
Non-Interactive Secure Multiparty Computation∗

Amos Beimel
Dept. of Computer Science

Ben Gurion University
Beer Sheva, Israel

amos.beimel@gmail.com

Ariel Gabizon Yuval Ishai Eyal Kushilevitz
Dept. of Computer Science

Technion
Haifa, Israel

arielga,yuvali,eyalk@cs.technion.ac.il

Sigurd Meldgaard
Google Aarhus

Denmark
stm@cs.au.dk

Anat Paskin-Cherniavsky
Dept. of Computer Science and Mathematics

Ariel University
Ariel, Israel

anps83@gmail.com

November 24, 2014

Abstract

We introduce and study the notion of non-interactive secure multiparty computation (NIMPC).
An NIMPC protocol for a function f(x1, . . . , xn) is specified by a joint probability distribution R =
(R1, . . . , Rn) and local encoding functions Enci(xi, Ri), 1 ≤ i ≤ n. Given correlated randomness
(R1, . . . , Rn) ∈R R, each party Pi, using its input xi and its randomness Ri, computes the message
mi = Enci(xi, Ri). The messagesm1, . . . ,mn can be used to decode f(x1, . . . , xn). For a set T ⊆ [n],
the protocol is said to be T -robust if revealing the messages (Enci(xi, Ri))i 6∈T together with the random-
ness (Ri)i∈T gives the same information about (xi)i 6∈T as an oracle access to the function f restricted
to these input values. Namely, a coalition T can learn no more than the restriction of f fixing the inputs
of uncorrupted parties, which, in this non-interactive setting, one cannot hope to hide. For 0 ≤ t ≤ n,
the protocol is t-robust if it is T -robust for every T of size at most t and it is fully robust if it is n-robust.
A 0-robust NIMPC protocol for f coincides with a protocol in the private simultaneous messages model
of Feige et al. (STOC 1994).

In the setting of computational (indistinguishability-based) security, fully robust NIMPC is implied
by multi-input functional encryption, a notion that was recently introduced by Goldwasser et al. (Euro-
crypt 2014) and realized using indistinguishability obfuscation. We consider NIMPC in the information-
theoretic setting and obtain unconditional positive results for some special cases of interest:

• Group products. For every (possibly non-abelian) finite group G, the iterated group product
function f(x1, . . . , xn) = x1x2 . . . xn admits an efficient, fully robust NIMPC protocol.

• Small functions. Every function f admits a fully robust NIMPC protocol whose complexity is
polynomial in the size of the input domain (i.e., exponential in the total bit-length of the inputs).

∗Research by the first three authors and the fifth author received funding from the European Union’s Tenth Framework Pro-
gramme (FP10/2010-2016) under grant agreement no. 259426 ERC-CaC. The first author was also supported by the Frankel center
for computer science. Research by the second author received funding from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 257575. The third and fourth authors were supported by ISF grant 1361/10 and BSF
grant 2012378.

1

• Symmetric functions. Every symmetric function f : Xn → Y , where X is an input domain of
constant size, admits a t-robust NIMPC protocol of complexity nO(t). For the case where f is a
w-out-of-n threshold function, we get a fully robust protocol of complexity nO(w).

On the negative side, we show that natural attempts to realize NIMPC using private simultaneous mes-
sages protocols and garbling schemes from the literature fail to achieve even 1-robustness.

Keywords: secure multiparty computation, obfuscation, private simultaneous messages protocols, ran-
domized encoding of functions, garbling schemes, multi-input functional encryption.

1 Introduction

We introduce and study the notion of non-interactive secure multiparty computation (NIMPC). This notion
can be viewed as a common generalization of several previous notions from the literature, including obfus-
cation, private simultaneous messages protocols, and garbling schemes. It can also be viewed as a simpler
and weaker variant of the recently introduced notion of multi-input functional encryption. Before we define
the new notion and discuss its relations with these previous notions, we start with a motivating example.

Consider the following non-interactive scenario for secure multiparty computation. Suppose that each
of n “honest but curious” parties holds an input xi ∈ {0, 1}, and the parties wish to conduct a vote by
computing the majority value of their inputs. Moreover, the parties want to minimize interaction by each
independently sending only a single message to each other party.1 It is clear that in this scenario, without
any setup, no meaningful notion of security can be achieved: each party can efficiently extract the input xi
from the message of the corresponding party by just simulating incoming messages from all other parties on
inputs xj such that

∑
j 6=i xj = bn/2c.

The question we ask is whether it is possible to get better security by allowing a correlated randomness
setup. That is, the parties get correlated random strings (R1, . . . , Rn) that are drawn from some predeter-
mined distribution. Such a setup is motivated by the possibility of securely realizing it during an offline
preprocessing phase, which takes place before the inputs are known (see, e.g. [27], for further motivation).
The above attack fails in this model, since a party can no longer simulate messages coming from the other
parties without knowing their randomness. On the other hand, it is still impossible to prevent the following
generic attack: any set of parties T can simulate the messages that originate from parties in T on any given
inputs. This allows the parties of T to learn the output on any set of inputs that is consistent with the other
parties’ inputs. In the case of computing majority, this effectively means that the parties in T must learn the
sum of the other inputs whenever it is in the interval [bn/2c − |T |, bn/2 + 1c]. When T is small, this would
still leave other parties with a good level of security. Hence, our goal is to obtain protocols that realize this
“best possible” security while completely avoiding interaction.

The above discussion motivates the following notion of non-interactive secure multiparty computation
(NIMPC). An NIMPC protocol for a function f(x1, . . . , xn) is defined by a joint probability distribution
R = (R1, . . . , Rn) and local encoding functions Enci(xi, Ri), where 1 ≤ i ≤ n. For a set T ⊆ [n], the
protocol is said to be T -robust (with respect to f) if revealing the messages (Enci(xi, Ri))i 6∈T together with
the randomness (Ri)i∈T , where (R1, . . . , Rn) is sampled from R, gives the same information about (xi)i 6∈T
as an oracle access to the function f restricted to these input values. For 0 ≤ t ≤ n, the protocol is said to
be t-robust if it is T -robust for every T of size at most t, and it is said to be fully robust if it is n-robust.

1Alternative motivating scenarios include each party broadcasting a single message, posting it on a public bulletin board such
as a Facebook account, or sending a single message to an external referee, who should learn the output.

2

Recent work on multi-input functional encryption [14] implies that the existence of a fully robust
NIMPC protocol for general functions, with indistinguishability based security, is equivalent to indistin-
guishability obfuscation (assuming the existence of one-way functions). Combined with the recent break-
through on the latter problem [12], this gives candidate NIMPC protocols for arbitrary polynomial-time
computable functions (see Section 1.2 for discussion of these and other related works). The above positive
result leaves much to be desired in terms of the underlying intractability assumptions and the potential for
being efficient enough for practical use. Motivated by these limitations, we consider the goal of realizing
NIMPC protocols with information-theoretic security for special cases of interest.

1.1 Our results

We obtain the following unconditional positive results on NIMPC.

GROUP PRODUCTS. For every (possibly non-abelian) finite group G, the iterated group product function
fG(x1, . . . , xn) = x1x2 . . . xn admits an efficient, fully robust NIMPC protocol. The construction makes a
simple use of Kilian’s randomization technique for iterated group products [29]. While the security analysis
in the case of abelian groups is straightforward (see Example 2.7), the analysis for the general case turns
out to be more involved and is deferred to Section 5. We note that this result cannot be combined with
Barrington’s Theorem [5] to yield NIMPC for NC1. For this, one would need to assign multiple group
elements to each party and enforce nontrivial restrictions on the choice of these elements. In fact, efficient
information-theoretic NIMPC for NC1 is impossible, even with indistinguishability-based security, unless
the polynomial-time hierarchy collapses [16] (see Section 1.2).

SMALL FUNCTIONS. We show that every function f admits a fully robust NIMPC protocol whose complex-
ity is polynomial in the size of the input domain (i.e., exponential in the total bit-length of the inputs). This
result can provide a light-weight solution for functions defined over an input domain of a feasible size. This
result is described in Section 3. The technique used for obtaining this result also yields efficient protocols
for computing OR of n bits and, more generally, w-out-of-n threshold functions where either w or n − w
are constant.

SYMMETRIC FUNCTIONS. Finally, we show that every symmetric function h : X n → Y , where X is an
input domain of constant size, admits a t-robust NIMPC of complexity nO(t). Thus, we get a polynomial-
time protocol for any constant t. More generally, our solution applies to any branching program over an
abelian group G, that is, a function h : X1× · · · ×Xn → Y of the form h(x1, . . . , xn) = f(

∑n
i=1 xi) for an

arbitrary function f : G→ Y (the complexity in this case is |G|O(t)). Useful special cases include the above
voting example, its generalization to multi-candidate voting (where the output is a partially ordered list such
as “A > B = C > D”), as well as natural bidding mechanisms. We note that while this construction is only
t-robust, larger adversarial sets T can only learn the sum

∑
i 6∈T xi (e.g., the sum of all honest votes in the

majority voting example) as opposed to all the inputs of honest parties. This construction is more technically
involved than the previous constructions. A high level overview of a special case of the construction and
a formal treatment of the general case appear in Section 4. A more efficient variant of the construction
for a constant t is described in Section 7. As a byproduct of our more efficient protocol, we get private
simultaneous messages protocols (i.e., 0-robust NIMPC protocols) for symmetric functions in which each
party sends just O(n log n) bits.

Inadequacy of existing techniques. On the negative side, in Section 6 we show that natural attempts
to realize NIMPC using PSM protocols or garbling schemes from the literature fail to achieve even 1-
robustness. This holds even for simple function classes such as symmetric functions.

3

Applications. Our main motivating application is for scenarios involving secure computations without
interaction, such as the one described above. While in the motivating discussion we assumed the parties
to be honest-but-curious, offering protection against malicious parties in the above model is in some sense
easier than in the standard MPC model. Indeed, malicious parties pose no additional risk to the privacy
of the honest parties because of the non-interactive nature of the protocol. Moreover, a reasonable level
of correctness against malicious parties can be achieved via the use of pairwise authentication (e.g., in the
case of binary inputs, the correlated randomness setup may give each party MAC-signatures on each of its
two possible messages with respect to the verification key of each other party). In the case where multiple
parties receive an output, adversarial parties can use their rushing capabilities to make their inputs depend
on the information learned on other inputs, unless some simultaneous broadcast mechanism is employed.
For many natural functions (such as the majority function) this type of rushing capability in the ideal model
is typically quite harmless, especially when T is small. Moreover, this issue does not arise at all in the case
where only one party (such as an external server) receives an output.

The goal of eliminating simultaneous interaction in secure MPC protocols was put forward by Halevi,
Lindell, and Pinkas (HLP) [21, 18]. In contrast to the HLP model, which requires the parties to sequentially
interact with a central server, our protocols are completely non-interactive and may be applied with or
without a central server. While HLP assume a standard PKI and settle for computational security, we allow
general correlated randomness which, in turn, also allows for information-theoretic security.

The NIMPC primitive can also be motivated by the goal of obtaining garbling schemes [33, 6] or ran-
domized encodings of functions [25, 1] that are robust to leakage of secret randomness. Indeed, in Yao’s
garbled circuit construction, the secrecy of the input completely breaks down if a pair of input keys is re-
vealed. In Section 6 we show that this is also the case for other garbling schemes and randomized encoding
techniques from the literature. The use of t-robust NIMPC can give implementations of garbled circuits and
related primitives that are resilient to up to t fully compromised pairs of input keys.

While we did not attempt to optimize the concrete efficiency of our constructions, they seem to be
reasonably practical for some natural application scenarios. To give a rough idea of practical feasibility,
consider a setting of non-interactive MPC where there are n clients, each holding a single input bit, who
send messages to a central server that computes the output. For n = 20, our fully robust solution for small
functions requires each client to send roughly 6MB of data and store a comparable amount of correlated
randomness. In the case of computing a symmetric function, such as the majority function from the above
motivating example, one can use an optimized protocol, which appears in Section 7, to get a 1-robust solution
with the same message size for n ≈ 1100 clients (offering full protection against the server and single client
and partial protection against larger collusions). In contrast to the above, solutions that rely on general
obfuscation techniques are currently quite far from being efficient enough for practical use. We leave open
the question of obtaining broader or stronger positive results for NIMPC, either in the information-theoretic
setting or in the computational setting without resorting to general-purpose obfuscation techniques.

1.2 Related work

In the following, we discuss connections between NIMPC and several related notions from the literature.

Relation with obfuscation. As was recently observed in the related context of multi-input functional en-
cryption (see below), NIMPC generalizes the notion of obfuscation. The goal of obfuscation is to provide
an efficient randomized mapping that converts a circuit (or “program”) from a given class into a functionally
equivalent circuit that hides all information about the original circuit except its input-output relation. An
obfuscation for a given circuit class C reduces to a fully robust NIMPC for a universal function UC for C.

4

Concretely, UC takes two types of inputs: input bits specifying a circuit C ∈ C, and input bits specifying an
input to this circuit. An NIMPC protocol for UC , in which each bit is assigned to a different party, gives rise
to the following obfuscation scheme. The obfuscation of a circuit C consists of the message of each party
holding a bit of C, together with the randomness of the parties holding the input bits for C. By extending
the notion of NIMPC to apply to a class of functions (more accurately, function representations), as we do in
the technical sections, it provides a more direct generalization of obfuscation that supports an independent
local restriction of each input bit.

In contrast to obfuscation, NIMPC is meaningful and nontrivial to realize even when applied to a single
function f (rather than a class of circuits), and even when applied to efficiently learnable functions (in
particular, finite functions). Indeed, the requirement of hiding the inputs of uncorrupted parties is hard to
satisfy even in such cases.

The relation with obfuscation implies limitations on the type of results on NIMPC one can hope to
achieve, as it rules out fully robust protocols with simulation-based security for sufficiently expressive cir-
cuit classes [4]. Moreover, it follows from the results of [16] that some functions in NC1 (in fact, even some
families of CNF formulas) do not admit an efficient and fully robust information-theoretic NIMPC protocol,
even under an indistinguishability-based definition, unless the polynomial-time hierarchy collapses. How-
ever, these negative results on obfuscation do not rule out general solutions with indistinguishability-based
security or with a small robustness threshold t, nor do they rule out fully robust solutions with simulation-
based security for simple but useful function classes.

Multi-input functional encryption. NIMPC can be viewed as a simplified and restricted form of multi-
input functional encryption, a generalization of functional encryption [32, 19, 31, 7] that was very recently
studied in [14]. Multi-input functional encryption is stronger than NIMPC in several ways, the most impor-
tant of which is that it requires the correlated randomness to be reusable for polynomially many function
evaluations. It was shown in [14] that multi-input functional encryption for general circuits can be obtained
from indistinguishability obfuscation and a one-way function. Combined with the recent breakthrough on
obfuscation [12], this gives plausible candidates for indistinguishability-based multi-input functional en-
cryption, and hence also fully robust NIMPC, for general circuits. This general positive result can only
achieve computational security under strong assumptions. In contrast, by only requiring a one-time use
of the correlated randomness, the notion of NIMPC becomes meaningful even in the information-theoretic
setting considered in this work.

Private simultaneous messages protocols. A 0-robust NIMPC protocol for f coincides with a protocol for
f in the private simultaneous messages (PSM) model of Feige, Kilian, and Naor [11, 24]. In this model for
non-interactive secure computation, the n parties share a common source of randomness that is unknown
to an external referee, and they wish to communicate f(x1, . . . , xn) to the referee by sending simultaneous
messages depending on their inputs and common randomness. From the messages it received, the referee
should be able to recover the correct output but should learn no additional information about the inputs.
(PSM protocols in which each party has a single input bit are also referred to as decomposable randomized
encodings [28] or projective garbling schemes [6].) While standard PSM protocols are inherently insecure
when the referee colludes with even a single party, allowing general correlated randomness (rather than
common randomness) gets around this limitation. A natural approach for obtaining NIMPC protocols from
PSM protocols is to let the correlated randomness of each party include only the valid messages on its
possible inputs. In Section 6, we show that applying this methodology to different PSM protocols and
garbling schemes from the literature typically fails to offer even 1-robustness. In Section 5 we show a
case where this methodology does work – using Kilian’s PSM protocol for computing the iterated group
product [29] yields a fully robust protocol. Finally, we note that our work leaves a very big gap between

5

the class of boolean functions known to have efficient information-theoretic PSM protocols (or 0-robust
NIMPC protocols) and those known to have efficient 1-robust NIMPC protocols. The former class contains
the circuit complexity class NC1 as well as different types of log-space classes [11, 24], whereas the latter
only covers a very restricted subclass containing symmetric functions and other special types of functions.

Bounded-collusion functional encryption. In the related context of (single-input) functional encryption,
Gorbunov et al. [17] have shown how to achieve security against bounded collusions by combining MPC
protocols and randomized encoding techniques. Similarly, bounded-collusion identity-based encryption is
easier to construct than full-fledged identify-based encryption [10, 15]. We do not know how to apply
similar techniques for realizing t-robust NIMPC. The difference is likely to be inherent: while the positive
results in [17, 10, 15] rely on standard intractability assumptions and apply even for collusion bounds t that
are bigger than the security parameter, a similar general result for NIMPC would suffice to imply general
(indistinguishability) obfuscation.

2 Preliminaries

Notation 2.1. For a set X = X1× · · · × Xn and T ⊆ [n] we denote XT ,
∏
i∈T Xi. For x ∈ X , we denote

by xT the restriction of x to XT , and for a function h : X → Ω, a subset T ⊆ [n], and xT ∈ XT , we denote
by h|T ,xT : XT → Ω the function h where the inputs in XT are fixed to xT .

An NIMPC protocol for a family of functions H is defined by three algorithms: (1) a randomness
generation algorithm Gen, which given a description of a function h ∈ H generates n correlated random
inputs R1, . . . , Rn, (2) a local encoding function Enci (where 1 ≤ i ≤ n), which takes an input xi and a
random input Ri and outputs a message, and (3) a decoding algorithm Dec that reconstructs h(x1, . . . , xn)
from the n messages. Formally:

Definition 2.2 (NIMPC: Syntax and Correctness). Let X1, . . . , Xn,R1, . . . ,Rn, M1, . . . ,Mn and Ω be
finite domains. Let X , X1 × · · · × Xn and let H be a family of functions h : X → Ω. A non-interactive
secure multiparty computation (NIMPC) protocol forH is a triplet Π = (Gen,Enc,Dec) where

• Gen : H → R1 × · · · × Rn is a randomized function,

• Enc is an n-tuple of deterministic functions (Enc1, . . . ,Encn), where Enci : Xi ×Ri →Mi,

• Dec :M1 × · · · ×Mn → Ω is a deterministic function satisfying the following correctness require-
ment: for any x = (x1, . . . , xn) ∈ X and h ∈ H,

Pr[R = (R1, . . . , Rn)← Gen(h) : Dec(Enc(x,R)) = h(x)] = 1,

where Enc(x,R) , (Enc1(x1, R1), . . . ,Encn(xn, Rn)).

The communication complexity of Π is the maximum of log |R1|, . . . , log |Rn|, log |M1|, . . . , log |Mn|.

We next define the notion of t-robustness for NIMPC, which informally states that every t parties can
only learn the information they should. Note that in our setting, a coalition T of size t can compute many
outputs from the messages of T , namely, they can repeatedly encode any inputs for the coalition T and
decode hwith the new encoded inputs and the original encoded inputs of T . In other words, they have oracle
access to h|T ,xT (as defined in Notation 2.1). Robustness requires that they learn no other information.

6

Definition 2.3 (NIMPC: Robustness). For a subset T ⊆ [n], we say that an NIMPC protocol Π forH is T -
robust if there exists a randomized function SimT (a “simulator”) such that, for every h ∈ H and xT ∈ XT ,
we have SimT (h|T ,xT) ≡ (MT , RT), where R and M are the joint randomness and messages defined by
R← Gen(h) and Mi ← Enci(xi, Ri).

For an integer 0 ≤ t ≤ n, we say that Π is t-robust if it is T -robust for every T ⊆ [n] of size |T | ≤ t.
We say that Π is fully robust (or simply refer to Π as an NIMPC for H) if Π is n-robust. Finally, given a
concrete function h : X → Ω, we say that Π is a (t-robust) NIMPC protocol for h if it is a (t-robust) NIMPC
forH = {h}.

As the same simulator SimT is used for every h ∈ H and the simulator has only access to h|T ,xT ,

NIMPC hides both h and the inputs of T (to the extent possible).

Remark 2.4 (0-robust NIMPC and PSM). An NIMPC protocol Π is 0-robust if it is ∅-robust. In this case,
the only requirement is that the messages (M1, . . . ,Mn) reveal h(x) and nothing else. A 0-robust NIMPC
for h corresponds to a private simultaneous messages (PSM) protocol in the model of [11]. Note that in
a 0-robust NIMPC one can assume, without loss of generality, that the n outputs of Gen are identical. In
contrast, it is easy to see that in a 1-robust NIMPC of a nontrivial h more general correlations are required.

While the above definitions treat functions h as finite objects and do not refer to computational com-
plexity, our constructions are computationally efficient in the sense that the total computational complexity
is polynomial in the communication complexity. Furthermore, with the exception of the protocol from
Lemma 3.2, the same holds for the efficiency of the simulator SimT (viewing the latter as an algorithm
having oracle access to h|T ,xT). When taking computational complexity into account, the function Gen

should be allowed to depend not only on h itself but also on its specific representation (such as a branching
program computing h).

Remark 2.5 (Statistical and computational variants). In this work, we consider NIMPC protocols with per-
fect security, as captured by Definition 2.3. However, one could easily adapt the above definitions to capture
statistical security and computational security. In the statistical case, we let Gen receive a security pa-
rameter κ as an additional input, and require that the two distributions in Definition 2.3 be (2−κ)-close
in statistical distance, rather than identical. In the computational case, we have two main variants corre-
sponding to the two main notions of obfuscation from the literature. In both cases, we require that the two
distributions in Definition 2.3 be computationally indistinguishable. The difference is in the power of the
simulator. If the simulator is unbounded, we get an indistinguishability-based NIMPC for which a general
construction is implied by indistinguishability obfuscation [12, 14]. If the simulator is restricted to proba-
bilistic polynomial time, we get the stronger “virtual black-box” variant to which the impossibility results
from [4] apply and one can only hope to get general positive results in a generic model [8, 3] or using
tamper-proof hardware [20]. We note, however, that the latter impossibility results only apply to function
classes that are rich enough to implement “cryptographically nontrivial” functions such as pseudo-random
functions. In particular, they do not apply to efficiently learnable classes for which obfuscation is trivial. In
contrast, NIMPC is meaningful and nontrivial even in the latter case.

Remark 2.6 (Offline communication). In our model for NIMPC, we assume all communication happens
after the inputs are known. However, it is sometimes useful to separate between offline communication, that
can take place after the function h is known but before the inputs xi are known, and online communica-
tion that takes place once the inputs are known. This offline-online model for NIMPC can be captured by
modifying the output of Gen to include an additional entry R0, which captures the offline communication.

7

The value of R0 is given as an additional input to the decoder and should be correctly simulated by Sim
(namely, the random variable RT should be redefined to always include R0). An example for the usefulness
of the offline-online model is in the context of computationally 0-robust NIMPC protocols, where the offline
communication of a garbled circuit can be used to make the online communication complexity close to the
input length, regardless of the complexity of h [33, 2].

As a simple example, we present an NIMPC protocol for summation in an abelian group.

Example 2.7 (NIMPC for sum). Let G be an abelian group, and define h : Gn → G by h(X1, . . . , Xn) =
X1 + · · · + Xn (where the sum is in G). We next define a fully robust NIMPC for h. Algorithm Gen
chooses n − 1 random elements R1, . . . , Rn−1 in G, where each element is chosen independently with
uniform distribution, and computes Rn = −

∑n−1
i=1 Ri. The output of Gen is (R1, . . . , Rn). Algorithm Enc

computes Enci(xi, Ri) = xi+Ri ,Mi. Algorithm Dec simply sums the n outputs of Enc, that is, computes∑n
i=1Mi.
As
∑n

i=1Mi =
∑n

i=1 xi +
∑n

i=1Ri, and
∑n

i=1Ri = 0, correctness follows. We next show that this
construction is fully robust. Fix a set T ⊆ [n] and define the simulator SimT for T . On inputs xT , it queries
h|T ,xT (0|T |) and gets sum =

∑
i∈T xi. The simulator then chooses n − 1 random elements ρ1, . . . , ρn−1

in G, each element is chosen independently with uniform distribution, and computes ρn = sum−
∑n−1

i=1 ρi.
The output of the simulator is ((ρi)i∈T , (ρi)i∈T).

The following easily verifiable claim states that for functions outputting more than one bit, we can
compute each output bit separately. Thus, from now on we will mainly focus on boolean functions.

Claim 2.8. Let X , X1×· · ·×Xn, where X1, . . . ,Xn are some finite domains. Fix an integer m > 1. Sup-
poseH is a family of boolean functions h : X → {0, 1} admitting an NIMPC protocol with communication
complexity S. Then, the family of functionsHm = {h : X → {0, 1}m |h = h1 ◦ . . . ◦ hm, hi ∈ H} admits
an NIMPC protocol with communication complexity S ·m.

2.1 NIMPC with an output server

While an NIMPC protocol Π as defined above can be viewed as an abstract primitive, in the following it will
be convenient to describe our constructions in the language of protocols. Such a protocol involves n players
P1, . . . , Pn, each holding an input xi ∈ Xi, and an external “output server,” a player P0 with no input. The
protocol may have an additional input, a function h ∈ H. We will let P(Π) denote a protocol that proceeds
as follows.

Protocol P(Π)(h)

• Offline preprocessing: Each player Pi, 1 ≤ i ≤ n, receives the random input Ri , Gen(h)i ∈ Ri.

• Online messages: On input Ri, each player Pi, 1 ≤ i ≤ n, sends the message Mi , Enci(xi, Ri) ∈
Mi to P0.

• Output: P0 computes and outputs Dec(M1, . . . ,Mn).

We informally note the relevant properties of protocol P(Π):

• For any h ∈ H and x ∈ X , the output server P0 outputs, with probability 1, the value h(x1, . . . , xn).

8

• Fix T ⊆ [n]. Then, Π is T -robust if in P(Π) the set of players {Pi}i∈T ∪ {P0} can simulate their
view of the protocol (i.e., the random inputs {Ri}i∈T and the messages {Mi}i∈T) given oracle access
to the function h restricted by the other inputs (i.e., h|T ,xT).

• Π is 0-robust if and only if in P(Π) the output server P0 learns nothing but h(x1, . . . , xn).

In Appendix A we give a more general treatment of non-interactive MPC, including security definitions
and extensions to the case where multiple parties may have different outputs and to the case of security
against malicious parties.

3 An inefficient NIMPC for arbitrary functions

The main purpose of this section is to present an NIMPC protocol for the set of all functions. The commu-
nication complexity of the protocol is polynomial in the size of the input domain, namely it is exponential
in the bit-length of the inputs. It will be useful to first present an NIMPC protocol for indicator functions.
For reasons to be clarified later on, it will be convenient to include the zero-function.

Definition 3.1. Let X be a finite domain. For n-tuple a = (a1, . . . , an) ∈ X , let ha : X → {0, 1} be the
function defined by ha(a) = 1, and ha(x) = 0 for all a 6= x ∈ X . Let h0 : X → {0, 1} be the function that
is identically zero on X . LetHind , {ha}a∈X ∪ {h0} be the set of all indicator functions together with h0.

Note that every function h : X ← {0, 1} can be expressed as the sum of indicator functions, namely,
h =

∑
a∈X ,h(a)=1 ha.

Lemma 3.2. Fix finite domains X1, . . . ,Xn such that |Xi| ≤ d for all 1 ≤ i ≤ n and let X , X1×· · ·×Xn.
Then, there is an NIMPC protocol Πind forHind with communication complexity at most d2 · n.

Proof. For i ∈ [n], denote |Xi| = di. Let s =
∑n

i=1 di. Fix a function h ∈ H that we want to compute. The
NIMPC Πind(h) is as follows.

Correlated randomness generation: If h = h0, then choose s linearly independent random vectors
{mi,b}i∈[n],b∈Xi

in Fs2. If h = ha for some a = (a1, . . . , an) ∈ X , choose s random vectors {mi,b}i∈[n],b∈Xi

in Fs2 under the constraint that
∑n

i=1mi,ai = 0 and there are no other linear relations between them
(that is, choose all the vectors mi,b, except mn,an , as random linear independent vectors and set mn,an =
−
∑n−1

i=1 mi,ai). Now define Genind(h) = R = (R1, . . . , Rn), where Ri = {mi,b}b∈Xi
.

Encoding: Encind(x, r) = (M1, . . . ,Mn), where Mi , mi,xi .

Decoding h(x1, . . . , xn): Decind(M1, . . . ,Mn) = 1 if
∑n

i=1Mi = 0.

For the correctness, note that
∑n

i=1Mi =
∑n

i=1mi,xi . If h = ha, for a ∈ X , this sum equals 0 if and
only if x = a. If h = h0, this sum is never zero, as all vectors were chosen to be linearly independent in this
case.

To prove robustness, fix a subset T ([n] and xT ∈ XT . The encodings MT of T consist of the vectors
{mi,xi}i∈T . The randomness RT consists of the vectors {mi,b}i∈T,b∈Xi

. If h|T ,xT ≡ 0, then these vectors
are uniformly distributed in Fs2 under the constraint that they are linearly independent. If h|T ,xT (xT) = 1,
for some xT ∈ XT , then

∑n
i=1mi,xi = 0 and there are no other linear relations between them. Formally, to

prove robustness, we describe a simulator SimT : the simulator queries h|T ,xT on all possible inputs in XT .
If all answers are zero, the simulator generates random independent vectors. Otherwise, there is an xT ∈ XT

9

such that h|T ,xT (xT) = 1, and the simulator outputs random vectors under the constrains described above,
that is, all vectors are independent with the exception that

∑n
i=1mi,xi = 0.

As for communication complexity, the correlated randomness is composed of di ≤ d binary vectors of
length s ≤ dn and the encoding is one of them. Hence, the communication complexity is at most d2n.

We next present an NIMPC for all boolean functions with domain X = X1 × · · · × Xn. The idea is to
express any h : X → {0, 1} as a sum of indicator functions, that is, h =

∑
a∈X ,h(a)=1 ha, and construct

an NIMPC for h by using the NIMPC protocols for each ha. A naive implementation of this idea has two
problems. First, it will disclose information on how many 1’s the function h has. To overcome this problem,
we define h′a = ha if h(a) = 1 and h′a = h0 otherwise (this was the motivation of including h0 in Hind).
Thus, h =

∑
a∈X h

′
a. The second problem is that if, for example, h(x) = 1 and a coalition learns that

h′a(x) = 1, then the coalition learns that x = a. To overcome this problem, in the correlated randomness
generation, we permute the domain X .

Theorem 3.3. Fix finite domainsX1, . . . ,Xn such that |Xi| ≤ d for all 1 ≤ i ≤ n and letX , X1×· · ·×Xn.
Let H be the set of all functions h : X → {0, 1}m. There exists an NIMPC protocol ΠΓ for H with
communication complexity |X | ·m · d2 · n.

Proof. Let Πind = (Genind,Encind,Decind) be the NIMPC for Hind described in Lemma 3.2. Fix h ∈ H.
Assume for simplicity that m = 1 (see Claim 2.8). Protocol ΠΓ(h) is as follows.

Correlated randomness generation:

• Let I ⊆ X be the set of ones of h (i.e., I = h−1(1)). For each a ∈ I , let ra = (ra1 , . . . , r
a
n) ←

Gen(ha). For a ∈ X \ I , let ra ← Gen(h0).

• Choose a random permutation π of X and define a matrix R, where Ri,b , r
π(b)
i for i ∈ [n] and

b ∈ X . Now define GenΓ(h) = (R1, . . . , Rn), where Ri = (Ri,b)b∈X (that is, the ith row of R).

Encoding: Define a matrix M , where Mi,b , Encind,i(xi, Ri,b) for every i ∈ [n] and b ∈ X . The encoding
is EncΓ,i(xi, Ri) = Mi , (Mi,b)b∈X for each i.

Decoding h: DecΓ(M1, . . . ,Mn) = 1 if for some b ∈ X , Decind(M1,b, . . . ,Mn,b) = 1.

Correctness: Fix x = (x1, . . . , xn) ∈ X . The decoding returns 1 if and only if Decind(M1,b, . . . ,Mn,b) =
1 for some b ∈ X , namely, if and only if Decind(Encind,1(x1, R1,b), . . . ,Encind,n(xn, Rn,b)) = 1. This
happens if and only if Decind(Encind,1(x1, R

a
1), . . . , Encind,n(xn, R

a
n)) = 1 for a = π(b). By the correct-

ness of Πind and the protocol description, the above happens if and only if ha(x1, . . . , xn) = 1 for some
a ∈ I , that is, if and only if h(x1, . . . , xn) = 1.

Communication Complexity is obtained by applying Πind for |X | times.

Robustness: Fix T ⊆ [n] and xT ∈ XT . We wish to simulate the distribution (MT , RT) given h|T ,xT .
We can think of this distribution as being composed of rows, where each row b is of the form (Ma

T
, raT) for

a = π(b), where the permutation π is random.

Observation 3.4. If aT = xT and h(a) = 1 then this row was generated for the function ha, and if aT = xT
and h(a) = 0 then this row was generated for h0. Finally, if aT 6= xT , then this row is distributed as if it
was generated for h0.

10

We next construct a simulator SimT for the protocol P(Π) on function h. Simulator SimT uses the
simulator SimΠind

T – the simulator for the set T for the NIMPC Πind of Lemma 3.2. The simulator SimT

first queries h|T ,xT (xT) for every xT ∈ XT . Let I ′ ⊆ XT be the set of ones of h|T ,xT . For every xT ∈ I ′,
the simulator SimT computes SxT = SimΠind

T (hxT) (where hxT : XT → {0, 1} is such that hxT (x) = 1 if
and only if x = xT). Finally, SimT samples SimΠind

T (h0) for |X |−|I ′| times (where h0 : XT → {0, 1} such
that h0(x) = 0 for every x ∈ XT). Altogether, it obtains |X | outputs of the simulator SimΠind

T . It randomly
permutes the order of these outputs, and returns the permuted outputs. The T -robustness of SimT follows
from the T -robustness of SimΠind

T and Observation 3.4.

Remark 3.5. In the above proof, instead of looking at the set of all functions, we could have looked at
the set of functions that are OR’s of a fixed subset H′ ⊂ Hind of indicator functions. For this set of
functions, we would get an NIMPC with communication complexity |H′| · m · poly(d, n) (rather than the
|X | ·m · poly(d, n) communication complexity above). We could also look at a particular function of this
form. Take, for example, X = {0, 1}n and H′ to be the set of indicator functions of vectors of weight w.
Then, we get an NIMPC for the w-out-of-n threshold function with communication complexity nO(w).

4 A t-robust NIMPC for abelian programs

In this section, we present an NIMPC for symmetric functions. In fact, this result is a corollary of a more
general result on NIMPC for abelian group programs. In Section 4.1, we define abelian programs and
symmetric functions and formally state our results. In Section 4.2, we give a high level overview of the
construction. In Section 4.3, we supply a detailed description of our construction and prove its correctness.

4.1 Our results

Definition 4.1. Let G be an abelian group, S1, . . . , Sn be subsets of G, andHGS1,...,Sn
be the set of functions

h : S1 × · · · × Sn → {0, 1} of the form h(X1, . . . , Xn) = f(
∑n

i=1Xi), for some f : G→ {0, 1}. We call
such functions h abelian programs.

Definition 4.2. A function h : [d]n → {0, 1} is symmetric if for every (x1, . . . , xn) ∈ [d]n and every
permutation π : [n]→ [n] the following equality holds h(x1, . . . , xn) = h(xπ(1), . . . , xπ(n)).

The main positive result in this section is an efficient t-robust NIMPC for HGS1,...,Sn
whenever G is

abelian of poly(n)-size and t is constant.

Theorem 4.3. Let t be a positive integer and G an abelian group of size m. Let S1, . . . , Sn be subsets of G.
Then, there is a t-robust NIMPC protocol forHGS1,...,Sn

with communication complexityO(dt+2 ·nt+2 ·m3),
where d , maxi∈[n] |Si|. If G = Zn+1 and S1 = · · · = St = {0, 1}, then the communication complexity of
the NIMPC is O(2t · nt+4).

Corollary 4.4. Let d, t and n be positive integers. LetH be the set of symmetric functions h : [d]n → {0, 1}.
There is a t-robust NIMPC protocol forH with communication complexity O(dt+2 ·nt+3d−1). For the class
of boolean symmetric functions h : {0, 1}n → {0, 1}, the communication complexity is O(2t · nt+4).

Proof. The corollary is proved by showing that every symmetric function can be computed by an abelian
program over Zdn+1. Specifically, given an input x = (x1, . . . , xn) ∈ [d]n, the abelian program first com-
putes a vector z = (z1, . . . , zd) ∈ Zdn+1 such that zj = |{i : xi = j}| (i.e., zj is the number of appearances

11

of j in x). As 0 ≤ zj ≤ n, we consider it as an element in Zn+1. By definition of symmetric functions, the
output of h can be computed from z.

Specifically, define S1 = · · · = Sn = {e1, . . . , ed} ⊆ Zdn+1, where ei ∈ Zdn+1 is the i’th unit vector.
Given a symmetric function h : [d]n → {0, 1}, we consider a symmetric function h′ whose domain is
{e1, . . . , ed}n. That is, for an input j ∈ [d], define φ(j) , ej and for an input (x1 . . . , xn) ∈ [d]n, look at
the sum z ,

∑n
i=1 φ(xi) ∈ Zdn+1. For any symmetric function h : [d]n → {0, 1}, there exists a function

f : Zdn+1 → {0, 1} such that h(x1, . . . , xn) = f(
∑n

i=1 φ(xi)). Define h′ : S1 × · · · × Sn → {0, 1} by
h′(y1, . . . , yn) , f(

∑n
i=1 yi). Note that h′ ∈ HS1,...,Sn .

Thus, by first mapping the inputs xi to φ(xi), we get a t-robust NIMPC of H using a t-robust NIMPC
of HS1,...,Sn . Theorem 4.3 gives us a t-robust NIMPC of HS1,...,Sn of communication complexity O(dt+2 ·
nt · |Zdn+1|3) = O(dt+2 · nt · n3d) .

We can optimize the above construction by noting that in the above definition of z, it must be that∑d
`=1 zj = n. Therefore, the above function f can ignore the last coordinate of

∑n
i=1 φ(xi), and we

can define the abelian program over the group Zd−1
n+1, resulting in an NIMPC of communication complexity

O(dt+2 ·nt · |Zd−1
n+1|3) = O(dt+2 ·nt ·n3d−3) = O(dt+2 ·nt+3d−3) for d > 2 and communication complexity

O(2tnt+4) for d = 2 (i.e., for boolean symmetric functions).

Note that Corollary 4.4 is a special case of the following: Whenever we can “embed” a function h
(or a set of functions) into an abelian group program, we can get an NIMPC for h whose communication
complexity depends polynomially on the size of the group.

Corollary 4.5. Fix integers t ≤ n, finite domains Ω1, . . .Ωn, an abelian group G and S1, . . . , Sn ⊆ G. Let
d = maxi∈[n] |Si|. Fix a function h : Ω1 × · · · × Ωn → {0, 1}. Suppose we have mappings φi : Ωi → Si,
for 1 ≤ i ≤ n, and a function f : G → {0, 1} such that for every (x1, . . . , xn) ∈ Ω1 × · · · × Ωn

h(x1, . . . , xn) = f(
∑n

i=1 φi(xi)). Then, there is a t-robust NIMPC of h with communication complexity
O(dt+2 · nt+2 · |G|3).

4.2 Overview of the construction

In this section we give a high level overview of our t-robust protocol for abelian programs. Before outlining
our construction, we start with a simple approach for adding some robustness to an arbitrary PSM proto-
col. (Recall that a PSM protocol is a ∅-robust NIMPC protocol.) Consider a PSM protocol for a function
h(x1, . . . , xn). Suppose that we would like to make this protocol {i}-robust, in addition to being ∅-robust.
To this end, the following transformation can be used. For each possible value v of xi, all parties except Pi
run an instance of the protocol in which the common randomness is unknown to Pi, and some fixed party
(other than Pi) sends the message of Pi corresponding to the input xi = v. In this PSM, P0 cannot compute
the correct output; this problem will be fixed later.

The above protocol is {i}-robust, since P0 cannot and Pi together learn no more than the values of h on
the inputs of the honest parties with each possible value of xi. However, the protocol is not ∅-robust. To
make it ∅-robust without compromising {i}-robustness, we apply the following masking technique. First,
the instances of the PSM protocol are permuted by a random permutation σ that is known to all parties,
including Pi, but not to P0. The pointer σ(xi) to the correct instance is sent by Pi. This allows P0 to learn
the correct output without allowing P0 to directly learn the correct value of xi. However, this protocol is not
∅-robust, since P0 can still learn the outputs of h on the other values of xi. To eliminate this information,
all parties share a mask rv for each possible value of v of xi, where this mask is used to hide the v-instance

12

of the PSM protocol from P0. The correct mask rxi is then sent by Pi in order to reveal only the correct
instance to P0.

The above technique can be generalized to add T0-robustness to any PSM protocol, for any fixed set
T0 ⊆ [n]. However, such a protocol does not necessarily provide any security guarantee against other sets
T 6= T0. Our high level approach is to obtain t-robustness by combining T -robust protocols for all T of size
at most t. While there are standard MPC-based techniques for combining instances of secure computation
protocols of which a strict minority are faulty [23, 22, 17], in our case a majority of the instances will be
insecure with respect to any fixed T0. This makes the problem of securely combining such instances more
challenging.

To describe our solution idea, we focus here on the special case of symmetric functions hwith robustness
threshold t = 1. The general case is similar. (Recall that a boolean function h : {0, 1}n → {0, 1} is
symmetric if there exists a function f : {0, . . . , n} → {0, 1} such that h(x1, . . . , xn) = f(

∑n
i=1 xi).) Our

protocol for h additively secret-shares h into random symmetric functions hi : {0, 1}n → {0, 1}, 1 ≤ i ≤ n,
whose mod-2 sum is h. It then invokes for each i an NIMPC protocol Πi with robustness against both ∅
and {i}, where this protocol hides (to the extent possible) not only the input x but also the function hi.
Furthermore, it is required that for each i′ ∈ [n] \ {i}, a collusion of Pi′ and P0 can only learn from their
view in Πi limited information about (hi, x). Concretely, they should only learn the length-(n + 1) “truth-
table” of hi, cyclically shifted by

∑
j∈[n]\{i′} xj . (The truth-table of hi contains the outputs of hi on inputs

of weight 0, 1, . . . , n in this order.)
Overall, P0 and Pi learn from the invocation of Πi only the two outputs of hi they are allowed to

learn (corresponding to the two possible values of xi) and no additional information on hi and x. From
the invocations of Πj , j ∈ [n] \ {i}, they can also learn, in addition to these two entries of hj , all other
entries of the (shifted) truth-table of hj . However, by the use of n-out-of-n secret sharing and the fact that
the corresponding entries in the truth-table of hi are hidden, these additional entries reveal no additional
information on h and x.

A protocol Πi as above is constructed in two steps. The first step is an ad-hoc construction (based on a
PSM protocol for branching programs from the literature) of a PSM protocol that reveals to any set T only
the shifted truth-table of hi. The second step adds robustness against T = {i}, namely it blocks P0, Pi from
learning any other entry in the shifted truth-table beyond the two entries they are supposed to learn.

The following more detailed exposition of our construction consists of three steps, where the first two
steps obtain the protocol Πi for evaluating hi and the third steps combines the protocols Πi into a single
protocol for h. We note that while the second step is general and can apply to any class of functions, both
the first and the third steps rely on special properties of symmetric functions (or, more generally, abelian
programs). The following three subsections describe the three steps of the construction.

4.2.1 An NIMPC for abelian programs with extended input domain

We start by describing the first step of our construction, which considers a variant of abelian programs
where the players are allowed to choose their inputs from the entire group. Concretely, for the case of
boolean symmetric functions on which we focus in this overview, we allow each party Pi to have an input
xi ∈ {0, . . . , n} (rather than xi ∈ {0, 1}), which can be thought of as an element of the group G , Zn+1.
The fact that dishonest parties can learn the “shifted truth-table” of the function is captured by allowing
them to pick their inputs from the entire group.

More concretely, we extend a boolean symmetric function of the form f(
∑n

i=1 xi) to a function h :
Gn → {0, 1} defined by h(x1, . . . , xn) = f(

∑n
i=1 xi), where the sum is taken in G. The first step of our

construction is a fully robust NIMPC protocol for the classH of all functions h as above, namely the group

13

extensions of all symmetric functions. Note that here it is crucial to hide both the function h and the inputs
xi to the extent possible, namely up to revealing the truth table of f shifted by the sum of the inputs of the
honest parties. In our final protocol for symmetric functions, honest parties will invoke this protocol with
inputs xi ∈ {0, 1}. Thus, the following description of the protocol assumes that the input of each honest
party is from {0, 1}.

The NIMPC protocol for H is based on the PSM protocol for branching programs from [24], which
provides an efficient solution for symmetric functions. This protocol is defined using a branching program
representation of h. While this protocol is secure when only P0 is corrupted, it does not remain secure when
even a single other party is corrupted. Luckily, there is a simple characterization of the information available
to an adversary corrupting P0 and a set T of other parties Pi: these players learn no more than the graph of
the branching program restricted to the inputs xT̄ . That is, the adversary can learn the labels of all edges it
owns (e.g., that such an edge is labeled by the literal x̄i or the constant 1), as well as the values of edges
it does not own (e.g., that such an edge evaluates to 1) but not their labels. If we apply the protocol to a
standard branching program for h, this information will typically reveal to the adversary both the function
h and the inputs xT̄ .

The key idea for realizing H is to randomize the branching program before applying the protocol
from [24]. That is, we start with a standard layered branching program for the symmetric function h, and
then (during preprocessing) we randomize it by applying a random cyclic shift to the nodes in each layer.
The protocol from [24] is applied to the randomized branching program. With this randomization in place,
revealing the branching program restricted by xT̄ leaks nothing about (h, xT̄) except what must be learned.

4.2.2 Limiting the inputs of one player

The previous subsection gives an NIMPC protocol for the class of (extended) symmetric functions h, with
the caveat that the players may use any input in G = Zn+1, rather than just {0, 1}. Let us call this protocol
Π0(h).

As mentioned, we need to limit the parties to inputs from {0, 1}. Note that for NIMPC this is relevant
also in the honest-but-curious model since the robustness requirement for the extended function allows an
adversary, controlling a set T , to compute h|T ,xT on the domain G|T |, while for the original function we

only allow the adversary to compute h|T ,xT on the domain {0, 1}|T |.

Example 4.6. Consider the majority function maj : {0, 1}n → {0, 1}, where maj(x1, . . . , xn) = 1 if
and only if

∑n
i=1 xi ≥ n/2. In an NIMPC for majority, P1 is allowed to learn if

∑n
i=2 xi ≥ n/2 and if

1 +
∑n

i=2 xi ≥ n/2. If we extend the domain to Zn+1, party P1 is allowed to learn if a +
∑n

i=2 xi ≥ n/2
for every a ∈ Zn+1, that is, P1 can learn

∑n
i=2 xi.

In this section, as an intermediate step, we construct a protocol where a specific player, say P1, is limited
to inputs in {0, 1}. The other players, P2, . . . , Pn, can still choose any inputs in G. Let h0 and h1 denote the
function hwhere the first input is fixed to 0 and 1, respectively, that is, hi(X2, . . . , Xn) , h(i,X2, . . . , Xn),
for i ∈ {0, 1}. Consider the following protocol: P2, . . . , Pn run the protocols Π0(h0) and Π0(h1). At the
end of this protocol, the coalition {P0, P1} – seeing the messages of Π0(h0) and Π0(h1) – knows exactly
what it is supposed to know: the values h(0, x2, . . . , xn) and h(1, x2, . . . , xn). However, there are two
evident problems.

1. On one hand, P0 alone knows “too much”: the same two values h(0, x2, . . . , xn) and h(1, x2, . . . , xn).

2. On the other hand, P0 does not know which of these two values is the correct one, i.e., h(x1, . . . , xn).

14

A possible “solution” to the second problem is for P1 to send its input x1 to P0. This is, of course, insecure.
Instead, we run Π0(h0) and Π0(h1) in a random order, known only to P1 and given to it in the preprocessing
stage (note that P2, . . . , Pn need not know which of the two protocols is running to participate). Party P1

will then send a message stating which one corresponds to its input.
A solution to the first problem is as follows: The (symmetric) functions h0 and h1 (which can be though

of as (n+1)-bit strings representing their truth tables) are “masked” by ((n+1)-bit) random functions r0 and
r1 (where rb : G → {0, 1}). Let us call these masked versions g0 and g1. Specifically, gj(X2, . . . , Xn) ,
hj(X2, . . . , Xn)⊕ rj(

∑n
i=2Xi), for j ∈ {0, 1}. In the preprocessing stage, we give the masking functions

r0 and r1 to P1. Now P0, P2, . . . , Pn run Π0(g0) and Π0(g1) (in a random order). Then, P1 sends to P0 only
the masking ri corresponding to its input. In terms of security, the problem has been solved: the protocol
not corresponding to P1’s input, i.e., Π0(g1−x1), does not reveal any information to P0, as g1−x1 is a masked
version of h, where the mask has not been revealed. However, can P0 now compute h(x1, . . . , xn)? From
seeing the messages of Π0(gx1), it knows gx1(x2, . . . , xn) = h(x1, . . . , xn)⊕ rx1(

∑n
i=2 xi). It also knows

rx1 , which was sent by P1. So now, to “unmask” h(x1, . . . , xn) using rx1 it needs the value
∑n

i=2 xi, which
is more information than we want to give it.

Further randomization techniques are needed to solve this problem, combined with the solutions to the
two problems above. Specifically, let h(x1, . . . , xn) = f(

∑n
i=1 xi) be the function we want to compute. In

the preprocessing stage we choose a random element s ∈ G as well as two random strings r0, r1 and a bit
ρ. The strings r0, r1 and the bit ρ are given to P1. We next define two masked functions gj(X2, . . . , Xn) ,
f((j ⊕ ρ) +

∑n
i=2Xi) ⊕ rj⊕ρ(s +

∑n
i=2Xi) for j ∈ {0, 1}. Notice that g0 and g1 are abelian programs.

We next execute three NIMPCs with P2, . . . , Pn: the NIMPC Π0(g0), the NIMPC Π0(g1), and an NIMPC
for s+

∑n
i=2Xi (this shifted sum gives no information to P0). In addition, P1 sends z = ρ⊕ x1 and rxi to

P0. Party P0 now decodes

gz(x2, . . . , xn) = f

(
((ρ⊕ x1)⊕ ρ) +

n∑
i=2

xi

)
⊕ r(ρ⊕x1)⊕ρ(s+

n∑
i=2

xi)

= h(x1, . . . , xn)⊕ rx1(s+
n∑
i=2

xi).

Party P0, which knows rx1 and s+
∑n

i=2 xi, can, therefore, reconstruct h(x1, . . . , xn).

4.2.3 A combiner using secret sharing

The previous section described a protocol where, for a certain fixed j ∈ [n], the coalition {P0, Pj} does not
learn “too much” – specifically, it could evaluate the function h only on inputs in {0, 1} (while a coalition of
P0 with one of the other players is still not restricted to inputs in {0, 1}). Call this protocol Π1. Note that h
is of the form h(X1, . . . , Xn) = f(

∑n
i=1Xi) for a function f : G→ {0, 1}. We now bootstrap the protocol

Π1 to create one in which all players can evaluate h only on inputs in {0, 1}. For this, we use an additive
secret sharing of f . Namely, we choose n random functions f1, . . . , fn : G→ {0, 1}, such that

∑n
i=1 fi =

f , where the sum is a xor of |G|-bit vectors. For 1 ≤ i ≤ n, define hi(X1, . . . , Xn) , fi(
∑n

j=1Xj).
Note that for any x1, . . . , xn ∈ G, we have h(x1, . . . , xn) =

∑n
i=1 hi(x1, . . . , xn). For 1 ≤ i ≤ n, we

run Π1 on the function hi with Pi chosen to be the player that can only use inputs in {0, 1}. After these
protocols are run we have that, on the one hand, P0 knows h1(x1, . . . , xn), . . . , hn(x1, . . . , xn) and can
compute h(x1, . . . , xn) =

∑n
i=1 hi(x1, . . . , xn). On the other hand, for any i ∈ [n] and a ∈ G \ {0, 1},

parties P0 and Pi have no information on hi(x1, . . . , xi−1, a, xi+1, . . . , xn) and hence no information on
h(x1, . . . , xi−1, a, xi+1, . . . , xn). Thus, they can compute h|{1},x2,...,xn only on 0 and 1 as required.

15

4.3 The construction and its proof

In the rest of this section we prove our main positive result – Theorem 4.3. We begin by introducing some
notation that will be convenient for the proof.

Notation 4.7. Fix x = (x1, . . . , xn) ∈ S1 × · · · × Sn. We denote sum(x) ,
∑n

i=1 xi, and for a subset
T ⊆ [n] we denote sum(xT) ,

∑
i∈T xi (if T = ∅, then sum(xT) , 0). We also use the notation

ST ,
∏
i∈T Si.

The proof of Theorem 4.3 follows the outline described in Section 4.2, and is divided into subsections in
a similar way. Section 4.3.1 describes an NIMPC for the case that Si = G for every i. Section 4.3.2 describes
an NIMPC where a fixed subset of a players is limited to smaller input domains. Finally, Section 4.3.3 gives
the desired protocol for proving Theorem 4.3, i.e., an NIMPC where every subset of players of bounded size
is limited to small input domains.

4.3.1 An NIMPC for abelian programs with extended input domain

We next describe an NIMPC for the case that Si = G for every i (recall that in the general case Si ⊆ G).
This NIMPC uses the PSM protocol of [24], which, in turn, uses branching programs.

Definition 4.8. A deterministic branching program B over a group G on n inputs is a directed acyclic
graph, containing a source vertex s and a target vertex t. Each edge has a label of the form Xi = a for
some i ∈ [n] and a ∈ G. For any vertex v there exits a unique i ∈ [n] such that every outgoing edge from v
is labeled Xi = a for some a ∈ G, and, furthermore, for a ∈ G, there is at most one outgoing edge from v
labeled Xi = a. For an input x = (x1, . . . , xn), let Bx be the subgraph of B containing precisely the edges
labeled Xi = xi for all i ∈ [n]. The branching program B computes a function f : Gn → {0, 1}, where
f(x1, . . . , xn) = 1 if and only if B(x1,...,xn) contains a path from s to t.

We assume, w.l.o.g., that s has no incoming edges and t has no outgoing edges, and fix a topological
order on the vertices of the branching program, where s is the first and t is the last. We represent the
branching program by n · |G| matrices, where for every i ∈ [n] and a ∈ G, we define B′i,a to be the
adjacency matrix of the subgraph of B containing only the edges labeled Xi = a, that is, we label the rows
and columns of the matrix by the vertices of the branching program according to the fixed topological order
and entry i, j of the matrix is one if there is an edges from vi to vj labeled by Xi = a and the entry is zero
otherwise. For every i ∈ [n − 1] and a ∈ G we define Bi,a as the matrix obtained from B′i,a by removing
the first column (labeled by s) and the last row (labeled by t). For every a ∈ G, we define Bn,a as the matrix
obtained from B′n,a − I by removing the first column and the last row.

The “strange” definition of Bn,a follows from its use in [24]. Specifically, using this notation, for every
input x1, . . . , xn: if f(x1, . . . , xn) = 1 then the matrix

∑n
i=1Bi,xi has full rank, and otherwise the matrix

has rank N − 1 (where the matrix is an N ×N matrix). The following theorem follows directly from [24].

Theorem 4.9 (Ishai and Kushilevitz [24]). Fix an abelian group G, and an integer n. Let H be the set
of functions computable by a branching program over G on n inputs with N + 1 vertices. The NIMPC
ΠIK = (GenIK ,EncIK ,DecIK) described in Figure 1 is a 0-robust NIMPC of H with communication
complexity O(|G| ·N2).

The NIMPC ΠIK is only 0-robust as, for example, Ri contains information on the branching program.
For branching programs for symmetric functions, we will show that randomizing the branching program
and applying ΠIK achieves full robustness, i.e., robustness against any set. Recall that we are interested in

16

Correlated randomness generation:

• Choose random non-singular N ×N matrices P and U over F2.

• Choose random N ×N matrices Z1, . . . , Zn over F2 such that
∑n

i=1 Zi = 0.

• GenIK(B) = R = (R1, . . . , Rn), where Ri = (P,U, Zi, {Bi,a}a∈G) for every i ∈ [n].

Encoding:

• For i ∈ [n] and a ∈ G, we consider the N × N matrix Bi,a as a matrix over F2. Let
EncIK(x,R) = (M1, . . . ,Mn), where for i ∈ [n], the encoding Mi is the N ×N matrix
P ·Bi,xi · U + Zi.

Decoding:

• DecIK(M1, . . . ,Mn) = 1 if and if
∑n

i=1Mi does not have a full rank.

Figure 1: The 0-robust NIMPC ΠIK(B) of [24] computing a branching program B.

functions h : Gn → {0, 1} of the form h(x1, . . . , xn) = f(
∑n

i=1 xi) = f(sum(x)) for some f : G →
{0, 1}. We use a “randomization” of a branching program B computing such a function h. For this, the
following definition and claim are useful.

Definition 4.10. Fix an abelian group G. For a function f : G → {0, 1}, and elements r1, . . . , rn−1 ∈ G,
we define a branching program B

r1,...,rn−1

f as follows.

• The program contains n+ 1 layers {0, . . . , n}.

• For 0 ≤ i ≤ n − 1, the i’th layer contains |G| vertices that we identify with the elements of G. The
vertex 0 (identified with the zero of G) in the 0’th layer is the start vertex s. The n’th layer contains
only the end vertex t.

• There are edges only between adjacent layers:

1. For 1 ≤ i ≤ n − 1, and a, b ∈ G, the vertex b in the (i − 1)’th layer is connected to vertex
b+ a+ ri in the i′th layer with an edge labeled Xi = a.

2. Define rn , −
∑n−1

i=1 ri. For a, b ∈ G, if f(b+ a+ rn) = 1, then the vertex b in the (n− 1)’th
layer is connected to the end vertex t with an edge labeled Xn = a.

The “natural” branching program for h(X1, . . . , Xn) = f(
∑n

i=1Xn) is obtained by taking r1 = · · · =
rn = 0 in the branching program described in Definition 4.10. Roughly speaking, this natural branching
program first computes

∑n
i=1Xn, and based on this sum decides to accept or reject. Taking arbitrary

r1, . . . , rn−1 does not affect the correctness of the branching program, and, as we will see below, if we
choose them at random then we obtain n-robustness. We summarize some properties of the branching
program in the following claim.

17

Correlated randomness generation:

• Choose random elements r1, . . . , rn−1 ∈ G. Let rn , −
∑n−1

i=1 ri. Now, define
Gen0(h) = R = (R1, . . . , Rn) , GenIK(B = B

r1,...,rn−1

f). Note that Ri consists of
the N × N matrices P,U, Zi and the matrices {Bi,a}a∈G (as defined in Definition 4.8).
Here N + 1 = O(n · |G|) is the number of vertices in B.

Encoding:

• Define Enc0,i(xi, Ri) = Mi, where Mi = EncIK,i(xi, Ri) = P ·Bi,xi ·U +Zi for i ∈ [n].

Decoding h:

• Dec0(M1, . . . ,Mn) = DecIK(M1, . . . ,Mn).

Figure 2: The NIMPC Π0 for functions h : Gn → {0, 1} of the form h(X1, . . . , Xn) = f(
∑n

i=1Xi).

Claim 4.11. Fix any f : G → {0, 1}, and elements r1, . . . , rn−1 ∈ G, and let rn , −
∑n−1

i=1 ri and
B , B

r1,...,rn−1

f .

• B computes the function h(X1, . . . , Xn) = f(sum(X)).

• For 1 ≤ i ≤ n − 1 and a ∈ G, the matrix (i.e., the subgraph) Bi,a is determined by a + ri and
is independent of f . For i = n and a ∈ G, the matrix Bn,a is determined by the shifted function
f ′(j) , f(j + rn).

Proof. For the first item, note that B(x1,...,xn) contains a path from s to the vertex
∑n−1

i=1 (xi + ri) in the
(n− 1)’th level, and this is the only vertex in the (n− 1)’th level that is reachable from s. There is an edge
from vertex

∑n−1
i=1 (xi + ri) in the (n− 1)’th level to t iff

1 = f

(
n−1∑
i=1

(xi + ri) + xn + rn

)
= f

(
n∑
i=1

xi

)

(the latter equality follows from the fact that
∑n

i=1 ri = 0). Thus, f(
∑n

i=1 xi) = 1 iff there is a path from s
to t in B(x1,...,xn).

To see that the second item in the claim holds, note that for 1 ≤ i ≤ n − 1, the sum a + ri determines
all edges between the (i − 1)’th and i’th layer labeled Xi = a. Similarly, there is an edge labeled Xn = a
from vertex b in the (n− 1)’th layer to t, iff f(a+ b+ rn) = f ′(a+ b) = 1.

Theorem 4.12. The NIMPC Π0 = (Gen0,Enc0,Dec0) described in Figure 2 is a fully robust NIMPC for
HGG,...,G with communication complexity O(|G|2 · n2).

Proof. For the correctness of the NIMPC Π0, note that, by Claim 4.11, the branching program B
r1,...,rn−1

f

computes h(X1, . . . , Xn) = f(sum(X)). Thus, by Theorem 4.9,

Dec0(M1, . . . ,Mn) = DecIK(M1, . . . ,Mn) = f(sum(X)).

18

• Fix some i0 ∈ T .

• Define a function f ′ : G→ {0, 1} as follows. For every a ∈ G do:

1. Define xT , where xi0 = a and xi = 0 for every i ∈ T \ {i0}.
2. Let f ′(a) = h|T ,xT (xT).

(∗ f ′(a) = f(sum(xT) + a) ∗)

• Let h′(X1, . . . , Xn) = f ′(
∑n

i=1Xi).

• Let R1, . . . , Rn = Gen0(h′).

• For every i ∈ T , let Mi = Enc0(0, Ri).

• Return {Mi}i∈T , {Ri}i∈T .

Figure 3: The simulator for the NIMPC Π0 for a set T 6= ∅.

The 0-robustness of Π0 follows from the 0-robustness of ΠIK . We next prove the T -robustness of Π0

for a non-empty subset T , that is, we construct a simulator SimT (h|T ,xT) whose output distribution is as
required. For the construction, we first identify which functions h, h′ and inputs xT satisfy h|T ,xT (XT) =

h′|T ,0T (XT), that is, when the simulator gets the same answers to its queries. For such pairs h, xT and

h′, 0T , we show that the messages of T and the correlated randomness of T are equally distributed in Π0.
Thus, the simulator will find h′ such that h|T ,xT = h′|T ,0T and execute Π0 on h′ and xT = 0T .

Observation 4.13. Let h(X1, . . . , Xn) = f(
∑n

i=1Xi) and h′(X1, . . . , Xn) = f ′(
∑n

i=1Xi). Then,

1. The restricted function h|T ,xT is equivalent to the function f restricted to inputs in XT and shifted by

s , sum(xT), that is, h|T ,xT (XT) = f(s+ sum(XT)).

2. Fix a set T and inputs xT ∈ G|T |. Then, h|T ,xT (XT) = h′|T ,0T (XT) iff f(a) = f ′(a− sum(xT)) for
every a ∈ G, that is, f ′ is a shift of f by sum(xT).

The simulator for the NIMPC Π0 is described in Figure 3. Let h(X) = f(sum(X)) and XT be the
function and the inputs of T in the execution of the simulator. The simulator, which has only access to
h|T ,xT , chooses inputs x′

T
= 0 and an h′ such that, by Observation 4.13, h|T ,xT (XT) = h′|T ,0T (XT). It

then executes the randomness generation of Π0 with h′ and the encoding in Π0 with x′
T

= 0. We next
prove that the messages of T and the randomness of T in the execution of Π0 on h and xT are identically
distributed as the output distribution of the simulator, namely, as the messages of T and the randomness of T
in the execution of Π0 on h′ and 0T (we will refer to these executions as the first and the second executions).
The randomness in both distributions is only the randomness of Gen0.

To show the equivalence of the distributions, we show a bijection between the random strings used by
Gen0 on h and the random strings used by Gen0 on h′ such that the messages of T and the joint randomness

19

of T are the same under this bijection. The randomness of Gen0 is composed of r1, . . . , rn−1 used to
construct the branching program and the matrices P,U, Z1, . . . , Zn used by GenΠIK

. The bijection maps
this randomness to r′1, . . . , r

′
n−1, P, U, Z1, . . . , Zn, where

r′i =

{
ri iff i ∈ T,
xi + ri iff i ∈ T .

Note that for every i ∈ T∩[n−1], the joint randomnessRi is the same in both executions of Gen0 asRi only
depends on P,U, Zi, ri which are the same in both executions. We next show that for every i ∈ T ∩ [n− 1]
the encoding Mi is the same in both executions:

• In the first execution, Mi = Enc0,i(xi, ri) = P ·Bi,xi · U + Zi, where Bi,xi contains edges between
every vertex b in the (i− 1)’th level of the branching program to vertex b+ xi + ri in the i’th level.

• In the second execution, M ′i = Enc0,i(0, r
′
i) = P ·B′i,0 · U + Zi, where B′i,0 contains edges between

every vertex b in the (i − 1)’th level of the branching program to vertex b + 0 + r′i = b + xi + ri in
the i’th level.

Thus, Bi,xi = B′i,0 and the encodings Mi,M
′
i are equal.

To complete the proof of the T -robustness, we need to consider two cases: n ∈ T and n ∈ T . In the
first case, we need to show that Rn is equal in the two executions, that is, Bn,a = B′n,a for every a ∈ G.

• In the first execution with randomness rn and f , there exists an edge labeled by Xn = a between a
vertex b in the (n − 1)’th level of the branching program to vertex t iff f(b + a + rn) = 1, where
rn = −

∑n−1
i=1 ri.

• In the second execution with randomness r′n and f ′, there exists an edge labeled by Xn = a between
a vertex b in the (n− 1)’th level of the branching program to vertex t iff f ′(b+ a+ r′n) = 1, where

r′n = −
n−1∑
i=1

r′i = −
n−1∑
i=1

ri −
∑
i∈T

xi = rn − sum(xT).

Recall that f ′(a) = f(a+sum(xT)), thus, f ′(b+a+r′n) = f(b+a+r′n+sum(xT)) = f(b+a+rn).

Thus, in this case the joint randomness Rn is the same in both executions.
In the second case (where n ∈ T), we need to show thatMn is equal in the two executions, that is,Bn,xn

is equalB′n,0. This follNws by similar arguments as above, noting that in this case r′n = rn−sum(xT)+xn.
Next we analyze the communication complexity of the NIMPC Π0. This NIMPC uses the NIMPC ΠIK

with a branching program of sizeN = O(n|G|), thus, by Theorem 4.9, the communication complexity of Π0

is O(|G|N2) = O(|G|3n2). However, using Claim 4.11, we can optimize the communication complexity
by a slightly better implementation: the string Ri, for 1 ≤ i ≤ n − 1 contains U,P, Zi, and ri (instead
of {U · Bi,a · P + Zi} for every a ∈ G). Similarly, Rn contains the U,P, Zi, and function f ′ defined in
Claim 4.11. Notice that in the proof of T -robustness we allow Ri to contain this additional information.
After these changes, each encoding and correlated random string contains only a constant number ofN×N
matrices, rather than O(|G|) such matrices. Hence, the communication complexity is reduced to O(N2) =
O(|G|2n2).

20

4.3.2 Limiting the inputs of one set

In this section we limit the inputs of one (special) subset of variables. We start with an NIMPC for the
family of shifted sums. We will use this NIMPC in our constructions.

Lemma 4.14. Fix an abelian group G and an integer n. For s ∈ G, let hs : Gn → G be the function
hs(X1, . . . , Xn) ,

∑n
i=1Xi + s = sum(X) + s, and let ∆n , {hs}s∈G. There is a fully robust NIMPC

Π∆n = (Gen∆n ,Enc∆n ,Dec∆n) of ∆n with communication complexity log |G|.

The NIMPC Π∆n for ∆n is a generalization of the NIMPC for the sum function described in Exam-
ple 2.7, where in Gen∆n , we compute rn = s−

∑n−1
i=1 ri.

In Figure 4, we describe the NIMPC Π1, in which the inputs of one set are limited. This NIMPC follows
the intuition presented in Section 4.2.2, where some adaptations are needed as (1) the NIMPC presented
here is t-robust (compared to 1-robust in Section 4.2.2), and (2) we limit the inputs to sets Si, which are not
binary.

In Π1, it will be convenient to denote the special set, whose inputs are limited, by {1, . . . , t} and the
corresponding variables by Y1, . . . , Yt. Furthermore, we denote the rest of the inputs by Xt+1, . . . , Xn. For
i ∈ [t], we denote the set of legal inputs of Yi by Si ⊆ G. We assume for simplicity that 0 ∈ Si for every i.
As in the previous section, the set of legal inputs of any variable Xi is G.

Theorem 4.15. The NIMPC ΠS1,...,St
1 described in Figure 4 is a fully robust NIMPC for HGS1,...,St,G,...,G

.

The communication complexity of ΠS1,...,St
1 is O(|G| · t · dt+2 + |G|3 · n2) = O(dt+2 · n2 · |G|3), where

d , maxi∈[t] |Si|.

Proof. The correctness of the decoding follows from (1). The communication complexity follows since in
the NIMPC Π1 there are:

• One execution of the NIMPC ΠΓ for the function ` with complexity O(|G| · t · dt+2),

• Two executions of the NIMPC for shifted sum with complexity O(log |G|), and

• |G| executions of the NIMPC Π0 for gb, each with complexity O(|G|2n2).

We next prove the robustness. In Figure 5, we describe a simulator for a subset T = T1 ∪ T2, where
T1 ⊆ {1, . . . , t} and T2 ⊆ {t+1, . . . , n} (where these sets can be empty), and the inputs of T are yT 1

∈ ST 1

and xT 2
∈ G|T 2|. The simulator for Π1 uses the simulators for the various NIMPC protocols used in Π1.

The important task in constructing the simulator is how to answer the queries made by the simulators of
these NIMPC protocols.

Inspection of Figure 5 shows that up to Step 5 the simulator only requires random values it generates by
itself. For Step 5, it requires the values

f(a+ sum(yT 1
) + sum(xT 2

)),

where a ∈ AT1 = {a : ∃yT1 ∈ ST1 s.t. sum(yT1) = a} if T2 = ∅, and a ∈ G otherwise. In the first case, it
is clear that it knows these values given the restricted function h|T ,xT (YT1) = f(sum(YT1) + sum(yT 1

) +

sum(xT 2
)). This is also clear in the second case recalling that an input belonging to T2 can range over all

of G.

21

Correlated randomness generation:

1. Choose random ρ, s ∈ G and for all b ∈ G choose a random string rb ∈ {0, 1}|G| (we think
of rb as a function from G to {0, 1}).

2. Define the function ` : S1 × · · · × St → {0, 1}|G| by `(a1, . . . , at) = r∑t
i=1 ai

.

3. For every a ∈ G, define the function ga+ρ : Gn−t → {0, 1} by

ga+ρ(Xt+1, . . . , Xn) , f(a+
n∑

i=t+1

Xi)⊕ ra(s+
n∑

i=t+1

Xi).

4. Let Rρ = (Rρ1, . . . , R
ρ
t) , Gen∆t(hρ) (where hρ(Y1, . . . , Yt) = ρ+

∑t
i=1 Yi).

5. Let R` = (R`1, . . . , R
`
t) , GenΓ(`) (where GenΓ is defined in Theorem 3.3).

6. Let Rs = (Rs
t+1, . . . , R

s
n) , Gen∆n−t(hs) (where hs(Xt+1, . . . , Xn) = s+

∑n
i=t+1Xi).

7. For b ∈ G, let Rb = (Rbt+1, . . . , R
b
n) , Gen0(gb).

8. Define Gen1(h) = (R1, . . . , Rn), where Ri = (Rρi , R
`
i) if i ∈ {1, . . . , t} and Ri =

(Rs
i , (R

b
i)b∈G) if i ∈ {t+ 1, . . . , n}.

Encoding:

9. For i ∈ {1, . . . , t}: Let Mρ
i = Enc∆t,i(yi, R

ρ
i) and M `

i = EncΓ,i(yi, R
`
i), and let

Enc1(yi, Ri) = Mi = (Mρ
i ,M

`
i).

10. For i ∈ {t + 1, . . . , n}: Let M s
i = Enc∆n,i(xi, R

s
i) and M b

i = Enc0,i(xi, R
b
i) for every

b ∈ G, and let Enc1,i(xi, Ri) = Mi = (Mρ
i , (M

b
i)b∈G).

Decoding h :

11. z = Dec∆t(M
ρ
1 , . . . ,M

ρ
t) (∗ z = sum(y) + ρ ∗)

12. u = Dec∆n−t(M
s
t+1, . . . ,M

s
n) (∗ u = sum(x) + s ∗)

13. v = DecΓ(M `
1 , . . . ,M

`
t) (∗ v = `(y1, . . . , yt) = rsum(y) ∗)

14. w = Dec0(M z
t+1, . . . ,M

z
n)

(∗ w = gsum(y)+ρ(xt+1, . . . , xn)

= f(sum(y) + sum(x))⊕ rsum(y)(s+ sum(x))

= h(y1, . . . , yt, xt+1, . . . , xn)⊕ v(u) ∗) (1)

15. The output is: w ⊕ v(u).

Figure 4: The NIMPC Π
(S1,...,St)
1 (h), where the inputs of the subset {1, . . . , t} are limited.

22

1. Define AT1 , {a : ∃yT1 ∈ ST1 s.t. sum(yT1) = a}.

2. Simulating (RρT1 ,M
ρ

T 1
): Choose a random element ρ′ ∈ G and execute the simulator for

Π∆t for the set T1 with the restricted function h′(YT1) , ρ′ + sum(YT1).

3. Simulating (R`T1 ,M
`
T 1

): Choose random strings (r′a)a∈AT1
(where r′a ∈ {0, 1}|G|) and

execute the simulator for ΠΓ(`) for the set T1 with restricted function `′(YT1) , r′sum(YT1)

for yT1 ∈ ST1 (in particular, sum(yT1) ∈ AT1).

4. Simulating (Rs
T2
,M s

T 2
): Choose a random element s′ ∈ G and execute the simulator for

Π∆n−t for the set T2 with the restricted function h′1(XT2) , s′ + sum(XT2).

5. Simulating (RbT2 ,M
b
T 2

): Let a = b − ρ′. Execute the simulator for Π0(gb) for the set T2,
with the restricted function g′b defined as follows:

(a) If a ∈ AT1 : Then

g′b(XT2) , f
(
a+ sum(yT 1

) + sum(xT 2
) + sum(XT2)

)
⊕ r′a(s′ + sum(XT2)).

(b) If a /∈ AT1 : Choose a random string r′a ∈ {0, 1}|G| and let

g′b(xT2) , r′a(sum(xT2)).

Figure 5: The simulator for the NIMPC Π1 for T = T1∪T2, where T1 ⊆ {1, . . . , t} and T2 ⊆ {t+1, . . . , n}.

We consider an execution of the NIMPC with ρ, s, {ra}a∈G and an execution of the simulator with
ρ′, s′, {r′a}a∈G, where:

ρ′ = ρ+ sum(yT 1
), (2)

r′a = ra+sum(yT1
) for every a ∈ AT1 , (3)

s′ = s+ sum(xT 2
), (4)

r′a(c) = f(a+ sum(yT 1
) + sum(xT 2

) + c)⊕ ra+sum(yT1
)(s+ sum(xT 2

) + c)

for every a /∈ AT1 and every c ∈ G. (5)

We show below that, given any fixing of the values ρ, s, {ra}a∈G,ρ′, s′, {r′a}a∈G as above, the protocol
and simulation generate exactly the same distribution of the relevant random variables. Namely,

(R`T1 ,M
`
T 1

), (RρT1 ,M
ρ

T 1
), (Rs

T2 ,M
s
T 2

), and (RbT2 ,M
b
T 2

)b∈G. (6)

We first argue this suffices for proving the theorem: In the protocol, ρ, s and {ra}a∈G are chosen uniformly.
Similarly, in the simulation ρ′, s′ and {r′a}a∈G are chosen uniformly. Moreover, the choice of the latter given
the former described above is a bijection.

23

We now go over the four items above one by one, and show the simulator generates the correct dis-
tribution for them, even when conditioned on the values of previous items. We will use the notation from
Figure 5.

1. (RρT1 ,M
ρ

T 1
): By (2), for any yT1 ∈ G we have

h′(yT1) = ρ′ + sum(yT1) = ρ+ sum(yT 1
) + sum(yT1) = hρ|T1,yT1

(yT1).

Thus, the restricted function that the simulator uses in the simulation of Π∆t is equal to hρ|T1,yT1

.

Hence, by the robustness of Π∆t , these random variables are equally distributed in the NIMPC and in
the simulation.

2. (R`T1 ,M
`
T 1

): By (3), for any yT1 ∈ AT1 we have

`′(yT1) = r′sum(yT1) = rsum(yT1)+sum(yT1
) = `|T1,yT1

(yT1).

It follows that the restricted function used in the simulation of ΠΓ is equal to `|T1,yT1

. Thus, by the

robustness of ΠΓ, these random variables are equally distributed in the NIMPC and in the simulation.

3. (Rs
T2
,M s

T 2
): By (4), using a similar calculation to that in the first item, the restricted function that the

simulator uses in the simulation of Π∆n−t is equal to hs|T2,xT2

. Thus, by the robustness of Π∆n−t ,

these random variables are equally distributed in the NIMPC and in the simulation.

4. (RbT2 ,M
b
T 2

): Let us first look at the restricted function used in the execution of the NIMPC and denote
a = b− ρ− sum(yT 1

). Thus,

gb|T2,xT2

(XT2) = g(a+sum(yT1
))+ρ|T2,xT2

(XT2)

= f
(
a+ sum(yT 1

) + sum(xT 2
) + sum(XT2)

)
⊕ ra+sum(yT1

)

(
s+ sum(xT 2

) + sum(XT2)
)
. (7)

Furthermore, a = b− ρ− sum(yT 1
) = b− ρ′.

Now consider two cases:

(a) If a = b− ρ′ ∈ AT1 , then for any xT2 ∈ G|T2|

g′b(xT2) = f
(
a+ sum(yT 1

) + sum(xT 2
) + sum(xT2)

)
⊕r′a(s′+sum(xT2)) = gb|T2,xT2

(xT2).

That is, the restricted function used by the simulator in the simulation of Π0(gb) in this case is
equal to gb|T2,xT2

. Thus, by the robustness of Π0, these random variables are equally distributed

in the NIMPC and in the simulation.

(b) If a = b − ρ′ /∈ AT1 , then in the NIMPC ΠΓ(`), the string ra+sum(yT1
) and (R`T1 ,M

`
T 1

) are
statistically independent, thus, Equation (5) is consistent with the view from the execution of
ΠΓ(`). Furthermore, by (5), the answers that the simulator uses in the simulation of Π0(gb) in
this case are equal to gb|T2,xT2

. Thus, by the robustness of Π0, also in this case, these random

variables are equally distributed in the NIMPC and in the simulation.

24

We next show that for our application for boolean symmetric functions, we can improve the communi-
cation complexity of ΠS1,...,St

1 .

Corollary 4.16. Let S1 = · · · = St = {0, 1} andG = Zn+1. A variant of the NIMPC ΠS1,...,St
1 described in

Figure 4 is a fully robust NIMPC forHG{0,1},...,{0,1},G,...,G with communication complexityO(n2 ·2t+tn4) =

O(2t · n4).

Proof. We change ΠS1,...,St
1 such that it executes protocol Π0 only t+ 1 times. Specifically,

• In Step (1) in Figure 4, choose a random ρ ∈ Zt+1 (instead of ρ ∈ Zn+1). In Step (4), the NIMPC ∆t

is executed over the group Zt+1.

• In Step (3) in Figure 4, define for every a ∈ Zt+1 the function ga+ρ : Gn−t → {0, 1} by

g(a+ρ) mod (t+1)(Xt+1, . . . , Xn) , f(a+
n∑

i=t+1

Xi)⊕ ra(s+

n∑
i=t+1

Xi).

That is, only t+1 functions are defined (instead of |G| = n+1 functions). In Step (7) and throughout
the NIMPC, the NIMPC Π0 is executed only t+ 1 times (for every b ∈ Zt+1).

The correctness and robustness of the modified NIMPC follows by the same arguments as in the original
NIMPC (noticing that the sum of the inputs of the special set {1, . . . , t} is at most t).

4.3.3 A combiner using secret sharing

We finally present the NIMPC Π
(S1,...,Sn)
2 for h, where all variables are limited to inputs from Si. In the

next theorem, Theorem 4.17, we summarize the properties of NIMPC Π
(S1,...,Sn)
2 . Theorem 4.3 follows

from Theorem 4.17.

Theorem 4.17. LetG be an abelian group of sizem and S1, . . . , Sn be subsets ofG. The NIMPC Π
(S1,...,Sn)
2

described in Figure 6 is a t-robust NIMPC forHGS1,...,Sn
with communication complexity

(
n
t

)
·O(dt+2 · n2 ·

|G|3) = O(dt+2 · nt+2 · |G|3), where d , maxi∈[n] |Si|. If G = Zn+1 and S1 = · · · = St = {0, 1}, then
the communication complexity of the NIMPC is

(
n
t

)
·O(2t · n4) = O(2t · nt+4).

Proof. The correctness of decoding of Π
(S1,...,Sn)
2 follows from the correctness of the decoding of each

Π
(Sj)j∈Ti
1 (hi) and from (8). The 0-robustness of Π

(S1,...,Sn)
2 follows from the 0-robustness of each Π

(Sj)j∈Ti
1 (hi).

We next prove the robustness against a non-empty set T , Ti of size 0 < |Ti| ≤ t. In Figure 7, we describe
the simulator for T , which has access to h|T ,xT for the fixed h and xT (unknown to the simulator).

We next prove the correctness of the simulator. In the NIMPC Π
(S1,...,Sn)
2 , we can view the choice

of f1, . . . , fe as first independently choosing each function fj , for j 6= i, at random, then defining fi =
f ⊕

⊕
j 6=i fj , and defining hj |T ,xT (X) = fj(sum(XT) + sum(xT)) for j ∈ [e].

The simulator independently chooses each function f ′j , for j 6= i, at random. It then defines h′j |T ,xT (X) =

f ′j(sum(X)) for j 6= i. Thus, the first difference between the protocol and the simulator is that the simu-
lator does not shift f ′j by sum(xT). However, as f ′j are random, hj |T ,xT (X) and h′j |T ,xT (X) are equally

25

Correlated randomness generation and encoding:

• Denote |G| = m and let e =
∑t

i=1

(
n
i

)
≤ nt.

• Choose random f1, . . . , fe ∈ {0, 1}m under the constraint
⊕e

i=1 fi = f (we consider
f and each fi both as an m-bit string and as a function f, fi : G → {0, 1}). Define
hi(X1, . . . , Xn) = fi(

∑n
i=1Xi).

• Identify each i ∈ {1, . . . , e} with a non-empty subset Ti ⊂ {P1, . . . , Pn} of size at most
t. Think of hi as a function hi(Y1, . . . , Y|Ti|, X1, . . . , Xn−|Ti|), where the Y -inputs are the
inputs of Ti.

• For each i ∈ [e], execute the correlated randomness generation and encoding of NIMPC

Π
(Sj)j∈Ti
1 (hi).

Decoding h: For each i ∈ [e], decode hi(x) = fi(sum(x)) and compute the output

e⊕
i=1

fi(sum(x)) = f(sum(x)) = h(x). (8)

Figure 6: The NIMPC Π
(S1,...,Sn)
2 (h), where h : S1 × · · · × Sn → {0, 1} such that h(X1 . . . , Xn) =

f(sum(X)) for some f : G→ {0, 1}.

distributed for j 6= i. The second difference is that in the simulator, h′i|T ,xT = h|T ,xT ⊕
⊕

j 6=i h
′|T ,x′T .

Nevertheless,

hi(X) = fi(sum(X))

= f(sum(X))⊕
⊕
j 6=i

fj(sum(X))

= h(X)⊕
⊕
j 6=i

hj(X).

Thus, hi|T ,xT = h(X)|T ,xT ⊕
⊕

j 6=i hj |T ,xT (X), which is exactly the way that h′i|T ,xT is chosen. By the

robustness of Π
(Sk)k∈Ti
1 (hj), the output of its simulator is distributed exactly as the encodings of Ti and the

joint randomness of Ti for hj and xT for every j ∈ [e]. Observe that the simulator only accesses h|T ,xT on
points in

∏
j∈T Sj as required.

5 An NIMPC for iterated product over general groups

Fix some finite group G, and integer n denoting the number of elements in the product. The iterated product
is defined as prod(X) ,

∏
i∈[n]Xi. We show that a variant of Kilian’s PSM protocol [29] for the iterated

product is a fully robust NIMPC for this function. This result easily follows for abelian groups, but is more
involved for general groups.

26

1. Let e =
∑t

i=1

(
n
i

)
.

2. Choose e − 1 random functions f ′j : G → {0, 1}, for j 6= i, and define h′j |Ti,xTi

(XTi) =

f ′j(sum(XTi)) (notice that the domain of h′j is G|Ti|).

3. Define h′i|Ti,xTi

(XTi), where the domain of this function is STi , as follows:

h′i|Ti,xTi

(XTi) = h|Ti,xTi

(XTi)⊕
⊕
j 6=i

h′j |Ti,xTi

(XTi).

4. For every i ∈ [e], execute the simulator of the NIMPC Π
(Sk)k∈Ti
1 (h′j), where it uses the

above defined oracle h′j |Ti,xTi

(XTi).

Figure 7: The simulator for the NIMPC Π
(S1,...,Sn)
2 for a subset Ti such that 0 < |Ti| ≤ t.

5.1 Result statement and discussion

For abelian groups, Kilian’s approach leads to a fully robust NIMPC protocol as described in Example 2.7.
That is, let the correlated randomness be a sequence r1, . . . , rn of random elements such that

∏
i∈[n] ri = e,

and Geni(prod) = ri. Next, let Enci(xi, ri) = Mi = xi · ri, and the output is reconstructed by multiplying
all the encodings. This approach does not work for the general case: the ri’s in the product

∏
i∈[n](xi ·ri) (in

that order) do not necessarily cancel out. In Figure 8 we present an NIMPC ΠKil = (Genkil,Enckil,Deckil),
which is based on Kilian’s randomization method that is fully robust even for non-abelian groups.

Correlated randomness generation:

• Choose random group elements r1, . . . , rn−1.

• For every a ∈ G, let r1,a = a · r1 and rn,a = r−1
n−1 · a.

• For every a ∈ G and 2 ≤ i ≤ n− 1, let ri,a = r−1
i−1 · a · ri.

• Let Genkil,i(prod) = Ri = (ri,a)a∈G,

Encoding: Enckil,i(xi, Ri) = Mi = ri,xi .

Decoding prod: Deckil(M1, . . . ,Mn) =
∏
i∈[n]Mi.

Figure 8: The NIMPC ΠKil for the iterated product.

We will show that in the general case, an oracle to the restricted product function, namely, prod |T ,xT ,
may reveal quite a lot of information about xT (that is, even in the ideal model a lot is learned). Roughly

27

speaking, it reveals products of stretches of honest parties’ inputs (between two corrupted parties), up to an
equivalence relation determined by the center of the group. We next recall this notion, which is central to
our proof.

Definition 5.1. The center of a group G, denoted Center(G), is the set of elements in G that commute with
all elements in G. Formally, Center(G) , {c ∈ G : c ·x = x · c ,∀x ∈ G}. It is easy to see that Center(G)
is a subgroup of G.

For example, ifG is abelian, then its center is the entire group. Clearly, the group identity is always in its
center. There are infinitely many examples of groups whose center contains only the identity, for instance,
all dihedral groups Dn for odd n have a trivial center.

When the center contains only the identity element, the adversary in the ideal world learns the most
information. For example, consider an odd n and a set T = {1, 3, . . . , n}. An adversary, having access to
prod |T ,xT , can learn xT when the center of the group is trivial. On the other extreme, whenG is abelian, for
any T , an access to prod |T ,xT implies learning

∏
i∈T xi and no additional information. In fact, in this case

NIMPC ΠKil is just a redundant formulation of the protocol for the abelian case. We show that no matter
what the size of the center of the group is, the view of T can always be simulated from prod |T ,xT .

Theorem 5.2. For any positive integer n and a finite group G, the NIMPC ΠKil is a fully robust NIMPC
protocol for the function prod(X1, . . . , Xn) =

∏
i∈[n]Xi with communication complexity |G| log |G|. Fur-

thermore, the simulator running time is poly(|G|, n).

Notice that the communication complexity and the simulation are efficient when |G| = poly(n).

5.2 Warm-up

As a warm-up we prove the claim in the case n = 3 and T = {2}. Afterwards we give a formal proof of the
general setting, but this case essentially captures what goes on in the general setting. The main tool in the
proof will be the following lemma. Intuitively, it says that knowing a restricted product function determines
the unknown inputs up to a multiple of an element from Center(G). Lemma 5.3 is used also in the proof of
the general case, when n ≥ 3.

Lemma 5.3. Consider the following set Eq of equations in the variables Y1 and Y2.

Eq , {Y1 · a · Y2 = ba}a∈G,

where ba ∈ G for every a ∈ G. Suppose there exists a solution (Y1, Y2) = (y1, y2) ∈ G2 to Eq. Then the
set of solutions SOL ⊆ G2 to Eq is exactly equal to {(y1 · c, c−1 · y2) : c ∈ Center(G)}.

Proof. Suppose that (y1, y2) ∈ SOL. That is, for every a ∈ G,

y1 · a · y2 = ba.

Fix any c ∈ Center(G). Then, clearly, for any a ∈ G,

(y1 · c) · a · (c−1 · y2) = y1 · a · y2 = ba.

Therefore, (y1 · c, c−1 · y2) ∈ SOL.

28

Now, fix any (y′1, y
′
2) ∈ SOL. Write y′1 = y1·c1 and y′2 = c2·y2 for some c1, c2 ∈ G. As (y′1, y

′
2) ∈ SOL,

we have for every a ∈ G

ba = y′1 · a · y′2 = y1 · c1 · a · c2 · y2 = y1 · a · y2.

From the rightmost equation, we get for every a ∈ G

c1 · a = a · c−1
2 .

In particular, for a = 1 the above equation implies c−1
2 = c1. Thus, we have for every a ∈ G

c1 · a = a · c1,

which implies c1 ∈ Center(G).

Suppose n = 3, T = {2}, and X1 = x1, X3 = x3 ∈ G. We next describe a simulator for T in ΠKil and
sketch its correctness. The simulator should generate the distribution (M , (M1,M3), R , (R2)). Let us
recall that the randomness isR = {ra , r−1

1 ·a ·r2}a∈G for randomly chosen r1, r2 ∈ G. and the encodings
M is the pair (x1 · r1, r

−1
2 · x3).

For every a ∈ G, he simulator queries the oracle prod |{1,3},(x1,x3)(a), denote its answer by ba. The
simulator now solves the system of equations {Y1 · a · Y2 = ba} by searching over all possibilities in G2.
Let x′1, x

′
3 be a solution. The simulator now executes the joint randomness generation of NIMPC ΠKil and

its encoding for 1, 3 with inputs x′1, x
′
3 respectively. The simulator returns (M1,M3), R2.

By Lemma 5.3 there exits a c ∈ Center(G) such that x′1 = x1 · c and x′3 = c−1 ·x3. Note that the output
of the NIMPC with inputs x1, x3 and randomness r1, r2 and the output of the simulator with with inputs
x′1, x

′
3 and randomness r′1 = c−1 · r1, r

′
2 = r2 · c−1 are equal as

Enckil,1(x′1, R
′
1) = x′1 · r′1 = (x1 · c) · (c−1 · r1) = Enckil,1(x1, R1).

Similarly,
Enckil,3(x′3, R

′
3) = (r′2)−1 · x′3 = (c · r−1

2) · (c−1 · x3) = Enckil,3(x3, R3).

Furthermore,
R′2 = {(r′1)−1 · a · r′2}a∈G = {r−1

1 · c · a · r2 · c−1}a∈G = R2.

Thus, the output distributions of the NIMPC with x1, x3 and the simulator with x′1, x
′
3 are identical.

5.3 Proof of the general case

We proceed with the formal proof of Theorem 5.2.

5.3.1 A key technical claim

The main tool in the proof is a generalization of Lemma 5.3 describing the set of solutions to a certain set
of equations in many variables. For its statement and proof, the following definition will be convenient.

Definition 5.4. Fix a sequence y = (y1, . . . , yt) ∈ Gt. We say a sequence y′ = (y′1, . . . , y
′
t) ∈ Gt is

Center(G)-close to y if there exist c1, . . . , ct ∈ Center(G) such that y′i = yi · ci for every 1 ≤ i ≤ t and
ct = (c1 · · · ct−1)−1.

29

Lemma 5.5. Consider the following set Eq of equations in the variables Y1, . . . , Yt.

Eq , {Y1 · a1 · · ·Yt−1 · at−1 · Yt = ba1,...,at−1}(a1,...,at−1)∈Gt−1 ,

where ba1,...,at−1 ∈ G for every a1, . . . , at−1 ∈ Gt−1. Suppose there exists a solution (Y1, . . . , Yt) =
(y1, . . . , yt) ∈ Gt to Eq. Then the set of solutions SOL ⊆ Gt to Eq is exactly equal to the set of sequences
(y′1, . . . , y

′
t) ∈ Gt that are Center(G)-close to (y1, . . . , yt).

Proof. Fix any y′ = (y′1 = y1 · c1, . . . , y
′
t = yt · ct) that is Center(G)-close to y. We have for any

(a1, . . . , at−1) ∈ Gt−1

y′1 · a1 · . . . · y′t−1 · at−1 · y′t = y1 · a1 · . . . · yt−1 · at−1 · yt = ba1,...,at−1 .

Hence, y′ is also a solution to Eq.
We next prove by induction on t that every solution to Eq is Center(G)-close to y. Note that the base

case, i.e., t = 2, is precisely the statement of Lemma 5.3 from the warm-up. Assume that the claim holds
for t− 1. Fix a solution y′ = (y′1, . . . , y

′
t) to Eq. We wish to show that y′ is Center(G)-close to y.

By ranging over the values of a1, while fixing a2, . . . , at−1 to one, and using the fact that y and y′ are
solutions to Eq, we get that

y1 · a1 · y2 · · · yt = y′1 · a1 · y′2 · · · y′t = ba1,1,...,1,

for every a1 ∈ G. In other words, (y1, y2 · · · yt) and (y′1, y
′
2 · · · y′t) both satisfy a set of equations in two

variables of the form considered in Lemma 5.3 (or the base case t = 2 of this lemma). It follows, in
particular, that y′1 = y1 · c1 for c1 ∈ Center(G).

On the other hand, by fixing a1 = 1, and ranging over the values of a2, . . . , at−1 we now have

y1 · y2 · a2 · · · yt−1 · at−1 · yt = y1 · c1 · y′2 · a2 · · · y′t−1 · at−1 · y′t = b1,a2,...,at ,

for every (a2, . . . , at−1) ∈ Gt−2. Canceling out y1 and writing y′′2 = y′2 · c1 we get

y2 · a2 · · · yt−1 · at−1 · yt = y′′2 · a2 · · · y′t−1 · at−1 · y′t,

for every (a2, . . . , at−1) ∈ Gt−2. In other words, (y2, y3, . . . yt) and (y′′2 , y
′
3, . . . , y

′
t) both satisfy a set of

equations in t− 1 variables of the form covered by the induction hypothesis. It follows that

1. y′′2 = y2 · c′2, for c′2 ∈ Center(G), and, therefore, y′2 = y′′2 · c
−1
1 = y2 · c′2 · c

−1
1 = y2 · c2 for

c2 , c−1
1 · c′2 ∈ Center(G).

2. For 3 ≤ i ≤ t, y′i = yi · ci for ci ∈ Center(G). Moreover, ct = (c′2 · c3 · · · ct−1)−1.

As c−1
1 · c

−1
2 = (c′2)−1, we have ct = (c1 · c2 · · · ct−1)−1, as required. Thus, y′ is Center(G)-close to y and

we are done.

5.3.2 Showing that ΠKil is fully robust

Fix a set T ⊆ [n]. We assume for now that

1. 1, n /∈ T . Informally, this means that “the players at the ends are honest”.

30

2. For every 1 ≤ i ≤ n − 1, either i ∈ T or i + 1 ∈ T (or both). Informally, this means that “there are
no consecutive honest players”.

We will prove that ΠKil is T -robust by constructing a simulator for T . Afterwards, we argue that simple
adjustments can handle a general T ⊆ [n].

The structure of the construction of the simulator and its proof are as follows. We first identify for
which inputs xT and x′

T
the restricted functions prod |T ,xT and prod |T ,x′T are identical. We then show that

when the restricted functions are identical the outputs of the NIMPC are identical. Thus, we construct the
simulator by first finding inputs x′

T
such that prod |T ,xT = prod |T ,x′T and then executing the correlated

random generation of ΠKil and the encoding of ΠKil for T with inputs x′
T

.
Fix inputs xT and x′

T
for the variables outside of T such that the restricted product functions h|T ,xT and

h|T ,x′
T

are identical. We will show a bijection φ : Gn−1 → Gn−1 with the property that the view (MT , RT)

of the NIMPC with inputs xT and correlated randomness (r1, . . . , rn−1) is identical to the view (M ′
T
, R′T)

of the NIMPC with inputs x′
T

and correlated randomness φ(r1, . . . , rn−1).
Denote T = {i1 < · · · < it}, and, for simplicity, xT = (x1, · · · , xt) and x′

T
= (x′1, . . . , x

′
t). Here

comes our crucial use of Lemma 5.5. Note that the fact that the restricted functions are the equal, together
with the assumption 2 above, imply that whatever values a1, . . . , at−1 we insert in between the inputs xT
and in between the inputs x′

T
, the products remain equal. That is, for any (a1, . . . , at−1) ∈ Gt−1,

x1 · a1 · . . . · xt−1 · at−1 · xt = x′1 · a1 · . . . · x′t−1 · at−1 · x′t.

By Lemma 5.5, x′
T

= (x1 · c1, . . . , xt · ct) is Center(G)-close to xT .
Before defining φ, we define elements d1, . . . , dn−1 ∈ G as follows. For 1 ≤ i ≤ n − 1, di will be the

(inverse of the) product of the cj’s corresponding to elements of T appearing up to i. Formally,

di =

 ∏
1≤j≤t s.t ij≤i

cj

−1

.

Now define the bijection φ by φ(r1, . . . , rn−1) , (r′1, . . . , r
′
n−1), where r′i = ri ·di for every 1 ≤ i ≤ n−1.

Note first, that φ is indeed clearly a bijection. It is left to show that the views (MT , RT) and (M ′
T
, R′T)

are identical. It will be convenient to denote, for i ∈ {1, . . . , n}, the “i’th index” of the view (MT , RT) by
Zi. That is, Zi = Mi when i ∈ T , and Zi = Ri when i ∈ T . We define Z ′i for i ∈ {1, . . . , n} similarly.

We prove that Zi = Z ′i for every i. We frequently use the fact that the elements {ci} and {di} are in
Center(G).

i = 1: We have
Z ′1 = M ′1 = x′1 · r′1 = x1 · c1 · r1 · c−1

1 = x1 · r1 = M1 = Z1.

i = n: We have

Z ′n = M ′n = r−1
n−1 · d

−1
n−1 · cn · xn = r−1

n−1 · (c1 · · · cn−1) · xn · (c1 · · · cn−1)−1 = r−1
n−1 · xn = Zn.

31

ij ∈ T \ {1, n}: We have

Z ′ij = M ′ij

= φ(rij−1)−1 · x′j · φ(rij)

= r−1
ij−1 · d

−1
ij−1 · xj · cj · dij · rij

= r−1
ij−1 · (c1 · · · cj−1) · xj · cj · (c1 · · · cj)−1 · rij

= r−1
ij−1 · xj · rij = Zij .

i ∈ T : In this case, Z ′i = {r−1
i−1 · d

−1
i−1 · a · di · ri}a∈G = {r−1

i−1 · a · ri}a∈G = Zi, since di−1 = di when
i ∈ T .

Removing assumptions about T . We sketch how to remove the two assumptions made about T . First,
suppose that the “edges” are not part of T . That is 1 < i1 and/or it < n. In the range i1 ≤ j < it, we will
define r′j in the same way as before. Outside this range, we simply define r′j = rj . It is easy to check that
φ(r1, . . . , rn) , (r′1, . . . , r

′
n) defined this way is still the desired bijection.

Second, suppose that there are continuous blocks of honest players, i.e., maximal sequences of indices
{i1, i1 + 1, . . . , i1 + e} ⊆ T of length greater than one.

In this case, rather than looking at MT , we look at NT , defined as the sequence of products of blocks
of messages of honest players (with inputs xT and randomness (r1, . . . , rn−1)). We think of each such
product as one message of a new player, i.e. we think of ‘collapsing’ the honest players into fewer players
representing these blocks. We also define r0 = (ra1 , . . . , ra`) to be a subsequence of the randomness
(r1, . . . , rn−1) by taking only indices that are ‘not inside a block of T ’ - i.e., indices i ∈ T such that either
i− 1 ∈ T or i+ 1 ∈ T . Note that the view (NT , rT) depends only on the input xT and the subsequence r0.
In fact it is exactly a view of the same protocol ΠKil where we have fewer players - as the honest players of
a block have ‘collapsed’ into one player.

Using the above arguments in the same way, we can now show a bijection mapping the subsequence
r0 to a subsequence r′0 that, together with the input x′

T
, will generate an identical view (N ′

T
, R′T). Now to

extend the mapping, choose the rest of the ri’s in some way. Going over these choices will cause the view
(MT , rT) to range over all sequences satisfying the constraint that the product of the messages in the i’th
block of honest players is Ni. The same will happen with (M ′

T
, R′T) when ranging over the values of the

r′i’s that are not part of the sequence r0.

Efficiency of the simulator. It is left to address the claim regarding the efficiency of the simulation.
Specifically, we want to argue that given h|T ,xT , we can generate in time poly(|G|, n) the distribution
(MT , RT). Note that if we could obtain input values x′

T
such that h|T ,x′

T

= h|T ,xT , this would suffice.

Given h|T ,xT , obtaining x′
T

boils down to finding a solution to an equation system of the type discussed in

Lemma 5.5 in |T | ≤ n variables.2

Examining the proof of Lemma 5.5, one can show that such a solution can be found in O(n · |G|3)
time when it exists, assuming multiplication in G is considered an O(1) operation. More specifically, the
inductive step of the proof shows that finding a solution to such a system in m variables, reduces to solving
two systems also of the form considered in Lemma 5.5, the first in two variables, and the second in m − 1

2Again, this is not precise in the case that 1 or n belong to T , but this case is easily treated.

32

variables. The first system can be solved by exhaustive search in O(|G|3) time. Now, using an inductive
argument, we get that the system can be solved in time O(m · |G|3).

6 Counter-examples to constructions from the literature

In this section, we demonstrate how natural adaptations of standard PSM protocols (i.e., 0-robust NIMPC)
from the literature to our setting fail to provide even 1-robustness. For simplicity, we focus on functions
h : {0, 1}n → {0, 1}.

Leaking the function h. An NIMPC for a class of functions H should make sure that h itself does not
leak beyond what is revealed by h|T ,xT . In fact, most NIMPC protocols from the literature do not inherently
hide h (even against T = ∅). In the counter-examples for the known PSM protocols, we will consider an
NIMPC for a single function h and show that even for sets T or cardinality 1 they leak information about
other inputs.

6.1 A generic attack on the NIMPC protocols of Kilian and Yao

We consider 0-robust NIMPC protocols from the literature that are “read once based” – they are constructed
in the following two steps: (1) construct an NIMPC protocol for functions represented as read-once for-
mula, and (2) to construct an NIMPC protocol for functions represented as general formulas, first treat each
appearance of a variable as a different variable, thus, transforming the formula to a read-once formula, next
execute the NIMPC protocol for the resulting read-once formula, and the correlated randomness Ri con-
tains the correlated randomness of all appearance of variable Xi in the original formula. This causes no
problems for 0-robust NIMPC protocols (in the honest-but-curious model). However, for sets T = {i} for
some i, this already is problematic even in the honest-but-curious model, since {i} can compute h|{i},x{i}
for “non-consistent assignments”, i.e., for assignments in which two appearances of Xi get different values.

Example 6.1. Consider the formula h(X1, X2, X3) = X1X2 ∨X1X3. The set {1} can only learn x2 ∨ x2

from h|{2,3},(x2,x3). However, by assigning the first appearance of X1 true and the second false, the set {1}
can learn x2 from the “read-once based” NIMPC (and, similarly, is can learn x3).

We present a stronger attack on “read-once based” NIMPC: We show below that there exists an efficient
compiler transforming any formula C into a “logically equivalent” formula C ′, with only a polynomial
blowup in size (and a constant blowup in depth), that allows every singleton T = {i} to learn xT completely
given Ri,M[n]\i. This is done by carefully choosing one or more inconsistent partial assignments x′ =
(x′T , xT) and learning C ′(x′). Thus, a bad implementation C ′ of h, as above, completely reveals xT even
for |T | = 1. Since |C ′| is not much bigger than the size of the best C fhr f , the possibility of using such C ′

(or other kinds of “leaky” C ′) is a real issue. In contrast, the candidates 0-robust protocols that we consider
work for any implementation C of h.

We first demonstrate that many 0-robust NIMPC protocols from the literature “are read-once based”.
By our result, these NIMPC break completely even against a singleton, revealing all other inputs (at least,
unless special care is taken to use less vulnerable implementation C).

Yao’s Garbled Circuit NIMPC. The first NIMPC candidates that we consider are various Yao-based
NIMPC protocols [33, 30, 26]. In Yao-based information-theoretic NIMPC protocols [26], the function

33

is represented by a formula and a pair of fresh keys (k0, k1) is given in the correlated randomness Ri for
each appearance of the variable Xi. Additionally, the correlated randomness contains a garbled circuit
encoding a (public) function h to be evaluated. In the encoding stage, the encoding Mj is the key kxj for
each appearance of xj in the formula. The decryption proceeds gate by gate starting from the leafs. For
each gate, a key representing its output is computed from the two keys known for its children. Yao-based
protocols have the property that we need, since a fresh pair of keys (k0, k1) is assigned to every appearance
of a variable and a set {i} can evaluate the formula using the key k0 for one appearance of Xi and the key
k1 for a different appearance of Xi.

Kilian’s NIMPC. Barrignton’s seminal paper [5] shows how to transform a formula (over the basisAND,NOT)
into a permutation branching program over S5 (equivalently, a constant width “standard” branching pro-
gram). That is, for each of the `i appearance of a variable Xi in the formula, there is a pair of permutations
(p1
i,0, p

1
i,1), . . . , p`ii = (p`ii,0, p

`i
i,1). To evaluate the branching program on an input x, pick mj

i = pji,xi out of
every pji corresponding to an appearance of Xi in the formula. Then, the permutations mj

i ’s are multiplied
in a certain (fixed, publicly known) order. The output of the multiplication is of two fixed permutations
o 6= e, corresponding to the outputs of 0 and 1, respectively. The 0-robust NIMPC presented by Killian [29]
proceeds as follows. In the correlated randomness generation, a formulaC is transformed into a permutation
branching program as in [5]. Then, a 0-robust NIMPC for iterated group product is used, using the pji ’s as
the inputs. See Section 5 for the description of the NIMPC for iterated group product of [29]. Notice that
also in this NIMPC protocol, a singleton {i} can choose inconsistent permutations, e.g., p1

i,0 and p2
i,1, in the

computation of the iterated product and obtain the output of the branching program on inconsistent inputs.

6.1.1 Compiling formulas into a bad equivalent formula

We now sketch the compiler that takes a formula C and transforms it into a “highly vulnerable” formula
C ′ for the same function, where every singleton {i} for can learn x[n]\{i}. For simplicity assume that
n is a power of two. Given a formula C(X1, . . . , Xn), consider the formula C ′ which takes an input
X1,1, . . . , X1,logn, . . . , Xn,1, . . . , Xn,logn. Given an assignment x1,1, . . . , x1,logn, . . . , xn,1, . . . , xn,logn, if
for each i, xi,1 = · · · = xi,logn = xi for some value xi, then output C(x1, . . . , xn). Otherwise, consider
the first i for which this is not the case and output xs, where s − 1 = (xi,1, . . . , xi,logn). Finally, C ′ is
modified by replacing each appearance of Xi,j by Xi each appearance of Xi,j by Xi. Clearly, the formula
is equivalent to C. However, every corrupted singleton {i}, can learn xs (for every s) by substituting all
appearances of the type Xi,j according to s.

6.2 An attack against the 0-robust Ishai-Kushilevitz NIMPC

The above attack strategy does not apply to the NIMPC protocols of Ishai and Kushilevitz [24], in which all
appearances of each input (in the original program, say formula or branching program) are bundled together
by the NIMPC, and there is no obvious way of substituting them independently. Nevertheless, we show a
different type of attack that allows a singleton to learn inputs that are not accessible in the ideal world. We
present a simple case of this attack; however, it can be generalized to general functions.

The NIMPC protocols of [24] represent functions as counting branching programs. However, here we
only consider the special case of deterministic branching programs as defined in Definition 4.8 restricted to
binary alphabet (i.e., to the group Z2). Furthermore, we consider the NIMPC ΠIK described in Figure 1
with the modification that the matrices are over a field Fp for a prime p > 2. Consider the branching program
with n = 2, four vertices {s, v1, v2, t}, and 3 edges: edge (s, v1) labeled by X1 = 1, edge (v1, v2) labeled

34

by X1 = 0, and edge (v2, t) labeled by X2 = 1. Clearly, this branching program computes the all-zero
function. The matrices Bi,a for this branching program are:

B1,0 =

 0 0 0
0 1 0
0 0 0

 B1,1 =

 1 0 0
0 0 0
0 0 0



B2,0 =

 0 0 0
−1 0 0
0 −1 0

 B2,1 =

 0 0 0
−1 0 0
0 −1 1

 .

The view of T = {1} in the NIMPC ΠIK is the randomness R1 = (M1,0 = P · B1,0 · V + Z1,M1,1 =
P · B1,1 · V + Z1) and the encoding M2 = P · B2,x2 · V + Z2. We can now take a linear combination of
M1,0,M1,1, and M2 and the set T = {1} can learn x2 as follows:

M = 2M1,1 −M1,0 +M2 = P · (2B1,1 −B1,0 +B2,x2) · V

(as Z1 + Z2 = 0), where P,U have full rank. However,

2B1,1 −B1,0 +B2,x2 =

 2 0 0
−1 −1 0
0 −1 x2

 .

Thus, M has full rank if and only if x2 = 1. This shows that {1} can learn x2.

7 Improving the efficiency of the NIMPC for symmetric boolean functions

In this section, we give a more efficient t-robust NIMPC for symmetric functions when the domain of each
party is boolean.

Theorem 7.1. LetH be the set of symmetric boolean functions f : {0, 1}n → {0, 1}. For every t, there is a
t-robust NIMPC protocol forH with communication complexity O(tnt+1 · (log n+2t)). In particular, there
is a 1-robust NIMPC protocol forH with communication complexity O(n2 · log n).

In this section, G always denotes the group Zn+1. The above theorem follows by replacing the protocol
Π0 of Theorem 4.12, which is fully robust for HGG,...,G, by a more efficient fully robust NIMPC Π′′0 for
HGG,...,G from Theorem 7.2 in the NIMPC Π1 described in Section 4.3. More precisely, we replace Π0 in
Theorem 4.15, when G = Zn+1. This replacement does not work when G 6= Zn+1, e.g., for symmetric
functions when the domain of each party is not boolean.

The communication complexity of the resulting NIMPC Π1 is recalculate as follows (using the opti-
mization of Corollary 4.16):

• One execution of the NIMPC ΠΓ for the function ` with complexity O(n · t · 2t),

• Two executions of the NIMPC for shifted sum with complexity O(log n), and

• t executions of the NIMPC Π′′0 for gb, each with complexity O(n log n).

Finally, plugging the resulting Π1 into Π2 in Theorem 4.17, and recalculating the communication com-
plexity, we get the result of Theorem 7.1.

35

Theorem 7.2. LetG be the group Zn+1. There is a fully robust NIMPC Π′′0 forHGG,...,G with communication
complexity O(n · log n).

Notation 7.3. For two functions τ1, τ2 : G → G we let τ = τ1 · τ2 be the function τ : G → G, where
τ(a) = τ2(τ1(a)). In particular, τ i = τ · . . . · τ︸ ︷︷ ︸

i times

. When τ is a permutation, we use the convention that τ0 is

the identity permutation. LetMS be the set of permutations onM. Let σ be the permutation onM = Zn+1

defined by σ(j) = j + 1 for every j ∈ G.

In Figure 9, we present NIMPC Π′0 for the set of functionsHG,...,G. This NIMPC is correct, but satisfies
a weaker notion of robustness, that is, for T = ∅ it leaks the size of f−1(0). This said, it is an NIMPC
for every single function in HG,...,G (e.g., for the majority function). In Figure 10, we slightly modify Π′0
and achieve full robustness for the entire class HG,...,G. The two protocols are a tweak of Kilian’s protocol
ΠKil for group product from Section 6.1 using the group of permutations. The basic idea is to replace the
messages of the first and last player that are permutations in ΠKil by one that is a (non-injective) function.
This has the effect of reducing the information the messages convey. As the set of functions from G to G is
still a semi-group with the function composition operation, we can still multiply the different messages as
we do in ΠKil to obtain the desired output.

7.1 Simplified protocol for a specific function

We first present a simpler protocol that exposes to an outside observer additional information on the function
f , specifically the quantity |f−1(0)|. We will still be able to show that any non-empty set of players T ⊆ [n]
learns only the restricted function h|T ,xT .

Theorem 7.4. Fix any function h : Gn → {0, 1} such that h(X1, . . . , Xn) = f(
∑n

i=1Xi) for some function
f : G→ {0, 1}. The NIMPC Π′0, described in Figure 9, is fully robust for h.

Proof. The proof is similar to that of Theorem 5.2. Fix a subset T ⊆ [n]. For brevity, we skip the case
T = ∅ here. It is discussed in the proof of Theorem 7.6 in the next subsection for the more involved
protocol. Fix any inputs xT , x

′
T

for the players outside of T such that h|T ,xT ≡ h|T ,x′
T

, that is, f(a +

sum(xT)) = f(a + sum(x′
T

)) for every a ∈ G. Denote by (RT ,MT)(xT , r) the view of the set T in the
protocol when the inputs xT are used, and the vector of permutations chosen in the preprocessing stage is
r = (r1, . . . , rn−1) ∈ Gn−1

S . Observe that the view (RT ,MT) is indeed a deterministic function of xT and
r.

We present a bijection φ : Gn−1
S → Gn−1

S such that for all r ∈ Gn−1
S ,

(RT ,MT)(xT , r) = (RT ,MT)(x′
T
, φ(r)).

This suffices to prove the theorem. Define a ,
∑

j∈T (xj −x′j). A crucial point is that σa · f = f as for any
b ∈ G,

f(b) = f(
∑
i∈T

x′i + (b−
∑
i∈T

x′i)) = f(
∑
i∈T

xi + (b−
∑
i∈T

x′i)) = f(a+ b) = f(σa(b)) = (σa · f)(b).

This implies that f = σ−a · f . For 1 ≤ i ≤ n− 1, define

di ,
∑

j>i,j∈T

(x′j − xj) + a

36

Correlated randomness generation:

• Choose random permutations r1, . . . , rn−1 ∈ GS .

• Let R1 = (R1,0, R1,1) = (L · r1, L · σ · r1), where L : G → G is the identically zero
function.

• For 1 ≤ i ≤ n− 1, let Ri = (Ri,0, Ri,1) = (r−1
i−1 · ri, r

−1
i−1 · σ · ri).

• Let Rn = (Rn,0, Rn,1) = (r−1
n−1 · f , r−1

n−1 · σ · f).

Encoding an input xi ∈ G:

• For 1 ≤ i ≤ n, Enc′i(xi, Ri) = Mi = Ri,xi for xi ∈ {0, 1}.

Decoding h: Compute the product of the encodings, that is, h(x1, · · · , xn) = M1 ·M2 · . . . ·Mn

(∗ M1 ·M2 · . . . ·Mn = L · σx1 · r1 · r−1
1 · σx2 · r2 · . . . · r−1

n−1 · σxn · f
= L · σ

∑n
i=1 xi · f = f(σ

∑n
i=1 xi(0)) = f(

∑n
i=1 xi) ∗)

Figure 9: The NIMPC Π′0 for a fixed function h : Gn → {0, 1} such that h(X1, . . . , Xn) = f(
∑n

i=1Xi).

and ci , σdi . Furthermore, define r′ = φ(r) by

r′ , (c1 · r1, . . . , cn−1 · rn−1).

It is clear that φ defined this way is a bijection. For a fixed r let us use the abbreviated notation (MT , RT) ,
(MT , RT)(xT , rT) and (M ′

T
, R′T) , (MT , RT)(x′

T
, r′T). It is left to show that under this definition Mi =

M ′i for every i ∈ T , and Ri = R′i for every i ∈ T .

• i = n:

– If n ∈ T , then cn−1 = σa. Therefore, R′n,0 = (rn−1)−1 · c−1
n−1 · f = (rn−1)−1 · σ−a · f =

(rn−1)−1 · f = Rn,0 and R′n,1 = (rn−1)−1 · σ−a+1 · f = (rn−1)−1 · σ · f = Rn,1.

– If n ∈ T , we have cn−1 = σx
′
n−xn+a. Therefore, M ′n = (rn−1)−1 · c−1

n−1 · σx
′
n · f = (rn−1)−1 ·

σxn−a · f = (rn−1)−1 · σxn · f = Mn .

• 1 < i < n:

– If i ∈ T , we have ci = ci−1. Therefore, R′i,0 = (ri−1)−1 · ci · c−1
i−1 · ri = (ri−1)−1 · ri = Ri,0.

Similarly, R′i,1 = Ri,1.

– If i ∈ T , we have ci = σxi−x
′
ici−1. Therefore, M ′i = (ri−1)−1 · c−1

i−1 · σx
′
i · ci · ri = (ri−1)−1 ·

σxi · ri = Mi.

• i = 1:

37

– If 1 ∈ T , we have c1 = σ0. Therefore, R′1,0 = L · r1 = R1,0 and R′1,1 = R1,1 by a similar
calculation.

– If 1 ∈ T , we have c1 = σ
∑

j∈T\{1}(x
′
j−xj)+a

= σ
∑

j∈T (x′j−xj)−(x′1−x1)+a = σx1−x
′
1 . Therefore,

M ′1 = L · σx′1 · r′1 = L · σx′1 · c1 · r1 = L · σx1 · r1 = M1.

Remark 7.5. In NIMPC Π′0, each input can either be 0 or 1. However, in Theorem 7.4 we claim that this
protocol computes a function h : Gn → {0, 1}. This reflects the fact that even if the honest parties have
boolean inputs, a coalition T can compute h|T ,xT on any point in G|T |. We can fix NIMPC Π′0 to enable
non-boolean inputs as follows. First, for 2 ≤ i ≤ n − 1 the encoding Mi of an input xi is computed as
follows: Mi = (Ri,1 · R−1

i,1)xi · Ri,0 = (r−1
i−1 · σ · ri−1)xi · r−1

i−1 · ri = r−1
i−1 · σxi · ri. Second, the encoding

M1 of an input x1 is L · σxir1. To be able to compute this encoding, the correlated randomness R1 is
r1. Finally, Mn = r−1

n−1 · σxi · f . To be able to compute this encoding, the correlated randomness Rn
is r−1

n−1 · rn, r
−1
n−1 · σ · rn, and rn · f , where rn is a random permutation in GS . It can be checked that

Theorem 7.4 remains valid under these changes.

7.2 The protocol forHG
G,...,G

Let us begin by clarifying why NIMPC Π′0 is not a good NIMPC for HGG,...,G. The encoding of xn is of
the form Mn = rn−1 · σxn · f . Observe that Mn is a function Mn : G → {0, 1} with |M−1

n (0)| =
|f−1(0)|. Therefore, the protocol is not 0-robust: An outside observer will learn in addition to f(sum(x))
the value |f−1(0)|. Let G′ , Z2n+2. We fix this by artificially extending a function f : G → {0, 1} to a
function f2 : G′ → {0, 1} with |f−1

2 (0)| = n + 1, e.g., by mapping the first n + 1 − |f−1(0)| elements of
{n+1, . . . , 2n+1} to zero, and the rest to one. In this case we cannot replace the permutation σ by a cyclic
shift on G′ as this would allow for example a non-empty set T of size 1 to compute the values of h|T ,xT
on the point n + 1. To overcome this problem, we replace the permutation σ by the permutation σ2 ∈ G′S
defined by σ2(i) = i + 1 (mod (n + 1)) for 1 ≤ i ≤ n and σ2(i) = i for n + 1 ≤ i ≤ 2n + 1 That is,
σ2 cyclically shifts the elements {0, . . . , n} as σ does, and fixes the elements {n + 1, . . . , 2n + 1}. The
important point is that σ2, and therefore also any power of σ2, cannot move an element i ∈ {0, . . . , n} into
the range {n+ 1, . . . , 2n+ 1}.

Theorem 7.6. The NIMPC Π′′0 , described in Figure 10, is fully robust forHGG,...,G.

Proof. The proof is very similar to the previous proof of Theorem 5.2. Fix a subset T ⊆ [n]. Fix any two
functions h, h′ ∈ HGG,...,G where h(X1, . . . , Xn) = f(

∑n
i=1Xi) and h′(X1, . . . , Xn) = f ′(

∑n
i=1Xi) for

some functions f, f ′ : G→ {0, 1}. Fix any inputs xT , x
′
T

for the variables outside of T such that h|T ,xT ≡
h′|T ,x′

T

. Denote by (RT ,MT)(r) the view of the set T in the protocol when the inputs xT and the function h

are used, and the vector of permutations chosen in the preprocessing stage is r = (r1, . . . , rn−1) ∈ G′S
n−1.

Similarly, denote by (R′T ,M
′
T)(r′) the view of the set T in the protocol when the inputs x′

T
and the function

h′ are used, and the vector of permutations chosen in the preprocessing stage is r′ = (r′1, . . . , r
′
n−1) ∈

G′S
n−1.
We present a bijection φ : G′S

n−1 → G′S
n−1 such that for all r ∈ G′S

n−1,

(RT ,MT)(r) = (R′T ,M
′
T)(φ(r)).

38

Correlated randomness generation:

• Choose random permutations r1, . . . , rn−1 ∈ G′S .

• Let R1 = (R1,0, R1,1) = (L · r1, L · σ2 · r1), where L : G′ → G′ is the identically zero
function.

• For 1 ≤ i ≤ n− 1, let Ri = (Ri,0, Ri,1) = (r−1
i−1 · ri, r

−1
i−1 · σ2 · ri).

• Let Rn = (Rn,0, Rn,1) = (r−1
n−1 · f2, r−1

n−1 · σ2 · f2).

Encoding an input xi ∈ G:

• For 1 ≤ i ≤ n, Enc′i(xi, Ri) = Mi = Ri,xi for xi ∈ {0, 1}.

Decoding h: Compute the product of the encodings, that is, h(x1, · · · , xn) = M1 ·M2 · . . . ·Mn

(∗ M1 ·M2 · . . . ·Mn = L · σx12 · r1 · r−1
1 · σ

x2
2 · r2 · . . . · r−1

n−1 · σ
xn
2 · f2

= L · σ
∑n

i=1 xi
2 · f2 = f2(σ

∑n
i=1 xi

2 (0)) = f2(
∑n

i=1 xi) ∗)

Figure 10: The NIMPC Π′′0 for the classHGG,...,G.

This suffices to prove the theorem.
We first deal separately with the case that T is empty, i.e., 0-robustness: Let τ ∈ G′S be a permutation

such that τ · f2 = f ′2 and τ(sum(x′)) = sum(x). Such τ exists as |f−1
2 (0)| = |f ′−1

2 (0)| and f2(sum(x)) =
f ′2(sum(x′)). For 1 ≤ i ≤ n− 1, we define a permutation ci ∈ G′S by

ci , σ
∑

j>i x
′
j

2 · τ · σ−
∑

j>i xj
2 .

We define r′ = φ(r) by
r′ , (c1 · r1, c2 · r2, . . . , cn−1 · rn−1).

We need to show that under this defintion Mi(r) = M ′i(r
′) for every i ∈ [n] and r ∈ G′S

n−1. We fix
r ∈ G′S

n−1 and use the abbreviated notation Mi ,Mi(r) and M ′i ,M ′i(r
′).

• i = n: cn−1 = σ
x′n
2 · τ · σ

−xn
2 . Therefore,

M ′n = (r′n−1)−1·σx
′
n

2 ·f
′
2 = (rn−1)−1·c−1

n−1·σ
x′n
2 f ′2 = (rn−1)−1·σxn2 ·τ

−1·f ′2 = (rn−1)−1·σxn2 ·f2 = Mn.

• 1 < i < n: We have

c−1
i−1 · σ

x′i
2 · ci = σ

∑
j>i−1 xj

2 · τ−1 · σ
−

∑
j>i−1 x

′
j

2 · σx
′
i

2 · σ
∑

j>i x
′
j

2 · τ · σ−
∑

j>i xj
2 = σxi2 .

Therefore, M ′i = (r′i−1)−1 · σx
′
i

2 · r′i = (ri−1)−1 · σxi2 · ri = Mi.

39

• i = 1: L ·σx
′
1

2 · c1 = L ·σ
∑

j x
′
j

2 · τ ·σ−
∑

j>1 xj
2 . As (σ

∑
j x
′
j

2 · τ)(0) = σ
∑

j xj
2 (0) =

∑
j xj , and L ≡ 0,

L · σx
′
1

2 · c1 is the constant function x1. Therefore, as functions L · σx
′
1

2 · c1 = L · σx12 . We thus have

M ′1 = L · σx
′
1

2 · r′1 = L · σx
′
1

2 · c1 · r1 = L · σx12 · r1 = M1.

We now deal with the case T 6= ∅. In this case, |f−1(0)| = |f ′−1(0)| – otherwise the functions h|T ,xT
and h|T ,x′

T

would differ. Therefore, for b ∈ {n + 1, . . . , 2n}, f2(b) = f ′2(b), as we defined f2 on the

range {n + 1, . . . , 2n} in a way that depends only on |f−1(0)|. We stress that in what follows a1 + a2 for
a1, a2 ∈ {0, . . . , n} refers to addition in G, i.e., mod n+ 1 rather than addition in G′. Define

a ,
∑
j∈T

(xj − x′j).

A crucial point is that f2 = σa2 · f ′2 and f ′2 = σ−a2 · f ′2. This is true for any b ∈ {0, . . . , n}

f2(b) = f2(
∑
i∈T

x′i + (b−
∑
i∈T

x′i)) = f ′2(
∑
i∈T

xi + (b−
∑
i∈T

x′i)) = f ′2(a+ b) = f ′2(σa2(b)) = (σa2 · f ′2)(b).

On the other hand, for b ∈ {n+ 1, . . . , 2n+ 1}, f ′2(b) = f2(b) = σa2 · f2(b).
For 1 < i ≤ n− 1, we define

di ,
∑

j>i,j∈T

(x′j − xj) + a,

and ci , σdi2 . We define r′ = φ(r) by

r′ , (c1 · r1, . . . , cn−1 · rn−1).

It is clear that φ defined this way is a bijection. It is left to show that under this defintion Mi = M ′i for every
i ∈ T , and Ri = R′i for every i ∈ T .

• i = n:

– If n ∈ T , then cn−1 = σa2 . Therefore, R′n,0 = (rn−1)−1 · c−1
n−1 · f ′2 = (rn−1)−1 · σ−a2 · f ′2 =

(rn−1)−1 · f2 = Rn,0 and R′n,1 = (rn−1)−1 · σ1−a
2 · f ′2 = (rn−1)−1 · σ2 · f2 = Rn,1.

– If n ∈ T , then cn−1 = σ
x′n−xn+a
2 . Therefore, M ′n = (rn−1)−1 · c−1

n−1 · σ
x′n
2 · f ′2 = (rn−1)−1 ·

σxn−a2 · f ′2 = r−1
n−1 · σ

xn
2 · f2 = Mn .

• 1 < i < n:

– If i ∈ T , then ci = ci−1. Therefore, R′i,0 = (ri−1)−1 · c−1
i−1 · ci · ri = (ri−1)−1 · ri = Ri,0 and

R′i,1 = Ri,1 by a similar calculation.

– If i ∈ T , then ci−1 = σ
x′i−xi
2 ·ci. Therefore,M ′i = (ri−1)−1·c−1

i−1·σ
x′i
2 ·ci·ri = (ri−1)−1·σxi2 ·ri =

Mi.

• i = 1:

– If 1 ∈ T , then c1 = σ0
2 . Therefore, R′1,0 = L · r1 = R1,0 and similarly R′1,1 = R1,1.

– If 1 ∈ T , then c1 = σ
x1−x′1
2 . Therefore, M ′1 = L · σx

′
1

2 c1 · r1 = L · σx12 · r1 = M1.

40

References

[1] B. Applebaum, Y. Ishai and E. Kushilevitz. Cryptography in NC0. In Proc. FOCS 2004, pp. 166-175.

[2] B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding Functions with Constant Online Rate
or How to Compress Garbled Circuits Keys. In Proc. CRYPTO 2013 (2), pp. 166-184.

[3] B. Barak, S. Garg, Y. Tauman Kalai, O. Paneth, and A. Sahai. Protecting obfuscation against algebraic
attacks. In Proc. EUROCRYPT 2014, pp. 221-238.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and Ke Yang On the
(im)possibility of obfuscating programs. In Proc. CRYPTO 2001, pp. 1-18.

[5] D.M Barrington. Bounded-width polynomial-size branching programs recognize exactly those lan-
guages in NC1. In Proc. STOC ’86, pp. 1-5.

[6] M. Bellare, V.T. Hoang, and P. Rogaway. Foundations of garbled circuits. In Proc. ACM CCS 2012,
pp. 784-796.

[7] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In Proc. TCC
2011, pp. 253-273.

[8] Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits via generic graded
encoding. In Proc. TCC 2014, pp. 1-25.

[9] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143-202, 2000.

[10] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key cryptosystems. In Proc. EUROCRYPT
2002, pp. 65-82.

[11] U. Feige, J. Kilian, M. Naor. A minimal model for secure computation. In Proc. STOC 1994, pp.
554-563.

[12] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. In Proc. FOCS 2013, pp. 40-49.

[13] O. Goldreich. Foundations of Cryptography - Volume 2. Cambridge University Press, 2004.

[14] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-S. Zhou.
Multi-input functional encryption. In Proc. Eurocrypt 2014, pp. 578-602.

[15] S. Goldwasser, A. B. Lewko, and D. A. Wilson. Bounded-collusion IBE from key homomorphism. In
Proc. TCC 2012, pp. 564-581.

[16] S. Goldwasser and G. N. Rothblum. On best-possible obfuscation. In Proc. TCC 2007, pp. 194-213.

[17] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded collusions via
multi-party computation. In Proc. CRYPTO 2012, pp. 162-179.

[18] S. D. Gordon, T. Malkin, M. Rosulek, H. Wee. Multi-party computation of polynomials and branching
programs without simultaneous interaction. In EUROCRYPT 2013, pp. 575-591.

41

[19] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access
control of encrypted data. In Proc. ACM CCS 2006, pp. 89-98.

[20] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography on tamper-proof
hardware tokens. In Proc. TCC 2010, pp. 308-326.

[21] S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web: Computing without simultaneous
interaction. In Proc. CRYPTO 2011, pp. 132-150.

[22] D. Harnik, Y. Ishai, E. Kushilevitz, and J. B. Nielsen. OT-Combiners via Secure Computation. In Proc.
TCC 2008, pp. 393-411.

[23] D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On Robust Combiners for Oblivious
Transfer and Other Primitives. In Proc. EUROCRYPT 2005, pp. 96-113.

[24] Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols with applications. In ISTCS
1997, pp. 174-184.

[25] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications to
round-efficient secure computation. In FOCS 2000, pp. 294-304.

[26] Y. Ishai, and E. Kushilevitz. Perfect constant-round secure computation via perfect randomizing poly-
nomials. In Proc. ICALP 2002, pp. 244-256.

[27] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, A. Paskin-Cherniavsky. On the power of correlated
randomness in secure computation. In Proc. TCC 2013, pp. 600-620.

[28] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant computational over-
head. In Proc. STOC 2008, pp. 433-442.

[29] J. Kilian. Founding cryptography on oblivious transfer. In Proc. STOC 1988, pp. 20-31.

[30] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In Proc. ACM
EC 1999, pp 129-139.

[31] A. O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint Archive 2010: 556.

[32] A. Sahai and B. Waters. Fuzzy identity-based encryption. In Proc. EUROCRYPT 2005, pp. 457-473.

[33] A.C.C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS 1986, pp 162-167.

A General non-interactive MPC

In this section we extend the treatment of NIMPC to functionalities that may deliver different outputs to
different parties as well as to the case of security against malicious parties.

We consider protocols involving n parties, P1, . . . , Pn, with a correlated randomness setup. That is, we
assume an offline preprocessing phase that provides each party Pi with a random input ri. (This preprocess-
ing can be implemented either using a trusted dealer, by an interactive offline protocol involving the parties
themselves, or by an interactive MPC protocol involving a smaller number of specialized servers.) In the
online phase, each party Pi, on input (xi, ri), may send a single message mi,j to each party Pj . (There is

42

no need to assume secure or authenticated channels, as these can be easily implemented using a correlated
randomness setup.)

Let f be a deterministic functionality mapping inputs (x1, . . . , xn) to outputs (y1, . . . , yn). We define
security of an NIMPC protocol for such f using the standard “real vs. ideal” paradigm (cf. [9, 13]), except
that the ideal model is relaxed to capture the best achievable security in the non-interactive setting.

Concretely, for NIMPC in the semi-honest security model we relax the standard ideal model for eval-
uating f by first requiring all parties to send their inputs to the functionality f , then having f deliver the
outputs to the honest parties, and finally allowing the adversary to make repeated oracle queries to f with
the same fixed honest inputs. (Similar relaxations of the ideal model were previously considered in other
contexts, such as fairness and concurrent or resettable security.) In the malicious security model, one should
further relax the ideal model in order to additionally take into account the adversary’s capability of rush-
ing3 (namely, correlating its messages with the messages obtained from honest parties). Furthermore, if the
communication model only allows for point-to-point communication (with no broadcast), the ideal model
should account for the fact that the adversary can use different inputs when sending messages to different
honest parties. In the relaxed ideal model, first the honest parties send their inputs to f , then the adversary
can repeatedly make oracle calls as above, and finally the adversary can decide on the actual inputs to f (a
set of inputs for each honest party) that determine the outputs of honest parties.

Given a t-robust NIMPC protocol (according to Definition 2.2) for each of the n outputs of f , a t-secure
protocol for f can be obtained in a straightforward way. In the honest-but-curious model, it suffices to run
n independent instances of the protocol described in Section 2.1, where in the i-th instance Pi acts both
as a standard party and as the external server P0. In the malicious model, the correlated randomness setup
uses an unconditional one-time MAC to authenticate each of the possible messages sent from Pi to Pj .
This is feasible when the input domain of each party is small. In the general case, we can make use of an
NIMPC protocol for a functionality f ′ with a bigger number of parties which is identical to f except for
taking a single input bit from each party. Such a functionality f ′ can be securely realized by a protocol Π′ as
described above, and then f can be realized by a protocol Π in which each party emulates the corresponding
parties in Π′.

3If some mechanism is available for ensuring that the adversary’s messages are independent of the honest parties’ messages,
this relaxation is not needed.

43

