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Abstract. Multi-variate side-channel attacks allow to break higher-order masking
protections by combining several leakage samples. But how to optimally extract all
the information contained in all possible d-tuples of points? In this article, we intro-
duce preprocessing tools that answer this question. We first show that maximizing the
higher-order CPA coefficient is equivalent to finding the maximum of the covariance.
We apply this equivalence to the problem of trace dimensionality reduction by linear
combination of its samples. Then we establish the link between this problem and
the Principal Component Analysis. In a second step we present the optimal solution
for the problem of maximizing the covariance. We also theoretically and empirically
compare these methods. We finally apply them on real measurements, publicly avail-
able under the DPA Contest v4, to evaluate how the proposed techniques improve
the second-order CPA (2O-CPA).
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1 Introduction

For more than a decade now Side-Channel Attacks (SCA [6]) have been an impor-
tant threat against embedded systems. As a consequence protection techniques and
countermeasures have been an important research topic. Data masking [9] is one of
the most popular protection technique. These schemes have in turn been the target
of higher-order SCA [24,18].

In some particular masking implementations, the two shares [16] depending on
the same mask leak at different moments (e.g., in software). Second-order attacks
that combine two different time samples are called bi-variate SCA. When the mask-
ing scheme uses d shares, multi-variate SCA are still able to reveal the secret key
by combining leakage samples corresponding to each of the d shares. Note that,
depending on the implementation and the measurement setup each share may leak
in multiple samples.
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To enhance the results of SCA several preprocessing tools can be used. In the
case of bi-variate SCA it is particularly interesting to take into account all the
information spread over the time. Indeed, the number of possible pairs increases
quadratically in the number of leakage samples. For example, if the first share leaks
over T1 samples and the second share over T2 samples, we could perform a bi-variate
SCA on T1 × T2 possible combined points. So, taking into account all these leaks
may undoubtedly increase the efficiency of an attack.

More generally, to break (d − 1)-order masking schemes the attacker needs to
combine d samples corresponding to d shares. So, if Ti is the number of samples
which leak the i-th share then the attacker could perform multi-variate SCA on∏

1≤i≤d Ti different d-tuples. In other words, the number of possible d-tuples to

perform multi-variate SCA is in O(T d) where T is the number of samples each share
leaks (and assuming that each share is leaking the same number of samples, i.e.,
∀i ∈ J1, dK, Ti = T ).

Many methods have been presented in the area of SCA to combine the infor-
mation spread over time: the Principal Component Analysis (PCA) for dimension-
ality reduction [1] for Template attacks [7] but also as a preprocessing tool [2] for
DPA [13]. Recently in [11] Hajra and Mukhopadhyay present an approach based
on match filters to find the optimal preprocessing. Other methods have been de-
signed to combine samples from different acquisitions ([22,20]). Additionally, PCA
has also been used as a distinguisher in [21]. Some other methods could be applied
like the Canonical Correlation Analysis [17] to improve CPA [6]. Interestingly, all
these methods lead to a dimensionality reduction.

Another approach to improve the efficiency of SCA is to find the optimal model.
A linear-regression approach may be used. In [17] Oswald and Paar introduce opti-
mization algorithms to determine numerically the optimal linear combination before
CPA. By choosing a different objective we can give a formal expression for the re-
sult of the optimization problem, and then have an optimal method without any
utilization of sophisticated optimization algorithms that would require “parameter
settings”, which could be costly in time. Still, we notice that the approach in [17]
and our could be advantageously combined.

Our contributions. In this paper we tackle the question how to optimally combine
the information spread over multiple time samples, for HO-CPA attacks of arbitrary
order? We present the optimal preprocessing method and express it as a generic
synthetic formula. By linking the PCA to the problem of maximizing the result
of the CPA we are able to evaluate the presented method. We compare these two
methods theoretically and prove that they are optimal under some assumptions. We
then compare these methods empirically as preprocessing tools to boost 2O-CPA
attacks on a first-order masking scheme. In particular, we test these methods on
real measurements (DPA contest v4 [23]). In summary, we show that taking into
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account all possible pairs of leakage points will significantly improve the effectiveness
of 2O-CPA, in one attack.

Outline of the paper. The rest of the paper is organized as follows. In Sect. 2
we present our case study and a theoretical comparison between PCA and the
covariance method as a method to obtain the optimal preprocessing for second-
order CPA. The attacks are then applied on a real masked implementation in Sect. 3.
Sect. 4 provides another case study to apply these methods as preprocessing tools.
Finally, conclusions and perspectives are drawn in Sect. 5.

2 Theoretical optimal preprocessing function

2.1 Case study

Let us assume that each measurement trace can be seen as a vector of points. So
the leakage of the measurements can be defined as: L = (Lt)t∈T where Lt = St+Nt,
St being the part of the leakage which is linked to the internal operation processed
on the target component and Nt being the noise that assumed to be independent
of LT . It can be noted that, we simply refer to interval J1, T K as T , whenever there
is no risk of confusion. It can also be assumed that these traces are centered and
also reduced, i.e., E [Lt] = 0 ∀t and Var [Lt] = 1 ∀t. Note that, the attacker is always
able to center by removing the empirical mean and reduce by dividing the empirical
standard deviation.

Let Z be the internal variable (depending on the sensitive variable) manipulated
during the algorithm and let f define the leakage model. In the case of CPA, a
transformation of the initial data (preprocessing) may increase the correlation coef-
ficient. To consider all information contained in L an option would be to use a linear
transformation as a prepossessing. Note that, combining all points by a weighted
sum leads to a dimensionality reduction. More precisely,

max
α
|ρ [L · α, f(Z)]|, (1)

where ρ is the Pearson coefficient, α is a vector in RT and · the scalar product.

Remark 1. The solution of max
α
|ρ [L · α, f(Z)]| is also a solution of max

α
ρ [L · α, f(Z)]2.

Remark 2 (EIS (Equal Images under the Same key) assumption [19]). The only part
of the correlation that allows to distinguish the key is the covariance.

After the preprocessing we do not need to normalize by the variance of the traces,
because we compare key guesses between each other for a given time sample not on
a direct scale. So, as seen in Remark 2 the normalization by the variance does not
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impact the way we distinguish the key. Thus, we can simply focus on maximizing
the following equation:

max
‖α‖=1

Cov [L · α, f(Z)]2. (2)

As the covariance is not bounded we introduce the constraint ‖α‖ = 1 where ‖·‖
is the Euclidean norm, namely ‖α‖ =

√
α · α.

In this section we assume that the attacker has a “learning device” with a fixed
key on which he is unrestricted in the number of acquisitions, which is typically more
than the required number to successfully perform the attack. As a consequence we
can reasonably assume that the attacker knows the key on the learning device and
he is able to identify the zones of interest in J1, T K where the internal variable leaks.
Moreover, he is able to estimate the weights of the linear combination (see Eq. (2))
on the learning device. In the rest of this study we call this step the “learning phase”.
In the final step the attacker targets another device that is expected to leak in a
similar way as the learning one. However, on the device under attack he is no longer
able to acquire an unlimited amount of traces. In particular, in this “attack phase”
his main goal is to retrieve the secret key using only the minimum number of traces.

2.2 Principal component analysis

A classical way to recombine information with linear combinations is to apply
PCA [12]. Let us define X as a set of data that is composed of N vectors of size T .
Accordingly, we write X as an N × T matrix.

Definition 1. The PCA is an orthonormal linear projection of the data, which
maximizes the variance of the projected subspace of dimension T ′ ≤ T . More for-
mally, we search the projection which maximizes the variance of the projected data.
For the first dimension of the subspace this leads to:

max
‖u1‖=1

Var [Xu1] = max
‖u1‖=1

tu1
tXXu1.

For the second dimension, as we want an orthonormal projection, this yields:

max
‖u2‖=1
u2·u1=0

tu2
tXXu2.

The process is iterated for each dimension T ′ ≤ T .

Remark 3. In general, most of the variance lays within a few dimensions (i.e., much
less than T ).

Proposition 1. The solution of the problem in Def. 1 is the T ′ eigenvectors of X
associated to the T ′ maximal eigenvalues.
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Proof. The proof can be found in [12]. ut

As the problem of maximizing the covariance depends on the expected leakage
model the preprocessing is defined such that it takes f into account. This implies
that the given preprocessing methods are model-dependent. We can explicit the
Proposition 1:

Proposition 2. If we link our measurements L to their conditional expectations
E [L|f(Z)] knowing a model f(Z), then the PCA yields the principal direction:

max
‖α‖=1

Var [E [L|f(Z)] · α].

This result means that the eigenvector of largest eigenvalue is the projection that
maximizes the inter-class variance.

Proof. Let f1, f2, . . . , fN the values that f(Z) can take. Then, the lines of matrix X
are E [L|f(Z) = f1], E [L|f(Z) = f2], . . ., E [L|f(Z) = fN ]. Apply Proposition 1. ut

2.3 Preprocessing on modulated side channel traces

Definition 2. Let us now define a modulated trace as a trace in which each time
sample can be expressed as a modulation of a model (static in time) plus an inde-
pendent noisy part:

L = (βtf(Z) +Nt)t∈T = f(Z)β + (Nt)t∈T , (3)

where β is a vector in RT and each Nt is drawn from an independent identical
distribution N . In specific, the variance of the noise does not depend on the time
sample t ∈ T .

This notion is illustrated in Fig. 1. In this figure, the pink curve represents the
deterministic part of the signal, which is a damped oscillation due to the mismatch
between the sensor and the leakage source. The pinkish area extending over the
pink line represents the noise noise. This figure 1 clearly shows that there are many
samples which can be advantageously combined, in a view to increase the signal-to-
noise ratio.

Theorem 1. In the case of modulated traces the solution of PCA is equivalent to
maximizing the covariance (Eqn. (2)). More precisely, if L = (βtf(Z) +Nt)t∈T then

α ∈ argmax
‖α‖=1

Cov [L · α, f(Z)]2 ⇐⇒ α ∈ argmax
‖α‖=1

Var [E [L|f(Z)] · α] .

Proof. The proof is given in Appendix A. ut
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Fig. 1: Example of a modulated trace

Notice that, in Theorem 1, we consider that many vectors α can maximize the
covariance: so, the return value of the argmax operator is a set.

In a particular case of Theorem 1 we can explicitly describe α.

Lemma 1. If α and β are linearly dependent, we have:

β

‖β‖ ∈ argmax
‖α‖=1

Cov [L · α, f(Z)]2 . (4)

Proof. The proof is given in Appendix B. ut

After projection into the new reduced space the covariance matrix will be zero
everywhere except at (0, 0). Moreover, all the variance should be contained in the
first principal direction, thus, we do not need to take the other eigenvectors into
consideration.

As β does not depend on a particular model we also maximize the covariance for
wrong keys in the same proportion as the covariance for the good key. Thus we do
not change the way we distinguish the good key from the wrong ones (the relative
distinguishing margin is unchanged [25]). However, the dimensionality reduction
leads to an improvement of the attack by increasing the signal-to-noise ratio (SNR).
We define the SNR as the variance of the signal divided by the variance of the
noise. This definition of SNR coincides with the Normalized Inter-Class Variance
(NICV [5,4]).

Lemma 2. If the noise Nt is identically distributed (i.d.) for all t, then the noise
is unchanged by any linear combination of unitary norm.

Proof. By hypothesis, Var
[
(Nt)t∈T · α

]
= ‖α‖2Var [N ] = Var [N ]. ut
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Proposition 3. If the noise Nt is i.d. for all t, then the signal-to-noise ratio is
maximum after the projection:

max
t∈T

Var [βtf(Z)]

Var [N ]
≤

max
‖α‖=1

Var [E [L|f(Z)] · α]

Var [N ]
.

Proof. By definition of α we have max
t∈T

Var [βtf(Z)] ≤ max
‖α‖=1

Var [E [L|f(Z)] · α]. Be-

sides, by lemma 2, the numerator of the SNR does not depend on our preprocessing,
since is satisfies ‖α‖ = 1. ut

Remark 4. In the case of modulated traces the PCA gives the solution of a matched-
filter [14].

2.4 Covariance vector as a preprocessing method

In the general case when the model is not known or in the presence of noise, the
variance may not only be contained in the first eigenvector [2]. Therefore, it may be
useful to also take the other directions of the PCA into account. Note that, we still
obtain an optimal function to reduce the dimensionality before conducting a CPA
under the same leakage model assumption.

Proposition 4 (Covariance method).(
Cov [Lt; f(Z)]

‖(Cov [Lt; f(Z)])t∈T ‖

)
t∈T
∈ argmax
‖α‖=1

Cov [L · α, f(Z)]2

Proof. The proof is given in Appendix C. ut

So, the normalized covariance is the optimal preprocessing method to maximize
the value of the covariance when using linear combinations of traces points. In the
rest of this study we call this method the “covariance method” and the result the
“covariance vector”.

Remark 5. Note that, the model of the actual leakage of the traces is not used in
the proof of Appendix C. The results are therefore applicable for any leakage model
such as the one presented in [10].

2.5 Discussion

The previous subsection shows that the projection of the differential traces on the
covariance vector gives a solution to the problem of maximizing the covariance
after dimensionality reduction (i.e., after having learned the best linear form). This
method is better than the state-of-the-art, where each tuple of samples is processed
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on its own (see the big picture in Fig. 2); it can be seen as a generalization to higher-
order attacks of [11]. Some other preprocessing tools have been proposed to reduce
the dimensionality and enhance the quality of the CPA. The PCA [2] is a known
way to preprocess the data to reduce the dimension and increase the efficiency of
attacks. As defined in Sect. 2.3, PCA is directly linked to the maximization problem,
which is also underlined by our empirical results given in Sect. 3.

Oswald and Paar showed in [17] that the best linear combination (“best” in the
sense of separating the highest peaks from the nearest rival) can be approached by
numerical resolutions. The model presented in [11] is not totally applicable to our
study case. If we are in the case of modulated traces, the expectation over each
sample of the combined traces could be null. In this case the method presented is
not directly suitable.

The point of this study is not to exhibit a better method for dimensionality
reduction but to show that we can solve this problem in an easier way by using the
vector of covariance.

Other preprocessing methods can be used before any dimensionality reduction
such as reduction filtering using a Fourier or a Hartley transform [3]. However,
when the transformation is linear and invertible, the covariance method applies in
a strictly equivalent way. The next subsection clarifies this point on the example of
the Fourier transform.

2.6 Time vs Frequency domains

Let L a signal in time domain, i.e., L = (Lt)t∈T . The representation of L in the
frequency domain is the discrete Fourier transform F(L).

Definition 3 (Discrete Fourier transform). Let ı be a square root of −1 in C.
The discrete Fourier transform of L is a vector F(L) of same length, defined as
F(L)f =

∑
t∈J1,T K Lt · e−2πıft/T , for all f in the interval J1, F K (where F = T ).

Proposition 4 can also be applied on F(L) instead of L. We then have the
following Corollary.

Corollary 1 (Covariance method in the frequency domain). The covariance
method in frequency domain yields covariance vectors equal to the Fourier transform
of the covariance vectors in the time domain.

Proof. We have F(L) · α = L · F(α), by interversion of the sums on f and t.
Besides, Parseval’s theorem states that ||F(α)||2 = ||α||2. Thus, the application of
Proposition 4 on F(L) instead of L yields F(α), where α are the covariance vectors
obtained in the time domain. ut
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Leakage L

α = cov(L;f(Z))
||cov(L;f(Z))||

Correlation |ρ(L; f(Z))| Distinguishers:

Projection
by linear
combination

(1’)

max
k,t∈J1,T1K×J1,T2K

max
k

|ρ(L · α; f(Z))|

(0’)
(1’)

|ρ(Lt; f(Z))|

L · α
(scalar)

T1

T2

(1) (2)

t1

t2

1

1 t1

t2

t2

t1

(2’)

Fig. 2: Big picture of the “covariance method”. The usual 2O-CPA computes a cor-
relation for each pair (t1, t2) of leakage (step (1)), and then searches for a maximum
over the keys and the time instances (step (2)). Our new method obtains a “covari-
ance vector” (termed α) on a “learning device” (step (0’)), and then first projects
the leakage L on α (step (1’)), before looking for the best key only while maximizing
the distinguisher (step (2’)). Notice that the model f(Z) depends implicitly on the
key guess k.

3 Empirical results

In Sect. 2 we defined two preprocessing methods (the PCA and the “covariance
method”). They were described in general, but can also apply to second-order CPA;
the only difference is that the interval J1, T K where samples live is replaced by
the Cartesian product J1, T1K × J1, T2K, where T1 and T2 are the window lengths
containing the leakage of the two shares. Accordingly, the leakage L is the suitable
combination (e.g., the centered product [18]) of samples from each window, which
is reflected in the model (See for instance Eqn. (5) and (6)). We will now compare
these two methods on real measurements. These methods combine in one point the
information spread over several points. The more samples to combine, the more the
dimensionality reduction increases the success of the attacks.
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3.1 Implementation of the masking scheme

To evaluate these two methods we use the publicly available traces of the DPA
contest v4 [23], which uses a first order low-entropy masking protection applied on
AES called Rotating S-box Masking (RSM). In RSM only sixteen Substitution boxes
(S-boxes) are used and all the sixteen outputs of SubBytes are masked by a different
mask. We take great in this paper to exploit second-order leakage (in particular, we
avoid the first-order leakage identified by Moradi et al. [15]). Moreover, the same
mask is used for the AddRoundKey operation where it is XORed to one plaintext
byte P and in the SubBytes operation where it is XORed with the S-box output
depending on another plaintext byte P ′. As a consequence a bi-variate CPA can be
built by combining these two leaks knowing P and P ′. The leakage model in this
case is given by:

f(Z) = E
[
(wH(P ⊕M)− 4) ·

(
wH(Sbox[P ′ ⊕K]⊕M)− 4

)
|P, P ′,K

]
, (5)

where P , P ′, K are two bytes of the plaintext and a byte of the key respectively,
together noted Z = (P, P ′,K), and where wH( · ) is the Hamming weight function
and the expectation is taken over K. We denote this combination as (XOR, S-Boxes).

Moreover, we also define another way to combine points in order to compensate
the mask. As only sixteen different masks in RSM are used, also a link between
the masks used at the output of the S-boxes exists. Accordingly, the combination
of the outputs of two different S-boxes are not well balanced and we could consider
an attack depending on two different S-Boxes which use two different masks. In this
case the leakage model for the bi-variate CPA is:

f(Z) = E
[
(wH(Sbox[P ⊕K]⊕M)− 4) ·

(
wH(Sbox[P ′ ⊕K ′]⊕M ′)− 4

)
|P, P ′,K,K ′

]
.

(6)

In this equation, which we denote as (S-Boxes, S-Boxes), P and K (resp. P ′ and K ′)
are the plaintext and key bytes entering the first (resp. the second) S-Box, and Z is a
shortcut for the quadruple (P, P ′,K,K ′). We notice that there exists a deterministic
link between M and M ′; M and M ′ belong to some subset {m0,m1, . . . ,m15} of F8

2.
We assume that M enters S-box 0 ≤ i ≤ 15 and M ′ S-box 0 ≤ i′ ≤ 15. Then when
M = moffset for some 0 ≤ offset ≤ 15, we have that M ′ = moffset+i′−i mod 16.

3.2 Leakage analysis

We assume that the adversary is able to identify the area where the two operations
leak during the “learning phase”. In order to analyze the leakage of the two opera-
tions, we first calculate the covariance of the traces when the mask is known using
25000 measurements.

Figure 3a presents the absolute value of the covariance between the points where
the mask is XORed with the plaintext and the leakage model wH(P ⊕M ⊕K)− 4.
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The covariance is computed for all key guesses K, where the wrong keys are plotted
in grey and the correct key in red. Note that, as we target an XOR operation the
maximum of the absolute value of the covariance is reached for two key guesses,
namely the correct one and its opposite. It is quite clear, in Fig. 3a, that the traces
are reasonably modulated (as per Def. 2); consequently, the relative distinguishing
margin is constant over all the whole trace (as underlined in Sec. 2.3). In the sequel,
we use as leakage for the first share wH(P ⊕M)− 4 instead of wH(P ⊕M ⊕K)− 4.
As the second share is key-dependent, this choice allows us to restrict ourselves to
one key search instead of two.

Figure 3b presents the covariance between the points where the output of an
S-box leaks and the leakage model wH(Sbox[P ′ ⊕K]⊕M)− 4.

In both cases the mask leaks over several points; 50 samples represent less than
1 clock cycle. In this case the leakage is not uniformly spread over the points, thus
it is reasonable to use a weighted sum to reduce the dimensionality of the data.

As the two leakages do not depend on the same operations their shapes are
different. Interestingly, the distance between the correct key (red) and the next rival
(grey) is much smaller in Figure 3a than in Figure 3b, Indeed the covariance plotted
in Figure 3a is computed using a leakage depending on AddRoundKey, whereas the
covariance plotted in Figure 3b is computed using a leakage caused by SubBytes.
More precisely, the second plot corresponds to a time window when the value of the
S-box output is moved during the ShiftRows operation that follows SubBytes.

(a) Leakage caused by AddRoundKey
(b) Leakage caused by the Sbox output while in
ShiftRows

Fig. 3: Covariance absolute value, for (a) XOR and (b) S-box

Figure 4a (resp. 4b) presents the covariance between the points where the out-
put of an S-box leaks and the leakage model wH(Sbox[P ⊕ K] ⊕ M) − 4 (resp.
wH(Sbox[P ′ ⊕K ′] ⊕M ′) − 4). It can be noticed that the leakages of two different
S-boxes indeed differ. The reason of this difference is that the two leakages are not
due to the execution of the same operations. Figure 4b shows the covariance between
the leakage of the S-box output due to the ShiftRows operation that follows and the
corresponding model, whereas Figure 4a shows the covariance between the leakage
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due to the SubBytes operations and the corresponding model. As looking-up and
moving a byte are different operations, they leak differently.

(a) Leakage caused by SubBytes (b) Leakage caused by ShiftRows

Fig. 4: Covariance absolute value, for (a) S-box and (b) S-box+ShiftRows

3.3 Experimental protocol

In this experiment we select two windows of 50 points corresponding to the leakage
of the two shares. Then all possible pairs of points have been combined using the
centered product function [18]. In all the experiments, the preprocessing method and
the 2O-CPA are applied on these “combined” traces. We compare 2O-CPA with and
without preprocessing.

We used the 50000 first traces of the DPA contest v4 for the learning phase and
the remaining for the attack phase. To compute the success rate we repeated the
experiment as many times as we could due to the restricted amount of traces.

Note that, several attacks using profiling or semi-profiling have been published
in the Hall of Fame of the DPA contest v4. Most of these attacks are specially
adapted to the vulnerabilities of the provided implementation or the particularities
of RSM. However, our proposed preprocessing tools do not particularly target RSM,
moreover, they are generic and could be applied to any masking scheme leaking two
shares.

3.4 Comparison of the two preprocessing methods and classical
second-order CPA

First of all, for the (XOR, S-Boxes) combination we see in Fig. 5 that the prepro-
cessing improves the efficiency of the attacks. We need less than 200 measurements
to reach 80% of success with the covariance or PCA preprocessing while we need
more than 275 measurements for the classical 2O-CPA, which gives an improvement
of 30%.

Figure 6 shows a 3-D representations of the vectors using the PCA (which re-
turns the first eigenvector) and the covariance method (which returns the covariance
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Fig. 5: Comparison between the classical second-order CPA and second-order CPA
with preprocessing using (XOR, S-Boxes)

Fig. 6: Comparison between covariance vector and the first eigenvector

vector). The larger the value on the z-axis of Fig. 6 and 8, the higher the contribu-
tion (weight) of this point. The axes “leakage 1” and “leakage 2” represent the part
depending on the two leakages of XOR (Fig. 3a) and S-box (Fig. 3b) operations in
the combined traces. We can see in Figure 6 that the two methods highlight the
same points of the combined traces and have the same shape (approximately the
same values). Thus, the two methods give similar results in terms of success rate,
which is confirmed by Figure 5.

As can be seen in Figure 7, in case of the (S-Boxes, S-Boxes) combination we need
around 275 traces to reach 80% of success for the 2O-CPA after the two preprocessing
methods, while the raw 2O-CPA needs around 550 traces to succeed. So, using the
preprocessing method decreases the number traces to perform the attack by 50%. It
can be seen that the two methods yield apparently exactly the same results, which
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means that we are precisely in the framework of Theorem 1: the display traces that
are almost perfectly modulated by one static leakage model.

Fig. 7: Comparison between the classical second-order CPA and second-order CPA
with preprocessing using (S-boxes, S-Boxes)

Fig. 8: Comparison between the covariance vector and the first eigenvector

One explanation of the effectiveness of the preprocessing can be found in Fig-
ure 8. There are much more leaking points in the same window size when we combine
two S-boxes. It can be seen in Sect. 3.5 that another explanation can be the fact
that when we apply these preprocessing methods the attacks are less sensitive to
the noise.
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(a) Standard deviation of 3 (b) Standard deviation of 5

Fig. 9: Comparison between 2O-CPA with preprocessing method and without in
presence of Gaussian noise, with a standard deviation of 3 for (a) with a standard
deviation of 5 for (b)

3.5 How is the preprocessing linked to the noise?

We have theoretically shown in Proposition 3 that the presented preprocessing meth-
ods improve the SNR. We now empirically verify this results. In each point we add
Gaussian noise to mimic real noisy measurements. We perform this experiment on
the same points and with the same model as used for Figure 5.

Figure 9a shows that using preprocessing methods improves second-order CPA
in presence of noise. In this case we added Gaussian noise with a standard deviation
of 3. The attacks after preprocessing need around 225 measurements to reach 80%
of success whereas the 2O-CPA needs more than 550 measurements. Thus, prepro-
cessing leads to a gain over 50%. As shown in Figure 5 the gain was close to 30%
without noise.

In Figure 9b we can see that for Gaussian noise with a standard deviation of 5
the gain is more than 75%. Indeed the 2O-CPA after preprocessing needs around
250 traces reach 80% of success rate whereas for 2O-CPA 1000 measurements are
not sufficient.

So this kind of preprocessing by dimensionality reduction is well designed against
noisy implementation where the noise is not correlated with the time or the data.

4 On the fly preprocessing

We have defined a case study when the attacker owns a “learning device”. As a
consequence he is able to acquire a sufficient number of measurements to well esti-
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mate the covariance matrix for the PCA and the covariance vectors. However, the
attacker might not always have this powerful tool.

As seen in Subsect. 3.4 even for a small number of traces for the learning phase
we have a significant improvement when we use preprocessing methods. We therefore
evaluate these tools also as “on the fly” preprocessing methods.

4.1 Case study

We now model a less powerful attacker who does not have a “learning device” and
estimates the value of the coefficient of the linear transformation directly on the
traces used for the attack. Because the key is unknown the preprocessing method has
to be computed for each key hypothesis. Finally, the adversary applies the covariance
between the transformed data and the model depending on the key hypothesis. In
this experiment we use the 10000 first traces of the DPA contest to compute the
success rate which results in 25 repetitions.

4.2 Empirical results

Figure 10a illustrates the success rate after preprocessing for different sizes of the
learning set for PCA (green) and the covariance vector (red). One can observe that
the covariance method performs better than PCA when a low number of traces
is used during the learning phase, accordingly, this method is a good choice as a
“on the fly” preprocessing method. The reason why the PCA method needs more
measurements for the learning than the covariance method to reach its maximum
efficiency during the attack phase could be the fact that the covariance matrix (see
the term tXX in Def. 1) needs more traces to be well estimated.

Figure 10b shows that with the “on the fly” preprocessing we can perform 2O-
CPA using 225 measurements. This represents a gain of 18% compared to raw
(sample-wise) 2O-CPA.

5 Conclusions and Perspectives

In this article we presented the covariance method as an optimal preprocessing
method for second-order CPA. By using all possible leakage points our method
improves the efficiency of the attacks and as the number of combined leakage points
grow quadratically, thus our preprocessing method is well adapted for bi-variate
CPA. We further theoretically linked the PCA to the problem of maximization of
the covariance. We demonstrated theoretically the result of the covariance method
to be the optimal linear combination for maximizing the covariance and underlined
empirically that this method improves the result of bi-variate CPA.

Compared to 2O-CPA, the attack based on the optimal covariance method is
significantly improved, particularly in presence of noise and when the number of
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(a) Comparison between covariance and PCA de-
pending on the size of the learning base

(b) Comparison between covariance in line pre-
processing and 2O-CPA

Fig. 10: Evaluation of inline preprocessing methods

leaking points is important. This is partly explained by the fact the optimal covari-
ance considers all the relevant sampling points, whereas the 2O-CPA considers only
the best pair of samples and does not exploit the other interesting pairs.

We have also shown that the optimal covariance method is more efficient than
PCA when the learning phase is performed on the fly. All the results have been vali-
dated by experiences on real traces corresponding to masking implementation of the
DPA contest v4. As a consequence dimensionality reduction by linear combination
is well adapted to the case of multi-variate CPA. Moreover, the higher the order of
masking, the more efficient the attack after preprocessing.

In our future work we will extend the previous results on other implementations
which are less favorable to attacker, e.g., with more noise. Also we plan to compare
the method presented in this article and the method presented in [11] in these cases.
We will additionally apply these methods on different masking scheme especially on
higher-order masking schemes.
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A Proof of Theorem 1

Proof. On the one side we have

Cov [L · α, f(Z)] = (Cov [St +Nt, f(Z)])t∈T · α
= (Cov [St, f(Z)])t∈T · α
= (E [Stf(Z)])t∈T · α .

The other side yields Var [E [L|f(Z)] · α] = Var
[
(St)t∈T · α

]
. Now if St = βtf(Z),

then we have for both sidesCov [L · α; f(Z)]2 = (α · β)2 E
[
f(Z)2

]2
,

Var [E [L|f(Z)] · α] = Var [(α · β) f(Z)] = (α · β)2 E
[
f(Z)2

]
,

which proves equivalence. ut

B Proof of Lemma 1

Proof.

argmax
‖α‖=1

Cov [L · α, f(Z)]2 = argmax
‖α‖=1

(α · β)2 E
[
f(Z)2

]2
= argmax
‖α‖=1

(α · β)2 , because E
[
f(Z)2

]2
> 0.

By the Cauchy-Schwarz theorem, we have: (α · β)2 6 ‖α‖2×‖β‖2,where equality
holds if and only if α and β are linearly dependent, i.e., α = λβ. Accordingly, if
‖α‖ = 1 we have λ = 1

‖β‖ , which gives us the required solution. ut

C Proof of Proposition 4

Proof. We have

Cov [L · α, f(Z)] = (Cov [Lt; f(Z)])t∈T · α .

http://www.DPAcontest.org/v4/
http://www.DPAcontest.org/v4/
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Similar to the proof of Lemma 1, we use the Cauchy-Schwarz inequality. In partic-
ular,

(
(Cov [Lt; f(Z)])t∈T · α

)2
6 ‖α‖2 × ‖(Cov [Lt; f(Z)])t∈T ‖2.

We have the equality,(
(Cov [Lt; f(Z)])t∈T · α

)2
= ‖α‖2 × ‖(Cov [Lt; f(Z)])t∈T ‖2,

if and only if α = λ (Cov [Lt; f(Z)])t∈T .
So, if ‖α‖ = 1 we have λ = 1

‖(Cov[Lt;f(Z)])t∈T ‖
. ut
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