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1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are paradoxical constructs that allow one player
(called the Prover) to convince another player (called the Verifier) of the validity of a mathematical
statement x ∈ L, while providing zero additional knowledge to the Verifier. Beyond being fasci-
nating in their own right, ZK proofs have numerous cryptographic applications and are one of the
most fundamental cryptographic building blocks.

The notion of concurrent zero knowledge, first introduced and achieved in the paper by Dwork,
Naor and Sahai [DNS04], considers the execution of zero-knowledge proofs in an asynchronous and
concurrent setting. More precisely, we consider a single adversary mounting a coordinated attack
by acting as a verifier in many concurrent executions (called sessions). Concurrent ZK proofs are
significantly harder to construct and analyze. Since the original protocol by Dwork, Naor and Sahai
(which relied on so called “timing assumptions”), various other concurrent ZK protocols have been
obtained based on different set-up assumptions (e.g., [DS98, Dam00, CGGM00, Gol02, PTV12,
GJO+12]), or in alternative models (e.g., super-polynomial-time simulation [Pas03, PV10]).

In the standard model, without set-up assumptions (the focus of our work,) Canetti, Kilian,
Petrank and Rosen [CKPR01] (building on earlier works by [KPR98, Ros00]) show that concurrent
ZK proofs for non-trivial languages, with “black-box” simulators, require at least Ω̃(log n) number
of communication rounds. Richardson and Kilian [RK99] constructed the first concurrent ZK
argument in the standard model without any extra set-up assumptions. Their protocol, which
uses a black-box simulator, requires O(nε) number of rounds. The round-complexity was later
improved in the work of Kilian and Petrank (KP) [KP01] to Õ(log2 n) round. More recent work
by Prabhakaran, Rosen and Sahai [PRS02] improves the analysis of the KP simulator, achieving
an essentially optimal, w.r.t. black-box simulation, round-complexity of Õ(log n); see also [PTV12]
for an (arguably) simplified and generalized analysis.

The central open problem in the area is whether a constant-round concurrent ZK protocol (for
a non-trivial language) can be obtained. Note that it could very well be the case that all “clas-
sic” zero-knowledge protocols already are concurrent zero-knowledge; thus, simply assuming that
those protocols are concurrent zero-knowledge yields an assumption under which constant-round
concurrent zero-knowledge (trivially) exists—in essence, we are assuming that for every attacker
a simulator exists. Furthermore, as shown in [GS12] (and informally discussed in [CLP13b]) un-
der various “extractability” assumptions of the knowledge-of-exponent type [Dam91, HT98, BP04],
constant-round concurrent zero-knowledge is easy to construct. But such extractability assump-
tions also simply assume that for every attacker, a simulator (in essence, “the extractor” guaranteed
by the extractability assumption) exists. In particular, an explicit construction of the concurrent
zero-knowledge simulator is not provided—it is simply assumed that one exists. For some applica-
tions of zero-knowledge such as deniability (see e.g., [DNS04, Pas03]), having an explicit simulator
is crucial. Rather, we are here concerned with the question of whether constant-round concurrent
zero-knowledge, with an explicit simulator exits.

1.1 Towards Constant-round Concurrent Zero-Knowledge

Recently, the authors [CLP13b] provided a first construction a constant-round concurrent zero-
knowledge protocol with an explicit simulator, based on a new cryptographic hardness assumption—
the existence of so-called P-certificates, roughly speaking, succinct non-interactive arguments for
languages in P. An issue with their approach, however, is we only have candidate constructions of
P-certificates that are sound against uniform polynomial-time attackers (as opposed to non-uniform
ones), and the protocol of [CLP13b] inherits the soundness property of the underlying P-certificate.
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Additionally, whereas the assumption that a particular proof system is a P-certificates is a falsifiable
assumption [Pop63, Nao03], it is unclear whether the existence of P-certificates itself can be based
on some more natural hardness assumption.

A very recent elegant work by Pandey, Prabhakaran and Sahai [PPS13] takes a different ap-
proach and instead demonstrates the existence of constant-round concurrent zero-knowledge pro-
tocol with an explicit simulator based on the existence of differing-input obfuscation (diO) for
(restricted classes of) P/poly [BGI+01, BCP14, ABG+13]. Whereas the assumption that a partic-
ular scheme is a diO is an “extractability” assumption (similar in flavor to knowledge-of-exponent
type [Dam91, HT98, BP04] assumptions), the intriguing part of the scheme of Pandey et al [PPS13]
is that the extractability assumption is only used to prove soundness of the protocol; concurrent
zero-knowledge is proved in the “standard” model, through providing an explicit simulator. Never-
theless, diO is a strong and subtle assumption—as shown by recent work [BP13, GGHW13, IPS14],
unless we restricting the class of programs for which diO should hold, we may end up with a notion
that is unsatisfiable. Additionally, there are currently no known approaches for basing diO on more
“natural” (or in fact any) hardness (as opposed to extractability) assumption.

1.2 Our Results

In this paper, we combine the above-mentioned two approaches. Very roughly speaking, we will use
obfuscation to obtain a variant of the notion of a P-certificate, and we next show that this variant
still suffices to obtain constant-round concurrent zero-knowledge (where the soundness conditions
holds also against non-uniform PPT attackers). More importantly, rather than using diO, we are
able to use indistinguishability obfuscation (iO) [BGI+01, GGH+13]. Following the groundbreaking
work of Garg et al [GGH+13], there are now several candidate constructions of iO that can be based
on hardness assumptions on (approximate) multilinear maps [PST14, GLSW14].

Theorem. Assume the existence of indistinguishability obfuscation for P/poly (with slightly super-
polynomial security), one-way permutations (with slightly super-polynomial security) and collision-
resistant hash function. Then there exists a constant-round concurrent zero-knowledge argument
for NP.

In more details, our approach proceeds in the following steps:

• We first observe that a warm-up case considered in [CLP13b]—which shows the existence
of constant-round concurrent zero-knowledge based on, so-called, unique P-certificates (that
is, P-certificates for which there exists at most one accepting certificate for each statement)
directly generalizes also to unique P-certificates in the Common Random String model (a.k.a.
the Uniform Random String model (URS)) satisfying an adaptive soundness property (where
the statement to be proved can be selected after the URS).

• We next show that by appropriately modifying the protocol, we can handle also unique P-
certificates in the URS model satisfying even just a “static” soundness condition (where the
statement needs to be selected before the URS is picked), and additionally also unique P-
certificates (with static soundness) in the Common Reference String (CRS) model, where the
reference string no longer is required to be uniform. Unique P-certificates in the CRS model
(also with non-uniform soundness) can be constructed based on the existence of diO for (a
restricted class of) P/poly [BP13], and as such this preliminary step already implies the result
of [PPS13] in a modular way (but with worse concrete round complexity).
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• We next consider a more relaxed variant of unique P-certificates in the CRS model—which
we refer to as delegatable unique P-certificates—where the CRS is allowed to be statement
dependent but only a “small” (in particular, independent of the statement length) part of the
CRS generation requires using secret coins. By relying on iO for P/poly, we next show that
the protocol can be generalized to work also with such delegatable unique P-certificates.

• We finally leverage recent results on delegation of computation based on iO from [BGL+14,
CHJV14, KLW14] and show that the beautiful protocol of Koppula, Lewko and Waters
[KLW14] can be modified into a delegatable unique P-certificate (also with non-uniform
soundness).

1.3 Outline of Our Techniques

We here provide a detailed outline of our techniques. As mentioned, our construction heavily
relies on a “warm-up” case of the construction of [CLP13b], which we start by recalling (closely
following the description in [CLP13b]). The starting point of the construction of [CLP13b] is the
construction is Barak’s [Bar01] non-black-box zero-knowledge argument for NP. We start by very
briefly recalling the ideas behind his protocol (following a slight variant of this protocol due to
[PR03b]).

Barak’s protocol Roughly speaking, on common input 1n and x ∈ {0, 1}poly(n), the Prover P
and Verifier V , proceed in two stages. In Stage 1, P starts by sending a computationally-binding
commitment c ∈ {0, 1}n to 0n; V next sends a “challenge” r ∈ {0, 1}2n. In Stage 2, P shows (using
a witness indistinguishable argument of knowledge) that either x is true, or there exists a “short”
string σ ∈ {0, 1}n such that c is a commitment to a program M such that M(σ) = r.1

Soundness follows from the fact that even if a malicious prover P ∗ tries to commit to some
program M (instead of committing to 0n), with high probability, the string r sent by V will
be different from M(σ) for every string σ ∈ {0, 1}n. To prove ZK, consider the non-black-box
simulator S that commits to the code of the malicious verifier V ∗; note that by definition it thus
holds that M(c) = r, and the simulator can use σ = c as a “fake” witness in the final proof.
To formalize this approach, the witness indistinguishable argument in Stage 2 must actually be
a witness indistinguishable universal argument (WIUA) [Mic00, BG08] since the statement that c
is a commitment to a program M of arbitrary polynomial-size, and that M(c) = r within some
arbitrary polynomial time, is not in NP.

Now, let us consider concurrent composition. That is, we need to simulate the view of a verifier
that starts poly(n) concurrent executions of the protocol. The above simulator no longer works in
this setting: the problem is that the verifier’s code is now a function of all the prover messages sent
in different executions. (Note that if we increase the length of r we can handle a bounded number
of concurrent executions, by simply letting σ include all these messages).

So, if the simulator could commit not only to the code of V ∗, but also to a program M that
generates all other prover messages, then we would seemingly be done. And at first sight, this
doesn’t seem impossible: since the simulator S is actually the one generating all the prover messages,
why don’t we just let M be an appropriate combination of S and V ∗? This idea can indeed be
implemented [PR03b, PRT11], but there is a serious issue: if the verifier “nests” its concurrent

1We require that C is a commitment scheme allowing the committer to commit to an arbitrarily long string
m ∈ {0, 1}∗. Any commitment scheme for fixed-length messages can easily be modified to handle arbitrarily long
messages by asking the committer to first hash down m using a collision-resistant hash function h chosen by the
receiver, and next commit to h(m).
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executions, the running-time of the simulation quickly blows up exponentially—for instance, if we
have three nested sessions, to simulate session 3 the simulator needs to generate a WIUA regarding
the computation needed to generate a WIUA for session 2 which in turn is regarding the generation
of the WIUA of session 1 (so even if there is just a constant overhead in generating a WIUA, we can
handle at most log n nested sessions).

Unique P-certificates to The Rescue: The “Warm-Up” Case from [CLP13b] As shown
in [CLP13b], the blow-up in the running-time can be prevented using Unique P-certificates. Roughly
speaking, we say that (P, V ) is a P-certificate system if (P, V ) is a non-interactive proof system
(i.e., the prover send a single message to the verifier, who either accepts or rejects) allowing an
efficient prover to convince the verifier of the validity of any deterministic polynomial-time com-
putation M(x) = y using a “certificate” of some fixed polynomial length (independent of the size
and the running-time of M) whose validity the verifier can check in some fixed polynomial time
(independent of the running-time of M). The P-certificate system is unique if there exists at most
one accepted proof for any statement.

The protocol proceeds just as Barak’s protocol except that Stage 2 is modified as follows: instead
of having P prove (using a WIUA) that either x is true, or there exists a “short” string σ ∈ {0, 1}2n
such that c is a commitment to a program M such that M(σ) = r, we now ask P to use a WIUA
to prove that either x is true, or

• commitment consistency: c is a commitment to a program M1, and

– input certification: there exists a vector λ = ((1, π1), (2, π2), . . .) and a vector of
messages ~m such that πj certifies that M1(λ<j) outputs mj in its j’th communication
round, where λ<j = ((1, π1), . . . , (j − 1, πj−1)), and

– prediction correctness: there exists a P-certificate π of length n demonstrating that
M1(λ) = r.

Soundness of the modified protocol, roughly speaking, follows since by the unique certificate prop-
erty, for every program M1 it inductively follows that for every j, mj is uniquely defined, and thus
also the unique (accepting) certificate πj certifying M1(λ<j) = mj ; it follows that M1 determines a
unique vector λ that passes the input certification conditions, and thus there exists a single r that
make M1 also pass the prediction correctness conditions. Note that we here inherently rely on the
fact that the P-certificate is unique to argue that the sequence λ is uniquely defined. (Technically,
we here need to rely on a P-certificate that is sound for slightly super-polynomial-time as there is
no a-priori polynomial bound on the running-time of M1, nor the length of λ.)

To prove zero-knowledge, roughly speaking, our simulator will attempt to commit to its own
code in a way that prevents a blow-up in the running-time. Recall that the main reason that we had
a blow-up in the running-time of the simulator was that the generation of the WIUA is expensive.
Observe that in the new protocol, the only expensive part of the generation of the WIUA is the
generation of the P-certificates π; the rest of the computation has a-priori bounded complexity
(depending only on the size and running-time of V ∗). To take advantage of this observation, we
thus have the simulator only commit to a program that generates prover messages (in identically
the same way as the actual simulator), but getting certificates ~π as input.

In more detail, to describe the actual simulator S, let us first describe two “helper” simulators
S1, S2. S1 is an interactive machine that simulates prover messages in a “right” interaction with
V ∗. Additionally, S1 is expecting some “external” messages on the “left”—looking forward, these
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Figure 1: Simulation using P-certificates.

“left” messages will later be certificates provided by S2. See Figure 1 for an illustration of the
communication patterns between S1, S2 and V ∗.

S1 proceeds as follows in the right interaction. In Stage 1 of every session i, S1 first commits to
a machine S̃1(j′, τ) that emulates an interaction between S1 and V ∗, feeding S1 input τ as messages
on the left, and finally S̃1 outputs the verifier message in the j′’th communication round in the
right interaction with V ∗. (Formalizing what it means for S1 to commit to S̃1 is not entirely trivial
since the definition of S̃1 depends on S1; we refer the reader to the formal proof for a description of
how this circularity is broken.2 S1 next simulates Stage 2 by checking if it has received a message
(j, πj) in the left interaction, where j is the communication round (in the right interaction with
V ∗) where the verifier sends its random challenge and expects to receive the first message of Stage
2; if so, it uses M1 = S̃1 (and the randomness it used to commit to it), j and σ being the list of
messages received by S1 in the left interaction, as a ”fake” witness to complete Stage 2.

The job of S2 is to provide P-certificates πj for S1 allowing S1 to complete its simulation. S2

emulates the interaction between S1 and V ∗, and additionally, at each communication round j, S2

feeds S1 a message (j, πj) where πj is a P-certificate showing that S̃1(j, σ<j) = rj , where σ<j is the
list of messages already generated by S2, and rj is the verifier message in the j’th communication
round. Finally, S2 outputs its view of the full interaction.

The actual simulator S just runs S2 and recovers from the view of S2 the view of V ∗ and outputs
it. Note that since S1 has polynomial running-time, generating each certificate about S̃1 (which is
just about an interaction between S1 and V ∗) also takes polynomial time. As such S2 can also be
implemented in polynomial time and thus also S.

Finally, indistinguishability of this simulation, roughly speaking, follow from the hiding prop-
erty of the commitment in Stage 1, and the WI property of the WIUA in Stage 2. (There is
another circularity issue that arises in formalizing this—as S1 in essence needs to commit to its
own randomness—but it can be dealt with as shown in [CLP13b]; in this overview, we omit the
details as they are not important for our modifications to the protocol, but they can be found in
the formal proof.)

Generalizing to Unique P-certificates in CRS model The key technical contribution in
[CLP13b] was to generalize the above approach to deal also with “non-unique” P-certificates. Here
we instead aim to generalize the above approach to work with P-certificates in the CRS model, but
still relying on the uniqueness property.

2Roughly speaking, we let S1 take the description of a machine M as input, and we then run S1 on input M = S1.
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Let us first note that if we had access to unique P-certificate in the URS (i.e., the uniform
reference string) model satisfying an adaptive soundness property (where the statement to be
proved can be selected after the URS, then above-mentioned protocol almost directly generalized
to work with them (as opposed to using unique P-certificates in the “plain” model) by simply
having the Verifier send the URS ρ along with its first message of the protocol.3 The only issue
that needs to be addressed in implementing this change is to specify what it means that “πj certifies
that M1(λ<j) outputs mj” in the input certification step in Stage 2, since this certification needs
to be done with respect to some URS. We modify Stage two to require that M1 outputs not only
messages mi, but also reference strings ρi. Let us remark that to ensure that soundness still holds,
we require the P-certificate system to satisfy a strong uniqueness property: uniqueness of accepting
proofs needs to hold for all reference strings ρ.

We next note that the protocol can be further generalized to handle also unique P-certificates
in the URS model satisfying even just a static soundness condition (where the statement needs to
be selected before the URS is picked) by proceeding as follows:

• We add a Stage 1.5 to the protocol where the Prover is asked to provide a commitment c2

to 0n and then asked to provide a WIUARG that either x ∈ L or c2 is a commitment to a
“well-formed” statement (but not that the statement is true) for the P-certificate in use in
Stage 2.

• Stage 2 of the protocol is then modified to first have the Verifier send the URS for the P-
certificate, and then requiring that the prover uses a P-certificate for the statement committed
to in c2. In other words, we require the Prover to commit in advance, and prove knowledge
of, the statement to be used in the P-certificate and thus static soundness suffices.

Additionally, this approach generalizes also to deal with unique P-certificates in the Common
Reference String (CRS) model (where the reference string no longer needs to be uniform), by having
the Verifier provide a zero-knowledge proof that the CRS was well-formed.4 Let us again remark
that to ensure that soundness still holds, we require the uniqueness property of the P-certificate
system to hold for all reference strings ρ, even invalid ones.

Generalizing to Delegatable P-certificates The notion of a P-certificate in the CRS model
requires that the same CRS can be used to prove any statement q of any (polynomially-related)
length. We will now consider a weaker notion of a P-certificate in the CRS model, where the
CRS is “statement-dependent”—that is, the CRS is generated as a function of the statement q
to be proved—in essence, such P-certificates can be viewed as specific instances of a two-round
delegation protocol. But whereas the CRS may depend on the statement, we still restrict it in
several important ways:

• As before, the length of the CRS is “short” (independent of the length of the statement q).

• Additionally, only a “small” part of the generation procedure relies on secret coins. More
precisely, the CRS generation procedure proceeds in three steps: 1) first, secret coins are used

3To make this work, we need to rely on P-certificates in the URS model with perfect completeness. This require-
ment can be removed by additionally performing a coin-tossing to determine the URS. For simplicity of exposition,
we here simply assume perfect completeness.

4Again, we here rely on P-certificates in the CRS model with perfect completeness. This requirement can also
be avoided by having the prover and the verifier perform coin-tossing-in-the-well to determine the secret coins the
verifier should use for generating the CRS. As our instantiations of P-certificates will satisfy perfect completeness,
we do not further formalize this approach.
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to generate a public parameter PP and a secret parameter K (this is done independently
of the statement q), 2) next, only PP is used to deterministically process the statement q
into a “short” digest d (independent of the length of q), and 3) the digest d and the secret
parameter K is efficiently processed to finally generate the CRS (independent of the length
of q). To emphasize, only step 2 requires work that is proportional to the length of q, but
this work only requires public information.

We now generalize the above approach to also work with delegatable unique P-certificates.

• Instead of having the Verifier send the CRS in the clear (which it cannot compute as it does
not know the statement q on which it will be run), it simply runs part 1 of the CRS generation
procedure to generate PP and K and sends just the public-parameter PP to the Prover.

• The Prover is then asked to provide a third commitment c3 to 0n and provide a WIUARG that
either x ∈ L or c3 is a correctly computed digest d (w.r.t., PP ) to the statement q committed
to in c2. (In essence, the Verifier is delegating the computation of d to the Prover.)

• Next, the Verifier sends an indistinguishability obfuscation Π̃ = iO(Π) of a program Π that
on input a decommitment (d′, r′) to c3 processes d′ and K into a CRS ρ and outputs it.
(The reason that the Verifier cannot generate ρ in the clear is that digest d cannot be sent
to the Verifier in the clear; recall that the honest prover will never compute any such digest,
it is meant to commit to 0n and prove that x ∈ L.) Additionally, the verifier gives a zero-
knowledge proof that the obfuscation is correctly computed (and using the same random coins
that were used to generate PP ).

• Then, the Prover provides a commitment c4 to 0n and provides a WI proof of knowledge that
x ∈ L or c4 is a commitment to a CRS ρ computed by applying the obfuscated code Π̃ to a
proper decommitment of c3.

• Finally, in Stage 2 of the protocol, we require the Prover to provide P-certificates w.r.t to the
CRS ρ committed to in c4.

Note that if c3 is perfectly binding, then by iO security of the obfuscation, we can replace Π with
a program that has the CRS ρ hardcoded and does not depend on K, and this suffices for arguing
that soundness of the protocol still holds. On the other hand, the simulation can proceed just
as before except that the simulator now uses the obfuscated code Π̃ to generate the CRS ρ and
commits to it in c4.

This completes the informal description of our protocol and its proof of security. In the for-
mal description of the protocol in Section 4, we directly provide a construction using delegatable
unique P-certificates, without going through the intermediary, simpler, cases mentioned above.
As mentioned above, the above description ignores certain subtleties required to prevent circular-
ities in the simulation and the proof of security. To deal with these issue (already considered in
[CLP13b]) as well as to streamline the description of the final protocol (to enable a better concrete
round-complexity) the formal description slightly difference from what is outlined above.

Realizing Delegatable Unique P-Certificates We finally leverage recent results on delegation
of computation based on iO for circuits from [BGL+14, CHJV14, KLW14] and show that the
beautiful protocol of Koppula, Lewko and Waters [KLW14] can be massaged (and slightly modified)
into a delegatable unique P-certificate.

7



Let is point out that, just as [CLP13b], our protocol requires the use of P-certificates that
satisfy a slightly strong soundness condition—namely, we require soundness to hold against circuits
of size T (·) where T (·) is some “nice” (slightly) super-polynomial function (e.g., T (n) = nlog log logn).
To achieve such (delegatable) P-certificates, we thus need to rely on iO for P/poly secure against
T (·)-size circuits.

1.4 Other Related Work

Since the work of Barak [Bar01], non-black-box simulation techniques have been used in sev-
eral other contexts: For example, non-malleability [Bar02, Pas04, PR05a, PR05b], resettable-
soundness [BGGL01, DGS09, BP12, CPS13, COPV13, COP+14], concurrent secure computation
[Lin03, PR03a, Pas04, BS05], covert secure computation [GJ10] and more. We believe our tech-
niques may yield improved constructions also in these settings.

We also mention recent work of [CLP13a, Goy13] that constructs public-coin concurrent zero-
knowledge protocols using non-black-box simulation; these protocols are not constant-round but
instead rely on “standard” assumptions. Let us finally mention that the constant-round concurrent
zero-knowledge protocol of [CLP13b] (which relies on non-interactive P-certificates) actually also
is public-coin, whereas our protocol is not. We leave open the question of basing public-coin
concurrent zero-knowledge on iO.

2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We denote by PPT
probabilistic polynomial time Turing machines. We assume familiarity with interactive Turing
machines, denoted ITM, interactive protocols. Given a pair of ITMs, A and B, we denote by
(A(x), B(y))(z) the random variable representing the (local) output of B, on common input z and
private input y, when interacting with A with private input x, when the random tape of each
machine is uniformly and independently chosen, and ViewB 〈A(x), B(y)〉 (z) the random variable
representing B’s view in such an interaction. The term negligible is used for denoting functions
that are (asymptotically) smaller than one over any polynomial. More precisely, a function ν(·)
from non-negative integers to reals is called negligible if for every constant c > 0 and all sufficiently
large n, it holds that ν(n) < n−c.

2.1 Statistically Binding Commitment Schemes

Commitment protocols allow a sender to commit itself to a value while keeping it secret from the
receiver ; this property is called hiding. At a later time, the commitment can only be opened to a
single value as determined during the commitment protocol; this property is called binding. Com-
mitment schemes come in two different flavors, statistically (or perfectly) binding and statistically
(or perfectly) hiding; we only make use of statistically (and perfectly) binding commitments in this
paper. Below we sketch the properties of a statistically (and perfectly) binding commitment; full
definitions can be found in [Gol01].

In statistically (perfectly) binding commitments, the binding property holds against unbounded
adversaries, while the hiding property only holds against computationally bounded (non-uniform)
adversaries. The statistically (perfectly) binding property asserts that, with overwhelming proba-
bility (or probability 1) over the randomness of the receiver, the transcript of the interaction fully
determines the value committed to by the sender. The computational-hiding property guarantees
that the commitments to any two different values are computationally indistinguishable.
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Non-interactive perfectly-binding commitment schemes can be constructed using any one-to-
one one-way function (see Section 4.4.1 of [Gol01]). Two-message statistically binding commitment
schemes, in which the receiver first sends a single random initialization message, can be obtained
from any one-way function [Nao91, HILL99].

2.2 Interactive Proofs and Arguments

We recall the standard definitions of interactive proofs [GMR89] and arguments (a.k.a computa-
tionally sound proofs) [BCC88].

Definition 1 (Interactive Proof System). A pair of interactive machines (P, V ) is called an inter-

active proof system for a language L if there is a negligible function ν(·) such that the following
two conditions hold:

• Completeness: For every n ∈ N , x ∈ L, and every w ∈ RL(x),

Pr[(P (w), V )(1n, x) = 1] = 1

• Soundness: For every pair of machines B1, B2 and every n ∈ N ,

Pr[(x, z)← B1(1n) : x /∈ L ∧ (B2(z), V )(1n, x) = 1] ≤ ν(n)

If the soundness condition only holds against all non-uniform polynomial-time machines B1, B2,
the pair (P, V ) is called an interactive argument system.

2.3 Witness Indistinguishability

An interactive protocol is witness indistinguishable (WI) [FS90] if the verifier’s view is “indepen-
dent” of the witness used by the prover for proving the statement.

Definition 2 (Witness-indistinguishability). An interactive protocol (P, V ) for L ∈ NP is witness

indistinguishable for RL if for every PPT adversarial verifier V ∗, and for every two sequences
{w1

n,x}n∈N,x∈L∩{0,1}poly(n) and {w2
n,x}n∈N,x∈L∩{0,1}poly(n), such that w1

n,x, w
2
n,x ∈ RL(x) for every

n ∈ N and x ∈ L∩{0, 1}poly(n), the following ensembles are computationally indistinguishable over
N :

• {ViewV ∗
〈
P (w1

n,x), V ∗(z)
〉

(1n, x)}n∈N,x∈L∩{0,1}poly(n),z∈{0,1}∗

• {ViewV ∗
〈
P (w2

n,x), V ∗(z)
〉

(1n, x)}n∈N,x∈L∩{0,1}poly(n),z∈{0,1}∗

2.4 Special-sound WI proofs

A 4-round public-coin interactive proof for the language L ∈ NP with witness relation RL is
special-sound with respect to RL, if for any two transcripts (δ, α, β, γ) and (δ′, α′, β′, γ′) such that
the initial two messages, δ, δ′ and α, α′, are the same but the challenges β, β′ are different, there is
a deterministic procedure to extract the witness from the two transcripts and runs in polynomial
time. In this paper, we rely on special sound proofs that are also witness indistinguishable. Special-
sound WI proofs (WISSP for short) for languages in NP can be based on the existence of 2-round
commitment schemes, which in turn can be based on one-way functions [GMW91, FS90, HILL99,
Nao91].
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2.5 Universal Arguments

Universal arguments (introduced in [BG08] and closely related to the notion of CS-proofs [Mic00])
are used in order to provide “efficient” proofs to statements of the universal language LU with
witness relation RU defined in [BG08, Mic00]. A triplet y = (M,x, t) ∈ LU if the non-deterministic
machine M accepts input X within t < T (|x|) steps, for a slightly super-polynomial function
T (n) = nlog logn. We denote by TM (x,w) the running time of M on input x using the witness w.
Notice that every language in NP is linear time reducible to LU . Thus, a proof system for LU allows
us to handle all NP-statements. Below we recall the definition in [BG08].

Definition 3 (Universal argument). A pair of interactive Turing machines (P, V ) is called a uni-
versal argument system if it satisfies the following properties:

• Efficient verification: There exists a polynomial p such that for any y = (M,x, t), the total time
spent by the (probabilistic) verifier strategy V , on common input 1n, y, is at most p(n+ |y|).
In particular, all messages exchanged in the protocol have length smaller than p(n+ |y|).

• Completeness by a relatively efficient prover: For every n ∈ N , y = (M,x, t) ∈ LU and w in
RU (y),

Pr[(P (w), V )(1n, (M,x, t)) = 1] = 1

Furthermore, there exists a polynomial q such that the total time spent by P (w), on common
inputs 1n and (M,x, t), is at most q(n+ |y|+ TM (x,w)) ≤ q(n+ |y|+ t).

• Computational Soundness: For every polynomial size circuit family {P ∗n}n∈N , there is a neg-
ligible function ν, such that, for every n ∈ N and every triplet (M,x, t) ∈ {0, 1}poly(n) \ LU ,

Pr[(P ∗n , V )(1n, (M,x, t)) = 1] < ν(n)

• Weak proof of knowledge: For every positive polynomial p there exists a positive polynomial
p′ and a probabilistic polynomial-time oracle machine E such that the following holds: for
every polynomial-size circuit family {P ∗n}n∈N , every sufficiently large n ∈ N and every y =
(M,x, t) ∈ {0, 1}poly(n) if Pr[(P ∗n , V )(1n, y) = 1] > 1/p(n) then

Prr[∃w = w1, . . . wt ∈ RU (y) s.t. ∀i ∈ [t], EP
∗
n

r (1n, y, i) = wi] >
1

p′(n)

where RU (y)
def
= {w : (y, w) ∈ RU} and E

P ∗n
r (·, ·, ·) denotes the function defined by fixing the

random-tape of E to equal r, and providing the resulting Er with oracle access to P ∗n .

The weak proof-of-knowledge property of universal arguments only guarantees that each indi-
vidual bit wi of some witness w can be extracted in probabilistic polynomial time. Given an input
1n and y = (M,x, t) in LU ∩ {0, 1}poly(n), since the witness w ∈ RU (y) is of length at most t, it
follows that there exists a extractor running in time polynomial in poly(n) · t that extracts the
whole witness; we refer to this as the global proof-of-knowledge property of a universal argument.

The notion of witness indistinguishability of universal argument for RU is defined similarly as
that for interactive proofs/arguments for NP relations; we refer the reader to [BG08] for a formal
definition. [BG08] (based on [Mic00, Kil95]) presents a witness indistinguishable universal argument
(WIUA for short) based on the existence of families of collision-resistant hash functions.
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2.6 Concurrent Zero-Knowledge

An interactive proof is said to be zero-knowledge if it yields nothing beyond the validity of the
statement being proved [GMR89].

Definition 4 (Zero-knowledge). An interactive protocol (P, V ) for language L is zero-knowledge

if for every PPT adversarial verifier V ∗, there exists a PPT simulator S such that the following
ensembles are computationally indistinguishable over n ∈ N :

• {ViewV ∗ 〈P (w), V ∗(z)〉 (1n, x)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

• {S(1n, x, z)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

In this work we consider the setting of concurrent composition. Given an interactive protocol
(P, V ) and a polynomial m, an m-session concurrent adversarial verifier V ∗ is a PPT machine
that, on common input x and auxiliary input z, interacts with up to m(|x|) independent copies of
P concurrently. The different interactions are called sessions. There are no restrictions on how V ∗

schedules the messages among the different sessions, and V ∗ may choose to abort some sessions
but not others. For convenience of notation, we overload the notation ViewV ∗ 〈P, V ∗(z)〉 (1n, x) to
represent the view of the cheating verifier V ∗ in the above mentioned concurrent execution, where
V ∗’s auxiliary input is z, both parties are given common input 1n, x ∈ L, and the honest prover
has a valid w witness of x.

Definition 5 (Concurrent Zero-Knowledge [DNS04]). An interactive protocol (P, V ) for language
L is concurrent zero-knowledge if for every concurrent adversarial verifier V ∗ (i.e., any m-session
concurrent adversarial verifier for any polynomial m), there exists a PPT simulator S such that
following two ensembles are computationally indistinguishable over n ∈ N .

• {ViewV ∗ 〈P (w), V ∗(z)〉 (1n, x)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

• {S(1n, x, z)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

2.7 Forward Secure PRG

We recall the definition of forward secure PRG from [CLP13b]. Roughly speaking, a forward-secure
pseudorandom generator (PRG) (first formalized by [BY03], but early usages go back to [BH92])
is a pseudorandom generator where the seed is periodically updated—thus we have a sequence of
seeds s1, s2, . . . generating a pseudorandom sequence q1, q2, . . .—such that if the seed st is exposed
(and thus the “later” sequence qt+1, qt+2, . . . is also exposed), the “earlier” sequence q1, . . . , qt still
remains pseudorandom.

We provide a simple definition of a forward secure pseudorandom generator, where the “expo-
sure” time t is statically selected.5

Definition 6 (Forward-secure Pseudorandom Generator). We say that a polynomial-time com-
putable function G is a forward secure Pseudo-Random Generator (fsPRG) if on input a string
s, and ` ∈ N , it outputs two sequences (s1, s2, . . . s`) and (q1, q2, . . . , q`) such that the following
properties hold:

• Consistency: For every n, ` ∈ N , s ∈ {0, 1}n, the following holds

5The definition of [BY03] allows an attacker to adaptively select the exposure time t. For our purposes the simpler
non-adaptive notion suffices.
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– if G(s, `) = ((s1, ~s), (q1, ~q)), then G(s1, `− 1) = (~s, ~q).

• Forward Security: For every polynomial p, the following ensembles are computationally in-
distinguishable

– {s← Un, (~s, ~q)← G(s, `) : st, ~q≤t}n∈N,`∈[p(n)],t∈[`]

– {st ← Un, ~q ← (Un)` : st, ~q≤t}n∈N,`∈[p(n)],t∈[`]

where Un is the uniform distribution over {0, 1}n and ~q≤t = (q1, . . . , qt).

Any (traditional) PRG implies the existence of a forward secure PRG; thus by the result of
[HILL99] the existence of forward secure PRGs are implied by the existence of one-way functions.

In our application of forward secure PRGs, we will use the outputs of the PRG in reverse
order, and thus write G(s, `) = (s`, s`−1, . . . s1), (q`, q`−1, . . . , q1). As a consequence, we may reveal
a seed st “explaining” the “earlier” sequence ((st−1, . . . s1), (qt−1, . . . , q1)) while guaranteeing that
the “later” sequence (q`, . . . qt) still is indistinguishable from random.

2.8 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation for polynomial-sized circuits of [BGI+01].

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform machine iO is a indistinguishabil-
ity obfuscator for a class of deterministic circuits {Ck}k∈N, if the following conditions are satisfied:

Correctness: For all security parameters k ∈ N, for all C ∈ Ck, for all input x, we have that

Pr[Λ← iO(1k, C) : Λ(x) = C(x)] = 1

Security: For every non-uniform PPT samplable distribution D over the support
{
Ck × Ck × {0, 1}poly(k)

}
,

and adversary A∗, there is a negligible function µ, such that, for sufficiently large k ∈ N, if

Pr[(C1, C2, z)← D(1k) : ∀x, C1(x) = C2(x)] > 1− µ(k)

Then, the following holds

|Pr[(C1, C2, z)
$← D(1k) : A∗(iO(1k, C1), z)]

−Pr[(C1, C2, z)
$← D(1k) : A∗(iO(1k, C2), z)]| ≤ µ(k)

Furthermore, we say that iO is super-polynomially secure if there is a super-polynomial function
T , such that, the above condition holds for all T -time adversary A∗.

Definition 2. A uniform PPT machine iO(·, ·) is an indistinguishability obfuscator for polynomial-
sized circuits if it is an indistinguishability obfuscator for the class of circuits {Ck}k∈N containing
all circuits of size at most k.

3 P-certificates

We first define P-certificates in the CRS model where the CRS is independent of the statement
being proved. Then, we move to define a two-message P-certificate system whose first message
(still called the CRS for consistency) depends on the statement to be proven.
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3.1 P-certificates in the CRS model

We consider the following canonical languages for P: for every constant c ∈ N , let Lc = {(M,x, y) :
M(x) = y within |x|c steps}. Let TM (x) denotes the running time of M on input x.

Definition 7 (P-certificate in the CRS model). A tuple of probabilistic interactive Turing machines,
(Gen,Pcert,Vcert), is a P-certificate system in the CRS model if there exist polynomials lCRS, lπ,
and the following holds:

Syntax and Efficiency: For every c ∈ N , every q = (M,x, y) ∈ Lc, and every k ∈ N , the
verification of the statement proceed as follows:

CRS Generation: CRS
$← Gen(1k, c), where Gen runs in time poly(k). The length of CRS

is bounded by lCRS(k).

Proof Generation: π
$← Pcert(1

k, c,CRS, q), where Pcert runs in time poly(k, |x|,min(TM (x), |x|c))
with TM (x) ≤ |x|c the running time of M on input x. The length of the proof π is
bounded by lπ(k).

Proof Verification: b = Vcert(1
k, c,CRS, q, π), where Vcert runs in time poly(k, |q|).

(Perfect) Completeness: For every c, d ∈ N , there exists a negligible function µ such that for
every k ∈ N and every q = (M,x, y) ∈ Lc such that |q| ≤ kd, the probability that in the above
execution Vcert outputs 1 is 1.

Definition 8 (Selective Strong Soundness of P-certificate in CRS model). We say that a P-
certificate system (Gen,Pcert,Vcert) is (selectively) strong sound if the following holds:

• Strong Soundness: There exists some “nice” super-polynomial function6 T (k) ∈ kω(1) and
some “nice” super-constant function7 C(·) ∈ ω(1) such that for every probabilistic algorithm
P ∗ with running-time bounded by T (·), there exists a negligible function µ, such that, for
every k ∈ N , c ≤ C(k),

Pr

 (q, st)
$← P ∗(1k, c)

CRS
$← Gen(1k, c)

π
$← P ∗(st,CRS)

: Vcert(1
k, c,CRS, q, π) = 1 ∧ q 6∈ Lc

 ≤ µ(k)

Definition 9 (Uniqueness of P-certificate in the CRS model). We say that a P-certificate system
(Gen,Pcert,Vcert) is unique if for every k ∈ N , every constant c ∈ N , string CRS ∈ {0, 1}∗ and
string q ∈ {0, 1}∗, there exists at most one string π ∈ {0, 1}∗, such that Vcert(1

k, c,CRS, q, π) = 1.

3.2 Two-message P-certificates

The only difference of a two-message P-certificate system from a P-certificate system in the CRS
model is that the generation of the CRS (or more precisely the message from the verifier) depends
on the statement to be proven. We describe the syntax and efficiency requirement below, with the
difference highlighted with underline.

6For instance, T (n) = nlog log logn.
7For instance, C(k) = log log logn.
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Definition 10 (Two-Message P-certificate). A tuple of probabilistic interactive Turing machines,
(Gen,Pcert,Vcert), is a (Two-Message) P-certificate system if there exist polynomials lCRS, lπ, and
the following holds:

Syntax and Efficiency: For every c ∈ N , every q = (M,x, y) ∈ Lc, and every k ∈ N , the
verification of the statement proceed as follows:

CRS Generation: CRS
$← Gen(1k, c, q), where Gen runs in time poly(k, |q|). The length of

CRS is bounded by lCRS(k).

Proof Generation: π
$← Pcert(1

k, c, q,CRS), where Pcert runs in time poly(k, |x|,min(TM (x), |x|c))
with TM (x) ≤ |x|c the running time of M on input x. The length of the proof π is
bounded by lπ(k).

Proof Verification: b = Vcert(1
k, c,CRS, q, π), where Vcert runs in time poly(k, |q|).

(Perfect) Completeness: The same as in Definition 7.

The selective strong soundness property of a two-message P-certificate system is the same as
in Definition 8 except that now the CRS generation algorithm Gen will take the statement q that
P ∗ chooses as an input. Additionally, the uniqueness property is identical to that of Definition 9.

3.3 Delegatable CRS Generation

Definition 11 (Delegatable CRS Generation). We say that a (two-message) P-certificate (Gen,Pcert,Vcert)
has delegatable CRS generation if the CRS generation algorithm Gen consists of three subroutines
(Setup,PreGen,CRSGen), and there are polynomials ld and lκ, such that, the following holds:

Delegatable CRS Generation: Gen(1k, c, q) proceeds in the following three steps:

1. Generate parameters: (PP ,K)
$← Setup(1k, c), where Setup is probabilistic and runs

in time poly(k). We call PP the public parameter and K the key.

2. (Public) statement processing: d = PreGen(PP , q), where PreGen is deterministic
and runs in time poly(k, |q|), and the length of d is bounded by ld(k). We call d the
digest of the statement.

3. (Private) CRS generation: κ
$← CRSGen(PP ,K, d), where CRSGen is probabilistic

and runs in time poly(k), and the length of κ is bounded by lκ(k).

Finally, Gen outputs CRS = (PP , κ).

The reason that we say such a CRS generation procedure is delegatable is because the only
part of computation that depends on the statement is the statement processing step; all other steps
runs in time a fixed polynomial in the security parameter. However, the statement processing step
depends only on the public parameter and the statement; hence to ensure soundness, one only needs
to ensure the correctness of this computation, without ensuring the “secrecy” of the computation.
Therefore, we also call this step “public” statement processing.
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Simple Verification Procedure: Finally, we define an additional property of P-certificates:
We say that the verification algorithm of a P-certificate system is simple if Vcert only depends on
the security parameter 1k, the CRS CRS and the proof π (independent of the statement q and the
language index c). Naturally, the uniqueness property of this instantiation is that for any 1k and
CRS string CRS, there is at most one unique accepting proof.

In the next subsection, we show how to instantiate a delegatable P-certificate system, using
the recent construction of “message hiding encoding” by [KLW14]. Since the instantiation does
have a simple verification system, for convenience, in the rest of the paper, we assume by default
that a delegatable P-certificate system has a simple verification algorithm. We remark that this
simplification makes the construction of CZK protocols slightly simpler, but is not necessary.

3.4 Instantiation of P-certificates with Delegatable CRS Generation

Our instantiation relies on the “message hiding encoding” introduced in the recent work by Kop-
pula, Lewko and Waters [KLW14], as a step towards constructing (succinct) indistinguishability
obfuscation for Turing machines. Roughly speaking, a message hiding encoding scheme proceeds
as follows: Given any message msg (usually generated at random in applications), it transforms
a Turing machine computation, M on input x (with time bound T ), into an encoding enc, which
when decoded yields msg if M(x) = 1 (in T steps) and ⊥ otherwise; on the other hand, the security
of the message hiding encoding guarantees that the encoding enc for a non-accepting computation
(M,x) hides the message msg. Below, we recall their definition: Let ΠT

M (x) denote the Turing
machine that runs M(x) for T steps and outputs 1 if the computation accepts and ⊥ otherwise.

Definition 3 (Message Hiding Encoding [KLW14]). A message hiding encoding scheme MHE con-
sists of two PPT algorithms (MHE.enc,MHE.dec) satisfying the following properties

Syntax and Efficiency: For any Turing machine M , input inp ∈ {0, 1}∗, message msg ∈ {0, 1}∗,
time bound T ∈ N, and security parameter k ∈ N,

1. Encoding: The encoding algorithm MHE.enc(1k,M, T, inp,msg) outputs an encoding enc,
in time poly(k, |M |, |inp|, |msg|, log T ) (independent of the running time of the computa-
tion.)

2. Decoding: The decoding algorithm MHE.dec(1k,M, inp, T, enc) outputs a message msg or
⊥, in time poly(k, |M |, |inp|, log T,min(TM (x), T )), where TM (x) is the running time of
M on input x.

Correctness: For any Turing machine M , input inp ∈ {0, 1}∗, message msg ∈ {0, 1}∗, time bound
T ∈ N, and security parameter k ∈ N, if ΠT

M (x) = 1, then

MHE.dec(1k,M, inp, T,MHE.enc(1k,M, T, inp,msg)) = msg

Definition 4 (Message Hiding Property). A message hiding encoding scheme MHE is secure if for
every PPT adversary A∗, and polynomial Γ, there is a negligible function ε, such that, for every
security parameter k ∈ N, every messages msg0,msg1 ∈ {0, 1}k, M of description size at most k,
time bound T ≤ p(k), and input inp ∈ {0, 1}p(k), such that, ΠT

M (inp) = 0, it holds that,

Pr

 b
$← {0, 1}

(st,msg0,msg1,M, T, inp)
$← A∗(1k)

enc
$← MHE.enc(1k,M, T, inp,msgb)

:
|msg0| = |msg1| = k
∧ T ≤ Γ(k)
∧ A∗(st, enc) = b

 ≤ 1/2 + ε(k)
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Furthermore, MHE is super-polynomially secure if there exists a super-polynomial functions Γ′,
such that the above condition holds for every Γ′-time adversary and function Γ′.

The message hiding encoding is similar to and can be viewed as a weakening of randomized
encoding [IK00] in the following sense: The encoding enc for M,x with message msg, can also be
viewed as an encoding for the augmented Turing machine M̃(x,msg) that outputs msg if M(x) = 1
and ⊥ otherwise; while randomized encoding guarantees the privacy of the whole input (x,msg),
the message hiding encoding only guarantees privacy of a part of the input msg.

In [KLW14], a construction of a message hiding encoding is proved assuming the existence of
indistinguishability obfuscation for circuits and one-way function.

Theorem 1. Assume the existence of an indistinguishability obfuscation for P/poly and an in-
jective pseudo-random generator (that are super-polynomially secure)8, there is a message hiding
encoding scheme (that is super-polynomially secure).

P-certificates from Message Hiding Encoding: In is known that randomized encoding (and
its slightly enhanced variant of garbling schemes) can be used to ensure the correctness of a com-
putation, as explored in many previous works, for example in [GGP10, BHR12b, BHR12a] for
delegation of computation. In fact, for ensuring correctness, it suffices to use a “message hid-
ing encoding” as observed in [KLW14]. Here, the message msg can be viewed as the correctness
proof, and the message hiding property ensures that a prover can only obtain msg if the underlying
computation is accepting, which implies computational soundness. This naturally suggests a two
message proof system for P : Let Ver(c, q) for q = (M,x, y) be the universal verification algorithm
that verifies if M(x) = y in |x|c steps; it outputs 1 if so and 0 otherwise; it is easy to see that the
run time of Ver is bounded by α|x|c with a universal constant α.

CRS Generation Gen(1k, c, q): Sample π
$← {0, 1}k at random. Compute the message hiding

encoding enc
$← MHE.enc(1k,M = Ver, T = α|x|c, inp = q,msg = π), with π as the message.

Additionally compute y = f(π) using a injective one-way function f . Outputs CRS string
CRS = (enc, y).

Proof Generation Pcert(1
k, c, q,CRS): Parse CRS = (enc, y). Decode z = MHE.dec(1k,Ver, |q|c, q, enc).

If f(z) = y, output proof π = z; otherwise, output ⊥.

Proof Verification Vcert(1
k,CRS, π): Parse CRS = (enc, y). Accept if f(π) = y, and reject

otherwise.

Efficiency: The proof verification algorithm Vcert runs in strict polynomial time. The complexity
of the CRS and proof generation is determined by the complexity of the encoding and decoding algo-
rithm of the message hiding encoding scheme: It follows from the the efficiency of MHE.enc that Gen
runs in time poly(k, |Ver|, |q|, |π|, log(α|x|c)) = poly(k, |q|), and from the efficiency of MHE.dec that
Pcert runs in time poly(k, |Ver|, |q|, |π|, log(|q|c),min(t∗, α|x|c)) = poly(k, |q|,min(t∗, |x|c)), where t∗

is the running time of M on input x. Moreover, the length of the proof is exactly |π| = k. In
summary, the above system satisfies the efficiency requirement of P-certificates.

Strong Soundness: It follows directly from standard techniques that the message hiding property
of MHE implies that for any constant c, the above system is secure against any PPT cheating

8The construction of [KLW14] makes use of an IO for P/poly, injective PRG, (selectively secure) puncturable
PRF, and an IND-CPA secure public key encryption scheme. All the building blocks exist assuming IO for P/poly
and injective PRG.
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prover trying to prove a statically chosen false statement q w.r.t. language Lc. This is because, for
a false statement, the computation Ver(c, q) is not accepting. Thus, it follows form the message
hiding property of MHE that, the honest encoding enc of Ver with input (c, q) and message π is
indistinguishable from an encoding enc′ of Ver, (c, q) and a different message, say, 0n. Therefore, if
a cheating prover can produce a valid proof for q when receiving an honest CRS = (enc, f(π)) with
polynomial probability, it can still produce a valid proof when receiving CRS′ = (enc′, f(π)). Since
a valid proof is π, the cheating prover violates the one-wayness of f . Thus soundness holds.

To obtain strong soundness, we rely on complexity leveling. Assume that MHE and the injective
one-way function is super-polynomially secure w.r.t. to a super-polynomial function Γ. There must
exist another super-polynomial function Γ′ and a super-constant function β′, such that, Γ′(k)β

′(k) ≤
Γ(k) (for example, let Γ′ be equal to 2β(k) log k for β(k) = ω(1); set β′(k) = β(k)1/2 and Γ′(k) =
2β
′(k) log k). It follows from the same argument that the above argument system is sound against all

Γ′-time cheating provers who chooses false statement q w.r.t. any language Lc for c < β′(k). This
implies that the system is strong sound.

Uniqueness: For any CRS string CRS(enc, y), it follows from the injectiveness of the one-way
function f , that there is at most one string π, such that, Ver(1k,CRS, π) = 1, that is, f(π) = y.

Summarizing, we have,

Theorem 2. Assume the existence of a message hiding encoding scheme and an injective one-way
function (that are both super-polynomially secure), there is a (two-message) P-certificate system
with (strong) soundness and uniqueness.

Delegatable CRS Generation. The message hiding encoding scheme of [KLW14] has certain
special structure, such that, the resulting construction of P-certificates directly have delegatable
CRS generation. The special property is that their encoding algorithm can be divided into three
steps matching exactly the three steps in delegatable CRS generation:

(i) First, it generates certain public parameters and a key, depending only on the security pa-
rameter k and the time bound T . (Namely, this step runs their Setup-Acc and Steup-Itr
algorithms; let PP denote the output of these two algorithms and K is a randomly sampled
puncturable PRF key).

(ii) Then, the input of the computation x is processed using the security parameter and public
parameters to produce a digest of the input; this step is deterministic. (Namely, this step
runs their Write-Store, Prep-Write, and Update algorithms iteratively with the input x and the
public parameters PP , to compute a digest w of the input. Note that their input processing
step also produces a processed input denoted as store, which in an overly simplified view, is
similar to a Merkle Hash tree built with leaves x9; and store is also a part of the encoding.
However, we notice that the rest of the encoding does not depend on store, and since it can
be re-computed by the decoder given x and the public parameter, it can hence be omitted
from the encoding.)

(iii) Finally, the encoding is produced depending only on the security parameter, the digest of
the input, the public parameter, and the key. (Namely, this step runs the Setup-Spl, Sign-Spl
using the PRF key K and the digest w, and then obfuscates using IO a program that depends
on the TM M , the time bound T , the public parameter PP and K.)

9The actual computation of store is much more complicated. In an over-simplified view, it is similar to a Merkle
hash tree computed using a specially crafted hash function implemented using IO.
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These three steps for generating an encoding corresponds exactly to the Setup, PreGen and CRSGen
algorithms in a delegatable CRS generation, with the CRSGen additionally computes the image y =
f(π). Thus, combining Theorem 2 with the construction of message hiding encoding of [KLW14],
and noticing the special structure of its encoding algorithm, we have,

Corollary 1. Assume the existence of a message hiding encoding scheme and an injective pseudo-
random generator (that are both super-polynomially secure), there is a (two-message) P-certificate
system with (strong) soundness, uniqueness, and delegatable CRS generation.

4 Our Protocol

We proceed to describe formally our protocol, (P, V ). The protocol relies on the following primitives:

• A non-interactive perfectly binding commitment scheme com. We assume without loss of
generality that com only needs n bits of randomness to commit to any n-bit string, (as it can
always expand these n bits into a longer sequence using a PRG).

The requirement for a perfectly binding commitment scheme can be weakened to rely only on
a statistically binding commitment scheme. See Remark 2 for more details.

• A strong (two-message) P-certificate system (Gen,Pcert,Vcert) with delegatable CRS genera-
tion Gen = (Setup,PreGen,CRSGen) (and simple verification). The strong soundness property
is associated with parameter T (·) and C(·), where T (·) is a “nice” super-polynomial function
and C(·) is a “nice” super-constant function. The uniqueness property ensures that for every
string CRS, there exists at most one proof π that is accepted by Vcert(1

n,CRS, π) = 1. This
allows us to define the following deterministic oracle OnV cert, which will be used in the CZK
protocol later.

OnV cert(CRS) =

{
π If there exists uniqueπ s.t. Vcert(1

n,CRS, π) = 1

⊥ otherwise

We call OnV cert the P-certificate oracle. Additionally, we consider a universal emulator
Emulatorn that on input (P, x,O) emulates the execution of a deterministic oracle machine
P on input x with oracle OnV cert as follows: It parses O as an vector; to answer the ith query
CRSi from P , it checks whether Oi is the right answer from this CRS (i.e., Vcert(1

n,CRSi, Oi)
= 1); if so, it returns Oi to P ; otherwise, it aborts and outputs ⊥. Finally, the emulator
outputs the output of P .

For simplicity, we assume that the lengths of the CRS, the proof π, and the digest of statement
d are all bounded by n, the security parameter. This is without loss of generality, and can be
achieved by scaling down the security parameter.

We assume by default that the two message P-certificate system has a simple verification
procedure (i.e., Vcert depends only on 1k,CRS, π, but not the statement). This is without
loss of generality, since our instantiation based on the message hiding encoding of [KLW14]
satisfies this property. But this is not necessary. See remark 3 on how to avoid using this
property.

• A family of hash functions {Hn}n: to simplify the exposition, we here assume that both
com and {Hn}n are collision resistant against circuits of size T ′(·), where T ′(·) is “nice”
super-polynomial function.

18



As in [BG08], this assumption can be weakened to just collision resistance against polynomial-
size circuits by modifying the protocol to use a “good” error-correcting code ECC (i.e., with
constant distance and with polynomial-time encoding and decoding), and replace commit-
ments com(h(·)) with com(h(ECC(·))). See Remark 1 for more discussion.

• An indistinguishability obfuscator iO for circuits.

• A constant-round WIUA argument system, a constant-round WISSP proof system, and a
constant-round ZK argument system.

Let us now turn to specifying the protocol (P, V ). The protocol makes use of three parameters:
m(·) is a polynomial that upper bounds the number of concurrent sessions; Γ(·) is a “nice” super-
polynomial function such that T (n), T ′(n) ∈ Γ(n)ω(1), and D(·) is a “nice” super-constant function
such that D(n) ≤ C(n). Let m = m(n), Γ = Γ(n) and D = D(n). In the description below, when
discussing P-certificates, we always consider the language LD. For simplicity, below we do not
explicitly discuss about the length of the random strings used by various algorithms.

The prover P and the verifier V , on common input 1n and x and private input a witness w to
P , proceed as follow:

Phase 1–Program Slot: P and V exchanges the following three messages.

(a) V chooses a randomly sampled hash function h← Hn.

(b) P sends a commitment c to 0n using com, and random coins ρ1.

(c) V replies with a random “challenge” r of length 4n.

We call (c, r) the program-slot.

Note: In the simulation, the simulator commits to a program S̃1.

Phase 2—Commit to Statement: P and V exchanges the following messages.

(a) P sends a commitment c2 to 0n using com, and random coins ρ2.

(b) P gives a WIUA argument of the statement that either x ∈ L OR there exists S̃1 ∈
{0, 1}Γ(n), j ∈ [m], s ∈ {0, 1}n, π ∈ {0, 1}n, σ ∈ {0, 1}Γ(n), ρ, ρ2 such that,

Knowledge of Statement: c2 = com(h(q); ρ2), where q ∈ {0, 1}3Γ.

Correctness of Statement: The statement q satisfy the following properties:

• Use of Emulator: q can be parsed into (Emulatorn, (S̃1, (1
n, j, s), σ), r).

• Program Consistency: c = com(h(S̃1); ρ).

If the argument is not accepting, V aborts.

Note: By definition of the emulator Emulatorn, on input (S̃1, (1
n, j, s), σ), it will emulate the

execution of the deterministic oracle machine S̃1(1n, j, s) with oracle OnV cert using answers
stored in vector σ.

The purpose of this phase is twofold: First, it enforces a cheating prover to commit to the
“trapdoor” statement before the CRS of the P-certificate is generated, and hence the soundness
of the protocol only relies on the selective soundness of the P-certificate. Second, it checks
whether the “trapdoor” statement has the right structure, in particular, the statement is about
whether S̃OV cert

1 (1n, j, s) = r, when the oracle is emulated by Emulatorn using σ, who checks
the correctness of the proofs in σ.
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Note that the soundness of the protocol will crucially rely on the fact that the input to S̃1 has
length at most 3n, much smaller than the length, 4n, of the output r (and the deterministic
oracle OV cert is emulated correctly by Emulatorn). On the other hand, in the simulation, the
simulator will commit to the “trapdoor” statement, q = (Emulatorn, (S̃1, (1

n, j, s), σ), r) in
order to “cheat”.

Phase 3—Delegate Public Statement Processing: V delegates the public statement process-
ing to P :

(a) V generates (PP ,K) = Setup(1n, D; ρSetup) using random coins rCRS, and sends PP .

(b) P sends a commitment c3 to 0n using com, and random coins ρ3.

(c) P gives a WIUA argument of the statement that either x ∈ L OR there exists, d ∈ {0, 1}n,
q ∈ {0, 1}3Γ, ρ2, ρ3, such that,

Statement Consistency: c2 = com(h(q); ρ2).

Digest Consistency: c3 = com(d; ρ3).

Correctness of Digest: d = PreGen(PP , q).

If the argument is not accepting, V aborts.

Note: The purpose of this Phase is to allow the verifier to delegate the computation of the
digest of the statement to P . In simulation, the simulator will compute, commit to and prove
correctness of d = PreGen(PP , q). V cannot compute d itself, since (1) it does not know the
“trapdoor” statement q and (2) the computation takes poly(n, |q|), which is too expensive for
the verifier.

Phase 4—Delegate Private CRS Generation: V delegates the private CRS generation to P :

(a) V sends the indistinguishability obfuscation Λ
$← iO(P) of program P = Pn,c3,PP ,K,ρCRSGen

with c4, K, and a random string ρCRSGen hardwired in. P on input (d′, ρ′) checks whether
c3 = com(d′, ρ′) and outputs κ = CRSGen(PP ,K, d; ρCRSGen) if it is the case, and ⊥ oth-
erwise. The functionality of P is described formally in Figure 2.

Circuit P = Pn,c3,PP ,K,ρCRSGen : On input (d′, ρ′) where d′ ∈ {0, 1}n and ρ′ ∈ {0, 1}n, does:

(a) Check if c3 = com(d′; ρ′); if not, output ⊥.

(b) Otherwise output κ = CRSGen(PP ,K, d′; ρCRSGen).

Circuit Q = Qn,c3,κ: On input (d′, ρ′) where d′ ∈ {0, 1}n and ρ′ ∈ {0, 1}n, does:

(a) Check if c3 = com(d′; ρ′); if not, output ⊥.

(b) Otherwise output κ.

The above circuits are padded to their maximum size.

Figure 2: Circuits used in the construction and proof of CZK protocol 〈P, V 〉

(b) V gives a ZK argument of the statement that there exists K ∈ {0, 1}n, ρSetup, ρCRSGen,
ρiO, such that,
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Correctness of Public Parameter: (PP ,K) = Setup(1n, D; ρSetup).

Correctness of Obfuscation: Λ = iO(Pc3,PP ,K,ρCRSGen ; ρiO)

If the argument is not accepting, P aborts.

(c) P sends commitment c4 of 0n using com and random coins ρ4.

(d) P gives a WISSP proof of the statement that either x ∈ L OR there exists CRS ∈
{0, 1}n, d′ ∈ {0, 1}n, ρ′, ρ4, such that,

CRS Consistency: c4 = com(CRS; ρ4).

Correctness of CRS: CRS = (PP , κ) and κ = P(d′, ρ′).

If the proof is not accepting, V aborts.

Note: The purpose of this Phase is to allow the verifier to delegate the computation of
CRS to P . In simulation, the simulator will compute, commit to, and prove correctness of
CRS = (PP , κ), with κ = P(d, ρ3). V cannot compute κ itself, even though the computation
takes only polynomial time in n, since d cannot be revealed to V in order to ensure the
indistinguishability of the simulation. On the other hand, to ensure the “privacy” of the CRS
computation, V delegates this computation via obfuscation.

Phase 5—Final Proof: P gives the final proof:

(a) P gives a WISSP proof of the statement that either x ∈ L OR there exists π ∈ {0, 1}n,
CRS ∈ {0, 1}n, ρ4, such that,

CRS Consistency: c4 = com(CRS; ρ4),

Proof Verification: π verifies w.r.t. CRS, Vcert(1
n,CRS, π) = 1.

V accepts if the proof is accepting.

Note: In the simulation, the simulator will compute the proof π
$← Pcert(1

k, D, q,CRS), and
succeed in the final proof by using π and CRS, ρ4 generated in the last phase as “trapdoor”
witness.

Theorem 3. Assume indistinguishability obfuscation for P/poly, an injective pseudo-random gen-
erator, and collision resistant hash functions that are super-polynomially secure. Then, the above
protocol 〈P, V 〉 is a concurrent ZK argument system for NP.

The completeness of the protocol follows from the completeness of the WIUA argument of
knowledge, WISSP, and the ZK argument. Below, we prove first the concurrent zero knowledge
property and then the soundness of the protocol.

4.1 Proof of Concurrent Zero-Knowledge

The goal of our simulator is to try to “commit to its own code” and prove about its own execution
using P-certificates in a way that prevents a blow-up in the running-time. Note that the only
expensive part of this process is the generation of the P-certificates ~π; the rest of the computa-
tion has a-priori bounded complexity (depending only on the size and running-time of V ∗). To
take advantage of this observation, we thus have the simulator only commit to an oracle program
that generates prover messages (in identically the same way as the actual simulator), but getting
certificates ~π from the P-certificate oracle OV cert.
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In more detail, to describe the actual simulator S, let us first describe two “helper” simulators
S1, S2. Roughly speaking, S1 is an interactive machine that simulates prover messages in a “right”
interaction with V ∗. Additionally, S1 excepts to have access to oracle OV cert on the “left”, in
particular, at any point, it can send a CRS string CRS and gets back the π = OV cert(CRS) the
unique accepting certificate w.r.t. this CRS (or ⊥, if such a certificate does not exist); the oracle
will be simulated by S2, who provides these “left” certificates.

Let us turn to a formal description of the S1 and S2. To simplify the exposition, we assume
w.l.o.g that V ∗ has its non-uniform advice z hard-coded, and is deterministic (as it can always get
its random tape as non-uniform advice).

On a high-level, S1(1n, x,M, s, `) acts as a prover in a “right” interaction, communicating with
a concurrent verifier V ∗, while accessing oracle on the “left”. (The input x is the statement to be
proved, the input M will later be instantiated with the code of S1, and the input (s, `) is used to
generate the randomness for S1; s is the seed for the forward secure pseudorandom generator g,
and ` is the number of n-bit long blocks to be generated using g.) A communication round in the
“right” interaction with V ∗ refers to a verifier message (sent by V ∗) followed by a prover message
(sent by S1).

Procedure of simulator S1: Let us now specify how S1 generates prover messages in its “right”

interaction with V ∗. SOV cert
1 (1n, x,M, s, `) acts as follows:

Generate Randomness: Upon invocation, S1 generates its “random-tape” by expanding the seed
s; more specifically, let (s`, s`−1, . . . s1), (q`, q`−1, . . . , q1) be the output of g(s, `). We assume
without loss of generality that S1 only needs n bits of randomness to generate any prover
message (it can always expand these n bits into a longer sequence using a PRG); in order to
generate its jth prover message, it uses qj as randomness.

Simulate Phase 1—“Commit to its own code”: Upon receiving a hash function hi in session
i during the jth communication round, S1 provides a commitment ci to (the hash of) the deter-
ministic oracle machine S̃1(1n, α, s′) = wrap(M(1n, x,M, s′, α), V ∗, α), where wrap(A,B, α)
is the program that lets A communicate with B for α rounds, while allowing A to access
oracle OV cert, and finally outputting B’s message in the jth communication round.

Note: That is, S̃1(1n, α, s′, τ) emulates α rounds of an execution between S1 and V ∗ where
S1 expands out the seed s′ into α blocks of randomness and additionally have access to OV cert.

Simulate Phase 2—“Commit to the trapdoor statement”: Upon receiving a challenge ri
in session i during the jth communication round, S1 needs to commit to the “trapdoor”
statement it will later prove in the final proof. To do so, it prepares statement qi =
(Emulatorn, (S̃1, (1

n, j, sj), τj−1), ri), where τj−1 is the list of oracle answers received by S1

in the first j − 1 communication rounds.

Note: That is, the “trapdoor” statement is that the execution of S̃1(1n, j, sj), emulated by
Emulatorn, outputs r, when its kth oracle queries is answered using τj−1,k; additionally, the
validity of each answer is checked by Emulatorn (i.e., the answer must be an accepting proof
w.r.t. the query CRS string).

By construction of S̃1, this means after j communication rounds between S1 and V ∗, where
S1 uses randomness expanded out from sj, and oracle answers τj−1, V ∗ outputs ri in the jths
communication round. Note that since we only require S̃1 to generate the jth verifier message,
giving him the seed (sj , j) as input suffices to generate all prover messages in rounds j′ < j.
It follows from the consistency requirement of the forward secure PRG that S̃1 using (sj , j)
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as seed will generate the exact same random sequence for the j − 1 first blocks as if running
S̃1 using (s, `) as seed. Therefore, the “trapdoor” statement holds.

In later communication rounds, when S1 receives a message from V ∗ belonging to the WIUA
in Phase 2 of session i, S1 proves honestly that it knows the statement qi it is committing
to in session i, and the statement is correctly formatted and consistent with the program S̃1

committed to in Phase 1 of session i.

Simulate Phase 3— “Process the trapdoor statement”: Upon receiving a public parame-
ter PP i in session i during the jth communication round, S1 needs to commit to the digest di of

the “trapdoor” statement qi of session i. To do so, it computes honestly di
$← PreGen(PP i, qi)

and commits to di using com, and randomness ρi.

In later communication rounds, when S1 receives a message from V ∗ belonging to the WIUA
in Phase 3 of session i, S1 proves honestly that it knows di committed to in Phase 3 of session
i and it is computed correctly w.r.t. PP i and a statement qi committed to in Phase 2 of
session i.

Simulate Phase 4— “Compute the CRS”: Upon receiving an obfuscated program Λi, S1 acts
as an honest verifier of the ZK argument to verify that PP i and Λi in session i are correctly
generated. Upon receiving the last message of the ZK argument, in the jth communication
round, S1 needs to commit to the CRSi of session i. To do so, it computes κi = Λi(di, ρi). If
the output is ⊥, S1 aborts. Otherwise, it commits to CRSi = (PP i, κi) using com.

In later communication rounds, when S1 receives a message from V ∗ belonging to theWISSP
in Phase 4 of session i, S1 proves honestly that it knows κi committed to in Phase 4 of session
i and it is computed correctly w.r.t. Λi and a digest di committed to in Phase 3 of session i.

Simulate Phase 5— “Prove the trapdoor statement using P-certificate”: Upon receiving
the last message from V ∗ in Phase 4 of session i, during the jth communication round, S1

needs to prove in the WISSP proof that there is a P-certificate that verifies the validity of
the “trapdoor” statement qi w.r.t. the CRS string CRSi committed to in Phase 4 of session i.
To do so, it sends query CRSi to its oracle OV cert, and obtains answer πi. It aborts if πi = ⊥.
Otherwise, S1 provides an honest WISSP that Vcert(1

n,CRSi, πi) = 1 w.r.t. CRSi which is
the committed value in Phase 4 of session i.

Procedure of simulator S2: S2(1n, x,M, s, `) internally emulates ` messages of an execution
between S1(1n, x,M, s, `) and V ∗, and simulates the oracle OV cert for S1. In a communication round
j when S1 sends an oracle query CRSi for a session i, S2 generates a certificate πi of the statement

qi = (Emulatorn, (S̃1, (1
n, j′, sj′), τj′−1), rj′) w.r.t. CRSi, that is, πi

$← Pcert(1
n, D, qi,CRSi) (where

j′ is the round in which the challenge ri is sent by V ∗, qi and CRSi are generated by S1 (emulated
internally by S2) in Phase 2 and 4 of session i). S2 checks if indeed Vcert(1

n,CRSi, πi) = 1, it
outputs fail if this is not the case, and otherwise, feeds πi to S1. Finally, S2 outputs its view (which
in particular, contains the view of V ∗) at the end of the execution.

Procedure of the final simulator S: The final simulator S(1n, x) simply runs S2(1n, x, S1, s, T (n+
|x|)), where s is a uniformly random string of length n and T (n+ |x|) is a polynomial upper-bound
on the number of messages sent by V ∗ given the common input 1n, x, and extracts out and outputs,
the view of V ∗ from the output of S2. (In case that S2 outputs fail, S outputs fail as well.)
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Running-time of S. Let us first argue that S1 runs in polynomial time.

1. In Phase 1, it only takes S1 polynomial-time to generate the commitments (since V ∗ has a
polynomial-length description, and thus also the code of S̃1).

2. In Phase 2, it also only takes S1 polynomial time to commit to the statements qi (since
Emulatorn, (1n, j, sj), and r have fixed polynomial lengths, and S̃1 and τj−1 have polynomial
length description, depending on the size of V ∗). Furthermore, the witnesses of the WIUA in
Phase 2 has polynomial length; by the relative prover efficiency condition of the WIUA, each
such proof only requires some fixed polynomial-time.

3. In Phase 3, processing the statements qi takes time polynomial in the length of the statement
and n, which is polynomial. Furthermore, committing to the outputs di and proving about
their correctness using WIUA also takes only polynomial time (by the relative prover efficiency
of WIUA).

4. In Phase 4, since the CRS generation is very efficient, taking time polynomial in only the
security parameter, S1 completes all Phase 4 in polynomial time.

5. In Phase 5, the simulator proves about the verification of a P-certificate w.r.t. to a CRS string
committed to in Phase 4. Since both steps takes time poly(n), S1 completes all Phase 5 in
polynomial time.

Overall, the whole execution of S1 takes some fixed polynomial time (in the length of V ∗ and thus
also in the length of x.) It directly follows that also S̃1’s running-time is polynomially bounded.

Finally, since S2 is simply providing certificates about the execution of S̃1, it follows by the
relative prover efficiency condition of P-certificates, that S2 runs in polynomial time, and thus also
S.

Indistinguishability of the simulation Fix any cheating verifier V ∗, we first argue that during
the execution of S for simulating the view of V ∗, the probability that S2 (and hence S) outputs fail
is negligible. By construction, S2 outputs fail when for some session i, the proof πi that it constructs
honestly using Pcert does not verify w.r.t. the CRSi that S1 computes. It follows from the soundness
of the ZK argument in Phase 4 of session i that, with overwhelming probability, V ∗ in session

i computes (PP ,K)
$← Setup(1n, D) and the obfuscation Λ

$← iO(P) of P = Pn,c3,PP ,K,ρCRSGen

correctly w.r.t. some random strings ρSetup and ρiO. In this case, since S1 evaluates PreGen, commits
to the produced digest di, and evaluates Λi honestly, it follows from the perfect correctness of the
indistinguishability obfuscator, the perfect completeness of the P-certificate system, and the perfect
binding property of com that as long as qi is a true statement, S2 would generate an accepting
proof for it w.r.t. CRSi. By construction, qi is a true statement. Therefore, the probability that S2

outputs fail is negligible.
Below we argue about the indistinguishability of the simulation conditioning on that S2 does

not output fail. Assume that there exists a cheating verifier V ∗, a distinguisher D and a polynomial
p such that the real view and the simulated view of V ∗ can be distinguished by D with probability

1
p(n) for infinitely many n. More formally, for infinitely many n ∈ N , x ∈ L∩{0, 1}poly(n), w ∈ RL(x)

and z ∈ {0, 1}poly(n), it holds that

|Pr[D(ViewV ∗ 〈P (w), V ∗(z)〉 (1n, x)) = 1]− Pr[D(S(1n, x, z)) = 1]| ≥ 1

p(n)
(1)
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Consider such n, x, z (and assume that z is hard-coded into the description of V ∗), and consider
T = T (n+|x|) hybrid experiments (recall that T (n+|x|) is the maximum number of communication
rounds given common input 1n, x).

• In hybrid Hj , the first j communication rounds are simulated exactly as by S (using pseudo-
randomness), but all later communication round j′ > j are generated honestly using true
randomness q′j being uniformly distributed in {0, 1}n. More precisely, every prover commit-
ment sent after round j is a commitment to 0n (i.e., Step 1-(b), 2-(a), 3-(b) and 4-(c)); every
WIUA argument (i.e., Step 2-(b), 3-(c)) and every WISSP proof (i.e., Step 4-(d), 5-(a)) that
start after round j uses the true witness w instead of “fake” witnesses that S uses; however,
every WIUA argument and WISSP proof that start at or before round j are still proven
using (appropriate) “fake” witnesses as S does; importantly, all prover messages generated
after round j uses truly random coins.

It follows by Equation 1 and a hybrid argument that there exist some j and a polynomial p′′ such
that D distinguishes Hj and Hj+1 with probability 1

p′′(n) . Now, consider another hybrid experiment

H̃j that proceeds just at Hj+1, but where true randomness is used in communication round j + 1
(but still committing to the the same values as S does and using “fake” witness as S does). It follows
by the forward security of the PRG g that the outputs of Hj+1 and H̃j are indistinguishable—the
reason we need forward security is that to emulate communication rounds j′ ≤ j, the seeds sj′ may
need to be known (as they are part of the “trapdoor” statements). Indistinguishability of H̃j and
Hj follows directly by either the hiding property of the commitment scheme (if in the j + 1 round,
the prover message is a commitment), or the witness indistinguishability property of the WIUA or
WISSP (if in this round, the prover message is a message of WIUA or WISSP). It thus leads to
a contradiction and completes the proof of the indistinguishability of the simulation.

4.2 Proof of Soundness

We now prove soundness of our protocol. Assume for contradiction that there is a non-uniform
deterministic polynomial time cheating prover P ∗ and a polynomial p(n), such that for infinitely
many n ∈ N, there exists x /∈ L such that Pr[(P ∗, V )(1n, x) = 1] ≥ 1/p(n). Let E be the “global”
proof-of-knowledge extractor of the WIUA, and E′ be the knowledge extractor of the WISSP.

Fix such n and x /∈ L. Let us consider the following experiment Exp:

• Run (P ∗, V )(1n, x) up to the point where P ∗ sends c2. Let P ∗prefix1
be the residual WIUA

prover for the first WIUA of the protocol (in Phase 2), resulting from feeding it the messages

prefix1 = (h, r). Run w1 ← E
P ∗h,r
s1 , where s1 is uniform randomness to E. If the extraction

fails to extract a valid witness, then output ⊥.

• Continue to run (P ∗, V )(1n, x) up to the point where P ∗ sends c3. Let P ∗prefix2
be the residual

WIUA prover for the second WIUA of the protocol (in Phase 3), resulting from receiving

verifier’s messages prefix2 (including h, r, WIUA messages, and PP ). Run w2 ← E
P ∗prefix2
s2 ,

where s2 is uniform randomness to E. If the extraction fails to extract a valid witness, then
output ⊥.

• Continue to run (P ∗, V )(1n, x) up to the point where P ∗ sends c4. Let P ∗prefix3
be the residual

WISSP prover for the first WISSP of the protocol (in Phase 4), resulting from receiving

verifier’s messages prefix3. Run w3 ← E
′P ∗prefix3
s3 , where s3 is uniform randomness to E′. If the

extraction fails to extract a valid witness, then output ⊥.
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• Continue to run (P ∗, V )(1n, x) up to the beginning of the final WISSP. Let P ∗prefix4
be the

residual WISSP prover for the second WISSP of the protocol (in Phase 5), resulting from

receiving verifier’s messages prefix4. Run w34← E
′P ∗prefix4
s4 , where s4 is uniform randomness to

E′. If the extraction fails to extract a valid witness, then output ⊥.

• Continue to finish (P ∗, V )(1n, x). If the verifier rejects, then output ⊥. Otherwise, output S̃1

and q in the witness w1 of the first WIUA, and the verifier’s challenge message r. (Note that
since x /∈ L, so the witness w1 must be of the form (q, S̃1, j, s, σ, ρ, ρ2).)

Let Not-bot denote the event that Exp does not output ⊥. We first argue that Not-bot happens
with non-negligible probability. Recall that the knowledge extractors of both WIUA and WISSP
guarantee that if the cheating prover convinces the verifier with a non-negligible probability, then
the extractor also successes with a non-negligible probability. Since P ∗ convinces V with probability
at least 1/p(n), it holds that with probability at least 1/2p(n) over (P ∗, V )(1n, x), all residual
provers P ∗prefixi

for i ∈ [4] have success probability at least 1/8p(n), and in such case, each extractor
succeeds with non-negligible probability. Since the extractors use independent randomness, the
probability that V accepts and all extractors succeed (in which case Exp does not output ⊥) is
non-negligible. Let 1/p′(n) denote this non-negligible function.

Let Inconsistent denote the event that the extracted witnesses in Exp are inconsistent. Specif-
ically, this means at least one of the following happens: (i) q in w1 and w2 are not equal, (ii) d
in w2 and w3 are not equal, and (iii) CRS in w3 and w4 are not equal. It is not hard to see that
Pr[Inconsistent] ≤ negl(n), since otherwise, we can break either the binding property of com, or the
collision resistant property of CRHs. Let Consistent be ¬Inconsistent. By a union bound, we have
Pr[Not-bot ∧ Consistent] ≥ 1/p′(n)− negl(n).

Let us now switch to a hybrid experiment Exp′, which is identical to Exp, except that (i)

the obfuscated program Λ
$← iO(P) in the first verifier message in Phase 4 is replaced by Λ

$←
iO(Q), where the κ hard-wired in Q is set to be κ = CRSGen(PP ,K,PreGen(PP , q); ρCRSGen),
where q is the statement extracted in both witnesses w1 and w2, and (ii) the ZK proof right
after is replaced by that generated by the ZK simulator. Note that by soundness of WIUA, c3 is a
commitment of d = PreGen(PP , q) except with negligible probability. This together with the perfect
binding property of com implies that P and Q are functionally equivalent (except with negligible
probability). Thus, by the security of iO and zero knowledge property of the ZK argument, Exp
and Exp′ are indistinguishable. Hence, we have Pr[Not-bot ∧ Consistent] ≥ 1/p′(n)− negl(n) holds
in Exp′ as well.

Let False-q denote the event that the statement q extracted in w1 is false. We claim that
Pr[Not-bot∧ Consistent∧ False-q] ≤ negl(n). Indeed, if Pr[Not-bot∧ Consistent∧ False-q] ≥ 1/p′′(n)
for some non-negligible 1/p′′(n), then we can break soundness of the two-message P-certificate
(with delegatable CRS generation) by the following reduction:

• P∗cert emulates Exp′ internally up to the point of extracting w1, and outputs q in w1 as the
chosen statement.

• Upon receiving CRS = (PP , κ), where (PP ,K) = Setup(1n; ρSetup), d = PreGen(PP , q), and
κ = CRSGen(PP ,K, d; ρCRSGen), P∗cert continues to emulate Exp′, with PP and κ from CRS,
and outputs the extracted π (in Phase 5).

Note that when (Not-bot ∧ Consistent) holds, (P∗cert,Vcert) emulates Exp′ perfectly, and when
(Not-bot∧Consistent∧False-q) happens, P∗cert convinces Vcert a false statement. Thus, if Pr[Not-bot∧
Consistent ∧ False-q] ≥ 1/p′′(n), then P∗cert breaks soundness of P-certificate, a contradiction.
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Let True-q = ¬False-q, and Good = (Not-bot ∧ Consistent ∧ True-q). The above claims imply

Pr[Good] ≥ 1/p′(n)− negl(n).

We now derive a contradiction from it. By an averaging argument, this implies that with probability
at least 1/3p′(n) over the hash function h (the verifier’s first message),

Pr[Good|h] ≥ 1/3p′(n).

Now, let us consider an experiment Exp2 that first samples a hash function h ← H, and then
runs Exp′ twice with this h and independent fresh randomness. It follows that with probability
at least 1/27p′3(n) over Exp2, the event Good occurs in both executions of Exp′; let us focus on
this case. Let (S̃1, q, r) and (S̃′1, q

′, r′) denote the output of the two branches. By the perfect
binding property of com and the collision resistant property of CRHs, we have S̃1 = S̃′1, except
with negligible property. Also note that True-q implies that there exists two short inputs (j, s) and
(j′, s′) such that S̃OV cert

1 (1n, j, s) = r and S̃OV cert
1 (1n, j′, s′) = r′. In other words, S̃OV cert

1 can predict
two independent r, r′ with probability at least 1/27p′3(n) − negl(n). However, this is information
theoretically impossible, since the fact that S̃OV cert

1 is deterministic, |(j, s)| < 3n, and |r| = 4n

implies that S̃OV cert
1 can only predicts two independent r, r′ with exponentially small probability.

Hence, we reach a contradiction and complete the soundness proof.

Remark 1. We remark that the protocol and its soundness proof described above relies on collision
resistant hash functions against slightly super-polynomial-sized circuits. This requirement can be
weakened to rely on collision resistance against polynomially sized circuits. To do so one should use
a “good” error-correcting code ECC (i.e., with constant distance and with polynomial-time encoding
and decoding), and replace every commitment of the form com(h(X)) with com(h(ECC(X))) [BG08].
The soundness proof will need to be modified accordingly (while the proof of zero-knowledge remains
essentially the same).

We now briefly sketch the idea. It follows from the global proof of knowledge property of WIUA,
that the witness of each WIUA is well-defined, therefore, we can refer to the machine M committed
in Phase 1, the statement q committed in Phase 2, and the statement q′ w.r.t. which a digest
d is computed in Phase 3. We first argue that q, q′,M are all consistent, that is q = q′ and q
contains M . Suppose not, their encoding through ECC would differ at at least a constant fraction
of the coordinates. Then a collision would have been found by relying only on the weak proof of
knowledge property of WIUA as done in [BG08]. Given that q = q′ and M are consistent, it
follows from the same proof as above that by the strong soundness of P-certificate (and soundness
of WISSP), a cheating prover must prove a true statement q. Finally, using the same argument as
above again, when running the cheating prover twice with the same hash function h, with noticeable
probability, we will have two executions with two true statements q1, q2 but containing different
machines M1, M2; in this case, by relying on ECC and the weak proof-of-knowledge property of
WIUA, a collision can be found, as done in [BG08]. Therefore, soundness holds assuming only
CRHs against polynomial-sized circuits.

Remark 2. In the above protocol and analysis, we used a perfectly binding commitment scheme.
With some small modification, it suffices to use a 2-message statistically-binding commitment
scheme; such a protocol can be obtained from one-way functions [Nao91, HILL99]. To replace
a perfectly binding commitment, we modify our protocol to let the verifier sends the receiver’s first
message r of the commitment scheme at the beginning of the protocol. After that, whenever the
prover needs to send a commitment to the verifier, it sends the second committer’s message w.r.t.
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r. A two-message statistically binding commitment scheme has the property that over the random
choice of the receiver’s first message, with overwhelming probability, the committer’s message de-
termines the committed value. Therefore, with overwhelming probability over the choice of r, the
second committer’s message can be used as a perfectly binding commitment scheme.

Remark 3. In the above protocol, we used a two message delegatable P-certification system with a
simple verification algorithm (i.e., the verification algorithm does not depend on the statement). We
used the simple verification property since our instantiation based on the message hiding encoding
of [KLW14] satisfies this property. However, we remark here that this property is not necessary.
In particular, our protocol can be modified as follows to work with any two message delegatable
P-certification system whose verification algorithm may depend on the statement (i.e., Vcert takes
input (1k, c,CRS, q, π)): Simply replace the WISSP in Phase 5, with a WIUA to prove that either
x ∈ L or there exist π, CRS, ρ4, q, ρ2, such that, CRS is committed to in Phase 4 using random
coins ρ4, q is committed to in Phase 2 using random coins ρ2, and Vcert(1

k, D,CRS, q, π) = 1. The
proofs of soundness and zero-knowledge property follow essentially the same.
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