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Abstract—Data publish-subscribe service is an effective ap-
proach to share and filter data. Due to the huge volume and veloc-
ity of data generated daily, cloud systems are inevitably becoming
the platform for data publication and subscription. However, the
privacy becomes a challenging issue as the cloud server cannot
be fully trusted by both data publishers and data subscribers.
In this paper, we propose a privacy-preserving data publish-
subscribe service for cloud-based platforms. Specifically, we
first formulate the problem of privacy-preserving data publish-
subscribe service by refining its security requirements on cloud-
based platforms. Then, we propose a bi-policy attribute-based
encryption (BP-ABE) scheme as the underlying technique that
enables the encryptor to define access policies and the decryptor
to define filtering policies. Based on BP-ABE, we also propose
a Privacy-preserving Data Publish-Subscribe (PDPS) scheme on
cloud-based platforms, which enables the cloud server to evaluate
both subscription policy and access policy in a privacy-preserving
way. The security analysis and performance evaluation show that
the PDPS scheme is secure in standard model and efficient in
practice.

Index Terms—Publish-Subscribe, BP-ABE, Subscription Pol-
icy, Access Policy, Subscription Privacy, Data Privacy.

I. INTRODUCTION

We are now moving into the era of big data, and more
than 2.5 quintillion data were generated each day from various
sources, such as mobile devices, sensors, machines and social
networks etc. Data publish-subscribe service is an effective
decoupling approach to share and filter data in our daily life
[1]–[3]. Data publishers, such as banks, investment firms, or
research institutions, publish data to their customers or data
users. Data subscribers (users) subscribe data of their interests
by submitting subscription trapdoors. Due to the huge volume
and velocity of data, it is hard for us to store, manage, share,
analyze and visualize with existing infrastructures and tools.
Cloud computing, as an emerging technique, can provide eco-
nomic but powerful storage and computing resources [4], so
that it is inevitably becoming the platform for data publication
and subscription.

However, the privacy issue becomes much more critical
in data publication and subscription service on cloud-based
platforms, as the cloud server cannot be fully trusted by both
data publishers and data subscribers. Specifically, there are
two major concerns: 1) Data Privacy. Data publishers do not
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want the cloud server and other unauthorized users to access
their published data; 2) Subscription Privacy. Data subscribers
also do not want the cloud server to know their interests from
subscription trapdoors. For example, in a finance institute, data
publishers publish financial data on a cloud-based platform,
and only allow financial analysts to access them. Financial
analysts may be interested in several companies, and hope to
receive financial data only from these companies. However, the
information of “which companies are interested by a financial
analyst” is highly sensitive in a finance institute. Therefore,
it is important to protect both data privacy and subscription
privacy in data publication and subscription service.

Data encryption is a possible method, but traditional encryp-
tion methods are not applicable to encrypt data or trapdoors,
which may produce many copies of ciphertexts for each data
in the system, the number of which is proportional to the
number of users. Attribute-Based Encryption (ABE) [5]–[8]
is a promising technique for data encryption in cloud storage
systems. The data privacy can be well protected by using
attribute-based access control schemes [9]–[12] constructed on
top of ABE schemes. Specifically, each user in the system has
a set of attributes reflected in his/her secret key. Before data
publication, the publisher defines an access policy for his/her
data, which indicates what attributes an authorized user should
have. Then, data is encrypted according to the access policy
by the publisher. Only authorized users, whose attributes can
satisfy the access policy, can decrypt the data.

The attribute-based access control enables data publishers to
define data access policies without knowing how many users in
the system beforehand. The most important advantage is that
only one copy of the encrypted data is generated in attribute-
based access control. Since ABE can be used to protect data
privacy, intuitively it can also be applied to protect subscription
privacy. A straightforward method is to encrypt subscription
trapdoor by using ABE with another set of parameters. How-
ever, this method requires the authority, who is responsible for
attribute management and key generation in an ABE system,
to generate tags for each published data or trapdoors for
each data subscriber. This may incur a huge overhead on
the authority especially in large-scale cloud systems, where
subscription trapdoors may be frequently generated/updated.
Thus, one challenge is how to “integrate” subscription policy
checking into attribute-based access control of the published
data, instead of using another set of ABE parameters.

Another major challenging issue to achieve data publish-
subscribe service on cloud-based platforms is the require-
ment of Privacy-preserving Bi-policy Matching. The bi-policy
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matching means that any published data can only be sent
to authorized users who are interested in. In other words,
the cloud server needs to check whether tags of the newly
published data, which are defined to describe data contents,
can satisfy the subscription policy provided in subscription
trapdoor (i.e., whether the data is interested by the subscriber).
Meanwhile, the cloud server also needs to check whether
attributes of the subscriber can satisfy the access policy
associated with the newly published data (i.e., whether the
data can be decrypted by the subscriber). Only when tags
of the newly published data satisfy subscription policy and
attributes of subscribers satisfy access policy, the data will
be delivered to subscribers, as subscribers do not want to
receive any data they cannot access or do not interest. The bi-
policy matching becomes a challenging issue when the cloud
server is not allowed to access data and trapdoors due to
privacy requirements. Although some ABE methods [11], [13]
allow the cloud server to evaluate whether users’ attributes can
satisfy the access policy, to the best of our knowledge, none
of existing ABE schemes can support the evaluation of both
access policy and subscription policy.

In this paper, we propose a novel attribute-based encryption
scheme, namely Bi-policy ABE (BP-ABE), which can support
two policies: access policy and subscription policy. The access
policy is constructed with attributes, while the subscription
policy is constructed with data tags. Specifically, in BP-ABE,
in order to support two policies, we employ two encryption
secrets s1 and s2 in the encryption algorithm instead of only
one in CP-ABE. Both s1 and s2 are shared according to the
access policy and embedded into ciphertext components, while
s2 is also used to encrypt/generate data tags. To construct
the subscription trapdoor, we also employ a trapdoor secret st
and share it according to the subscription policy. To support
privacy-preserving bi-policy matching, we let the cloud server
do the access policy evaluation and pre-decryption with a
transformed secret key.

The main contributions of this paper are summarized as
follows.

1) We formulate the problem of privacy-preserving data
publish-subscribe service on cloud-based platforms, and
refine its security requirements.

2) We propose a novel bi-policy attribute-based encryption
(BP-ABE) scheme as the underlying technique that
enables the encryptor to define access policy and the
decryptor to define subscription (filtering) policy. The
decryption can be done if and only if tags of the
ciphertext satisfy the subscription policy and attributes
of the subscriber satisfy the access policy.

3) We propose a PDPS scheme on top of BP-ABE to
achieve privacy-preserving data publish-subscribe ser-
vice on cloud-based platforms, which allows the cloud
server to evaluate both access policy and subscription
policy, while still preserving the privacy of data, data
tags and subscription policy.

The rest of this paper is organized as follows. In Section II,
we define the system model and security requirements for data
publish-subscribe service on cloud-based platforms. Section
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Fig. 1. System Model of Data Publish-Subscribe Service on Cloud-based
Platforms

III provides the bi-policy framework and security model of the
PDPS scheme. Section IV proposes a novel bi-policy attribute-
based encryption (BP-ABE) and applies it to construct the
PDPS scheme on cloud-based platforms. Then, we give the
security analysis in Section V and performance evaluation in
Section VI. The related work is given in Section VII. We
summarize the paper in Section VIII. Finally, Appendix A
describes the Linear Secret-Sharing Schemes (LSSS) structure
for both access policy and subscription policy. Appendix B
provides the detailed security proof of BP-ABE.

II. SYSTEM MODEL AND SECURITY REQUIREMENTS

A. System Model

We consider a privacy-preserving data publish-subscribe
service on cloud-based platforms, as shown in Fig.1. It consists
of the following entities: authority, cloud server (broker), data
publishers and data subscribers.

Authority. The authority is responsible for managing at-
tributes and data tags in the system. It also assigns a secret
key for each user according to its attributes, and releases
public parameters that are used for data encryption and tag
generation. Note that we only consider single authority in this
paper. The authority is fully trusted in the system and the
channels between the authority and data publishers/subscribers
are secure.

Cloud Server. The cloud server stores the published data
and provides data access service to users according to their
interests. Specifically, the cloud server is responsible for
checking whether tags of the newly published data can satisfy
subscription trapdoors submitted by subscribers. If the tags
pass the subscription trapdoor of a subscriber, the server will
also evaluate whether this subscriber’s attributes can satisfy
the access policy of the published data. If the attributes pass
the access policy checking, it will pre-decrypt the published
data before sending it to this subscriber. The cloud server
is semi-trusted (honest-but-curious) in the system. It obeys
the protocol to check subscription trapdoors and do the pre-
decryption for valid subscribers, but is also curious about the
published data and subscribers’ interests from subscription
trapdoors.
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Publishers. Data publisher publishes data on the cloud
server, and relies on the cloud server to provide data access to
data subscribers. Before publishing data on the cloud server,
the publisher encrypts the data under a self-defined access
policy, and generates data tags for the data. Data publishers
are fully trusted in the system.

Subscribers. Each data subscriber defines subscription poli-
cies according to its interests, and generates subscription
trapdoors according to the subscription policies, such that the
subscriber only receives the data whose data tags satisfy the
subscription policy. The subscriber also receives a secret key
from the authority according to its attributes, which is used
to decrypt the received data. Data subscribers are dishonest in
the sense that they may collude to try to access unauthorized
data, but they cannot collude with the cloud server.

B. Security Requirements

We summarize security requirements of data publication and
subscription service on cloud-based platforms as follows.

Security Requirements of Data Publication
• Access policies should be defined by data publishers and

should not be enforced by the cloud server.
• Both the data and its associated tags should be kept

private against the cloud server.
• Data publishers do not need to know the information of

data subscribers beforehand.
Security Requirements of Data Subscription
• Subscription trapdoors should be defined by data sub-

scribers.
• The cloud server cannot obtain any interests of data

subscribers from subscription trapdoors.
• The cloud server cannot know any information about

contents of tags when checking subscription trapdoors.
• The cloud server cannot do statistic analysis of data tags.
Besides, during the data pre-decryption, the cloud server

cannot learn any content information about the data.

III. BI-POLICY FRAMEWORK AND SECURITY MODEL

In this section, we directly describe the bi-policy framework
and security model of the PDPS scheme which is built on top
of the BP-ABE.

A. Bi-Policy Framework of PDPS

To meet all the requirements illustrated in Section II-B, we
propose a bi-policy framework of the PDPS scheme as follows.

Definition 1 (Bi-Policy Framework of PDPS). The PDPS
scheme consists of a collection of the following algorithms:
Setup, SKeyGen, TDGen, Encrypt, TagGen, TDCheck,
PreDecrypt and Decrypt.

• Setup(λ )→ (MSK,PP,{STKtag}). The setup algorithm
takes no input other than the implicit security parameter
λ . It outputs the master secret key MSK, the public
parameters PP for the system and a set of secret tag keys
{STKtag}.

• SKeyGen(MSK,PP,Ssub)→ SKsub. The secret key gen-
eration algorithm takes as inputs the master secret key
MSK, the public parameters PP, a set of attributes Ssub
of the subscriber with user id sub. It outputs a secret key
SKsub for the subscriber sub.

• TDGen(SMKsub,PP,At)→TD. The trapdoor generation
algorithm takes as inputs the subscription master key
SMKsub

1 of the subscriber sub, the public parameters
PP, the subscription policy At for the trapdoor. It outputs
a trapdoor TD.

• Encrypt(m,PP,A) → CT. The encryption algorithm
takes as inputs the message m, the public parameters PP,
and an access policy A. It outputs a ciphertext CT.

• TagGen(PP,{STKtag},s2,St,m)→ DT. The tag genera-
tion algorithm takes as inputs the public parameters PP,
a set of secret tag keys {STKtag}, the encryption secret
s2 and a set of data tags St,m defined for data m. It outputs
a set of data tags DT for data m.

• TDCheck(DT,TD)→ {1,0}. The trapdoor checking al-
gorithm takes as inputs a set of tags DT and the trapdoor
TD. If the data tags in DT satisfy the policy in the
trapdoor, it outputs 1. Otherwise, it outputs 0.

• PreDecrypt(PP,CT,DT,TD,SK′sub) → {CT′,⊥}. The
pre-decryption algorithm takes as inputs the public pa-
rameters PP, the ciphertext CT and its tags DT, the
trapdoor TD and the transformed secret key SK′sub. It
outputs the pre-decrypted ciphertext CT′ when the sub-
criber’s attributes satisfy the access policy corresponding
to the ciphertext. Otherwise, the pre-decryption fails and
outputs ⊥.

• Decrypt(CT′,SMKsub) → m. The decryption algorithm
takes as inputs the pre-decrypted ciphertext CT′ and the
subscription master key SMKsub. It outputs the data m.

B. Security Model

The security model of the PDPS scheme is defined by
the following game between a challenger and an adversary.
In our security model, the adversary can query secret keys
adaptively. Moreover, besides the challenge access structure,
the adversary also provides a challenge trapdoor structure
during the challenge phase. For simplicity, we assume that
the challenger will generate sufficient data tags such that
the trapdoor structure can always be satisfied. The detailed
security game is described as follows.

Setup. The challenger runs the Setup algorithm and gives
the public parameters PP to the adversary.

Phase 1. The adversary makes repeated secret key queries
corresponding to sets of attributes S1, · · · ,Sq1 .

Challenge. The adversary submits two equal length mes-
sages m0 and m1. In addition, the adversary gives a challenge
access structure (M∗,ρ∗), which must satisfy the constraint
that none of the sets S1, · · · ,Sq1 from Phase 1 satisfy the
access structure. The adversary also gives a challenge trapdoor
structure (M∗t ,ρ

∗
t ). The challenger fills a random coin b, and

encrypts mb under (M∗,ρ∗). No matter what value b equals

1The subscription master key SMKsub is generated by the subscriber sub
itself.
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to, the challenges will generate a set of data tags DTb such
that DTb can always satisfy the trapdoor structure. Then, the
ciphertext CT∗ and its tags DT∗ are given to the adversary.

Phase 2. The adversary may query more secret keys, as
long as they do not violate the constraints on the challenge
access structures.

Guess. The adversary outputs a guess b′ of b.
The advantage of an adversary A in this game is defined as

Pr[b′ = b]− 1
2
.

Definition 2. The PDPS scheme is secure if all polynomial
time adversaries have at most a negligible advantage in the
above security game.

IV. PDPS: PRIVACY-PRESERVING DATA
PUBLISH-SUBSCRIBE SCHEME ON CLOUD-BASED

PLATFORMS

In this section, we first give an overview of the techniques
and solutions in the PDPS scheme. Then, we describe the
PDPS scheme on cloud-based platforms.

A. Overview

We first propose a bi-policy attribute-based encryption
method (BP-ABE) as the underlying technique for the privacy-
preserving data publish-subscribe service on cloud-based plat-
forms. In BP-ABE, there are two policies: access policy and
subscription policy. The access policy is constructed with
attributes, while the subscription policy is constructed with
data tags. The data is encrypted under the access policy. The
decryption can be done if and only if data tags of the ciphertext
satisfy the subscription policy and attributes of subscribers
satisfy the access policy.

Existing CP-ABE methods [7], [8] only support the access
policy defined for the ciphertext, so the major challenge to
construct BP-ABE is how to associate the subscription policy
of trapdoor with the access policy of ciphertext. We construct
BP-ABE based on the CP-ABE proposed in [8]. Technically,
in BP-ABE, we employ two encryption secrets s1 and s2 in
the encryption algorithm instead of only one in CP-ABE.
Both s1 and s2 are shared according to the access policy and
embedded into the ciphertext components, while s2 is also used
to encrypt/generate the data tags. To construct the subscription
trapdoor, we also employ a trapdoor secret st and share it
according to the subscription policy.

To achieve privacy-preserving bi-policy matching, we en-
crypt data tags with a randomly selected secret. Due to the
randomness of the encryption secret, the encrypted data tags
associated with each data are different from the encrypted tags
associated with others, even when two different data have the
same data tags. In order to let the cloud server do the access
policy checking, inspired by the decryption outsourcing idea
from [13], we let subscribers transform their secret keys and
send them to the cloud server. This can also shift the major
computation load of the decryption to the cloud server by
letting it do the pre-decryption for subscribers, such that the
decryption overhead on the subscriber side can be significantly
reduced.

B. System Initialization by Authority

During the system initialization, the setup algorithm is run
by the authority. It takes as no input other than the implicit
security parameter λ . It chooses two multiplicative groups G
and GT with the same prime order p and the bilinear map
e :G×G→GT between them. Let g be a generator of G. Let
Ua, Ut denote the attribute set and the data tag set respectively.

The authority chooses random numbers α, β , γ, a ∈ ZP
and sets its master secret key as

MSK= (gα , β , γ).

For each attribute att, the authority computes the public
attribute key PAKatt by choosing a random number ratt ∈ Zp
as

PAKatt = gratt .

For each data tag tag, the authority also chooses a random
number rtag ∈Zp and generates the public tag key PTKtag as

PTKtag = (grtag)βγ

and secret tag key STKtag as

STKtag = (grtag)γ .

The public parameter PP is

PP= (p,g,e(g,g)α ,ga,gβ , {PAKatt}att∈Ua , {PTKtag}tag∈Ut ).

Each subscriber obtains a secret key SKsub from the au-
thority according to the attribute set Ssub it possesses. The
secret key is generated by running the secret key generation
algorithm as

SKsub = (Ksub = gα garsub , Lsub = grsub ,

∀att ∈ Ssub : Ksub,att = PAKatt
rsub),

where rsub is randomly chosen from Zp.
Each publisher will also receive a set of secret tag keys

{STKtag} from the authority.

C. Subscription Query Generation by Subscribers

For each data subscription query, the subscriber first gen-
erates a subscription master key SMKsub, which is used to
generate the subscription trapdoor and transform the secret
key of the subscriber2.

The subscription master key SMKsub is generated by se-
lecting two random numbers yt ,zt ∈ Zp as SMKsub = (yt ,zt).
The subscription query generation consists of two phases: Sub-
scription Trapdoor Generation and Secret Key Transformation.

Phase 1: Subscription Trapdoor Generation. To generate
the subscription trapdoor, the subscriber first defines the sub-
scription policy over the data tags. The subscription policy is
described by LSSS structure (Mt ,ρt), where Mt is a nt × lt
subscription matrix with ρt mapping its rows to data tags. ρt
here is injective, which means that different rows of the matrix
Mt will not be mapped to the same data tag. The trapdoor
generation algorithm TDGen is defined as follows.

2The subscription master key SMKsub could also be the same for all the
data subscriptions within a time period.
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TDGen(SMKsub,PP,(Mt ,ρt))→ TD. The subscriber then
selects a trapdoor secret st ∈ Zp and a random vector ~vt =
(st ,yt,2, · · · ,yt,l)∈Zlt

p, where yt,2, · · · ,yt,l are used to share the
trapdoor secret st . For j = 1 to nt , it computes λt, j = Mt, j ·~vt ,
where Mt, j is the vector corresponding to the j-th row of Mt, j.
The trapdoor TD is generated by selecting a random number
y′t ∈Zp as

TD= (T =gy′t st , {(T1, j = (gy′t )λt, j ·PTK−r j
ρt ( j),

T2, j = (gyt )λt, j ·PTK−r j
ρt ( j), T3, j = (gβ )r j)} j=1,··· ,nt ).

Phase 2: Secret Key Transformation. To reduce the compu-
tation overhead on the subscriber, the idea is to move the main
computation loads from the subscriber to the cloud server.
However, the secret key SKsub of the subscriber cannot be
directly sent to the cloud server due to the privacy requirement.
Therefore, the secret key SKsub of the subscriber needs to
be transformed before being sent to the cloud server. The
transformed secret key SK′ can be generated as

SK′sub = (K′sub = gzt ·Ksub, L′sub = Lsub,

∀att ∈ Ssub : K′sub,att = Ksub,att · (gyt )st ).

Without the subscription master key SMKsub, the cloud server
cannot use the transformed secret key to decrypt the data.

D. Data Publication by Publishers

The data publication consists of two phases: Data Encryp-
tion and Tag Generation.

Phase 1: Data Encryption. The publisher encrypts the data
before publishing to cloud server. To encrypt data m 3, the
publisher will first define the access policy over attributes of
subscribers. The access policy is also described by a LSSS
structure (M,ρ), where M is a n× l access matrix and ρ

maps the rows of M to attributes. The publisher then runs
the following encryption algorithm to encrypt the data m.
Encrypt(m,PP,(M,ρ))→ CT. The algorithm takes as in-

puts the data m, the public parameters PP, the access policy
(M,ρ). It chooses two random encryption secrets s1,s2 ∈Zp.
Then, it chooses two random vectors ~v1 = (s1,y′2, · · · ,y′l) and
~v2 = (s2,y′′2 , · · · ,y′′l ) to share the encryption secrets s1 and s2
respectively.

For i = 1 to n, it computes λi = Mi · ~v1 and wi = Mi · ~v2,
where Mi is the vector corresponding to the i-th row of M. It
outputs the ciphertext CT as

CT= ( C = m · e(g,g)αs1 , C′ = gs1 , C′′ = gs2 ,

f or i = 1 to n :

Ci = gaλi · (PAKρ(i))
−wi , Di = gwi )

Phase 2: Tag Generation. For data m, the publisher also
needs to define a set of data tags St,m which indicate the topics
or related information of the data. The data tag DT correspond-
ing to CT is generated by running the tag generation algorithm
as follows.

3In real application, data m is first encrypted with a content key by using
symmetric encryption methods. Then, the content key is further encrypted by
running the encryption algorithm Encrypt. For simplification, we directly use
the data m.

TagGen(PP,{STKtag},s2,St,m)→ DT. The tag generation
algorithm takes as inputs the public parameters PP, a set
of secret tag keys {STKtag}, the encryption secret s2 and a
set of data tags St,m defined for data m. The data tag DT
corresponding to CT is computed as

DT= {DTtag = (STKtag)
s2}tag∈St,m

E. Trapdoor Checking by Cloud Server
When there are some new data published, the cloud server

runs the trapdoor checking algorithm TDCheck to check
whether the tags of the published data satisfy the subscription
trapdoor set by the subscriber.

TDCheck(DT,TD)→ {1,0}. If the data tags DT of the
ciphertext CT can satisfy the policy of the trapdoor TD, i.e.,
it can find a set of constants {ct, j}, s.t.

∑
j∈It

ct, j ·λt, j = st

where It ⊂ {1,2, . . . ,nt} is defined as

It = { j : ρt( j) ∈ St,m}.

Then, it checks the following subscription policy checking
equation:

∏
j∈It

(e(T1, j,C′′) · e(DTρt ( j),T3, j))
ct, j = e(T,C′′)

If the subscription policy checking equation holds, it outputs
1. Otherwise, it outputs 0.

Correctness of Subscription Policy Checking Equation
The correctness of the above subscription policy checking

equation can be proved as

∏
j∈It

(e(T1, j,C′′) · e(DTρt ( j),T3, j))
ct, j

=∏
j∈It

(e(gy′t λt, j · (PTKρt ( j))
−r j ,gs2) · e((STKρt ( j))

s2 ,gβ r j))ct, j

=e(gy′t ,gs2)∑ j∈It ct, j ·λt, j

=e(gy′t st ,gs2)

=e(T,C′′)

F. Access Policy Checking and Pre-decryption by Cloud
Server

Only when the data tags satisfy the trapdoor, the cloud
server starts to evaluate whether the user has the privilege of
decrypting the data. If the attributes of the subscriber satisfy
the access policy, i.e., it can find a set of constants {ci}, s.t.,

∑
i∈I

ci ·Mi = (1,0, · · · ,0),

where I is defined as I = {i : ρ(i) ∈ Ssub}.
Recall

λi = Mi ·~v1 and wi = Mi ·~v2,

we have
∑

i
ciλi = s1 and ∑

i
ciwi = s2

Only if the data tags satisfy the subscription policy in the
trapdoor and the attributes of subscriber satisfy the access
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policy of the ciphertext, the cloud server will help subscriber
pre-decrypt the data by running the following pre-decryption
algorithm:

PreDecrypt(PP,CT,DT,TD,SK′sub)→ {CT′,⊥}. To pre-
decrypt the ciphertext CT, the cloud server first computes a
token TK1 from the trapdoor and the data tags as

TK1 =∏
j∈It

(e(T2, j,C′′) · e(DTρt ( j),T3, j))
ct, j

=∏
j∈It

(e(gyt λt, j · (PTKρt ( j))
−r j ,gs2)e((STKρt ( j))

s2 ,gβ r j))ct, j

=e(gyt ,gs2)∑ j∈It ct, j ·λt, j

=e(gyt ,gs2)st

It further computes TK2 from the ciphertext by using the
transformed secret key SK′ as

TK2 =
e(C′,K′sub)

∏
i∈I

(
e(Ci,L′sub) · e(Di,K′sub,ρ(i))

)ci

=
e(gs1 ,gzt gα garsub)

∏
i∈I

(
e(gaλi(PAKρ(i))−wi ,grsub)e(gwi ,(PAKρ(i))rsubgyt st )

)ci

=
e(gs1 ,gzt gα) · e(gs1 ,garsub)

e(ga,grsub)
∑
i∈I

ciλi
· e(g,gyt st )

∑
i∈I

ciwi

=
e(gs1 ,gzt gα)

e(g,g)yt st s2

The pre-decrypted data CT′ is computed as

CT′ =

(
C̃ =

C
T K1 ·T K2

, C′
)
=

(
C̃ =

m
e(g,g)s1zt

, gs1

)
.

The cloud server then sends the pre-decrypted data CT′ to the
subscriber.

G. Data Decryption by Subscribers

Upon receiving the pre-decrypted data, the subscriber can
be easily decrypt the data as

m = C̃ · e(C′,gzt ).

Obviously, the subscriber only performs simple decryption
computation, which is independent with the number of at-
tributes in the ciphertext and the number of tags in the trap-
door. The lightweight decryption algorithm can easily imple-
mented in many mobile devices, such as smart phones, tablets
and wearable devices etc., whose computation resources are
limited.

V. SECURITY ANALYSIS

We first describe the Decisional q-parallel Bilinear Diffie-
Hellman Exponent (Decisional q-parallel BDHE) Assumption
that the PDPS scheme can be reduced to. Then, we analyze
the security features of PDPS scheme with the following three
Theorems.

A. Decisional q-parallel BDHE Assumption

Recall the definition of the decisional q-parallel BDHE
problem in [8] as follows. Let a,s,b1, · · · ,bq ∈ Zp be chosen

randomly and g be a generator of G. If an adversary is given
by

~y = (g,gs,g1/z,ga/z, · · · ,g(aq/z),ga, · · · ,g(aq), ,g(a
q+2), · · · ,g(a2q),

∀1≤ j≤q gs·b j , ga/b j , · · · ,g(aq/b j), ,g(a
q+2/b j), · · · ,g(a2q/b j),

∀1≤ j,k≤q,k 6= j ga·s·bk/b j , · · · ,g(aq·s·bk/b j)),

it must be hard to distinguish a valid tuple e(g,g)aq+1s ∈ GT
from a random element R in GT .

An algorithm B that outputs z ∈ {0,1} has advantage ε in
solving q-parallel BDHE in G if∣∣∣Pr[B(~y,T = e(g,g)aq+1s) = 0]−Pr[B(~y,T = R) = 0]

∣∣∣≥ ε.

Definition 3. The decisional q-parallel BDHE assumption
holds if no polynomial time algorithm has a non-negligible
advantage in solving the q-parallel BDHE problem.

B. Security Proof of BP-ABE
We first give the security proof for the underlying technique

BP-ABE by the following theorem:

Theorem 1. Suppose the decisional q-parallel BDHE assump-
tion holds. BP-ABE is secure if no polynomial time adversary
can get non-negligible advantage in the security game defined
in Section III-B.

Proof: BP-ABE is constructed based on the CP-ABE
proposed in [8], which is proved to be secure in standard
model.

Let A be an adversary who can break BP-ABE with non-
negligible advantage, and we will construct an A′ such that
it can break the CP-ABE scheme in [8] with non-negligible
advantage.

Different from the security game in [8], in our security
game, besides the challenge access structure (M∗,ρ∗), the
adversary also presents a challenge trapdoor structure (M∗t ,ρ

∗
t )

to the challenger. Moreover, the adversary also receives a set
of data tags together with the ciphertext. A′ initializes the CP-
ABE security game and forwards the public key PK to A. The
simulation of key generation in A is the same as the one in A′.
To simulate the challenge ciphertext of A, the challenger uses
the shares of another secret s2 instead of randomly chosen
r′j in A′ to simulate the Ci and Di. However, this does not
increase the advantage of A′, because the secret s2 is randomly
chosen and its shares are also randomly distributed due to the
randomly chosen sharing vector ~v2.

We prove that the data tags do not increase the advantage of
A′. In our security game, the data tags are defined to satisfy
the subscription policy, the adversary cannot distinguish the
ciphertext based on the data tags. Moreover, the data tags are
simulated based on the randomly chosen secret s2, such that
the adversary cannot distinguish two data tags from different
challenge queries even through they represent the same data
tag. Therefore, the data tags will not reveal any information
on the chosen challenging message. The detailed proof is
provided in Appendix B.

Theorem 2. The cloud server in the PDPS scheme learns
nothing from the subscription trapdoor.
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TABLE I
FEATURE COMPARISON BETWEEN THE PDPS SCHEME AND NABEEL’S SCHEME

Subscription Policy Expression Subscription Privacy Technique Access Control Technique
PDPS scheme Any LSSS Structure BP-ABE BP-ABE

Nabeel’s Scheme [14] Single Value Comparison Homomorphic Encryption CP-ABE

Proof: The subscription trapdoor is constructed by the
trapdoor secret st , which is shared according to the sub-
scription policy. Recall the data tag related component T2, j =

(gyt )λt, j ·PTK−r j
ρt ( j), it is easy to find that each data tag com-

ponent in the trapdoor is hidden by the share of the trapdoor
secret λt, j and the randomly chosen number r j, although the
public tag key is used during the trapdoor generation.

Moreover, the trapdoor does not contain the real structure
of subscription policy in the PDPS scheme, which means that
(Mt ,ρt) is not sent to the cloud together with the subscription
trapdoor. Because the mapping function ρt is injective, the
cloud server can try different combinations of the data tags and
check whether the subscription policy checking equation can
hold. Furthermore, data tags are encrypted by the encryption
secret s2, so that the cloud server cannot distinguish the data
tags from different published data. Therefore, the cloud server
can only see that a set of data tags satisfy the subscription
trapdoor, but he does not know which data tags are exactly
required in the subscription trapdoor.

Theorem 3. The PDPS scheme can resist the statistic analysis
of the data tags.

Proof: The data tags DTtag = (STKtag)
s2 are encrypted by

the encryption secret s2. However, for different published data,
the encryption secret s2 is different. Due to the randomness
of s2, the encrypted data tags associated with each data are
different from the encrypted tags associated with others, even
when two different data have the same data tags. Moreover, the
cloud server cannot get to exactly know which data tags are
required by the trapdoor during the trapdoor checking. Thus,
the PDPS scheme can resist the statistic analysis of the data
tags.

VI. PERFORMANCE EVALUATION

Before describing the performance analysis, we conduct the
feature comparison between the proposed PDPS scheme and
Nabeel’s scheme [14]. As described in Table I, the subscription
policy in the PDPS scheme can support any LSSS structure,
while Nabeel’s scheme can only support single value com-
parison. To protect the subscription privacy, the PDPS scheme
applies BP-ABE, while Nabeel’s scheme applies homomorphic
encryption method. To achieve fine-grained access control and
data confidentiality, BP-ABE is applied in the PDPS scheme,
while CP-ABE is used in Nabeel’s scheme.

We do the simulation on a Unix system with an Intel Core
i5 CPU at 2.4GHz and 8.00GB RAM. The code in the PDPS
scheme uses the Pairing-Based Cryptography (PBC) library
version 0.5.12, and a symmetric elliptic curve α-curve, where
the base field size is 512-bit and the embedding degree is 2.
The code of Nabeel’s scheme uses the GNC Multiple Precision

(GMP) arithmetic library version 6.0.0 and the size of the
modulus n in Nabeel’s scheme is set to 1024 bits. All the
simulation results are the mean of 20 trials.

Fig. 2(a) shows the computation time of data decryption
versus the number of attributes involved in the ciphertext. The
simulation result shows that the decryption time of subscribers
in the PDPS scheme is 2 µs, which is independent with
the number of data tags or attributes. In order to clearly
demonstrate the value in Fig. 2(a), the value of decryption
time in the PDPS scheme is enhanced by 1000 times. Fig.
2(a) also illustrates that the decryption time on the subscriber
is proportional to the number of attributes involved in the
ciphertext and secret keys in Nabeel’s scheme, while this
workload is shift to the cloud server in PDPS scheme.

Data are encrypted by using CP-ABE in both the PDPS
scheme and Nabeel’s scheme. Thus, the computation time of
data encryption is almost the same in these two schemes.
Fig. 2(b) demonstrates the tag generation time, which is
proportional to the number of data tags associated with the
ciphertexts. However, the PDPS scheme incurs less computa-
tion cost on tag generation than Nabeel’s scheme.

Fig. 2(c) illustrates that the computation time of trapdoor
generation on subscribers is proportional to the number of
data tags in the trapdoor. In Fig. 2(c), the computation time
of trapdoor generation in the PDPS scheme is larger than the
one in Nabeel’s scheme. The reason is that the subscription
trapdoor in the PDPS scheme is constructed in LSSS struc-
ture, which can support any Disjunctive Normal Form(DNF)
formulas. However, Nabeel’s scheme only supports the blinded
value comparison for a single data tag. The more expressive
the subscription policy is, the more computation time caused
by the trapdoor generation.

VII. RELATED WORK

Extensive studies [14]–[18] have been done on protecting
the subscription privacy as well as the data confidentiality
in publish-subscribe systems, however, they either do not
consider the untrusted broker in the system, or do not support
fine-grained access control on the published data. For instance,
in [16], a partitioning method is used to build an index of
encrypted subscriptions. Although certain types of conditions
can be evaluated on values encrypted in this fashion, the
method may incur false positives. In [17], it utilizes a trusted
third-party (TTP) to encrypt/blind the subscription and al-
lows the untrusted brokers to perform matching and routing
on encrypted data. However, this method is not suitable to
data publish-subscribe on cloud-based platforms due to the
frequently updated subscriptions. Moreover, the method does
not support fine-grained access control of published data.
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(c) Trapdoor Generation on Subscribers

Fig. 2. Performance Comparison between the PDPS scheme and Nabeel’s Scheme

Data encryption is a possible method to protect both data
privacy and subscription privacy. Data are encrypted by data
publishers before publishing to the untrusted cloud server,
such that the cloud server cannot learn data contents without
decryption keys. The subscription trapdoors also have to be
encrypted to prevent the cloud server from learning what types
of data the subscribers are interested in. Due to the large
number of subscribers, however, it is difficult to encrypt data
or trapdoors in cloud systems. For example, traditional public
key encryption methods require a publisher to encrypt data
with different users’ public keys. It may produce many copies
of ciphertexts for each data in the system, the number of
which is proportional to the number of users. Moreover, it
is not scalable and practical for the publisher to know users’
public keys beforehand on large scale cloud systems. Towards
symmetric key encryption methods, the publisher needs to be
always online to distribute keys. Similar problems hold for the
encryption of trapdoors.

ABE [5], [6], [8], [19] is a promising techniques for data
encryption. There are two complementary forms of ABE,
namely Key-Policy ABE (KP-ABE) [5] and Ciphertext-Policy
ABE (CP-ABE) [7], [8]. In KP-ABE, attributes are used to
describe the encrypted data, and access policies over these
attributes are built into users’ secret keys; while in CP-ABE,
attributes are used to describe users, and access policies over
these attributes are attached to the encrypted data. Based on
ABE, several attribute-based access control (ABAC) schemes
[9], [20]–[28] have been proposed to ensure the data con-
fidentiality in the cloud systems or online social networks.
Specifically, ABAC allows data owners to define an access
structure on attributes and encrypt the data under this access
structure, such that data owners can define the attributes that
the user needs to possess in order to decrypt the ciphertext.
These schemes, however, cannot deal with subscription privacy
due to the requirement that the subscription policy should
be defined by subscribers. A straightforward method is to
construct the subscription trapdoor by using CP-ABE or KP-
ABE with another set of parameters. However, this method
may incur heavy overhead on the authority, because it requires
the authority to generate the tags of the published data (when
using CP-ABE) or trapdoors for subscribers (when using KP-
ABE).

In [14], the authors propose to apply ABE to do access con-

trol on published data and employ homomorphic encryption
to blind the data tags in both the subscription trapdoor and the
published data. It also randomizes the blinded values of the
tags in order to prevent the untrusted broker from knowing
the differences between the blinded values in the subscription
trapdoor and the values of the published data tags. However,
the subscription policy is not expressive, as it only allows the
single blinded tag comparison. Moreover, the homomorphic
encryption and the decryption on the side of subscribers are
not efficient, which may become the bottleneck of the system
performance. The goal of this paper is to design an efficient
privacy-preserving bi-policy data publish-subscribe scheme,
which can achieve fine-grained access control on published
data as well as the privacy protection of subscription trapdoors.

VIII. CONCLUSION

In this paper, we have proposed a privacy-preserving data
publish-subscribe service for cloud-based platforms. Specif-
ically, we have formulated the problem of data publish-
subscribe system on cloud-based platforms by refining the
security requirements. Then, we have proposed the PDPS
scheme on top of the BP-ABE enabling the cloud server to
do privacy-preserving bi-policy matching on the access policy
defined by data publishers and the subscription policy defined
by data subscribers. We have also demonstrated that the PDPS
scheme is secure in standard model and efficient in practice.

The PDPS scheme can be applied to achieve privacy-
preserving data publish-subscribe service on any cloud-based
platforms. In our future work, we will consider other matching
patterns such as inequality matching, range matching and
conjunctive matching etc.
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APPENDIX A
LINEAR SECRET-SHARING SCHEMES (LSSS) POLICY

STRUCTURE

In PDPS scheme, both access policy and subscription policy
are expressed by LSSS structure defined as follows.

Definition 4 (Linear Secret-Sharing Schemes (LSSS)). A
secret-sharing scheme Π over a set of parties P is called linear
(over Zp) if

1) The shares for each party form a vector over Zp.
2) There exists a matrix M called the share-generating

matrix for Π. The matrix M has n rows and l columns.
For all i = 1, · · · ,n, the i-th row of M is labeled by
a party ρ(i) (ρ is a function from {1, · · · ,n} to P). If
the column vector v = (s,r2, · · · ,rl) is considered, where
s ∈Zp is the secret to be shared and r2, · · · ,rl ∈Zp are
randomly chosen, then Mv is the vector of n shares of
the secret s according to Π. The share (Mv)i belongs to
party ρ(i).

A linear secret sharing-scheme according to the above defi-
nition also enjoys the linear reconstruction property: Suppose
that Π is a LSSS for the access/subscription structure A. Let
S∈A be any authorized set, and let I⊂{1,2, · · · ,n} be defined
as I = {i : ρ(i) ∈ S}. Then, there exist constants {c ∈ Zp}i∈I
such that, for any valid shares {λi} of a secret s according to
Π, we have ∑i∈I ciλi = s. These constants {ci} can be found
in time polynomial in the size of the share-generating matrix
M. We note that for unauthorized sets, no such constants {ci}
exist. In PDPS scheme, the party is represented as the attribute
in the access policy and data tag in the subscription policy
respectively.

APPENDIX B
PROOF OF THEOREM 1

Proof: Suppose there is an adversary A with non-
negligible advantage ε = AdvA in the selective security game
against our construction. Moreover, it chooses a challenge
access matrix M∗ and a challenge subscription matrix M∗t with
the dimension at most q columns. We show how to build a
simulator B that plays the decisional q-parallel BDHE problem
with non-negligible advantage as follows.

Init. The simulator takes in the q-parallel BDHE challenge
~y, T . The adversary gives the algorithm the challenge access
structure (M∗,ρ∗), as well as the challenge subscription struc-
ture (M∗t ,ρ

∗
t ), where both M∗ and M∗t have n∗ columns.
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Setup. The simulator randomly chooses α ′ ∈ Zp and im-
plicitly sets α = α ′+aq+1 by letting

e(g,g)α = e(ga,gaq
)e(g,g)α ′ .

Then, we describe how the simulator programs the group
elements {PAKatt}att∈Ua . For each att ∈Ua, let X denote the
set of indices i, such that ρ∗(i) = x. In other words, all the row
indices in the set X match the same attribute x. The simulator
randomly chooses datt and programs PAKatt as

PAKatt = gdatt ∏
i∈X

gaM∗i,1/bi ·ga2M∗i,2/bi · · ·gan∗M∗i,n∗/bi

by implicitly letting

ratt = datt + ∑
i∈X

(aM∗i,1/bi +a2M∗i,2/bi +an∗M∗i,n∗/bi).

Note that if X = /0, then we have PAKatt = gdatt , and the
parameters are distributed randomly due to the gdatt value.

Similarly, the simulator will choose β ,γ ∈Zp and program
the secret/public tag key pairs as

STKtag = gdtagγ
∏
i∈X

(
ga2M∗i,1/bi ·ga2M∗i,2/bi · · ·gan∗M∗i,n∗/bi

)γ

and
PTKtag = (STKtag)

β

where dtag is also randomly selected.
Phase 1. In this phase, the simulator answers secret key

queries from the adversary. Suppose the adversary makes
secret key queries by submitting a set of attribute S to the
simulator, where S does not satisfy M∗.

The simulator finds a vector ~w = (w1,w2, · · · ,wn∗) ∈ Zn∗
p ,

such that w1 = −1, and for all i where ρ∗(i) ∈ S we have
that ~w ·M∗i = 0. By the definition of a LSSS, such a vector
must exist, since S does not satisfy M∗. The simulator then
implicitly defines rsub by randomly choosing a number r ∈Zp
as

rsub = r+w1aq +w2aq−1 + · · ·+wn∗aq−n∗+1

by setting
Lsub = gr

∏
i=1,...,n∗

(gaq+1−i
)wi .

From the definition of rsub, we find that garsub contains a
term of g−aq+1

, which will cancel out with the unknown term
in gα when creating Ksub. The simulator can compute Ksub as

Ksub = gα ′gar
∏

i=2,...,n∗
(gaq+2−i

)wi .

For the calculation of Ksub,att(∀att ∈ Ssub), if att is used in
the access structure, the simulator computes Ksub,att as follows.

Ksub,att =(Lsub)
datt ·

∏
i∈X

∏
j=1,...,n∗

(
g(a

j/bi)r ∏
k=1,...,n∗,k 6= j

(gaq+1+ j−k/bi)wk

)M∗i, j

If the attribute att ∈ Ssub is not used in the access structure,
i.e., there is no i such that ρ∗(i) = att, then let

Ksub,att = (Lsub)
datt .

Challenge. In this phase, the simulator programs the chal-
lenge ciphertext. The adversary gives two messages m0,m1
to the simulator. The simulator flips a coin b. It creates
C = mbT · e(gs1 ,gα ′) and C′ = gs1 , C′′ = gs2 .

The difficult part is to simulate the Ci values since this con-
tains terms that must be canceled out. However, the simulator
can choose the secret splitting, such that these can be canceled
out. Intuitively, the simulator will choose random y′2, · · · ,y′n∗
and share the secret s1 using the vector

~v1 = (s1,s1a+ y′2,s1a2 + y′3, · · · ,s1an∗−1 + y′n∗) ∈Zn∗
p .

It also chooses random b and y′′1 ,y
′′
2 , · · · ,y′′n∗ and shares the

secret s2 using the vector

~v2 = (s2,s2b+ y′′2 ,s2b2 + y′3, · · · ,s2bn∗−1 + y′n∗) ∈Zn∗
p .

From the vector ~v1, we can construct the share of the secret
s1 as

λ1,i = s1 ·M∗i,1 + ∑
j=2,...,n∗

(s1a j−1 + y′j)M
∗
i, j

and the share of the secret s2 can be computed as

λ2,i = s2 ·M∗i,1 + ∑
j=2,...,n∗

(s2b j−1 + y′′j )M
∗
i, j.

For i = 1, . . . ,n∗, let Ri be the set of all k 6= i such that
ρ∗(i) = ρ∗(k), i.e., the set of all other row indices that have the
same attribute as row i. The challenge ciphertext components
can be generated as

Di = g−s2·M∗i,1 · ∏
j=2,...,n∗

(g−s2b j−1
g−y′′j )M∗i, j ·g−s1bi .

Then, we can simulate the Ci as

Ci = (PAKρ∗(i))
λ2,i ·

(
∏

j=2,·,n∗
(ga)M∗i, jy

′
j

)
· (gbis1)−dρ∗(i) ·(

∏
k∈Ri

∏
j=1,...,n∗

(ga js(bi/bk))M∗k, j

)
.

The data tags can be simulated as

DTtag = (STKtag)
s2 .

Phase 2. Same as Phase 1.
Guess. The adversary will eventually output a guess b′ of

b. If b′ = b, the simulator then outputs 0 to show that T =
e(g,g)aq+1s; otherwise, it outputs 1 to indicate that it believes
T is a random group element in GT .

When T is a tuple, the simulator B gives a perfect sim-
ulation so that Pr[B(~y,T = e(g,g)aq+1s) = 0] = 1

2 + AdvA.
When T is a random group element the message mb is com-
pletely hidden from the adversary, and we have Pr[B(~y,T =

e(g,g)aq+1s) = 0] = 1
2 .

Therefore, B can play the decisional q-parallel BDHE game
with non-negligible advantage.


