
Certificateless Proxy Re-Encryption Without Pairing

Akshayaram Srinivasan ∗ C. Pandu Rangan †

November 14, 2014

Abstract

Proxy Re-Encryption was introduced by Blaze, Bleumer and Strauss to efficiently solve the problem
of delegation of decryption rights. In proxy re-encryption, a semi-honest proxy transforms a ciphertext
intended for Alice to a ciphertext of the same message for Bob without learning anything about the
underlying message. From its introduction, several proxy re-encryption schemes in the Public Key In-
frastructure (PKI) and Identity (ID) based setting have been proposed. In practice, systems in the public
key infrastructure suffer from the certificate management problem and those in identity based setting
suffer from the key escrow problem. Certificateless Proxy Re-encryption schemes enjoy the advantages
provided by ID-based constructions without suffering from the key escrow problem.

In this work, we construct the first unidirectional, single-hop CCA-secure certificateless proxy re-
encryption scheme without pairing by extending the PKI based construction of Chow et al. proposed in
2010. We prove its security in the random oracle model under the Computational Diffie-Hellman (CDH)
assumption. Prior to this work, the only secure certificateless proxy re-encryption scheme is due to Guo
et al. proposed in 2013 using bilinear pairing. The construction proposed in this work is more efficient
than that system and satisfies stronger security properties. We also show that the recently proposed
construction of Yang et al. is insecure with respect to the security model considered in this work.

∗Theoretical Computer Science Lab, Dept. of Computer Science and Engg, Indian Institute of Technology, Madras. Email:
akshayram1993@gmail.com
†Theoretical Computer Science Lab, Dept. of Computer Science and Engg, Indian Institute of Technology, Madras. Email:

prangan55@gmail.com

1

1 Introduction

Proxy Re-Encryption (PRE) allows a semi-trusted proxy to transform ciphertexts intended for Alice (del-
egator) to a ciphertext of the same message for Bob (delegatee). The main goal of proxy re-encryption is
to ensure that the proxy does not “learn” any information about the underlying message. PRE systems
can be classified into two types based on the direction of transformation: unidirectional and bidirectional.
In an unidirectional PRE scheme, the proxy has the ability to transform ciphertexts from Alice to Bob
but not in the other direction. However, in a bidirectional setting the proxy can transform ciphertexts in
both directions. An unidirectional PRE scheme implies a bidirectional one, as a bidirectional scheme can be
obtained by trivially combining two unidirectional schemes. Blaze et al. [BBS98] also gave another method
to classify PRE schemes: multi-hop, i.e., the ciphertext can be transformed from Alice to Bob to Charlie
and so on; and single-hop, i.e., the ciphertext can be transformed only once.

From its introduction, proxy re-encryption has found a variety of applications such as distributed file sys-
tems [AFGH06], simplification of key distribution [BBS98], multicast [CLH05], DRM of Apple’s iTunes [Smi],
privacy for public transportation [HBCDF06], telemedical system [GZZC13] and secure e-mail forwarding
[BBS98].

Most of the PRE constructions found in literature are either in the public key setting or in the identity
(ID) based setting. In the public key setting, there is a need to authenticate the public key of users. For
this purpose, we rely on a trusted third party called as Certifying Authority (CA) to issue certificates
proving the authenticity of a public key. Certificate management is a costly and a cumbersome process
that inherently makes public key cryptography inefficient. Identity based setting removes the problem of
certificate management but brings in a new problem. The Private Key Generator (PKG) generates the secret
keys of all users and hence can decrypt all their messages. Thus, PKG must be unconditionally trusted and
this leads to the key escrow problem. We highlight an use case where proxy re-encryption systems in public
key setting as well in ID-based setting fail to provide an useful solution.

Consider a cloud storage provider with millions of users storing their data on its servers. The users wish
that their data remains confidential and hence encrypt their data before storing it on the cloud. Consider
an user Alice who wishes to share some of her data with another user Bob but doesn’t want to share her
secret key with him. A naive approach taken by the Alice would be to download all her data, decrypt it and
then re-encrypt it under Bob’s public key. This solution is highly inefficient if the data stored by Alice is of
the order of hundreds of gigabytes and the computing power of Alice is very small (like a smart phone or
a personal computer). Proxy re-encryption provides an efficient way to solve the above problem. Alice can
give the cloud service provider with a re-encryption key which can be used to transform the encrypted data
stored under Alice’s public key to data encrypted under Bob’s public key. Since the number of users is in
the order of millions, proxy re-encryption schemes in the public key setting would be highly inefficient. Also,
finding an authority (to issue certificates) which is unconditionally trusted by all the users is impractical.
In the ID-based setting, a third party computes the secret keys of all the users and it could read all the
data stored on the server. This may not be preferred by the users if they wish to store highly confidential
or personal data. In such a scenario, certificateless proxy re-encryption provides an efficient solution by
avoiding the certificate management problem in the PKI based setting and the key escrow problem in the
ID-based setting.

Certificateless cryptography was introduced by Al-Riyami and Patterson in 2003 [ARP03]. In the cer-
tificateless setting, public key as well as the secret key of an user consists of two parts: one generated by the
user himself and the other generated by a semi-trusted party called as the Key Generation Center (KGC).
The public key of an user does not require a certificate and hence systems designed in this setting do not
suffer from the certificate management problem. Also, the KGC does not have any information about the
secret value generated by the user and hence cannot decrypt any ciphertexts. Thus, key escrow problem is
also avoided. Informally, a scheme is secure in the certificateless setting if it is secure against two types of
adversaries namely Type-I and Type-II. A Type-I adversary models an outside attacker (one who is different
from KGC and receiver). And, Type-II adversary models an honest-but-curious KGC who tries to break the
confidentiality of the scheme.

2

1.1 Related Work

1.1.1 Certificateless Public Key Cryptography

Since the introduction of certificateless public key cryptography by Al-Riyami and Patterson in 2003 [ARP03],
a variety of schemes satisfying various notions of security have been proposed. Baek, Safavi-Naini and Susilo
[BSNS05] proposed the first CCA-secure certificateless public key encryption without pairing in a weakened
security model where the adversary is not allowed to replace the public key of the target identity. In 2007,
Sun, Zhang and Baek [SZB07] strengthened the scheme and allowed the adversary to replace the public key
of the target identity but still disallowed him to obtain the partial key of the target identity. In 2006, Libert
and Quisquater [LQ06] proposed generic construction of certificateless encryption from an identity based
encryption scheme. In the same year, Chow, Boyd and Nieto [CBN06] proposed a generic construction
for security mediated certificateless encryption which provides instant revocation. Dent [Den08] provides
an excellent survey of certificateless encryption schemes and ranks the different notions of security for a
certificateless public key encryption scheme against an outside attacker as well as passive key generation
center.

1.1.2 Proxy Re-Encryption

In 1998, Blaze, Bleumer and Strauss [BBS98] introduced the notion of proxy re-encryption and proposed
a bidirectional CPA-secure scheme. The first unidirectional CPA-secure proxy re-encryption scheme was
proposed by Ateniese et al. in [AFGH06]. In 2007, Canetti and Hohenberger [CH07] proposed the first
bidirectional multihop Replayable Chosen Ciphertext (RCCA) secure scheme in the standard model. In
2008, Libert and Vergnaud [LV08] proposed the first unidirectional single hop scheme which is RCCA secure
in the standard model. All the above mentioned constructions used bilinear pairing. In 2008, Weng, Deng,
Liu and Chen [WDLC10, DWLC08] proposed a bidirectional CCA-secure (in the random oracle model) PRE
scheme without pairing. In 2010, Chow, Weng, Yang and Deng [CWYD10] proposed an efficient CCA-secure
(in the random oracle model) unidirectional proxy re-encryption scheme without pairing. Recently, Lu, Lin,
Shao and Liang in [LLSL14] proposed a RCCA-secure (in the random oracle model) bidirectional proxy
re-encryption scheme satisfying some additional properties like constant ciphertext size (irrespective of the
number of transformations done) and master secret security (introduced in [AFGH06]).

To solve the certificate management problem in PRE, Green and Ateneise [GA07] introduced the concept
of ID based proxy re-encryption scheme (IB-PRE) and proposed a multi hop IB-PRE scheme that is CCA
secure in the random oracle model. Chu and Tzeng [CT07] proposed the first CCA secure ID based proxy
re-encryption scheme without random oracles. In the above constructions, the ciphertext size and complexity
of the decryption algorithm grew linearly in the number of transformations done to a ciphertext. Recently,
Liang et al. in [LCT+14] proposed a CCA-secure multi hop ID based proxy re-encryption scheme in the
standard model having constant ciphertext and computational complexity. IB-PRE systems solve the issue
of certificate management but brings in the key escrow problem. Hence, the notion of certificateless proxy
re-encryption scheme was introduced.

1.1.3 Certificateless Proxy Re-Encryption

In 2010, Sur, Jung, Park and Rhee [SJPR10] gave a construction of a certificateless proxy re-encryption
and proposed a CLPRE scheme using bilinear pairing. However, Zheng et al. in 2013 [ZTGC13] gave a
concrete attack on their scheme and proved that their scheme was not CCA secure as claimed. In 2013,
Guo, Zhang, Zhang and Chen [GZZC13] proposed a certificateless proxy re-encryption which was RCCA -
secure in the random oracle model using bilinear pairings. Recently, Yang, Xu and Zhang [YXZ14] proposed
a certificateless proxy re-encryption scheme without pairing and claimed it to be CCA-secure. We show that
their construction is not CCA-secure with respect to the security model considered in this work.

3

1.2 Our Contributions

In this paper, we propose the first pairing-less unidirectional, single-hop, CCA secure certificateless proxy
re-encryption scheme by extending the PKI-based scheme of Chow et al. [CWYD10]. Prior to this work,
the only known secure certificateless proxy re-encryption scheme was proposed by Guo et al. in 2013. We
highlight several advantages enjoyed by our construction when compared to theirs.

Firstly, we propose a CCA-secure certificateless proxy re-encryption scheme whereas their construction
could satisfy only a weaker notion of security namely, RCCA (Replayable Chosen Ciphertext). Secondly,
the Type-I adversary considered in their work is weak when compared to the Type-I adversary we consider.
In particular, their Type-I adversary is only allowed to adaptively corrupt the users in a specific way (i.e by
replacing the public key and then querying the partial key) and cannot have access to a strong decryption
oracle defined in [Den08]. In our work, Type-I adversary can adaptively corrupt users in any arbitrary
manner and can access the strong decryption oracle. The Type-II adversary we consider is also significantly
stronger than the one considered by them. Their Type-II adversary cannot replace the public key of any
user and does not have access to a strong decryption oracle. On the other hand, we provide with our Type-II
adversary the ability to perform both the tasks. We also compare the efficiency of their system with ours
and our proposed construction outperforms theirs in almost every aspect.

Another major contribution of this work is the cryptanalysis of Yang et al.’s certificateless proxy re-
encryption construction [YXZ14]. We observe that their proposed construction does not satisfy the con-
fidentiality property of the challenge ciphertext in our security model. We give a brief overview of their
construction and give a concrete attack on their system. The attack we demonstrate is inspired by the
“chain-collusion attack” described in [SC09, CWYD10].

2 Framework for CL-PRE

In this section, we describe the framework for a single hop, unidirectional CL-PRE scheme. We use the
formulation given by Baek, Safavi-Naini and Susilo [BSNS05, SZB07, Den08] for a certificateless encryption
system. In this formulation, the KGC provides a partial public key and a partial secret key to the user
which are combined with his own secret values to obtain his full public and secret key. This is a slight
deviation from the original formulation of Al-Riyami and Patterson which allows the public key of an user
to be generated independent of the partial secret key given by the KGC. Though one might view this as a
slight disadvantage as the user can obtain encrypted messages only after receiving the partial public key and
the partial secret key from the KGC, it has been shown in [Den08] that only schemes following the Baek,
Safavi-Naini and Susilo formulation can resist “denial of decryption attacks”. A CL-PRE scheme consists of
the following algorithms:

• Setup(1k) : This is a probabilistic polynomial time (PPT) algorithm run by the Key Generation Center
(KGC). It takes the unary encoding of security parameter 1k as input and outputs a set of public
parameters denoted by params and a master secret key msk. params also includes a description of a
message space M of finite size.

• PartialKeyExtract(params,msk, ID) : This is a PPT algorithm run by the KGC. It takes public pa-
rameters params, the master secret key msk, and the user’s identity ID as inputs and outputs partial
public key ppk and partial secret key psk.

• UserKeyGen(ID, params) : This is a PPT algorithm run by the user. It takes the user’s identity ID,
and params as inputs and outputs a secret key sk, and a public key pk. This algorithm can be run
independent of the partial key extract.

• SetPublicKey(ID, params, pk, sk, psk, ppk): This is a PPT algorithm run by the user. It takes the
user’s identity ID, params, user generated public key pk and secret key sk, the partial secret key psk
and the partial public key ppk to return the user’s full public key PK.

4

• SetPrivateKey(ID, params, sk, psk): This is a polynomial time algorithm run by the user. It takes the
user’s identity ID, params, user generated secret key sk and the partial secret key psk to return the
user’s full secret key SK.

• Re− KeyGen(IDi, IDj , params, SKi, PKj): This is a PPT algorithm run by the user with identity
IDi

1. It takes IDi, IDj , the public parameters params, the full secret key SKi of IDi, full public key
PKj of IDj and outputs either a re-encryption key rki→j or an error symbol ⊥.

• Encrypt(IDi, params, PKi,m) : This is a PPT algorithm run by the sender. This algorithm takes the
identity of the receiver IDi, the public parameters params, the full public key PKi of IDi and a
message m from M as inputs. It outputs a first level2 ciphertext C ′ or an error symbol ⊥.

• Re− Encrypt(IDi, IDj , params,C
′, rki→j): This is a PPT algorithm run by the proxy. It takes user’s

identities IDi, IDj , params, a first level ciphertext C ′, and a re-encryption key rki→j as inputs. It
outputs a second level3 ciphertext C ′′ or an error symbol ⊥.

• Decrypt1(IDi, params,C
′, SKi): This is a deterministic algorithm run by the receiver. It takes in the

receiver’s identity IDi, the public parameters params, a first level ciphertext C ′ and the receiver’s full
secret key SKi as input and outputs a message m from M or an error symbol ⊥.

• Decrypt2(IDi, params,C
′′, SKi): This is a deterministic algorithm run by the receiver. It takes in the

receiver’s identity IDi, the public parameters params, a second level ciphertext C ′′ and the receiver’s
full secret key SKi as input and outputs a message m from M or an error symbol ⊥.

Correctness: The algorithms stated above must satisfy the following correctness requirements. For all
k ∈ N, if (params,msk) ← Setup(1k) and PKi, PKj are the full public keys corresponding to identities
IDi, IDj with full secret keys SKi, SKj then for all m ∈M:

• Decrypt1(IDi, params,Encrypt(IDi, params, PKi,m), SKi) = m

• If rki→j = Re− KeyGen(IDi, IDj , params, SKi, PKj), and C ′′ = Re− Encrypt(IDi, IDj , params,
Encrypt(IDi, params, PKi,m), rki→j), then Decrypt2(IDj , params,C

′′, SKj) = m

3 Security Model

An adversary attacking a CL-PRE scheme can be of two types: Type-I or Type-II. A Type-I adversary
models an attacker from the outside (i.e anyone except the KGC) who is trying to gain some information
about the underlying message in the ciphertext. A Type-II adversary models an honest but a curious KGC4

who tries the break the confidentiality of the scheme. For a scheme to be secure, we must argue that the
adversary cannot gain any protected information unless he holds the full secret key.

We allow a Type-I adversary to adaptively corrupt users by obtaining the private keys of users 5. We also
allow the Type-I adversary to adaptively replace public keys of users with public key of his choice and to have
access to a strong decryption oracle (notation as in [Den08]). If an adversary has replaced the public key
corresponding to an identity, then the strong decryption oracle returns the correct decryption of a ciphertext
with the secret key that inverts the current value of the public key. A Type-II adversary can also adaptively
corrupt users and replace public key of identities except that of the challenge identity. Type-II adversary

1It is suggested in [GZZC13] and [CH07] that Re-KeyGen for a unidirectional proxy re-encryption scheme need not involve
the delegatee or the proxy. It is run by the delegator locally and the result is then sent to the proxy.

2A first level ciphertext can be re-encrypted by proxy
3A second level ciphertext cannot be re-encrypted by proxy
4This modeled by giving the Type-2 adversary with the master secret key
5In our security model, an adversary can obtain the full secret key of the user by querying partial key extract oracle and the

user key extract oracle. Once the adversary obtains both partial key as well as user generated key for a particular identity, he
can compute the full secret key of the user by running the SetPrivateKey algorithm. We note that this is equivalent to providing
the adversary with a secret key extract oracle.

5

also has access to a strong decryption oracle. Both Type-I and Type-II adversaries have access to public key
extraction, Re-Encryption, Re-Key generation oracles.

The security of any CL-PRE scheme is proved by means of an interactive game between a challenger and
an adversary who tries to break the confidentiality of the scheme. In the confidentiality game between an
adversary A and the challenger (or the simulator) C, the adversary has the access to various oracles which
are simulated by C. Before setting up the oracles, C sets up a list CI of corrupted identities which is initially
empty and a list of current public keys called as CPK. A does not posses the full secret key of an identity
ID which is not in CI list. When A obtains the full secret key corresponding to an identity ID, C adds ID
to the CI list. CPK consists of tuples of the form (< IDi >,PKi, ˆPKi) where IDi denotes user’s identity,
PKi denotes the full public key returned by SetPublicKey algorithm, and ˆPKi denotes the current public
key provided by the adversary. C initializes the CPK list with PKi = ˆPKi for all identities IDi. Whenever
the adversary replaces the existing public key of an identity IDi with a new public key ˆPKi, C replaces the
third component of the tuple corresponding to IDi in the CPK list with ˆPKi. We now describe the oracles
that A can access.

• Public Key Extract (Opke): On giving ID as input, Opke computes (pk, sk)← UserKeyGen(ID, params),
(ppk, psk) ← PartialKeyExtract(params,msk, ID), PK ← SetPublicKey(ID, params, pk, sk, psk, ppk)
and returns PK.

• Partial Key Extract (Opex): On giving ID as input, Opex computes (ppk, psk)← PartialKeyExtract
(params,msk, ID) and returns (ppk, psk). If the adversary has already obtained the User Key of ID,
then the challenger adds ID to the list CI.

• User Key Extract (Ouke): On giving ID as input, Ouke computes (pk, sk)← UserKeyGen
(params, ID) and returns (pk, sk). If the adversary has already obtained the Partial key of ID, then
challenger adds ID to the corrupted identities list CI.

• Re-Key Generation (Orkg): On giving (IDi, IDj) as input, Orkg returns rki→j = Re− KeyGen(IDi,

IDj , params, SKi, ˆPKj) where ˆPKj is the current public key of IDj .

• Re-Encryption Oracle (Orenc): On giving (IDi, IDj , C
′) as inputs where C ′ is a first level ciphertext,

Orenc computes rki→j = Re− KeyGen(IDi, IDj , params, SKi, ˆPKj) where ˆPKj is the current public
key of IDj and returns a second level ciphertext C ′′ = Re− Encrypt(IDi, IDj , params,C

′, rki→j).

• Strong Decrypt-1 Oracle (Odec1): On giving (ID,C ′) as inputs, where C ′ is a first level ciphertext,
Odec1 computes the decryption of the ciphertext using the private key that inverts the current value
of the public key and returns m from M or an error symbol.

• Strong Decrypt-2 Oracle (Odec2): On giving (ID,C ′′) as inputs, where C ′′ is a second level cipher-
text, Odec2 computes the decryption of the ciphertext using the private key that inverts the current
value of the public key and returns m from M or an error symbol.

• Public Key Replacement Oracle (Opkr): On giving (IDi, ˆPKi) as input, Opkr replaces the public

key of IDi with ˆPKi by replacing the third component of the tuple corresponding to IDi in the CPK
list with ˆPKi.

3.1 Security against a Type-I adversary

We first consider the security game between the challenger and a Type-I adversary. A Type-I adversary
denoted by AI has the access to all the eight oracles mentioned above.

Now, we describe the CCA security game between the challenger C and a Type-I adversary AI . The
game proceeds in 3 phases and the description of each phase is given below.

• Initialization: C sets up the list CI of corrupted identities and the current public key list CPK. It
initializes CI = ∅ and CPK with PKi = ˆPKi for all identities IDi.

6

• Phase-1: C runs the algorithm Setup(k), where k is the security parameter and computes the public
parameters params and the master secret key msk. It gives params to AI and keeps the msk to itself.

AI can query any of the above mentioned oracles but it cannot query the user key or the partial secret
key of an identity for which it has replaced the public key 6. That is, it cannot query Ouke(IDi)
or Opex(IDi) if PKi 6= ˆPKi. The challenger responds to the other oracle queries correctly and
consistently.

• Challenge Phase: Once AI decides that the Phase-1 of the security game is over, it outputs
(ID∗,M0,M1) where ID∗ is the target identity, M0,M1 are messages from M such that |M0| = |M1|
(where | · | denotes length). It is required that ID∗ satisfies the following conditions.

– ID∗ does not belong to the CI list.

– AI has not queried the partial key of ID∗ in Phase-1.

– AI has not issued a query Orkg(ID∗, ID), where ID is in CI list.

Remark 1 Our assumption that the adversary does not obtain the partial keys for the challenge
identity is a reasonable one. This is achieved in a system where the KGC delivers the partials keys
through a confidential channel. According to the nomenclature given in [Den08], our model is termed
as Strong Type I∗.

C chooses δ ∈ {0, 1} uniformly at random and computes C∗ = Encrypt(ID∗, params, ˆPK∗,Mδ), where
ˆPK∗ denotes the current value of the public key of the target identity.

• Phase-2: Before we describe the phase-2 of the security game we define a challenge derivative (similar
to [SJPR10]). Informally, a challenge derivative is the challenge ciphertext or a ciphertext obtained by
re-encrypting the challenge ciphertext. Formally,

– (ID∗, C∗) is a challenge derivative.

– If (IDi, Ci) is a challenge derivative and AI has issued a re-encryption query Orenc(IDi, IDj , Ci)
to obtain the ciphertext Cj , then (IDj , Cj) is a challenge derivative.

– If (IDi, Ci) is a challenge derivative and AI has issued a re-key generation query Orkg(IDi, IDj)
to obtain the re-key rki→j and the ciphertext Cj = Re− Encrypt(IDi, IDj , params,Ci, rki→j),
then (IDj , Cj) is a challenge derivative.

AI can continue to query the above oracles but as in Phase-1 it cannot query:

– Ouke(IDi) or Opex(IDi) if PKi 6= ˆPKi.

– Opex(ID∗).

In addition, the adversary is not allowed to make the following queries which allows it to trivially win
the game.

– Ouke(ID) and Opex(ID) 7 if there exists a challenge derivative (ID,C).

– Odec1(ID∗, C∗) unless the public key of ID∗ which was used to create the challenge has been
replaced.

– Odec2(ID,C) if (ID,C) is a challenge derivative.

– Orenc(IDi, IDj , Ci), if IDj is in CI list and (IDi, Ci) is a challenge derivative.

– Orkg(ID∗, IDj), if IDj is in CI list.

6It is unreasonable to expect the challenger to provide secret keys for public keys replaced by the adversary
7Adversary is allowed to query any one of the oracles. But is not allowed to query both.

7

• Guess: AI finally outputs a guess δ′ of δ. AI is said to win the game if δ = δ′.

We define the advantage that AI has over this game as

AdvIND−CLPRE−CCACLPRE,AI
= 2|Pr[δ = δ′]− 1/2|

where the probability is over the random coin tosses performed by the C, AI and the oracles.

Definition 1 A unidirectional, single hop scheme is said to be (t, ε, qpke, quke, qpex, qrkg, qrenc, qdec1, qdec2, qpkr)
secure against Type-I adversary, if for any t time Type-I adversary who makes at most qpke queries to Opke,
at most quke queries to Ouke, at most qpex queries to Opex, at most qrkg queries to Orkg, at most qrenc
queries to Orenc, at most qdec1 queries to Odec1, at most qdec2 queries to Odec2, at most qpkr queries to Opkr,
we have AdvIND−CLPRE−CCACLPRE,AI

≤ ε. ♦

3.2 Security against a Type-II adversary

We now consider the notion of security against a Type-II adversary. Since a Type-II adversary models
an honest yet curious KGC, a Type-II adversary is provided with the master secret key msk. Since the
Type-II adversary has access to msk, it can compute the partial key corresponding to arbitrary identities
of its choice. Thus, we do not provide a Type-II adversary explicitly with a partial key extract oracle. A
Type-II adversary can replace the public key of arbitrary identities except the challenge identity. A Type-II
adversary also has access to a Strong Decryption oracle. The adversary can query all the oracles that are
mentioned except Opke. We note that an identity ID will belong to the corrupted list if the adversary has
queried for the user key for that identity as the adversary can compute the partial secret key by himself.

We now describe the game between a Type-II adversary AII and the challenger C. As before, the game
proceeds in 3 phases.

• Initialization: C sets up the list CI of corrupted identities and the current public key list CPK. It
initializes CI = ∅ and CPK with PKi = ˆPKi for all identities IDi.

• Phase-1: The C runs the algorithm Setup(k), where k is the security parameter and computes the
public parameter params and the master secret key msk. It gives params and msk to AII . As in the
previous case, it cannot query Ouke(IDi) or Opex(IDi) if PKi 6= ˆPKi

• Challenge Phase: Once AII decides that the Phase-1 of the security game is over, it outputs
(ID∗,M0,M1) where ID∗ is the target identity, M0,M1 are messages from M such that |M0| = |M1|
(where | · | denotes length). It is required that ID∗ satisfies the following conditions.

– ID∗ does not belong to the CI list.

– AII has not queried Orkg(ID∗, ID), where ID is in CI list.

– PK∗ = ˆPK∗. That is, AII has not replaced the public key corresponding to the challenge identity.
This is a standard requirement in the security model for a Type-II adversary.

C chooses δ ∈ {0, 1} uniformly at random and computes C∗ = Encrypt(ID∗, params, PK∗,Mδ).

• Phase-2: AII can continue to query the above mentioned oracles in this phase but as in Phase-1 is
disallowed to query:

– Ouke(IDi) or Opex(IDi) if PKi 6= ˆPKi

In addition, it is not allowed to make the following queries which trivially allow it to win the game:

– Ouke(ID) and Opex(ID) 8 if there exists a challenge derivative (ID,C).

8Again, adversary is allowed to query one of the oracles but not both

8

– Odec1(ID∗, C∗) if PK∗ = ˆPK∗.

– Odec2(ID,C) if (ID,C) is a challenge derivative.

– Orenc(IDi, IDj , Ci), if IDj is in CI list and (IDi, Ci) is a challenge derivative.

– Orkg(ID∗, IDj), if IDj is in CI list.

• Guess: AII finally outputs a guess δ′ of δ. The adversary is said to win the game if δ = δ′.

We define the advantage that the adversary AII has over this game as

AdvIND−CLPRE−CCACLPRE,AII
= 2|Pr[δ = δ′]− 1/2|

where the probability is over the random coin tosses performed by C, AII and the oracles.

Definition 2 A unidirectional, single hop scheme is said to be (t, ε, qpke, quke, qrkg, qrenc, qdec1, qdec2, qpkr)
secure against Type-II adversary, if for any t time Type-II adversary who makes at most qpke queries to Opke,
at most quke queries toOuke, at most qrkg queries toOrkg, at most qrenc queries toOrenc, at most qdec1 queries
to Odec1, at most qdec2 queries to Odec2, at most qpkr queries to Opkr, we have AdvIND−CLPRE−CCACLPRE,AII

≤ ε.
♦

4 Cryptanalysis of Yang et al.’s CL-PRE scheme

We first give an overview of Yang et al.’s CL-PRE scheme and later describe our Chosen Ciphertext attack
against the confidentiality of their construction.

4.1 Yang et al.’s CL-PRE scheme

• Setup(1k) :

– Generate a k-bit prime number q and a group G of order q. Pick a random generator g ∈ G.

– Randomly pick a x ∈R Z∗q and compute y = gx.

– Choose cryptographic hash functions H1 : {0, 1}∗ × G → Z∗q , H2 : G → {0, 1}n+n′ for some
n, n′ ∈ N, H3 : {0, 1}∗ → Z∗q , H4 : G→ Z∗q , H5 : {0, 1}∗ → Z∗q and H6 : {0, 1}∗ → Z∗q .

– Output the public parameters params = {G, g, q, y, n, n′, H1, H2, H3, H4, H5, H6} and the master
secret key msk = x.

• PartialKeyExtract(params,msk, IDA) : Pick a random sA ∈R Z∗q and compute ωA = gsA and tA =
sA + xH1(IDA, ωA). Return the partial public key ppk = ωA and the partial secret key psk = tA.

• UserKeyGen(IDA, params) : Pick random zA, vA ∈R Z∗q and compute µA = gzA and ϕA = gvA . Return
pk = (µA, ϕA) and sk = (zA, vA).

• SetPublicKey(IDA, params, pk, ppk) : Set the public key to be PK = (ωA, µA, ϕA).

• SetPrivateKey(IDA, params, sk, psk) : Set the private key SK = (tA, zA, vA).

• Re− KeyGen(IDA, IDB , params, PKA, SKA, PKB) : Parse PKA as (ωA, µA, ϕA), SKA as (tA, zA, vA)
and PKB as (ωB , µB , ϕB). Compute γB = ωBy

H1(IDB ,ωB) and XAB = H3(γvAB , ϕvAB , IDA, PKA, IDB ,
PKB). Return RKA→B = (tAH4(µA) + zA)XAB .

• Encrypt(IDA, params, PKA,m) : Parse PKA as (ωA, µA, ϕA). Compute γA = ωAy
H1(IDA,ωA) and

YA = γ
H4(µA)
A µA. Pick a random σ ∈ {0, 1}n′ and compute r = H5(m,σ, IDA, pkA). Pick a random

r̂ ∈ Z∗q and compute CA = (c1, c2, c3, c4) such that c1 = gr̂, c2 = gr, c3 = (m||σ) ⊕ H2(Y rA) and
c4 = r̂ + rH6(c1, c2, c3). Return CA

9

• Re− Encrypt(IDA, params,CA, RKA→B) : Parse CA as (c1, c2, c3, c4) and check whether gc4 = c1.c
H6(c1,c2,c3)
2 .

If not return ⊥. Else, compute c′2 = cRKA→B2 and c′3 = c3 and return C ′B = (c′2, c
′
3).

• Decrypt1(IDA, params,CA, SKA) : Parse CA as (c1, c2, c3, c4) and SKA as (tA, zA, vA). Then compute:

– Check if gc4 = c1.c
H6(c1,c2,c3)
2 . If not, return ⊥.

– Compute m||σ = c3 ⊕H2(c
tAH4(µA)+zA
2).

– Check if c2 = gH5(m,σ,IDA,pkA).

• Decrypt2(IDB , params,C
′
B , SKB , PKA) : Parse C ′B as (c′2, c

′
3), PKA as (ωA, µA, ϕA) and SKB as

(tB , zB , vB). Then compute:

– Compute XAB = H3(ϕtBA , ϕ
vB
A , IDA, PKA, IDB , PKB).

– Compute m||σ = c′3 ⊕H2(c
′1/XAB
2).

– Compute r′ = H5(m,σ, IDA, pkA), γA = ωAy
H1(IDA,ωA) and YA = γ

H4(µA)
A µA.

– If Y XABr
′

A = c′2 then return m. Else, return ⊥.

4.2 Attack against confidentiality

We now show that the construction of Yang et al. is insecure in the security model which we consider in
this work. In particular, Yang et al. scheme is insecure once the adversary is given access to the user key
extract oracle. We illustrate this weakness with a concrete attack against their construction. In the attack,
we demonstrate how to obtain the secret key of an uncorrupted user and how to break the confidentiality of
the construction using the secret key.

We describe a Type-I adversary A against the CCA-security challenger for the above construction. The
adversary works as follows:

• A chooses IDA as the challenge identity. In addition, it chooses two more identities, IDB and IDC .

• A obtains the challenge ciphertext C∗A.

• The adversary makes the following queries to their respective oracles:

– A queries for the user keys for IDB to Ouke and obtains (zB , vB).

– A queries for the user keys of IDC to Ouke and obtains (zC , vC).

– A queries for the partial keys for IDC to Opex to obtain tC . The adversary now has the full secret
key of IDC and hence IDC is added to the corrupted list.

– It now queries the re-key oracle Orkg to obtain the re-key RKB→C .

– A queries the re-encryption oracle Orenc to re-encrypt the challenge ciphertext C∗A from IDA to
IDB and obtains C∗B .

We note that all the queries made by the adversary are valid and allowed by our security model.

• Now, the adversary is in possession of the following information:

– The full secret key of IDC : (tC , zC , vC).

– The user key of IDB : (zB , vB).

– Re-key from IDB to IDC : RKB→C .

– Re-encryption of challenge ciphertext to IDB : C∗B = (c′2, c
′
3).

• A then computes the partial key for IDB as follows:

10

– It computes XBC = H3((ϕB)tC , (ϕB)vC , IDB , PKB , IDC , PKC) using the knowledge of secret
key of C.

– It then computes yB = RKB→C/XBC . Note that yB = tBH4(µB) + zB .

– It then computes tB = (yB − zB)/H4(µB).

• Now, A has access to the full secret key (tB , zB , vB) of IDB . It then decrypts C∗B and obtains the
challenge message m. Thus, A wins the game with probability 1.

5 Complexity assumptions

For a prime q, let Zq denote the set {0, 1, 2, · · · , q−1} and let Z∗q denote Zq−{0}. For a finite set X, x ∈R X
means x is chosen uniformly at random from set X.

Definition 3 Let G be a cyclic multiplicative group of prime order q and g is a generator of G. The Com-
putational Diffie-Hellman (CDH) problem in G asks to compute gab, given (g, ga, gb) without the knowledge
of a or b where a, b ∈R Z∗q . ♦

Definition 4 For an adversary A, we define the advantage in solving the CDH problem as AdvCDHA =
Pr[A(g, ga, gb) = gab], where the probability is taken over the random choices of a, b and the random bits
consumed by the adversary A. We say the (t, ε)-CDH assumption holds, if there exists no adversary who
runs in time t and has an advantage at least ε in solving CDH. ♦

Bao et al. [BDZ03] introduced a variant of the CDH problem which we term as Modified Computational
Diffie-Hellman (M-CDH) problem which is formally defined below. It was also shown by [BDZ03] that the
M-CDH problem and the CDH problem are equivalent in the same group.

Definition 5 Let G be a cyclic multiplicative group of prime order q and g is a generator of G. The Modified
Computational Diffie-Hellman (M-CDH) problem in G asks to compute gb/a, given (g, ga, gb) without the
knowledge of a or b where (a, b) ∈R Z∗q

2. ♦

Definition 6 For an adversary A, we define the advantage in solving the M-CDH problem as AdvM-CDH
A =

Pr[A(g, ga, gb) = gb/a], where the probability is taken over the random choices of a, b and the random bits
consumed by the adversary A. We say the (t, ε)-M-CDH assumption holds, if there exists no adversary who
runs in time t and has an advantage at least ε in solving M-CDH. ♦

Lemma 1 [BDZ03]The M-CDH problem is equivalent to the CDH problem in the same group.

6 Our Scheme

Our Certificateless Proxy Re-encryption scheme extends the PKI-based scheme of Chow et al. [CWYD10]
to the certificateless setting using the ”token-controlled encryption” technique explained in section 3.

• Setup(1k) :

– Choose two large primes p and q such that q|p−1 and the bit length of q is the security parameter
k. Let G be a sub group of Z∗p of order q and g is a generator of G.

– Select x ∈R Z∗q and compute y = gx.

– Choose cryptographic Hash functions: H : G→ Z∗q , H1 : {0, 1}∗×G→ Z∗q , H2 : {0, 1}∗×G3 → Z∗q ,
H3 : G → {0, 1}l0+l1 , H4 : {0, 1}l0 × {0, 1}l1 → Z∗q , H5 : G × G × {0, 1}l0+l1 → Z∗q , H6 :
{0, 1}∗×G2 → Z∗q . Here, l0, l1 are determined by the security parameter k. Set the message space

M to be {0, 1}l0 .

11

– Output public parameters params = (p, q,G, g, y,H,H1, H2, H3, H4, H5, H6) and the master se-
cret key msk = x and the message space M.

• PartialKeyExtract(params,msk, ID) :

– Choose s1, s2, s3 ∈R Z∗q and compute Q1 = gs1 , Q2 = gs2 , Q3 = gs3 , .

– Compute S1 = s1 + xH1(ID,Q1), S2 = s2 + xH1(ID,Q2) and S3 = s3 + xH2(ID,Q1, Q2, Q3).

– Output partial secret key psk = (S1, S2) and the partial public key ppk = (Q1, Q2, Q3, S3).

• UserKeyGen(ID, params) :

– Choose z1, z2 ∈R Z∗q and compute (gz1 , gz2).

– Output sk = (U1, U2) = (z1, z2) and pk = (P1, P2) = (gz1 , gz2).

• SetPublicKey(ID, params, pk, sk, ppk, psk) :

– Choose t1, t2 ∈R Z∗q and compute T1 = gt1 and T2 = gt2 .

– Compute µ1 = t1 + S1H6(ID, P1, T1) and µ2 = t2 + S2H6(ID, P2, T2).

– Output the full public key of the user PK = (P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2).

In a certificateless setting, public key of any user must satisfy the property of public verifiability. The va-
lidity of the public key of an user can be checked by running the algorithm PublicKeyVerification(ID, PK)
which is given by

– Parse PK as (P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2).

– Compute R1 = Q1.y
H1(ID,Q1) and R2 = Q2.y

H1(ID,Q2).

– Check if gµ1
?
= (T1)(R1)H6(ID,P1,T1), gµ2

?
= (T2)(R2)H1(ID,P2,T2), gS3

?
= (Q3)(yH2(ID,Q1,Q2,Q3)).

– If any of the above check fails, output ”failure”. Else, output ”success”.

• SetPrivateKey(ID, params, sk, psk) :

– Output the full secret key of the identity ID as SK = (U1, U2, S1, S2).

• Re− KeyGen(IDi, IDj , params, SKi, PKj) :

– Parse SKi as (Ui,1, Ui,2, Si,1, Si,2) and PKj as (Pj,1, Pj,2, Qj,1, Qj,2, Qj,3, Sj,3, Tj,1, Tj,2, µj,1, µj,2)
and check the validity of public key of IDj with PublicKeyVerification(IDj , PKj). If the check
fails, output ⊥.

– Compute Rj,1 = Qj,1
(
yH1(IDj ,Qj,1)

)
, X1 = Pj,1

(
R
H(Pj,1)
j,1

)
, X = Pj,1(Pj,2)H(Pj,1) and α = H(X).

– Pick h ∈R {0, 1}l0 and π ∈R {0, 1}l1 and compute v = H4(h, π).

– Compute V = (X1)v, W = H3(gv)⊕ (h||π) and rk = h
Ui,1+H(Pi,1)Ui,2+α(Si,1+H(Ri,1)Si,2)

.

– Output the re key as rki→j = (rk, V,W).

• Encrypt(IDi, params, PKi,m) :

– Parse PKi as (Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, Ti,1, Ti,2, µi,1, µi,2) and check the validity of PKi using

PublicKeyVerification(IDi, PKi). If the check fails, output ⊥.

– ComputeRi,1 = Qi,1
(
yH1(IDi,Qi,1)

)
andRi,2 = Qi,2

(
yH1(IDi,Qi,2)

)
. Also, computeX = Pi,1(Pi,2)H(Pi,1)

and Y = Ri,1(Ri,2)H(Ri,1). Compute α = H(X). Set Z =
(
X(Y)

α)
– Pick u ∈R Z∗q and w ∈R {0, 1}l1 . Compute r = H4(m,w).

12

– Compute D = (Z)u, E = Zr, F = H3(gr)⊕ (m||w) and S = u+ rH5(D,E, F).

– Output C ′ = (D,E, F, S) as the first level ciphertext.

Remark 2 In order to avoid recomputing Ri,1, Ri,2, X, Y, Z, α for each message transmission, they
can be computed once and stored locally.

The validity of a first level ciphertext can be verified by CiphertextVerification(IDi, C
′) which is ex-

plained below

– Compute Z as above.

– Check if (Z)S
?
= D.EH5(D,E,F).

– If the check fails output ”failure”. Else, output ”success”

• Re− Encrypt(IDi, IDj , params,C
′, rki→j) :

– Parse rki→j as (rk, V,W) and C ′ as (D,E, F, S) and check ciphertext validity by executing
CiphertextVerification(IDi, C

′). If the check fails output ⊥.

– Compute E′ = Erk.

– Output (E′, F, V,W) as the second level ciphertext.

• Decrypt1(IDi, params,C
′, SKi) :

– Obtain the public key corresponding to IDi and parse it as (Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, Ti,1, Ti,2,
µi,1, µi,2). Parse SKi as (Ui,1, Ui,2, Si,1, Si,2) and C ′ as (D,E, F, S) and check for ciphertext va-
lidity using CiphertextVerification(IDi, C

′) :.

– ComputeRi,1 = Qi,1
(
yH1(IDi,Qi,1)

)
andRi,2 = Qi,2

(
yH1(IDi,Qi,2)

)
. Also, computeX = Pi,1(Pi,2)H(Pi,1)

and Y = Ri,1(Ri,2)H(Ri,1). Compute α = H(X) and set Z =
(
X(Y)

α)
. Set K = Ui,1 +

H(Pi,1)Ui,2 + α(Si,1 +H(Ri,1)Si,2)

– Compute (m||w) = F ⊕H3(E
1
K). Return m if E = (Z)H4(m,w) holds. Otherwise return ⊥.

Remark 3 Again, Ri,1, Ri,2, X, Y, Z, α can be precomputed and stored locally to avoid re-computation
for every decryption.

• Decrypt2(IDj , params,C
′′, SKj) :

– Parse C ′′ as (E′, F, V,W), PKj as (Pj,1, Pj,2, Qj,1, Qj,2, Qj,3, Sj,3, Tj,1, Tj,2, µj,1, µj,2) and SKj as
(Uj,1, Uj,2, Sj,1, Sj,2).

– Compute Rj,1 = Qj,1
(
yH1(IDj ,Qj,1)

)
and X1 = Pj,1

(
R
H(Pj,1)
j,1

)
.

– Compute (h||π) = W ⊕ H3(V
1

Uj,1+H(Pj,1)Sj,1) and (m||w) = F ⊕ H3(E′
1/h

). Output m if V =
(X1)H4(h,π), E′ = gh(H4(m,w)). Otherwise return ⊥.

Remark 4 Rj,1, X1 can be computed once and stored locally.

13

6.1 Correctness

To make the notations less cumbersome, let Ri,1 = Qi,1
(
yH1(IDi,Qi,1)

)
and Ri,2 = Qi,2

(
yH1(IDi,Qi,2)

)
. Let

X = Pi,1(Pi,2)H(Pi,1) and Y = Ri,1(Ri,2)H(Ri,1). Let α = H(X) and Z = (X(Y)α). Let K = Ui,1 +
H(Pi,1)Ui,2 + α(Si,1 +H(Ri,1)Si,2)

• Correctness of PublicKeyVerification: If PK = (P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2) is a valid
public key output by the SetPublicKey algorithm then, (P1)(R1)H1(ID,P1) = (gU1)(gS1)H1(ID,P1) = gµ1 .
We can similarly verify that (P2)(R2)H1(ID,P2) = (gU2)(gS2)H1(ID,P2) = gµ2 and (Q3)(yH2(ID,Q1,Q2,Q3)) =
gs3(gx)H2(ID,Q1,Q2,Q3) = gS3 .

• Correctness of CiphertextVerification: If C ′ is a properly generated first level ciphertext then,
C ′ = (D,E, F, S) = (Zu, Zr, H3(gr)⊕(m||w), u+rH5(D,E, F)). Therefore, D.EH5(D,E,F) = (Z)u+rH5(D,E,F) =
(Z)S

• Correctness of Decrypt1: If C ′ is a correctly generated first level ciphertext, then C ′ = (D,E, F, S) =
(Zu, Zr, H3(gr)⊕ (m||w), u+ rH5(D,E, F)). We can see that E = Zr =(
gUi,1+H(Pi,1)Ui,2+α(Si,1+H(Ri,1)Si,2)

)r
= gKr. Hence, F ⊕H3(E

1
K) = F ⊕H3(gr) = m||w.

• Correctness of Decrypt2: If C ′′ = (E′, F, V,W) is a correctly generated second level ciphertext,

then E′ = Erk = grK(h/K) = grh. and V = gv.(Uj,1+H(Pj,1)Sj,1). Hence, W ⊕ H3(V
1

Uj,1+H(Pj,1)Sj,1) =

W ⊕H3(gv) = (h||π) Therefore, F ⊕H3(E′
1/h

) = F ⊕H3(gr) = (m||w).

7 Security

We prove that our scheme is secure against both Type-I and Type-II adversaries.

7.1 Security against Type-I adversary

If there exists a Type-I adversary who breaks our scheme with non-negligible probability we show how to
construct an adversary that solves the M-CDH problem with some non-negligible probability.

Theorem 1 Suppose H,H1, H2, H3, H4, H5, H6 are random oracles and there exists a (t, ε, qpke, quke, qpex, qrkg,
qrenc, qdec1, qdec2, qpkr) IND-CLPRE-CCA adversary AI against our scheme making at most qH queries to
H and at most qHi queries to random oracles Hi where 1 ≤ i ≤ 6 , then there exists a PPT algorithm C
which solves the M-CDH problem with advantage

ε′ ≥ (1/qH3)

(
ε(1− ν)qrkg+1

e(1 + qpex + qrkg)
−
(qH4

2l0+l1
+

qH5

2l0+l1
+
qrenc
q

+ qd(
qH4/(2

l0+l1)

1− qH3
/q

+
qH3/q

1− qH4
/2l0+l1

+ 2/q)
))

where ν is the advantage an attacker may have over the EUF-CMA security game of the Schnorr signature
scheme and which runs in time t′

t′ ≤ t+ (T1)O(1) + (T2)texp

where T1 = qH + qH1 + qH2 + qH3 + qH4 + qH5 + qpke + quke + qpex + qrkg + qrenc + qdec1 + qdec2 + qpkr,
T2 = 10qpke + 10quke + 10qpex + 5qrkg + 8qrenc + 7qdec1 + 9qdec2 and texp is the time taken for exponentiation
in group G.

Proof. We now describe the challenger C which interacts with the adversary AI and solves the M-CDH
problem. C is given an instance of the M-CDH problem (g, ga, gb). It sets y = ga and implicitly defines the
master secret key as a. C maintains a list CI of corrupted identities which is initially empty. The challenger
also maintains a list of current public keys called as CPK list consisting of tuples of the form (IDi, PKi, ˆPKi)
where PKi denotes the full public key returned by SetPublicKey algorithm, and ˆPKi denotes the current
public key. The list is initialized with PKi = ˆPKi for all identities IDi. AI requests the access to several
oracles which are to be simulated by C. We now describe the confidentiality game between the adversary
AI and the challenger C.

14

7.1.1 Phase-1

In phase-1 of the game, AI requests the access to several oracles which are simulated by the challenger. We
now describe how C answers A′Is oracle queries.

• H queries: C maintains a H-list of tuples (< A >,α). On receiving a query, C searches H-list for
(< A >,α). If found, outputs α. Else, chooses α ∈R Z∗q and returns α. C adds (< A >,α) to the
H-list.

• H1 queries: C maintains a H1-list of tuples (< ID,Q >, e0). On receiving a query, C searches
H1-list for (< ID,Q >, e0). If found, outputs e0. Else, chooses e0 ∈R Z∗q and returns e0. C adds
(< ID,Q >, e0) to the H1-list.

• H2 queries: C maintains a H2-list of tuples (< ID,Q1, Q2, Q3 >, e1). On receiving a query, C searches
H2-list for (< ID,Q1, Q2, Q3 >, e1). If found, outputs e1. Else, chooses e1 ∈R Z∗q and returns e1. C
adds (< ID,Q1, Q2, Q3 >, e1) to the H2-list.

• H3 queries: C maintains a H3-list of tuples (< A >, h). On receiving a query, C searches H3-list for
(< A >, h). If found, outputs h. Else, chooses h ∈R {0, 1}l0+l1 and returns h. It adds (< A >, h) to
the H3-list.

• H4 queries: C maintains a H4-list of tuples (< m,w >, r). On receiving a query, C searches H4-list
for (< m,w >, r). If found, outputs r. Else, chooses r ∈R Zq∗ and returns r. It adds (< m,w >, r) to
the H4-list.

• H5 queries: C maintains a H5-list of tuples (< A,B,C >, p). On receiving a query, C searches
H5-list for (< A,B,C >, p). If found, outputs p. Else, chooses p ∈R Zq∗ and gives p as output. It
adds (< A,B,C >, p)) to the H5-list.

• H6 queries: C maintains a H6-list of tuples (< ID,A,B >, p). On receiving a query, C searches
H6-list for (< ID,A,B >, p). If found, outputs p. Else, chooses p ∈R Zq∗ and gives p as output. It
adds (< ID,A,B >, p)) to the H6-list.

• Public Key ExtractOpke : C maintains a public key list of tuples (< ID >,P1, P2, Q1, Q2, Q3, S3, T1, T2,
µ1, µ2, coin). On receiving a query on ID, C searches the public key list for key value ID. If found,
then it outputs the corresponding the public key. Else, using the technique outlined in [Cor00] it tosses
a biased coin and picks coin ∈ {0, 1} such that Pr[coin = 0] = θ where θ is to be determined later.

If coin=0, C chooses (U1, U2) = (z1, z2) ∈R Z∗q and computes (P1, P2) = (gz1 , gz2). It then chooses

(S1, S2, S3, e1, e2, e3) ∈ Z∗q and computes Q1 = gS1y−e1 , Q2 = gS2y−e2 , Q3 = gS3y−e3 . It then checks
in the H1 list if there exists a tuple (< ID,Q1 >, f1). If yes, then it re-chooses (S1, e1) ∈R Z∗q and re-
computes Q1. It then adds (< ID,Q1 >, e1) to the H1 list. Similarly, it checks in the H1 list if there ex-
ists a tuple (< ID,Q2 >, f2). If yes, then it re-chooses (S2, e2) ∈R Z∗q and re-computes Q2. It then adds
(< ID,Q2 >, e3) to the H1 list. Likewise, it searches the H2 list for a tuple (< ID,Q1, Q2, Q3 >, f3). If
found, it re-chooses (S3, e3) ∈R Z∗q and then re-computes Q3. It finally adds, (< ID,Q1, Q2, Q3 >, e3)
to the H2 list. It then chooses t1, t2 ∈R Z∗q and computes T1 = gt1 and T2 = gt2 . It then computes µ1 =
t1+S1H6(ID, P1, T1) and µ2 = t2+S2H1(ID, P2, T2). It adds (< ID, coin >, (Q1, Q2, Q3, S3), (S1, S2))
to the partial key list, (< ID >,P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2, coin) to the public key list,
(< ID, coin >, (P1, P2), (U1, U2)) to the user key list and (< ID, coin >,U1, U2, S1, S2) to the pri-
vate key list. It returns (P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2) as the public key.

Proposition 1 The public key computed by public key extract for the case coin = 0 is identically
distributed to the public key computed by the SetPublicKey algorithm and additionally it passes the
PublicKeyVerification test.

15

Proof The public key generated above is given by:

(gz1 , gz2 , gS1y−e1 , gS2y−e2 , gS3y−e3 , S3, g
t1 , gt2 , µ1, µ2)

where z1, z2, S1, S2, S3, e1, e2, e3, t1, t2 are chosen uniformly and independently at random from Z∗q and
µ1 = t1 + S1H6(ID, P1, T1) and µ2 = t2 + S2H1(ID, P2, T2).

The public key output by SetPublicKey is given by:

(gz1 , gz2 , gs1 , gs2 , gs3 , S3, g
t1 , gt2 , µ1, µ2)

where z1, z2, s1, s2, s3, t1, t2 are chosen uniformly and independently at random from Z∗q and S3 =
s3 + xH2(ID,Q1, Q2, Q3), µ1 = t1 + S1H6(ID, P1, T1), µ2 = t2 + S2H1(ID, P2, T2).

It is easy to see that both the public keys are identically distributed under assumption that H2 behaves
as a random oracle.

We now show that the public key generated by public key extract passes the PublicKeyVerification test.

– We note that R1 = Q1.y
H1(ID,Q1) = gS1y−e1 .ye1 = gS1 and similarly R2 = Q2.y

H1(ID,Q2) = gS2 .

– gµ1 = gt1 .gS1.(H6(ID,P1,T1)) = (T1)(R1)H6(ID,P1,T1). Similarly, one can verify gµ2 = (T2)(R2)H1(ID,P2,T2).

– (Q3)(yH2(ID,Q1,Q2,Q3)) = gS3y−e3 .ye3 = gS3 .

Thus, the above generated public key passes the public key verification test.

If coin=1, C chooses (s1, s2, µ1, µ2, β1, β2, z1, z2) ∈ Z∗q and computes P1 = gz1 and P2 = gz2 . Let

r = H(P1) and let X = P1(P2)r. Let α = H(X). It then sets Q1 = (ga)s1 .g−
z1+rz2

α and Q2 =
(ga)s2 . It computes R1 = Q1.y

H1(ID,Q1) and R2 = Q2.y
H1(ID,Q2). It then sets T1 = gµ1(R1)−β1 and

T2 = gµ2(R2)−β2 . It also sets H6(ID, P1, T1) = β1 and H6(ID, P2, T2) = β2 (If there already exists
tuples in the H6 list then it re-chooses the appropriate variables and re-computes T1, T2). It then
chooses S3, e3 ∈R Z∗q and computes Q3 = gS3y−e3 . If there exists a tuple (< ID,Q1, Q2, Q3 >, f3)
in the H2 list it re-chooses (S3, e3) ∈R Z∗q and re-computes Q3. It adds (< ID,Q1, Q2, Q3 >, e3)
to the H2 list. It then adds (< ID >,P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2, coin) to the public key list,
(< ID, coin >, z1, z2, s1, s2) to the private key list (C adds this so that it can generate a valid challenge
ciphertext), (< ID, coin >, z1, z2) to the user key list and returns (P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2)
as the public key.

Proposition 2 The public key computed by public key extract for the case coin = 1 is identically
distributed to the public key computed by the SetPublicKey algorithm and additionally it passes the
PublicKeyVerification test.

Proof The public key generated above is given by:

(gz1 , gz2 , (ga)s1 .g−
z1+rz2

α , (ga)s2 , gS3y−e3 , S3, g
µ1(R1)−β1 , gµ2(R2)−β2 , µ1, µ2)

where z1, z2, s1, s2, S3, e3, β1, β2, µ1, µ2 are chosen uniformly and independently at random from Z∗q and

R1 = Q1.y
H1(ID,Q1) and R2 = Q2.y

H1(ID,Q2).

The public key output by SetPublicKey is given by:

(gz1 , gz2 , gs1 , gs2 , gs3 , S3, g
t1 , gt2 , µ1, µ2)

where z1, z2, s1, s2, s3, t1, t2 are chosen uniformly and independently at random from Z∗q and S3 =
s3 + xH2(ID,Q1, Q2, Q3), µ1 = t1 + S1H6(ID, P1, T1), µ2 = t2 + S2H1(ID, P2, T2).

It is easy to see that both the public keys are identically distributed under assumption that H2 and
H6 behave as a random oracles.

We now show that the public key generated by public key extract passes the PublicKeyVerification test.

16

– (T1)(R1)H6(ID,P1,T1) = gµ1(R1)−β1 .(R1)β1 = gµ1 . Similarly, one can verify gµ2 = (T2)(R2)H1(ID,P2,T2).

– (Q3)(yH2(ID,Q1,Q2,Q3)) = gS3y−e3 .ye3 = gS3 .

Thus, the above generated public key passes the public key verification test.

• Partial Key ExtractOpex: C maintains a list of partial keys of tuples (< ID, coin >, (Q1, Q2, Q3, S3),
(S1, S2)). When AI queries the partial key of ID (for which it has not yet replaced the public key),
C first searches the partial key list with key value ID. If found and coin = 0, then returns the corre-
sponding partial key. If coin = 1, it aborts and reports failure. If such a tuple is not found, it queries
Opke with IDi. It then searches the partial key list for (< ID, coin >, (Q1, Q2, Q3, S3), (S1, S2)). If
coin = 0, it outputs ((Q1, Q2, Q3, S3), (S1, S2)) as the partial public keys and the partial secret key
respectively. If coin = 1, it aborts and report failure.

• User Key Extract Ouke: C maintains a list of user keys of tuples (< ID, coin >, (P1, P2), (U1, U2)).
When AI queries the user key of ID (for which it has not yet replaced the public key), C first
searches in the user key list for a tuple with key value ID. If found, it returns the corresponding
user key. If such a tuple is not found, it queries Opke with IDi. It then searches the user key list for
(< ID, coin >, (U1, U2). We note that such a tuple is guaranteed to exist. It returns (P1, P2), (U1, U2)

• Re-Key Generation Orkg : C maintains a Re-Key list comprising of tuples (< IDi, IDj >, rk, V,W,
h, τ). When C receives a re-key query from IDi to IDj , it first searches for a tuple in the Re-Key list
with key value < IDi, IDj >. If found, then the corresponding re-key is given to the adversary. Else,
it recovers tuple (< IDj >, (Pj,1, Pj,2, Qj,1, Qj,2, Qj,3, Sj,3, Tj,1, Tj,2, µj,1, µj,2, coin)). It picks h ∈R
{0, 1}l0 and π ∈R {0, 1}l1 and computes v = H4(h, π). It then computes Rj,1 = Qj,1

(
yH1(IDj ,Qj,1)

)
,

X1 = Pj,1
(
R
H(Pj,1)
j,1

)
, X = Pj,1(Pj,2)H(Pj,1) and α = H(X). It then sets V = (X1)v and W =

H3(gv)⊕ (h||π). The first component of the re-key are constructed as per the following cases:

– If coini = 0 and PKi = ˆPKi in the CPK list, then C retrieves the private key corresponding to
IDi from private key list and parses it as (U1, U2, S1, S2). It computes rk =

h
Ui,1+H(Pi,1)Ui,2+α(Si,1+H(Ri,1)Si,2)

. It defines τ = 1 and adds (< IDi, IDj >, rk, V,W, h, τ) to the

Re-Key list. It outputs (rk, V,W) as the re-key.

– If (coini = 0 and PKi 6= ˆPKi in the CPK list or coini = 1) and (IDj does not belong to the CI
list), then it chooses rk ∈R Z∗q and defines τ = 0. It adds (< IDi, IDj >, rk

<1>
i→j , V,W, h, τ) to the

Re-Key list and outputs (rk, V,W) as the re-key.

– Else, it aborts and reports failure.

• Re-Encryption Oracle Orenc: When AI queries for a re-encryption of a first level ciphertext
C ′ = (D,E, F, S) from IDi and IDj , then C checks the validity of C ′. If the check fails, it out-
puts ⊥. It then recovers tuple (< IDi >,Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, Tj,1, Tj,2, µi,1, µi,2, coin) from

public key list. If (coini = 0 and PKi 6= ˆPKi in the CPK list or coini = 1) and IDj ∈ CI
list does not hold, then it queries Orkg(IDi, IDj) to obtain the re-key (rk, V,W) and returns Re −
Encrypt(IDi, IDj , params,C, rki→j). Else, it computesRi,1 = Qi,1

(
yH1(IDi,Qi,1)

)
, Ri,2 = Qi,2

(
yH1(IDi,Qi,2)

)
,

X = Pi,1(Pi,2)H(Pi,1) , Y = Ri,1(Ri,2)H(Ri,1), α = H(X1) and Z =
(
X1(X2)

α)
. It also computes

X1 = Pj,1
(
R
H(Pj,1)
j,1

)
. It then searches for (< m,w >, r) in the H4 list such that E = Zr. If such a tu-

ple is not found, it outputs ⊥. It then picks h ∈R {0, 1}l0 and π ∈R {0, 1}l1 and computes v = H4(h, π).
It sets V = (X1)v, W = H3(gv) ⊕ (h||π) and E′ = grh. It outputs (E′, F, V,W) as the re-encrypted
ciphertext.

• Strong Decrypt-1 OracleOdec1: When AI queries for the decryption of a first level cipher text C ′ un-
der the identity IDi, it recovers (< IDi >,Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, µi,1, µi,2, coin) from the public

key list. If coini = 0 and PKi = ˆPKi in the CPK list, it retrieves (< IDi, coin >,Ui,1, Ui,2, Si,1, Si,2)

17

from the private key list and sets SKi = (Ui,1, Ui,2, Si,1, Si,2). It returns Decrypt1(IDi, params,C
′, SKi).

Otherwise, C checks for the validity of C ′. If the check fails, it outputs ⊥. It computes Ri,1 =
Qi,1

(
yH1(IDi,Qi,1)

)
, Ri,2 = Qi,2

(
yH1(IDi,Qi,2)

)
, X = Pi,1(Pi,2)H(Pi,1) , Y = Ri,1(Ri,2)H(Ri,1), α = H(X)

and Z =
(
X1(X2)

α)
using the current values in the Public key. It then searches the H4 list for tuple

(< m,w >, r) and H3 list for tuple (< A >, h) such that E = Zr, A = gr and h ⊕ (m||w) = F . If
found, it returns m. Otherwise, it outputs ⊥.

• Strong Decrypt-2 Oracle Odec2: When AI queries for the decryption of a second level cipher-
text C ′′ under the identity IDi, it recovers (< IDi >,Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, µi,1, µi,2, coin)

from the public key list. If coini = 0 and PKi = ˆPKi in the CPK list, it retrieves the tuple
(< IDi, coin >,Ui,1, Ui,2, Si,1, Si,2) from the private key list and sets SKi = (Ui,1, Ui,2, Si,1, Si,2). It
returns Decrypt2(IDi,
params,C ′′, SKi). Else, it computes Ri,1 = Qi,1

(
yH1(IDi,Qi,1)

)
, Ri,2 = Qi,2

(
yH1(IDi,Qi,2)

)
,

X = Pi,1(Pi,2)H(Pi,1) , Y = Ri,1(Ri,2)H(Ri,1), α = H(X) and Z =
(
X1(X2)

α)
. It then searches in the

Re-Key list for a tuple (< IDj , IDi >, rk, V,W, h, 0). If found, it computes E = E′
1
rk and searches H4

list for tuple (< m,w >, r) and H3 list for tuple (< A >, h) such that E = Zr, A = gr, h⊕(m||w) = F .
If found, it returns m to adversary. Otherwise, outputs ⊥. Else, it computes X1 = Pi,1(Ri,1)H(Pi,1)

and searches in the H4 list for tuples (< m,w >, r), and (< h, π >, v), H3 list for the tuples (< A >, l),
(< R >, k) such that X1

v = V , R = gv, k ⊕ (h||π) = W , E′ = grh, A = gr, l ⊕ (m||w) = F . If found,
it returns m to the adversary. Otherwise, it return ⊥.

• Public Key Replacement Oracle Opkr: When AI wants to replace the public key corresponding

to an identity IDi with a new value ˆPKi, C checks validity of ˆPKi. If the check fails output ⊥.
Otherwise, update the CPK list with the new value of the public key corresponding to the identity
IDi.

7.1.2 Challenge

AI outputs two messages M0,M1 and an identity ID∗i on which it wishes to be challenged. It is required
that the adversary has not queried the partial key corresponding to the identity ID∗i . C recovers the tuple
(< ID∗i >,Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, µi,1, µi,2, coin) from the public key list. If coin = 0 or PKi 6=

ˆPKi, then C aborts. Else, it tosses a coin and chooses p ∈ {0, 1} uniformly at random. It computes
Ri,1 = Qi,1

(
yH1(ID

∗
i ,Qi,1)

)
. Ri,2 = Qi,2

(
yH1(ID

∗
i ,Qi,2)

)
. It retrieves s1 and s2 from the private key list.

It sets K = (s1 + H1(ID∗, Qi,1))α + H(Ri,1)α(s2 + H1(ID,Q2)). It chooses e∗, f∗ ∈R Z∗q and computes

D = (ga)f
∗K(gb)−e

∗K , E = (gb)K . It picks F ∗ ∈R {0, 1}l0+l1 and implicitly defines H5(D,E, F ∗) = e∗. It
then, pick w∗ ∈R {0, 1}l1 and implicitly defines H4(Mp, w

∗) = b/a and H3(gb/a) = F ∗⊕ (Mp||w∗). It returns
C∗ = (D,E, F ∗, f∗).

Proposition 3 The challenge ciphertext is identically distributed to the real ciphetext output by Encrypt
algorithm.

Proof Let us define u = f∗ − e∗(b/a) and r = b/a. We can easily verify that Z = X(Y)α = (ga)K .
We note that,

E = (gb)K = ((ga)K)b/a = (Z)r

.
D = (ga)f

∗K(gb)−e
∗K = ((ga)K)f

∗−e∗(b/a) = (Z)u

.
S = f∗ = f∗ − e∗(b/a) + e∗(b/a) = u+ rH5(D,E, F ∗)

. Hence, we can conclude that (D,E, F ∗, f∗) is a valid ciphertext.

18

7.1.3 Phase-2

The adversary continues to query any of the above mentioned oracles with the restrictions defined in the
security model and the challenger responds as in phase 1.

7.1.4 Guess

Finally, the adversary outputs a guess p′ of p. If p = p′, the challenger chooses a random tuple (< A >, h)
in the H3 list and outputs A as the solution to the M-CDH problem.

We now analyse the probability that the challenger solves the M-CDH problem.

7.1.5 Analysis

We first analyze the simulation of the random oracles. It is clear that the simulations of H,H1, H2, H6 are
perfect. Let Ask∗H3

denote the event that (gb/a) was queried to H3. Let Ask∗H4
be the event that adversary

queried H4 with (Mp, w
∗). Let Ask∗H5

be the event that the adversary queried H5 with (D,E, F ∗) before
the challenge phase. As long as Ask∗H3

, Ask∗H4
, Ask∗H5

did not occur the simulations of these oracles are
perfect.

It is easy to see that challenger’s response to the public key extract queries of the adversary are correct.
Let Abort be the event that the challenger aborts before the guess phase. The challenger can abort the game
in Secret key extract or partial key extract or in re-key extract or in challenge phase.

The simulation of Orkg is perfect except for the case where (coini = 0 and PKi 6= ˆPKi in the CPK list
or coini = 1) and IDj does not belong to the CI list, in which rk<1>

i→j is randomly chosen. If Abort does not
happen then we show (like in [CWYD10]) that this is computationally indistinguishable from the real world.
First, we note that (V,W) is an encryption of h under the hashed-ElGamal scheme and the adversary does
not posses SKj . So, if the adversary can distinguish between the correct re-key and a randomly chosen one
with non-negligible advantage then he can in fact distinguish whether h or h′ was hidden in the cipher text
(V,W). Thus, this adversary can be used to break the security of hashed ElGamal system based on CDH
assumption. Hence, if Abort does not happen then the simulation of Orkg is perfect.

Next, we analyse the simulation of re-encryption queries. The simulation is perfect as long as the
adversary can submit valid ciphertexts without querying the hash function H4. We denote this event be
REErr.

The simulation of Odec1 and Odec2 is perfect as long as we don’t reject valid ciphertexts. This can happen
when the adversary can query the oracles with valid cipher text without querying the hash functions H3 and
H4.

We now estimate the probabilities associated with each of the above described events.

Pr[Ask∗H5
] ≤ qH5

2l0+l1
, as F ∗ is chosen uniformly at random.

Pr[¬Abort] ≥ θqpex+qrkg (1− θ)(1− ν)qrkg+1 which is maximized at θ∗ =
qpex + qrkg

1 + qpex + qrkg

Using θ∗, we get

Pr[¬Abort] ≥ (1− ν)qrkg+1

e(1 + qpex + qrkg)

Pr[ReERR] ≤ qrenc
q

, due to randomness of H4’s output

We now estimate the probability that a valid ciphertext gets rejected by the Strong Decrypt-1 or Strong
Decrypt-2 oracles. Let V alid denote the event that the ciphertext is valid. Let AskH4 denote the event that
(m,w) has been queried to H4 and AskH3 denote the event that (gr) has been queried to H3.

Pr[V alid|¬AskH3
] = Pr[V alid ∧AskH4

|¬AskH3
] + Pr[V alid ∧ ¬AskH4

|¬AskH3
]

19

≤ Pr[V alid ∧AskH4
|¬AskH3

] + Pr[V alid|¬AskH4
∧ ¬AskH3

]

=
Pr[V alid ∧AskH4

∧ ¬AskH3
]

Pr[¬AskH3]
+ Pr[V alid|¬AskH4 ∧ ¬AskH3]

≤ Pr[AskH4]

Pr[¬AskH3
]

+ Pr[V alid|¬AskH4
∧ ¬AskH3

]

≤ qH4/(2
l0+l1)

1− qH3
/q

+ 1/q

Similarly, we can show that

Pr[V alid|¬AskH4
] ≤ qH3

/q

1− qH4
/2l0+l1

+ 1/q

Hence, we have

Pr[V alid|¬AskH3
∨ ¬AskH4

] ≤ Pr[V alid|¬AskH3
] + Pr[V alid|¬AskH4

]

≤ qH4
/(2l0+l1)

1− qH3
/q

+
qH3

/q

1− qH4
/2l0+l1

+ 2/q

Then, DErr is the event that V alid|¬(AskH3
∧AskH4

) happens at least once during the entire simulation.
Hence,

Pr[DErr] ≤ qd
(qH4

/(2l0+l1)

1− qH3/q
+

qH3
/q

1− qH4/2
l0+l1

+ 2/q
)

Let Query be the event AskH∗3 ∪ AskH∗4 ∪ AskH∗5 ∪ ReErr ∪DErr|¬Abort. Clearly, if Query does not
happen during the simulation then due to randomness of H3’s output the adversary does not have any
advantage which is greater than 1/2 in guessing p. Hence, Pr[p′ = p|¬Query] = 1/2

Pr[p′ = p] = Pr[p′ = p|¬Query]Pr[¬Query] + Pr[p′ = p|Query]Pr[Query]

≤ 1/2Pr[¬Query] + Pr[Query] ≤ 1/2 + Pr[Query]

Pr[p′ = p] ≥ Pr[p′ = p|¬Query]Pr[¬Query] ≥ 1/2− 1/2Pr[Query]

We have
ε = 2|Pr[p′ = p]− 1/2| ≤ Pr[Query]

≤
Pr[AskH∗3] + Pr[(AskH∗4] + Pr[AskH∗5] + Pr[ReErr] + Pr[DErr]

Pr[¬Abort]
Thus,

Pr[AskH∗3] ≥ ε(Pr[¬Abort])− (Pr[(AskH∗4] + Pr[AskH∗5] + Pr[ReErr] + Pr[DErr])

≥ ε(1− ν)qrkg+1

e(1 + qpex + qrkg)
−
(qH4

2l0+l1
+

qH5

2l0+l1
+
qrenc
q

+ qd(
qH4

/(2l0+l1)

1− qH3/q
+

qH3
/q

1− qH4/2
l0+l1

+ 2/q)
)

If AskH∗3 occurs then C will be able to solve the M-CDH problem with advantage ε′ given by

ε′ ≥ (1/qH3)Pr[AskH∗3]

≥ (1/qH3
)

(
ε(1− ν)qrkg+1

e(1 + qpex + qrkg)
−
(qH4

2l0+l1
+

qH5

2l0+l1
+
qrenc
q

+ qd(
qH4

/(2l0+l1)

1− qH3
/q

+
qH3

/q

1− qH4
/2l0+l1

+ 2/q)
))

Let T1 = qH + qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ qpke + quke + qpex + qrkg + qrenc + qdec1 + qdec2 + qpkr and

T2 = 10qpke + 10quke + 10qpex + 5qrkg + 8qrenc + 7qdec1 + 9qdec2. From the construction of C we can bound
its running time t′ by,

t′ ≤ t+ (T1)O(1) + (T2)texp

20

7.2 Security against Type-II adversary

We now show that our scheme is secure against a Type-II adversary.

Theorem 2 Suppose H,H1, H2, H3, H4, H5 are random oracles and there exists a (t, ε, qpke, quke, qpex, qrkg,
qrenc, qdec1, qdec2, qpkr) IND-CLPRE-CCA adversary AII against our scheme making at most qH queries to
H and at most qHi queries to random oracles Hi where 1 ≤ i ≤ 5 , then there exists a PPT algorithm C
which solves the M-CDH problem with advantage

ε′ ≥ (1/qH3
)

(
ε(1− ν)qrkg

e(1 + quke + qrkg)
−
(qH4

2l0+l1
+

qH5

2l0+l1
+
qrenc
q

+ qd(
qH4

/(2l0+l1)

1− qH3
/q

+
qH3

/q

1− qH4
/2l0+l1

+ 2/q)
))

where ν is the advantage an attacker may have over the EUF-CMA security game of the Schnorr signature
scheme and which runs in time t′

t′ ≤ t+ (T1)O(1) + (T2)texp

where T1 = qH + qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ qpke + quke + qrkg + qrenc + qdec1 + qdec2 + qpkr, T2 =

10qpke + 10quke + 10qpex + 5qrkg + 8qrenc + 7qdec1 + 9qdec2 and texp is the time taken for exponentiation in
group G.

Proof. We describe the challenger C which interacts with a Type-II adversary AII and solves the M-CDH
problem. C is given an instance of the M-CDH problem (g, ga, gb). It chooses x ∈R Z∗q and sets y = gx.
It gives x as the master secret key to AII . C maintains a list CI of corrupted identities which is initially
empty. The challenger also maintains a list of current public keys called as CPK list consisting of tuples
of the form (IDi, PKi, ˆPKi) where PKi denotes the full public key returned by SetPublicKey algorithm,
and ˆPKi denotes the current public key. The list is initialized with PKi = ˆPKi for all identities IDi. AII
requests the access to several oracles which are to be simulated by C. We now describe the confidentiality
game between the adversary AII and the challenger C.

7.2.1 Phase-1

In phase-1 of the game, AII requests the access to several oracles which are simulated by the challenger. We
now describe how C answers AII ’s oracle queries.

• H queries: C maintains a H-list of tuples (< A >,α). On receiving a query, C searches H-list for
(< A >,α). If found, outputs α. Else, chooses α ∈R Z∗q and returns α. C adds (< A >,α) to the
H-list.

• H1 queries: C maintains a H1-list of tuples (< ID,Q >, e0). On receiving a query, C searches
H1-list for (< ID,Q >, e0). If found, outputs e0. Else, chooses e0 ∈R Z∗q and returns e0. C adds
(< ID,Q >, e0) to the H1-list.

• H2 queries: C maintains a H2-list of tuples (< ID,Q1, Q2, Q3 >, e1). On receiving a query, C searches
H2-list for (< ID,Q1, Q2, Q3 >, e1). If found, outputs e1. Else, chooses e1 ∈R Z∗q and returns e1. C
adds (< ID,Q1, Q2, Q3 >, e1) to the H2-list.

• H3 queries: C maintains a H3-list of tuples (< A >, h). On receiving a query, C searches H3-list for
(< A >, h). If found, outputs h. Else, chooses h ∈R {0, 1}l0+l1 and returns h. It adds (< A >, h) to
the H3-list.

• H4 queries: C maintains a H4-list of tuples (< m,w >, r). On receiving a query, C searches H4-list
for (< m,w >, r). If found, outputs r. Else, chooses r ∈R Zq∗ and returns r. It adds (< m,w >, r) to
the H4-list.

• H5 queries: C maintains a H5-list of tuples (< A,B,C >, p). On receiving a query, C searches
H5-list for (< A,B,C >, p). If found, outputs p. Else, chooses p ∈R Zq∗ and gives p as output. It
adds (< A,B,C >, p)) to the H5-list.

21

• H6 queries: C maintains a H6-list of tuples (< ID,A,B >, p). On receiving a query, C searches
H6-list for (< ID,A,B >, p). If found, outputs p. Else, chooses p ∈R Zq∗ and gives p as output. It
adds (< ID,A,B >, p)) to the H5-list.

• Compute Partial Key: AII computes the partial private key (Si,1, Si,2) and the partial public key
(Qi,1, Qi,2, Qi,3, Si,3) for any IDi of its choice. C maintains a list of partial keys computed by A in a
partial key list (< IDi >, (Qi,1, Qi,2, Qi,3, Si,3), (Si,1, Si,2))

• Public Key ExtractOpke : C maintains a public key list of tuples (< ID >,P1, P2, Q1, Q2, Q3, S3, T1, T2,
µ1, µ2, coin). On receiving a query on ID, C searches the public key list for key value ID. If found,
then it outputs the corresponding the public key. Else, it tosses a biased coin and picks coin ∈ {0, 1}
such that Pr[coin = 0] = θ where δ is to be determined later.

If coin=0, C chooses (U1, U2) = (z1, z2) ∈R Z∗q and computes (P1, P2) = (gz1 , gz2). It retrieves the
partial keys corresponding to ID from the partial key list. It then chooses t1, t2 ∈R Z∗q and computes
T1 = gt1 and T2 = gt2 . It then computes µ1 = t1 + S1H6(ID, P1, T1) and µ2 = t2 + S2H1(ID, P2, T2).
It then adds (< ID >,P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2, coin) to the public key list, (< ID, coin >
,U1, U2, S1, S2) to the private key list and (< ID, coin >, (P1, P2), (U1, U2)) to the user key list. It
returns (P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2) as the public key.

Proposition 4 The public key computed by public key extract for the case coin = 0 is identically
distributed to the public key computed by the SetPublicKey algorithm and additionally it passes the
PublicKeyVerification test.

Proof The public key generated above is given by:

(gz1 , gz2 , gs1 , gs2 , gs3 , S3, g
t1 , gt2 , µ1, µ2)

where z1, z2, s1, s2, s3, t1, t2 are chosen uniformly and independently at random from Z∗q and S3 =
s3 + xH2(ID,Q1, Q2, Q3), µ1 = t1 + S1H6(ID, P1, T1), µ2 = t2 + S2H1(ID, P2, T2).

The public key output by SetPublicKey is given by:

(gz1 , gz2 , gs1 , gs2 , gs3 , S3, g
t1 , gt2 , µ1, µ2)

where z1, z2, s1, s2, s3, t1, t2 are chosen uniformly and independently at random from Z∗q and S3 =
s3 + xH2(ID,Q1, Q2, Q3), µ1 = t1 + S1H6(ID, P1, T1), µ2 = t2 + S2H1(ID, P2, T2).

It is easy to see that both the public keys are identically distributed.

Since the above public key is generated in exact same way as that of a SetPublicKey algorithm, it is
easy to see that it passes the public key verification test.

If coin=1, C retrieves the partial key corresponding to ID from the partial key list. It computes
R1 = Q1.y

H1(ID,Q1) and R2 = Q2.y
H1(ID,Q2). Let r = H(R1). It then chooses z1, z2, α ∈R Z∗q

and computes P1 = (ga)z1g−α(S1+S2H(R1)) and P2 = (ga)z2 . It computes X = P1(P2)H(P1) and
sets H(X) = α. It then chooses t1, t2 ∈R Z∗q and computes T1 = gt1 and T2 = gt2 . It then
computes µ1 = t1 + S1H6(ID, P1, T1) and µ2 = t2 + S2H1(ID, P2, T2). It then adds (< ID >
,P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2, coin) to the public key list, (< ID, coin >, z1, z2, S1, S2) to the pri-
vate key list, (< ID, coin >, (P1, P2), (z1, z2)) to the user key list. It returns (P1, P2, Q1, Q2, Q3, S3, T1, T2,
µ1, µ2) as the public key.

Proposition 5 The public key computed by public key extract for the case coin = 1 is identically
distributed to the public key computed by the SetPublicKey algorithm and additionally it passes the
PublicKeyVerification test.

22

Proof The public key generated above is given by:

((ga)z1g−α(S1+S2H(R1)), (ga)z2 , gs1 , gs2 , gs3 , S3, g
t1 , gt2 , µ1, µ2)

where z1, z2, s1, s2, s3, t1, t2 are chosen uniformly and independently at random from Z∗q and S3 =
s3 + xH2(ID,Q1, Q2, Q3), µ1 = t1 + S1H6(ID, P1, T1), µ2 = t2 + S2H1(ID, P2, T2).

The public key output by SetPublicKey is given by:

(gz1 , gz2 , gs1 , gs2 , gs3 , S3, g
t1 , gt2 , µ1, µ2)

where z1, z2, s1, s2, s3, t1, t2 are chosen uniformly and independently at random from Z∗q and S3 =
s3 + xH2(ID,Q1, Q2, Q3), µ1 = t1 + S1H6(ID, P1, T1), µ2 = t2 + S2H1(ID, P2, T2).

It is easy to see that both the public keys are identically distributed.

We now show that the public key generated by public key extract passes the PublicKeyVerification test.

– (T1)(R1)H6(ID,P1,T1) = gt1+S1.H6(ID,P1,T1) = gµ1 . Similarly, one can verify gµ2 = (T2)(R2)H1(ID,P2,T2).

– (Q3)(yH2(ID,Q1,Q2,Q3)) = gs3+x.H2(ID,Q1,Q2,Q3) = gS3 .

Thus, the above generated public key passes the public key verification test.

• User Key Extract Ouke : C maintains a list of user keys of tuples (< ID, coin >, (P1, P2), (U1, U2)).
On receiving a query for an identity ID (for which AI has not replaced the public key), C first searches
for a tuple with key value ID. If found, and coin = 0 then it returns the corresponding user key. If
coin = 1 then C aborts and reports failure. If such a tuple is not found then, it queries Opke with IDi.
It searches the private key list for a tuple of the form (< ID, coin >, (P1, P2), (U1, U2)). If coin = 0, it
outputs (P1, P2), (U1, U2) and adds IDi to the list CI. Else, it aborts the game and report failure.

• Re-Key GenerationOrkg : C maintains a Re-Key list comprising of tuples (< IDi, IDj >, rk
<1>
i→j , V,W,

h, τ). When C receives a re-key query from IDi to IDj , it first searches for a tuple in the Re-
Key list with key value < IDi, IDj >. If found, then the corresponding re-key is given to the ad-
versary. Else, it recovers tuple (< IDj >, (Pj,1, Pj,2, Qj,1, Qj,2, Qj,3, Sj,3, Tj,1, Tj,2, µj,1, µj,2, coin)).
It picks h ∈R {0, 1}l0 and π ∈R {0, 1}l1 and computes v = H4(h, π). It then computes Rj,1 =

Qj,1
(
yH1(IDj ,Qj,1)

)
, X1 = Pj,1

(
R
H(Pj,1)
j,1

)
, X = Pj,1(Pj,2)H(Pj,1) and α = H(X). It then sets V = (X1)v

and W = H3(gv)⊕ (h||π). The first component of the re-key are constructed as per the following cases:

– If coini = 0 and PKi = ˆPKi in the CPK list, then C retrieves the private key corresponding to
IDi from private key list and parses it as (U1, U2, S1, S2). It computes rk =

h
Ui,1+H(Pi,1)Ui,2+α(Si,1+H(Ri,1)Si,2)

. It defines τ = 1 and adds (< IDi, IDj >, rk, V,W, h, τ) to the

Re-Key list. It outputs (rk, V,W) as the re-key.

– If (coini = 0 and PKi 6= ˆPKi in the CPK list or coini = 1) and (IDj does not belong to the CI
list), then it chooses rk ∈R Z∗q and defines τ = 0. It adds (< IDi, IDj >, rk

<1>
i→j , V,W, h, τ) to the

Re-Key list and outputs (rk, V,W) as the re-key.

– Else, it aborts and reports failure.

• Re-Encryption Oracle Orenc: When AII queries for a re-encryption of a first level ciphertext
C ′ = (D,E, F, S) from IDi and IDj , then C checks the validity of C ′. If the check fails, it out-
puts ⊥. It then recovers tuple (< IDi >,Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, Tj,1, Tj,2, µi,1, µi,2, coin) from

public key list. If (coini = 0 and PKi 6= ˆPKi in the CPK list or coini = 1) and IDj ∈ CI
list does not hold, then it queries Orkg(IDi, IDj) to obtain the re-key (rk, V,W) and returns Re −
Encrypt(IDi, IDj , params,C, rki→j). Else, it computesRi,1 = Qi,1

(
yH1(IDi,Qi,1)

)
, Ri,2 = Qi,2

(
yH1(IDi,Qi,2)

)
,

X = Pi,1(Pi,2)H(Pi,1) , Y = Ri,1(Ri,2)H(Ri,1), α = H(X1) and Z =
(
X1(X2)

α)
. It also computes

23

X1 = Pj,1
(
R
H(Pj,1)
j,1

)
. It then searches for (< m,w >, r) in the H4 list such that E = Zr. If such a tu-

ple is not found, it outputs ⊥. It then picks h ∈R {0, 1}l0 and π ∈R {0, 1}l1 and computes v = H4(h, π).
It sets V = (X1)v, W = H3(gv) ⊕ (h||π) and E′ = grh. It outputs (E′, F, V,W) as the re-encrypted
ciphertext.

• Strong Decrypt-1 Oracle Odec1: When AII queries for the decryption of a first level cipher text
C ′ under the identity IDi, it recovers (< IDi >,Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, µi,1, µi,2, coin) from

the public key list. If coini = 0 and PKi = ˆPKi in the CPK list, it retrieves (< IDi, coin >
,Ui,1, Ui,2, Si,1, Si,2) from the private key list and sets SKi = (Ui,1, Ui,2, Si,1, Si,2). It returns
Decrypt1(IDi, params,C

′, SKi). Otherwise, C checks for the validity of C ′. If the check fails, it
outputs ⊥. It computes Ri,1 = Qi,1

(
yH1(IDi,Qi,1)

)
, Ri,2 = Qi,2

(
yH1(IDi,Qi,2)

)
, X = Pi,1(Pi,2)H(Pi,1)

, Y = Ri,1(Ri,2)H(Ri,1), α = H(X) and Z =
(
X1(X2)

α)
. It then searches the H4 list for tuple

(< m,w >, r) and H3 list for tuple (< A >, h) such that E = Zr, A = gr and h ⊕ (m||w) = F . If
found, it returns m. Otherwise, it outputs ⊥.

• Strong Decrypt-2 Oracle Odec2: When AII queries for the decryption of a second level cipher-
text C ′′ under the identity IDi, it recovers (< IDi >,Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, µi,1, µi,2, coin)

from the public key list. If coini = 0 and PKi = ˆPKi in the CPK list, it retrieves the tuple
(< IDi, coin >,Ui,1, Ui,2, Si,1, Si,2) from the private key list and sets SKi = (Ui,1, Ui,2, Si,1, Si,2). It
returns Decrypt2(IDi,
params,C ′′, SKi). Else, it computes Ri,1 = Qi,1

(
yH1(IDi,Qi,1)

)
, Ri,2 = Qi,2

(
yH1(IDi,Qi,2)

)
,

X = Pi,1(Pi,2)H(Pi,1) , Y = Ri,1(Ri,2)H(Ri,1), α = H(X) and Z =
(
X1(X2)

α)
. It then searches in the

Re-Key list for a tuple (< IDj , IDi >, rk, V,W, h, 0). If found, it computes E = E′
1
rk and searches H4

list for tuple (< m,w >, r) and H3 list for tuple (< A >, h) such that E = Zr, A = gr, h⊕(m||w) = F .
If found, it returns m to adversary. Otherwise, outputs ⊥. Else, it computes X1 = Pi,1(Ri,1)H(Pi,1)

and searches in the H4 list for tuples (< m,w >, r), and (< h, π >, v), H3 list for the tuples (< A >, l),
(< R >, k) such that X1

v = V , R = gv, k ⊕ (h||π) = W , E′ = grh, A = gr, l ⊕ (m||w) = F . If found,
it returns m to the adversary. Otherwise, it return ⊥.

• Public Key Replacement Oracle Opkr: When AII wants to replace the public key corresponding

to an identity IDi with a new value ˆPKi, C checks validity of ˆPKi. If the check fails output ⊥.
Otherwise, update the CPK list with the new value of the public key corresponding to the identity
IDi.

7.2.2 Challenge

AI outputs two messages M0,M1 and an identity ID∗i on which it wishes to be challenged. It is required
that the adversary has not queried the partial key and the secret key corresponding to the identity ID∗i or
replaced the public key corresponding to ID∗i . C recovers the tuple (< ID∗i >,Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3,
µi,1, µi,2, coin) from the public key list. If coin = 0, then C aborts. Else, it tosses a coin and chooses p ∈ {0, 1}
uniformly at random. It computes Ri,1 = Qi,1

(
yH1(ID

∗
i ,Qi,1)

)
. Ri,2 = Qi,2

(
yH1(ID

∗
i ,Qi,2)

)
. It retrieves z1

and z2 from the private key list. It sets K = z1 + H(Pi,1)z2. It chooses e∗, f∗ ∈R Z∗q and computes

D = (ga)f
∗K(gb)−e

∗K , E = (gb)K . It picks F ∗ ∈R {0, 1}l0+l1 and implicitly defines H5(D,E, F ∗) = e∗. It
then, pick w∗ ∈R {0, 1}l1 and implicitly defines H4(Mp, w

∗) = b/a and H3(gb/a) = F ∗⊕ (Mp||w∗). It returns
C∗ = (D,E, F ∗, f∗).

Proposition 6 The challenge ciphertext generated as above is identically distributed to the real ciphertext
generated by Encrypt algorithm.

Proof Let us define u = f∗ − e∗(b/a) and r = b/a. It is easy to see that Z = X(Y)α = (ga)K . Now,

E = (gb)K = ((ga)K)b/a = (Z)r

24

.
D = (ga)f

∗K(gb)−e
∗K = ((ga)K)f

∗−e∗(b/a) = (Z)u

.
S = f∗ = f∗ − e∗(b/a) + e∗(b/a) = u+ rH5(D,E, F ∗)

. Hence, we can conclude that (D,E, F ∗, f∗) is a valid ciphertext.

7.2.3 Phase-2

The adversary continues to query any of the above mentioned oracles with the restrictions defined in the
security model and the challenger responds as in phase 1.

7.2.4 Guess

Finally, the adversary outputs a guess p′ of p. If p = p′, the challenger chooses a random tuple (< A >, h)
in the H3 list and outputs A as the solution to the M-CDH problem.

We now analyse the success probability of the adversary in solving the M-CDH problem.

Analysis

We first analyze the simulation of the random oracles. It is clear that the simulations of H,H1, H2, H6 are
perfect. Let Ask∗H3

denote the event that (gb/a) was queried to H3. Let Ask∗H4
be the event that adversary

queried H4 with (Mp, w
∗). Let Ask∗H5

be the event that the adversary queried H5 with (D,E, F ∗) before
the challenge phase. As long as Ask∗H3

, Ask∗H4
, Ask∗H5

did not occur the simulations of these oracles are
perfect.

Let Abort be the event that the challenger aborts before the guess phase. The challenger can abort the
game in Secret key extract or partial key extract or in re-key extract or in challenge phase.

The simulation of Orkg is perfect except for the case where (coini = 0 and PKi 6= ˆPKi in the CPK list
or coini = 1) and IDj does not belong to the CI list, in which rk is randomly chosen. If Abort does not
happen exactly like in the previous case we can argue that the adversary cannot distinguish between the
cases when rk is randomly chosen from the one in which it is properly generated.

Let REErr be the event that AII can submit valid ciphertexts for re-encryption without querying H4.
We now estimate the probabilities associated with each of the above described events.

Pr[Ask∗H5
] ≤ qH5

2l0+l1
, as F ∗ is chosen uniformly at random.

Pr[¬Abort] ≥ θquke+qrkg (1− θ)(1− ν)qrkg which is maximized at θ∗ =
quke + qrkg

1 + quke + qrkg

Using θ∗, we get

Pr[¬Abort] ≥ (1− ν)qrkg

e(1 + quke + qrkg)

Exactly as in the previous case we can prove the following inequalities.

Pr[ReERR] ≤ qrenc
q

, due to randomness of H4’s output

Let V alid denote the event that the ciphertext is valid. Let AskH4
denote the event that (m,w) has been

queried to H4 and AskH3
denote the event that (gr) has been queried to H3.

Pr[V alid|¬AskH3] ≤ qH4
/(2l0+l1)

1− qH3/q
+ 1/q

25

Similarly, we can show that

Pr[V alid|¬AskH4] ≤ qH3
/q

1− qH4/2
l0+l1

+ 1/q

Hence, we have

Pr[V alid|¬AskH3
∨ ¬AskH4

] ≤ qH4
/(2l0+l1)

1− qH3/q
+

qH3
/q

1− qH4/2
l0+l1

+ 2/q

Then, DErr is the event that V alid|¬(AskH3
∧AskH4

) happens at least once during the entire simulation.
Hence,

Pr[DErr] ≤ qd
(qH4

/(2l0+l1)

1− qH3
/q

+
qH3

/q

1− qH4
/2l0+l1

+ 2/q
)

Let Query be the event AskH∗3 ∪ AskH∗4 ∪ AskH∗5 ∪ ReErr ∪DErr|¬Abort. Clearly, if Query does not
happen during the simulation then due to randomness of H3’s output the adversary does not have any
advantage which is greater than 1/2 in guessing p. Hence, Pr[p′ = p|¬Query] = 1/2

Pr[p′ = p] = Pr[p′ = p|¬Query]Pr[¬Query] + Pr[p′ = p|Query]Pr[Query]

≤ 1/2Pr[¬Query] + Pr[Query] ≤ 1/2 + Pr[Query]

Pr[p′ = p] ≥ Pr[p′ = p|¬Query]Pr[¬Query] ≥ 1/2− 1/2Pr[Query]

We have
ε = 2|Pr[p′ = p]− 1/2| ≤ Pr[Query]

≤
Pr[AskH∗3] + Pr[(AskH∗4] + Pr[AskH∗5] + Pr[ReErr] + Pr[DErr]

Pr[¬Abort]
Thus,

Pr[AskH∗3] ≥ ε(Pr[¬Abort])− (Pr[(AskH∗4] + Pr[AskH∗5] + Pr[ReErr] + Pr[DErr])

≥ ε(1− ν)qrkg

e(1 + quke + qrkg)
−
(qH4

2l0+l1
+

qH5

2l0+l1
+
qrenc
q

+ qd(
qH4

/(2l0+l1)

1− qH3/q
+

qH3
/q

1− qH4/2
l0+l1

+ 2/q)
)

If AskH∗3 occurs then C will be able to solve the M-CDH problem with advantage ε′ given by

ε′ ≥ (1/qH3)Pr[AskH∗3]

≥ (1/qH3)

(
ε(1− ν)qrkg

e(1 + quke + qrkg)
−
(qH4

2l0+l1
+

qH5

2l0+l1
+
qrenc
q

+ qd(
qH4/(2

l0+l1)

1− qH3
/q

+
qH3/q

1− qH4
/2l0+l1

+ 2/q)
))

Let T1 = qH + qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ qpke + quke + qrkg + qrenc + qdec1 + qdec2 + qpkr and T2 =

8qpke + 10quke + 5qrkg + 8qrenc + 7qdec1 + 9qdec2. From the construction of C we can bound its running time
t′ by,

t′ ≤ t+ (T1)O(1) + (T2)texp

26

8 Efficiency Comparison

We compare the efficiency of our scheme and the one proposed in [GZZC13] which is the only scheme (to the
best of our knowledge) for which there are no known attacks. texp denotes the time for exponentiation and
tbp denotes the time for bilinear pairing computation in a group. According to the results in [Sco05, BKLS02]
the time taken for pairing computation is more than twice that of modular exponentiation. In our scheme,
we assume that R1, R2, X1, X2, X3, X

′ are precomputed and PublicKeyVerification, CiphertextVerification
is done as a pre-processing step.

Algorithms CL-PRE in [GZZC13] Our scheme
Setup 3texp + tbp texp
UserSecretKeyGen texp 2texp
SetPublicKey 0 2texp
PartialKeyExtract 3texp 3texp
ReKeyGen 3texp 2texp
Encryption 4texp 3texp
Re-Encryption 2tbp texp
Decrypt-1 2texp + tbp 2texp
Decrypt-2 4texp + tbp 4texp

References

[AFGH06] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-
encryption schemes with applications to secure distributed storage. ACM Transactions on
Information and System Security (TISSEC), 9(1):1–30, 2006.

[ARP03] Sattam S Al-Riyami and Kenneth G Paterson. Certificateless public key cryptography. In
Advances in Cryptology-ASIACRYPT 2003, pages 452–473. Springer, 2003.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy cryp-
tography. In Advances in Cryptology-EUROCRYPT’98, pages 127–144. Springer, 1998.

[BDZ03] Feng Bao, Robert H Deng, and Huafei Zhu. Variations of diffie-hellman problem. In Information
and Communications Security, pages 301–312. Springer, 2003.

[BKLS02] Paulo SLM Barreto, Hae Y Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-
based cryptosystems. In Advances in cryptology-CRYPTO 2002, pages 354–369. Springer, 2002.

[BSNS05] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Certificateless public key encryption
without pairing. In Information Security, pages 134–148. Springer, 2005.

[CBN06] Sherman SM Chow, Colin Boyd, and Juan Manuel González Nieto. Security-mediated certifi-
cateless cryptography. In Public Key Cryptography-PKC 2006, pages 508–524. Springer, 2006.

[CH07] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In Proceed-
ings of the 14th ACM conference on Computer and communications security, pages 185–194.
ACM, 2007.

[CLH05] Yun-Peng Chiu, Chin-Laung Lei, and Chun-Ying Huang. Secure multicast using proxy encryp-
tion. In Information and Communications Security, pages 280–290. Springer, 2005.

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Advances in Cryptology-
CRYPTO 2000, pages 229–235. Springer, 2000.

27

[CT07] Cheng-Kang Chu and Wen-Guey Tzeng. Identity-based proxy re-encryption without random
oracles. In Information Security, pages 189–202. Springer, 2007.

[CWYD10] Sherman SM Chow, Jian Weng, Yanjiang Yang, and Robert H Deng. Efficient unidirectional
proxy re-encryption. In Progress in Cryptology–AFRICACRYPT 2010, pages 316–332. Springer,
2010.

[Den08] Alexander W Dent. A survey of certificateless encryption schemes and security models. Inter-
national Journal of Information Security, 7(5):349–377, 2008.

[DWLC08] Robert H Deng, Jian Weng, Shengli Liu, and Kefei Chen. Chosen-ciphertext secure proxy re-
encryption without pairings. In Cryptology and Network Security, pages 1–17. Springer, 2008.

[GA07] Matthew Green and Giuseppe Ateniese. Identity-based proxy re-encryption. In Applied Cryp-
tography and Network Security, pages 288–306. Springer, 2007.

[GZZC13] Hui Guo, Zhenfeng Zhang, Jiang Zhang, and Cheng Chen. Towards a secure certificateless
proxy re-encryption scheme. In Provable Security, pages 330–346. Springer, 2013.

[HBCDF06] Thomas S. Heydt-Benjamin, Hee-Jin Chae, Benessa Defend, and Kevin Fu. Privacy for public
transportation. In Privacy Enhancing Technologies, pages 1–19, 2006.

[LCT+14] Kaitai Liang, Cheng-Kang Chu, Xiao Tan, Duncan S Wong, Chunming Tang, and Jianying
Zhou. Chosen-ciphertext secure multi-hop identity-based conditional proxy re-encryption with
constant-size ciphertexts. Theoretical Computer Science, 539:87–105, 2014.

[LLSL14] Rongxing Lu, Xiaodong Lin, Jun Shao, and Kaitai Liang. Rcca-secure multi-use bidirectional
proxy re-encryption with master secret security. In Provable Security, pages 194–205. Springer,
2014.

[LQ06] Benôıt Libert and Jean-Jacques Quisquater. On constructing certificateless cryptosystems from
identity based encryption. In Public Key Cryptography-PKC 2006, pages 474–490. Springer,
2006.

[LV08] Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy re-
encryption. In Public Key Cryptography–PKC 2008, pages 360–379. Springer, 2008.

[SC09] Jun Shao and Zhenfu Cao. Cca-secure proxy re-encryption without pairings. In Public Key
Cryptography–PKC 2009, pages 357–376. Springer, 2009.

[Sco05] Michael Scott. Computing the tate pairing. In Topics in Cryptology–CT-RSA 2005, pages
293–304. Springer, 2005.

[SJPR10] Chul Sur, Chae Duk Jung, Youngho Park, and Kyung Hyune Rhee. Chosen-ciphertext secure
certificateless proxy re-encryption. In Communications and Multimedia Security, pages 214–232.
Springer, 2010.

[Smi] T Smith. Dvd jon: buy drm-less tracks from apple itunes (2005).

[SZB07] Yinxia Sun, Futai Zhang, and Joonsang Baek. Strongly secure certificateless public key encryp-
tion without pairing. In Cryptology and Network Security, pages 194–208. Springer, 2007.

[WDLC10] Jian Weng, Robert H Deng, Shengli Liu, and Kefei Chen. Chosen-ciphertext secure bidirectional
proxy re-encryption schemes without pairings. Information Sciences, 180(24):5077–5089, 2010.

[YXZ14] Kang Yang, Jing Xu, and Zhenfeng Zhang. Certificateless proxy re-encryption without pairings.
In Information Security and Cryptology–ICISC 2013, pages 67–88. Springer, 2014.

28

[ZTGC13] Yulin Zheng, Shaohua Tang, Chaowen Guan, and Min-Rong Chen. Cryptanalysis of a cer-
tificateless proxy re-encryption scheme. In Emerging Intelligent Data and Web Technologies
(EIDWT), 2013 Fourth International Conference on, pages 307–312. IEEE, 2013.

29

