,
4.2, 4.3 and 4.4, S is a splittable signature scheme satisfying security Definitions 5.1, 5.2, 5.3 and 5.4,

|Adv
′int
A − Adv

′2,i
A | ≤ negl(λ).

The proof of this lemma is similar to the proof of Lemma B.5.

B.3 Proof of Lemma 7.3

We will first define hybrids H0, . . . ,H5, where H0 corresponds to Hyb′2,i and H5 corresponds to Hyb2,i−1.

Hybrid H0 This corresponds to Hyb′2,i.

Hybrid H1 In this hybrid, the challenger punctures the PRF key KE on inputs corresponding to t = i−1.
It outputs an obfuscation of program W1 = Prog′-2-i-1{i, t∗,KE{i − 1},KA, ct1, ct2} where Prog′-2-i-1 is
defined in Figure 58. Note that the only difference between Prog′-2-i and Prog′-2-i-1 is that the latter uses
a punctured PRF key KE{i− 1} instead of KE .
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Prog′-2-i-1

Constants: i, Turing machine M = 〈Q,Σtape, δ, q0, qacc, qrej〉, time bound T , halt-time t∗ ≤ T , Public
parameters for accumulator PPAcc, Public parameters for Iterator PPItr, Puncturable PRF keys KE{i −
1},Kst ∈ K, output b∗, ciphertexts ct1, ct2.
Input: Time t ∈ [T ], encrypted symbol and last-write time (ctsym,in, lw), encrypted state ctst,in ∈ Q,
accumulator value win ∈ {0, 1}`Acc , Iterator value vin, signature σin, accumulator proof π, auxiliary value
aux.

1. If t > t∗, output ⊥.
2. Let posin = tmf(t− 1) and posout = tmf(t).
3. If Verify-Read(PPAcc, win, (ctsym,in, lw), posin, π) = 0 or lw ≥ t output ⊥.
4. Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rS,A).
5. Let F (KA, t) = r′S,A. Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′S,A).
6. Let min = (vin, ctst,in, win, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.
7. If t = t∗, output b∗.
8. If i ≤ t < t∗

(a) Compute (rt,1, rt,2, rt,3) = F.eval(KE{i − 1}, t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =
Enc-PKE(pk′, erase; rt,2) and ctst,out = Enc-PKE(pk′, erase; rt,3).

9. Else if t = i− 1,

(a) Set ctsym,out = ct1 and ctst,out = ct2.

10. Else

(a) Let (rlw,1, rlw,2, rlw,3) = F.eval(KE{i − 1}, lw), (pklw, sklw) = Setup-PKE(1λ; rlw,1), sym =
Dec-PKE(sklw, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F.eval(KE{i − 1}, t − 1), (pkst, skst) = Setup-PKE(1λ, rt−1,1), st =
Dec-PKE(skst, ctst,in).

(c) Let (st′, sym′, β) = δ(st, sym).
(d) If stout = qrej output 0.
(e) If stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F.eval(KE{i − 1}, t), (pk′, sk′) = Setup-PKE(1λ; r′t,1), ctsym,out =

Enc-PKE(pk′, sym′; rt,2) and ctst,out = Enc-PKE(pk′, st′; rt,3).

11. Compute wout = Update(PPAcc, win, (ctsym,out, lw), posin, aux). If wout = Reject, output ⊥.
12. Compute vout = Iterate(PPItr, vin, (ctst,in, win, posin)).
13. Let mout = (vout, ctst,out, wout, posout) and σout = Sign-Spl(SK′A,mout).
14. Output posin, ctsym,out, ctct,out, wout, vout, σout.

Figure 58: Prog′-2-i-1

Hybrid H2 In this hybrid, the challenger computes (pk, sk) ← Setup-PKE(1λ) using true randomness.
Also, the ciphertexts ct1 and ct2 are computed using true randomness; that is, ct1 ← Enc-PKE(pk, sym∗) and
ct2 ← Enc-PKE(pk, st∗).

Hybrid H3 In this hybrid, the challenger sets ct1 = Enc-PKE(pk, erase) and ct2 = Enc-PKE(pk, erase).

Hybrid H4 In this hybrid, the challenger computes the ciphertexts using pseudorandom strings gen-
erated using F (KE , ·). More precisely, the challenger computes (ri−1,1, ri−1,2, ri−1,3) = F (KE , i − 1),
(pk, sk)Setup-PKE(1λ; ri−1,1), ct1 = Enc-PKE(pk, erase; ri−1,2) and ct2 = Enc-PKE(pk, erase; ri−1,3).

Hybrid H5 This corresponds to Hyb2,i−1.
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B.3.1 Analysis

Claim B.26. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, Adv0A −
Adv1A ≤ negl(λ).

Proof. To prove this claim, it suffices to show that W0 and W1 are functionally identical. The crucial
observation for this proof is the fact that F (KE , i − 1) is not used anywhere in program W0. For inputs
corresponding to t > i − 1, both programs don’t use F (KE , i − 1) since the programs do not decrypt for
t > i − 1. For t = i − 1, the ciphertexts ct1 and ct2 are hardwired. For t < i − 1, note that it only
computes F (KE , τ) for τ < i − 1. As a result, F (KE , ·) is not evaluated at input i − 1, and therefore, it is
safe to puncture KE on input i− 1 without affecting functionality. The rest follows from the correctness of
puncturable PRFs.

Claim B.27. Assuming F is a selectively secure puncturable PRF, for any PPT adversaryA, Adv1A−Adv
2
A ≤

negl(λ).

Proof. The proof of this claim is similar to the proof of Claim A.4; it follows from the selective security of
puncturable PRF F .

Claim B.28. Assuming PKE is IND-CPA secure, for any PPT adversary A, Adv2A − Adv3A ≤ negl(λ).

Proof. Note that the secret key sk is not required in both hybrids H2 and H3. Suppose there exists an
adversary A that can distinguish between H2 and H3 with advantage ε. Then we can construct a PPT
algorithm B that breaks the IND-CPA security of PKE with advantage ε. B receives the public key pk from
the challenger. It interacts with A and computes sym∗, st∗. It sends m0 = (sym∗, st∗) and m1 = (erase, erase)
as the challenge message pairs, and receives a ciphertext pair(ct1, ct2). B can now perfectly simulate H2 or
H3 for A, depending on whether (ct1, ct2) are encryptions of m0 or m1. This completes our proof.

Claim B.29. Assuming F is a selectively secure puncturable PRF, for any PPT adversaryA, Adv3A−Adv
4
A ≤

negl(λ).

Proof. This step is the reverse of the step from H1 to H2; its proof is similar to the proof of Claim A.4.

Claim B.30. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, Adv4A −
Adv5A ≤ negl(λ).

Proof. The only difference between the programs used in the two hybrids is that one uses a punctured
key KE{i − 1}, while the other uses KE . Using the correctness of puncturable PRFs, we can argue that
they are functionally identical. As a result, from the security of iO, their obfuscations are computationally
indistinguishable.
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