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Abstract. Garbling schemes (aka randomized encodings of functions) represent a function F by a “simpler”
randomized function F̂ such that F̂ (x) reveals F (x) and no additional information about x. Garbling schemes
have found applications in many areas of cryptography. Motivated by the goal of improving the efficiency of
garbling schemes, we make the following contributions:

– We suggest a general new notion of partial garbling which unifies several previous notions from the
literature, including standard garbling schemes, secret sharing schemes, and “conditional disclosure of
secrets”. This notion considers garbling schemes in which part of the input is public, in the sense that it
can be leaked by F̂ .

– We present constructions of partial garbling schemes for (boolean and arithmetic) formulas and branching
programs which take advantage of the public input to gain better efficiency.

– We demonstrate the usefulness of the new notion by presenting applications to efficient attribute-based
encryption, delegation, and secure computation. In each of these applications, we obtain either new
schemes for larger classes of functions or efficiency improvements from quadratic to linear. In particular, we
obtain the first ABE scheme in bilinear groups for arithmetic formulas, as well as more efficient delegation
schemes for boolean and arithmetic branching programs.

1 Introduction

There are many situations in cryptography where one is interested in computing some function F of
a sensitive input x but the computational model is restricted so that only “simple” functions F can be
directly computed. For instance, the entries of x may be encrypted so that only affine functions can
be computed, or they may be distributed between multiple non-interacting parties so that only local
functions can be computed.

A common approach for handling more complex functions F in such situations is to relax the usual
notion of computation. This is done by: (1) settling for computing some function F̂ whose output encodes
the output of F (and reveals nothing else about the input), and (2) allowing the latter encoding to be
randomized. That is, the randomized function F̂ (x) should satisfy the simplicity constraint (e.g., being
affine) for every fixed choice of the randomness,3 and moreover its output distribution on an input
x should reveal F (x) and no additional information about x. The function F̂ is often referred to as a
randomized encoding or a garbling scheme for F .

To give a simple example, let F (a,b) = ab where a and b are elements of a finite field. Then an affine
garbling scheme for F can be defined by F̂ (a,b) = ((a−ra), (b−rb), arb +bra −rarb), where ra and rb are
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random and independent field elements. Note that F̂ is an affine function of the input (a,b) for every
fixed choice of ra ,rb . Moreover, F (a,b) can be recovered from the output (c,d ,e) of F̂ (a,b) by computing
cd + e. Finally, the output (c,d ,e) of F̂ is distributed uniformly subject to the constraint that cd + e = ab
and hence it reveals no additional information about (a,b) other than ab.

Garbling schemes have found applications in many areas of cryptography and elsewhere (see [38,
16, 25, 3, 2, 7, 33] and references therein). Starting with Yao’s celebrated garbled circuit construction,
different constructions of garbling schemes have been proposed for circuits and other representation
models. However, these constructions still have theoretical and practical limitations. In particular, they
do not efficiently generalize to arithmetic computations (despite progress in [5]) and even in the boolean
case their asymptotic and concrete efficiency leave much to be desired. Furthermore, some of the best
garbling schemes do not satisfy all of the structural properties that are needed by applications.

1.1 New notion: Partial garbling

This work is motivated by the observations that (1) in many applications of garbling schemes, most of the
input is already known to the designated receiver of the encoded output, and (2) known constructions
do not take advantage of this fact for improving efficiency.

We suggest a general new notion of partial garbling which relaxes standard garbling by allowing
part of the input to be public. This notion can be viewed as unifying several previous notions from
the literature, including standard garbling schemes, secret sharing schemes [35, 27], and conditional
disclosure of secrets [20].

Consider for instance the case of secret sharing. Here, we want to disclose a secret if and only if the
attributes of the parties satisfy a given predicate referred to as the access structure; however, it is okay to
leak information about the individual attributes, which we think of as being “public”. Note that “public”
does not mean “known to everyone” or “must be revealed by the garbling” but rather “okay to leak by the
garbling” and known to the reconstruction algorithm. For this reason, partial garbling cannot be viewed
as a special case of standard garbling.

As another example, consider a client who has her data x distributed between several servers.
Suppose that the servers wish to disclose a secret s to the client only if P (x) = 1 for some publicly known
predicate P . That is, they would like to reveal to the client the function F (x, s) = P (x)·s. Note that from the
client’s point of view, x is public input for F whereas s is a secret input. Now, suppose we are given a local
partial garbling scheme F̂ (x, s) for F , namely one where each output depends only on the view of a single
server. The partial garbling F̂ can be used by the servers to conditionally disclose s to the client by each
sending her a single message. This “conditional disclosure” primitive serves as a useful building block
in both two-party and multi-party cryptographic protocols, where it can often serve as a light-weight,
non-interactive substitute for zero-knowledge proofs [20, 1, 37, 15, 11, 12].

Typical applications of garbling schemes, including those illustrated above, require that the garbling
be “affine” and/or “local” with respect to the public inputs. This additional requirement rules out the
trivial solution of garbling a restriction of F to the private inputs.

Garbling arithmetic branching programs (ABP). We present unconditional constructions of partial
garbling schemes for boolean and arithmetic formulas and branching programs which take advantage of
the public input to gain better efficiency. Our constructions satisfy all of the useful structural properties
of garbling schemes required by natural applications.
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In cases where the private input is small, as is the case for essentially all of our motivating applica-
tions, we improve the size of the garbling from quadratic to linear in the size of the formula or branching
program; we also obtain a corresponding efficiency improvement in the applications. Boolean and
arithmetic formulas and branching programs capture many functions of interest, including arithmetic
computations like sparse polynomials, mean, and variance, as well as combinatorial computations like
string-matching, finite automata and decision trees.

Our partial garbling schemes are “affine” and “local” with respect to the public inputs; indeed, all
of our applications exploit this property. As mentioned earlier, this means that we cannot simply garble
the original function hardwired with the private inputs. Instead, we start with the randomized encoding
scheme for ABPs in [26]. Roughly speaking, this prior construction works by multiplying the adjacency
matrix for the branching program by random upper triangular matrices on both the left and the right. Our
construction uses a subgroup of upper triangular matrices with fewer non-zero entries (corresponding
to the private inputs). This means that the size of the garbling is roughly the number of private inputs
times the size of the branching program. Therefore, when the number of private inputs is constant (or
“local”), the size of the garbling improves from quadratic to linear. In particular, we achieve linear-size
garbling for functions of the form F (x, s) = P (x) · s and F (x, (s1, s2)) = s1P (x)+ s2 where P is an ABP acting
on a public input x; these are precisely the functions we consider for several of our applications.

Comparison with standard garbling techniques. We note that standard garbling is a special case of
partial garbling where all input is private. In the other direction, there is a general reduction from partially
garbling F (x, z) where x is public and z is private to garbling F ′(x, z) := (x,F (x, z)). However, the cost
of the reduction can be significant. Take the example where F is identically 0. Then, a partial garbling
scheme can output nothing whereas a standard garbling of F ′ must reveal x.

Unlike Yao’s garbling technique and its variants, our constructions cannot handle general circuits
and are restricted to weaker computational models. However, they do offer a number of significant
advantages: (i) they do not rely on computational assumptions and can be used in the context of
information-theoretic cryptography; (ii) they work in an arithmetic model of computation, where the
number of field operations is independent of the field size; (iii) they satisfy the “linear reconstruction”
property required by several applications below; (iv) they have better concrete efficiency for natural
functions F that admit compact representations by formulas and branching programs.

1.2 Applications

We demonstrate the usefulness of our new notion and constructions by presenting applications to
efficient attribute-based encryption (ABE) [34, 23], delegation [21, 19], and secure computation [24, 20]in
Sections 5, 6, 7. More broadly, partial garbling can be applicable in many cryptographic settings in
which there are computations that mix public inputs with private inputs. In each of the applications
we consider, we obtain either new schemes for larger classes of functions or efficiency improvements
from quadratic to linear:

– For ABE, we extend prior pairing-based schemes for boolean formulas and branching programs [23,
22] to arithmetic branching programs.

– For delegation, conditional disclosure of secrets and generalized oblivious transfer, we obtain
efficiency improvements for arithmetic branching programs from quadratic to linear; prior to this
work, constructions with linear complexity were only known for boolean formulas [19, 20, 36].
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We proceed with an overview of the applications to delegation and ABE.

Delegation and verifiable computation. In verifiable computation (VC), a computationally weak client
with input x wishes to delegate a complex computation f to an untrusted server, with the assurance that
the server cannot convince the client to accept an incorrect computation [21, 19, 4, 9]. We focus on the
online/offline setting, where the protocol proceeds in two phases. In the offline phase, the client sends
to the server a possibly long message that may be expensive to compute. Later on, in the online phase
(when the input x arrives), the client sends a short message to the server, and receives the result of the
computation together with a certificate for correctness. We are interested in protocols where the client’s
communication and computational complexity in the online phase depend only on the input and output
lengths and is independent of the complexity of f .

Our VC schemes build upon the garble+MAC paradigm in [4], which derives a VC protocol by
garbling the function obtained by composing f with a one-time MAC. Our key observation is that it
suffices to use a partial garbling scheme where the public input is x and the private input is the MAC
key. Using our partial garbling schemes, we then derive more efficient online/offline VC protocols for
arithmetic branching programs (ABPs), reducing the complexity of previous protocols from quadratic to
linear in the size of the program. We note that ABPs simultaneously capture several classes of functions
considered in the literature on delegation, including boolean formulas in [19, 32] and sparse arithmetic
polynomials in [9].

Theorem 1 (informal). Assuming the existence of a PRG, there is an online/offline VC protocol for
arithmetic branching programs with the following efficiency features. The complexity of the server
and the client’s offline phase is s ·poly(λ) and that of the client’s online phase is n ·poly(λ), where
n is the input length, s is the size of the ABP, and λ is the security parameter.

In [4], the complexity of the server and the client’s offline phase is s2 ·poly(λ). We also obtain a smaller
improvement for boolean formulas; see Section 6 for details.

Attribute-based encryption. Attribute-based encryption (ABE) [34, 23] is a new paradigm for public-
key encryption that enables fine-grained access control for encrypted data. In ABE, ciphertexts are
associated with descriptive values x in addition to a plaintext, secret keys are associated with predicates
P , and a secret key decrypts the ciphertext if and only if P (x) = 1. Here, P may express an arbitrarily
complex access policy, which is in stark contrast to traditional public-key encryption, where access is all
or nothing. The security requirement for ABE enforces resilience to collusion attacks, namely any group
of users holding secret keys for different functions learns nothing about the plaintext if none of them is
individually authorized to decrypt the ciphertext.

We present the first ABE that directly handles a large class of predicates over arithmetic domains
as described by arithmetic branching programs. This is particularly useful in settings where identities
or attributes come from a universe of exponential size, since we can avoid the overhead from using bit
encodings, as with the case for the Boneh-Boyen identity-based encryption [13].

Theorem 2 (informal). Suppose the decisional bilinear Diffie-Hellman assumption holds. Then,
there exists a (selectively secure) ABE scheme for the class of arithmetic branching programs.

Note that there are two natural ways to associate an ABP with a predicate, namely whether its output
is zero (Z-ABP), or non-zero (N-ABP). We obtain ABE schemes for both via a single construction for
“arithmetic span programs,” which simultaneously generalizes boolean branching programs in [23] as
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well as (public-index) inner product and non-zero inner product predicates [29, 6]. Prior to this work, we
do not know any ABE schemes in bilinear groups supporting the class of ABPs. We could of course appeal
to lattice-based ABE for general circuits [22, 17], though simulating an ABP using a boolean circuit incurs
a substantial overhead in concrete efficiency.

At a high level, our construction follows the approach of Goyal et al. [23] for building ABE for
monotone Boolean formula from linear secret-sharing schemes. The difficulty with extending this
approach to arithmetic branching programs is that there is no natural analogue of LSSS for arithmetic
functionalities. Instead, we observe that it suffices to use partial garbling with linear reconstruction,
which we do obtain for arithmetic branching programs. Intuitively, the descriptive value x on the
ABE ciphertext corresponds to the public input in partial garbling, and the plaintext/master secret key
corresponds to the private input.

The running time of the encryption algorithm depends only on the input length to the ABP and not
the size of the ABP. As such, exploiting the connection between ABE and delegation in [32] and using the
fact that we handle both Z-ABP and N-ABP, we obtain a publicly verifiable delegation scheme for ABPs.
This scheme requires a stronger assumption than the offline/online VC in Theorem 1, but achieves a
stronger soundness requirement with reusability.

Finally, our construction yields an unconditionally secure witness encryption scheme [18] for
algebraic languages corresponding to vectors of group elements g w such that P (w) = 0 for a fixed ABP P .
For instance, this captures ElGamal public key and ciphertext pair (pk,C ) such that C is an encryption of
0 or 1; see [12, 8, 10] for additional examples of such languages. The construction follows essentially from
conditional disclosure of secrets schemes for the same predicate, along with the fact that reconstruction
is linear.

Related work. In an independent work, Boneh et al. [14] constructed ABE for arithmetic circuits under
the LWE assumption; they only handle the “is zero” predicate (i.e., decryption is possible exactly when
the output of the circuit is zero), whereas our construction also handles the “is non-zero” predicate.
Handling a class that is closed under complement is useful for applications such as publicly verifiable
delegation [32], as noted in the preceding paragraph.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a finite set S and by
x, y, z ←R S that all x, y, z are picked independently and uniformly at random from S. By PPT, we denote
a probabilistic polynomial-time algorithm. Throughout, we use 1λ as the security parameter.

Arithmetic branching programs. A branching program is defined by a directed acyclic graph (V ,E), two
special vertices v0, v1 ∈V and a labeling function ϕ. An arithmetic branching program (ABP)4 over a finite
field Fq computes a function f : Fn

q → Fq . Here, ϕ assigns to each edge in E an affine function in some
input variable or a constant, and f (x) is the sum over all v0-v1 paths of the product of all the values along
the path. We refer to |V |+|E | as the size of the ABP. Ishai and Kushilevitz [24, 26] showed how to relate an
ABP computation to that of computing the determinant of a matrix (see Figure 1 for an example).

4 Also referred to as mod-q counting branching programs in [26].

5



Lemma 1 ([26, Lemma 1]). Given an ABP Γ = (V ,E , v0, v1,ϕ) computing f : Fn
q → Fq , we can efficiently

(and deterministically) compute a function L(x) mapping an input x ∈ Fn
q to a (|V |−1)× (|V |−1) matrix

over Fq , such that:

– det(L(x)) = f (x);

– each entry of L(x) is a degree one polynomial in a single variable xi ;

– L(x) contains only −1’s in the second diagonal (the diagonal below the main diagonal) and 0’s below
the second diagonal.

Specifically, L is obtained by removing the column corresponding to v0 and the row corresponding to v1 in
the matrix A− I, where A is the adjacency matrix for Γ.

We note that there is a linear-time algorithm that converts any boolean formula, boolean branching
program or arithmetic formula to an arithmetic branching program with a constant blow-up in the
representation size. Thus, ABPs can be viewed as a stronger computational model than all of the above.

3 Partial Garbling Schemes (PGS)

We consider garbling schemes (aka randomized encodings of functions) [38, 16, 25, 3, 7] in which part of
the input is public; we refer to this as partial garbling. Take a function F where the input (x, z) comprises
a public value x and a private value z. In a standard garbling F̂ of F , the function F̂ is randomized and the
output distribution F̂ (x, z) “encodes” F (x, z) and leaks no additional information about the input (x, z).
In a partial garbling F̂ of F , the value x is public, and the privacy requirement only applies to z. Again,
we require that F̂ (x, z) “encodes” F (x, z), and that it leaks no additional information about the private
input z beyond what is revealed by x and F (x, z). More formally, we require that there be two efficiently
computable maps Sim and Rec where Sim is randomized and Rec is deterministic such that

– the distributions Sim(x,F (x, z)) and F̂ (x, z) are identical;

– Rec(x, F̂ (x, z;r )) = F (x, z) for all inputs (x, z) and randomness r .

We want constructions where F̂ is a “simple” function of (x, z). We are also particularly interested
in constructions where the reconstruction algorithm Rec(x, ·) is a “simple” function of F̂ (x, z), e.g. a
function of total degree 1 whose coefficients may depend arbitrarily on x.

Definition 1 ((affine) partial garbling scheme). Let F : Fn
q × Fn′

q → Fq be a function. We say that a

randomized function F̂ : Fn
q ×Fn′

q → Fm
q is a partial garbling scheme (PGS) of F if it satisfies the following

properties:

– (correctness) There exists a deterministic reconstruction algorithm Rec such that for all (x, z) ∈ Fn
q ×Fn′

q ,

Pr[Rec(x, F̂ (x, z)) = F (x, z)] = 1 (where the probability is taken over the coin tosses of F̂ ).

– (privacy) There exists a randomized algorithm Sim, called a simulator, such that for all (x, z) ∈ Fn
q ×Fn′

q ,

Sim(x,F (x, z)) and F̂ (x, z) are identically distributed.

In addition, we say that the garbling scheme is affine if for all indices j ∈ [m], F̂ (x, z) j is an affine function
of the form a j xi +b j or a j zi +b j where the coefficients a j ,b j ∈ Fq depend only on the randomness of F̂ .
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We will also say that the garbling scheme is x-affine if each F̂ (x, z) j is an affine function of the form
a j xi +b j where the coefficients a j ,b j ∈ Fq depend only on z and the randomness of F̂ . We may define
z-affine analogously. Note that an affine garbling scheme is both x-affine and z-affine.

We note that the above definition extends naturally to functions F with longer outputs. When
considering an infinite family of F , we also require that there is an efficient deterministic garbling
algorithm for computing the description of F̂ , Rec and Sim from that of F .

Examples. As a warm-up, we describe several partial garbling schemes for functions with n′ = 1 and
n′ = 2, some of which were implicit in prior works. All of these schemes are captured by our more general
construction in Section 4.

Example 1 (non-zero product). Consider the function

F ((x1, x2, x3), z) = x1x2x3z.

This corresponds to disclosing a secret z subject to the condition x1, x2, x3 are all non-zero. Consider the
affine garbling scheme:

F̂ ((x1, x2, x3), z;r1,r2,r3) = (r1x1,r1 − r2x2,r2 − r3x3,r3 − z))

Reconstruction has degree 1 and is given by a dot product with the vector

(−1, x1, x1x2, x1x2x3).

Example 2 (sum is zero). Consider the function F : Fn
q ×F2

q → Fq given by

F ((x1, . . . , xn), (z, z ′)) = z ′ · (x1 +·· ·+xn)+ z.

This corresponds to disclosing a secret z subject to the condition x1 + . . .+xn = 0; for n = 2, this captures
“disclose z if x1, x2 are equal”. Consider the x-affine encoding:

F̂ ((x1, . . . , xn), (z, z ′);r1, . . . ,rn) = (z ′x1 − r1, . . . , z ′xn − rn ,r1 +·· ·+ rn + z)

Reconstruction has degree 1 and is given by summing the values in the encoding. This is essentially the
scheme given in [20, Lemma 2].

Example 3 (non-zero inner product). Consider the function Fy1,...,yn : Fn
q ×Fq → Fq given by

Fy1,...,yn (x1, . . . , xn , z) = (x1 y1 +·· ·+xn yn)z

This corresponds to disclosing a secret z subject to the condition x1 y1 +·· ·+ xn yn ̸= 0, that is, the inner
product is non-zero. Consider the z-affine encoding:

F̂y1,...,yn (x1, . . . , xn , z; w1, . . . , wn) = (y1z −w1, . . . , yn z −wn , x1w1 +·· ·+xn wn)

Reconstruction is given by a dot product with the vector (x1 y1+·· ·+xn yn)−1(x1, . . . , xn ,1). This encoding
is not affine, but can be readily transformed into an affine encoding (at the price of increasing the
randomness complexity and output length by n − 1). A variant of this encoding was used implicitly in
[6, 31] for constructing revocation and negated inner product cryptosystems with short ciphertexts (the
first n outputs of F̂ are associated with the secret key, whereas the last output is associated with the
ciphertext).
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4 Partially Garbling Arithmetic Branching Programs

In this section, we present partial garbling schemes for arithmetic branching programs, with a restriction
on where the private inputs are used in the computation. Specifically, we consider functions F : Fn

q×Fn′
q →

Fq that are computed by an ABP such that the variables in the private input z appear only on the edges
leading into the last vertex v1 (or more generally, into the last t vertices in V ). For instance, this class
captures read-once branching programs on n +n′ inputs where the first n inputs are public and the last
n′ inputs are private. Figure 1 shows that this class also captures the first two examples in Section 3.
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Fig. 1. ABPs for examples in Section 3 with t = 1

4.1 Statement of results

We now formally state our results on partial garbling.

Theorem 3 (partially garbling ABP). Consider a function F : Fn
q ×Fn′

q → Fq which is computed by an ABP
Γ = (V ,E , v0, v1,ϕ) taking as input (x, z), where the variables in the private input z appear only on the
edges leading into the last t vertices in V . Then, there is a partial garbling scheme F̂ of F with the following
properties:

– the output length of F̂ is t · (|V |−1);

– each entry of F̂ is a polynomial of total degree one in the variables x and z;

– each entry of F̂ is a polynomial of total degree one in the randomness for t = 1, and total degree two in
the randomness in the general case.

– the reconstruction algorithm Rec(x, ·) has degree t in the output of F̂ .

In the interesting special case where t = 1 (which captures the applications to CDS and secret-sharing),
we obtain an encoding of linear size and degree one reconstruction. For the case t = |V | − 1, we
achieve the standard requirement for garbling schemes and recover a variant of the construction in [26,
Theorem 1]. We note here that the degree in the randomness r is important in MPC applications where
the generation of r is distributed between multiple parties, whereas the degree of the reconstruction
algorithm is important in ABE schemes where reconstruction happens “in the exponent”.
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Affine partial garbling. Combined with the locality lemma in [3, Lemma 4.17], we obtain an affine PGS
for arithmetic branching programs:

Corollary 1 (affine PGS for ABP). Consider a function F : Fn
q × Fn′

q → Fq which is computed by an ABP
Γ = (V ,E , v0, v1,ϕ) taking as input (x, z) where the variables in the private input z appear only on the
edges leading into the last t vertices in V . Then, there is an affine partial garbling scheme F̂ of F with the
following properties:

– F̂ has the output length t 2 · |E |;
– the reconstruction algorithm Rec(x, ·) has degree t .

The locality lemma tells us that we can garble a polynomial of d variables of total degree one using d
affine functions of a single variable (e.g. we garble x1+2x2+x3 using (x1−r1,2x2−r2, x3+r1+r2)), while
increasing the randomness complexity by d −1 and without affecting the degree of the reconstruction
algorithm. That is, we will replace each polynomial in d variables in F̂ with d affine functions in one
variable. This increases the output length of F̂ from t · (|V |−1) to t 2 · |E |.

4.2 Our construction

Following prior garbling schemes for ABP due to Ishai and Kushilevitz in [25, 26], the starting point of
our construction is the matrix representation L(x, z) of the ABP in Lemma 1. Since the variables in z
appear only on the edges leading into the last t vertices in V , this means that they only appear in the last
t columns of the matrix L(x, z). Garbling proceeds similarly to that in [26, Section 4] by randomizing the
last t columns of this matrix while preserving its determinant – we achieve this by multiplying L(x, z) on
the left and on the right by random matrices with a prescribed structure. The efficiency improvement
over the prior construction comes from using matrices with fewer random entries; in particular, only the
last t columns of the randomizing matrices contain random entries.

A digression into matrices. We consider a set H of matrices which contains L(x, z), along with two
groups of matricesG1,G2 (see examples in Figure 2) which would be used to randomize L(x, z) as outlined
above.

Definition 2. Let H denote the set of ℓ×ℓ matrices over Fq containing only −1’s in their second diagonal
(the diagonal below the main diagonal), and 0’s below the second diagonal. For a fixed parameter t , define
two matrix groups G1 and G2 as follows:

– G1 is the subset of ℓ×ℓ matrices over Fq with 1’s on the main diagonal and 0’s in all of the remaining
entries except the right-most t −1 entries in the top row;

– G2 is the subset of ℓ×ℓ matrices over Fq with 1’s on the main diagonal and 0’s in all of the remaining
entries except for those above the main diagonal in the t right-most columns.

It is straight-forward to verify thatG1,G2 are both closed under multiplication and inverse; that is, bothG1

andG2 are subgroups of the multiplicative group of invertible ℓ×ℓmatrices. Next, we establish additional
properties of H,G1,G2 which would be used to establish correctness and privacy respectively:

Lemma 2. For any H ∈H,G1 ∈G1,G2 ∈G2, the first ℓ− t columns in G1HG2 are the same as those in H.

Proof. Consider two types of matrix operations:
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1 0 0 0 ∗ ∗
0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


∈G1,



1 0 0 ∗ ∗ ∗
0 1 0 ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1


∈G2

Fig. 2. Examples for G1,G2 with ℓ= 6, t = 3

(a) Add to the top row some linear combination of the bottom t −1 rows, as given by left-multiplication
by a matrix from G1;

(b) Add to the j ’th column where j > ℓ− t some linear combination of the first j −1 columns, as given
by right-multiplication by a matrix from G2;

Clearly, (b) operations leave the first ℓ− t columns in H unchanged. In each of the bottom t − 1 rows
of H , the first ℓ− t entries are all 0’s and therefore (a) operations also leave the first ℓ− t columns in H
unchanged. ⊓⊔

The following lemma (generalizing [26, Lemma 3]) shows that a matrix H from H can be brought into
a canonical form, uniquely defined by its first ℓ− t columns and its determinant, by multiplying it from
the left by some G1 ∈G1 and from the right by some G2 ∈G2.

Lemma 3. For any H ∈ H, there exists G1 ∈ G1 and G2 ∈ G2 such that G1HG2 satisfies the following
properties (that is, the “canonical form”):

– the entries in the first ℓ− t columns of G1HG2 are the same as those in H;

– G1HG2 contains −1’s in its second diagonal;

– it contains 0’s elsewhere except the value det(H) in the top-right entry.

Note that the canonical form for H is unique and is completely determined by the first ℓ− t columns of
H and det(H).

Proof. Again, consider the matrix operations as described in the proof of Lemma 2. As illustrated in
Figure 3, a matrix H ∈ H can be transformed, using a sequence of (a) and (b) operations, to a matrix
H ′ satisfying the properties in the Lemma. In particular, we modify the top row in the last t columns of
H using (a) operations, and the remaining rows in the last t columns of H using (b) operations. Note that
matrices in G1 and G2 have determinant 1 and therefore det(H ′) = det(H). Finally, a simple calculation
says that det(H ′) is equal to its top-right entry. ⊓⊔

Partially garbling F . We may now specify our PGS F̂ : start with the ℓ×ℓ matrix representation L(x, z)
for F , where ℓ = |V | − 1, and output the last t columns of the matrix R1L(x, z)R2, where R1 ←R G1 and
R2 ←R G2. We proceed to analyze the construction:
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∗ ∗ ∗ ∗ ∗ ∗
−1 ∗ ∗ ∗ ∗ ∗
0 −1 ∗ ∗ ∗ ∗
0 0 −1 ∗ ∗ ∗
0 0 0 −1 ∗ ∗
0 0 0 0 −1 ∗



(a)=⇒



∗ ∗ ∗ 0 0 ∗
−1 ∗ ∗ ∗ ∗ ∗
0 −1 ∗ ∗ ∗ ∗
0 0 −1 ∗ ∗ ∗
0 0 0 −1 ∗ ∗
0 0 0 0 −1 ∗



(b)=⇒



∗ ∗ ∗ 0 0 ∗
−1 ∗ ∗ 0 0 0

0 −1 ∗ 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0


Fig. 3. Bringing a matrix H to canonical form with ℓ= 6, t = 3

– (correctness) Reconstruction proceeds as follows: Given x and the last t columns of R1L(x, z)R2,
we may recover the entire matrix R1L(x, z)R2, since the first ℓ− t columns are the same as those
in L(x, z) (cf. Lemma 2) and depend only on x. Then, we compute det(R1L(x, z)R2), which is a
degree t computation over the output of F̂ . Correctness follows from the fact that det(R1L(x, z)R2) =
det(L(x, z)) = F (x, z) since det(R1) = det(R2) = 1.

– (privacy) Given x and F (x, z), we can compute the canonical form H ′ of the matrix L(x, z) as defined
in Lemma 3, namely H ′ =G1L(x, z)G2 for some G1 ∈ G1,G2 ∈ G2 (we do not need to compute G1,G2).
Since G1 and G2 are both matrix groups, it follows that

R1L(x, z)R2 and R ′
1H ′R ′

2,

where R1,R ′
1 ←R G1,R2,R ′

2 ←R G2, are identically distributed. Simulation proceeds by outputting the
last t columns of R ′

1H ′R ′
2.

Theorem 3 then follows readily.

5 Applications to Secure Computation

5.1 Conditional disclosure of secrets

We describe an application to conditional disclosure of secrets (CDS), already outlined in the introduc-
tion, and an implication for secure multiparty computation.

Relation to CDS and secret-sharing. Conditional disclosure of secrets (CDS) [20] allows a set of n players
P1, . . . ,Pn to disclose a secret z ∈ Fq to an external party Carol, subject to a given condition on their joint
inputs. In the original setting, Carol knows all the inputs held by the players except for the secret to
be conditionally disclosed, so she knows whether the condition holds and whether she will obtain the
secret. Each player on the other hand only sees its portion of the input and does not necessarily know
whether Carol will obtain the secret. Following [20], we consider the shared randomness model where all
players have access to the same random string which is hidden from Carol. For simplicity, we also assume
that all players know z. The protocol involves only a unidirectional communication from the players to
Carol. Note that CDS generalizes secret-sharing by considering the special case where each party holds
a boolean input and the message sent by Pi corresponds to its share (c.f. [20, Section 3.2.1]).
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Now, consider the scenario where party Pi holds xi ∈ Fq and the parties want to disclose the secret z
subject to the condition f (x1, . . . , xn) ̸= 0, where f : Fn

q → Fq . Let F : Fn
q ×Fq → Fq denote the function

F ((x1, . . . , xn), z) = f (x1, . . . , xn) · z

and let F̂ be an x-affine PGS for F . We can then derive a CDS protocol as follows:

– the shared random string is the randomness used for F̂ ;

– for each j ∈ [m], if F̂ (x, z) j is of the form a j xi +b j , then party i computes and sends a j xi +b j to Carol.

Suppose f (x1, . . . , xn) ̸= 0. Then, upon receiving the messages, Carol can then recover f (x1, . . . , xn) · z and
thus z using Rec since she knows x1, . . . , xn . On the other hand, if f (x1, . . . , xn) = 0, then PGS privacy
guarantees that Carol learns nothing about the secret. We note that the above construction generalizes
non-monotonic secret sharing: player i holds the share F̂ (x, z) j = a j xi +b j . In the case xi ∈ {0,1}, then
the 0-share is b j and the 1-share is a j +b j .

Improved CDS protocols. First, we obtain the first CDS protocols for arithmetic branching programs
where the communication complexity is linear in the branching program size. The prior constructions
in [20] achieve linear communication complexity for boolean branching programs, and quadratic
complexity for arithmetic branching programs. Furthermore, our protocols only make a black-box use
of the underlying field.

Non-zero ABP. Consider the scenario as before where party Pi holds xi ∈ Fq and the parties want to
disclose the secret subject to the condition f (x1, . . . , xn) ̸= 0, where f : Fn

q → Fq is computed by an ABP
Γ f = (V ,E , v0, v1,ϕ). It suffices to construct an affine PGS for the function

F ((x1, . . . , xn), z) = f (x1, . . . , xn) · z

Observe that we can build an ABP ΓF for F from that for f by adding an edge labeled z connecting the
original sink v1 to a new sink (c.f. example on the left in Fig 1). Clearly, ΓF satisfies the conditions for
Corollary 1 with t = 1, and the ensuing protocol also achieves communication complexity linear in the
size of the ABP for f and linear reconstruction of the secret z.

Zero ABP. We can also handle the condition f (x1, . . . , xn) = 0. Here, we want to construct an affine PGS
for the function

F ′((x1, . . . , xn), (z, z ′)) = f (x1, . . . , xn) · z ′+ z

We can build an ABP ΓF ′ for F ′ from that for f by adding two edges: one labeled z ′ connecting the
original sink v1 to the new sink and another labeled z connecting the original source v0 to the new sink
(c.f. example on the right in Fig 1). Again, ΓF ′ satisfies the conditions for Corollary 1 with t = 1, and the
ensuing protocol also achieves communication complexity linear in the size of the ABP for f and linear
reconstruction of the secret z.

Applications to secure multiparty computation. Consider a multiparty protocol in which a client
interacts with multiple servers. For instance, the client may wish to make a query q to a database D
held by k servers while hiding q from each set of t servers. When the client is semi-honest, this can
often be achieved via an efficient 2-round protocol in which the client distributes q between the servers
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using a suitable secret sharing scheme, and each server responds by applying some local computation
to D and its share qi of q . Such protocols are susceptible attacks by a malicious client, who distributes
inconsistent shares qi between the servers. The traditional approach of preventing such inconsistencies
is via the use of interactive protocols for verifiable secret sharing or zero-knowledge proofs. However,
these protocols require additional interaction.

An alternative methodology suggested in [20] is to use CDS: make each server send only a single
message to the client, such that these messages reveal the messages of the original protocol only under
the condition that the client’s messages qi are consistent with the protocol. The information-theoretic
CDS constructions given in [20] apply to Boolean formulas and do not efficiently apply in the context
of arithmetic computations required for, say, verifying the consistency of the client’s messages with
Shamir’s secret sharing scheme. This can be handled using our CDS protocols above for handling
arithmetic predicates.

5.2 Generalized oblivious transfer

In generalized oblivious transfer (GOT) [24] (which includes priced oblivious transfer [1] as a special
case), a sender holds n pairs of secret bits (zi ,0, zi ,1), i = 1, . . . ,n and a receiver holds input x ∈ {0,1}n . In
addition, there is some fixed boolean function f : {0,1}n → {0,1}. The receiver should learn the secrets
indexed by x (namely z1,x1 , . . . , zn,xn ) whenever f (x) = 1 and nothing otherwise, whereas the sender
should learn nothing about x. That is, the receiver learns

Fi (x, (zi ,0, zi ,1)) = f (x) · (xi zi ,1 + (1−xi )zi ,0)

for i = 1, . . . ,n and Fi : {0,1}n × {0,1}2 → {0,1}.

Suppose f is computed by an ABP Γ f = (V ,E , v0, v1,ϕ) over F2 of size s. It is easy to see that we can
build an ABP Γi for Fi with |V |+3 vertices and |E |+4 edges so that the two edges labeled with the private
input (zi ,0, zi ,1) both lead into the sink node in Γi . This fulfills the requirements for our partial garbling
scheme, and by Corollary 1, we can construct a z-affine PGS F̂i for Fi whose output length is O(s). This
allows us to realize GOT for branching programs using O(ns) parallel invocations of standard bit OT in
the semi-honest setting. This improves upon the prior construction in [24] which requires O(ns2) parallel
invocations.

6 Verifiable Computation

We consider the online/offline verifiable computation (VC) where the client wants to delegate the
computation of a function f : Fn

q → Fq on an input x ∈ Fn
q , where f is computed by an ABP Γ of size

s. For simplicity, we restrict the client’s input to be binary, that is, x ∈ {0,1}n ⊆ Fn
q ; we show later how to

remove this assumption with an O(log q) multiplicative overhead. In addition, we may assume that log q
is larger than the statistical security parameter, by taking a sufficiently large field extension of Fq .

The basic construction. Our construction follows the garble+MAC paradigm in [4]. We begin with the
function F : Fn

q ×F2
q → Fq :

F (x, (z1, z2)) = z1 f (x)+ z2
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That is, we apply the standard pairwise-independent MAC to authenticate the value f (x) under the key
(z1, z2). Next, we want to partially garble the function F . We observe that for the security proof in [4], it
suffices to keep z1, z2 private and there is no need to hide x. As with the CDS protocols in Section 5.1,
we can apply Corollary 1 to obtain an x-affine PGS F̂ for F where F̂ has output length O(s). Indeed, if
we want to fully garble the ABP for F , the overhead will be quadratic in s (c.f. [26]). Since F̂ is x-affine,
we may think of F̂ as defining n pairs of vectors (ai ,bi ) over Fq and the output F̂ (x) is determined by
(xi ai +bi ), i = 1, . . . ,n. The VC protocol for delegating the computation of f on x then proceeds as follows:

– In the offline phase, the client picks z1, z2 ←R Fq and computes the n vectors (ai ,bi ). In addition, it
selects n pairs of seeds (σi ,0,σi ,1) for a PRG G , and sends the server n pairs of values

G(σi ,0)⊕bi ,G(σi ,1)⊕ (ai +bi ), i = 1, . . . ,n

The client only needs to store z1, z2 and the n pairs of seeds for the next phase.

– In the online phase, upon receiving x ∈ {0,1}n , the client sends the server x, along with the n seeds

σi ,xi , i = 1, . . . ,n

The server can then compute xi ai +bi and thus both F̂ (x, (z1, z2)) and F (x, (z1, z2). It sends (y,τ) =
( f (x),F (x, (z1, z2))) back to the client. The client accepts if τ= z1 y + z2 and rejects otherwise.

The intuition for soundness is as follows. Fix an ABP f and an input x ∈ {0,1}n and we want to bound the
probability that a cheating server S∗ convinces an honest client to accept y ̸= f (x). First, by the security
of the PRG, at the end of the online phase, S∗ only learns F̂ (x, (z1, z2)) and nothing else about ai ,bi . Then,
by the privacy of PGS, S∗ only learns z1 f (x)+ z2 and nothing else about (z1, z2). This means that by the
one-time security of the pairwise-independent MAC, the client accepts a tag on y ̸= f (x) with probability
at most 1/q . Following [4, Lemma 1], we can indeed show that the ensuing VC protocol has soundness
error at most 1/q +negl(λ).

Removing the binary restriction. It is easy to see that we can transform any f : Fn
q → Fq into another

function f ′ : Fn⌈log q⌉
q → Fq so that:

– for all x ∈ Fn
q , f ′(x̄) = f (x), where x̄ ∈ {0,1}n⌈log q⌉ denote the binary decomposition of x;

– if f is computed by an ABP Γ of size s, then f ′ is computed by an ABP Γ′ of size O(s log q), obtained by
replacing each edge inΓwith O(log q) edges which recovers a variable from its binary decomposition.

Now, we just apply the preceding construction to the ABP f ′, with x̄ as the client’s input in the online
phase.

Handling boolean formula. We note that our construction may be applied to boolean formula, by
converting a formula of size s to an ABP of size O(s) over a field of size q > 2κ where κ is the statistical
security parameter. We then obtain a VC protocol where the offline complexity and the client’s online
complexity are dominated by O(sκ) and O(nκ) respectively, improving upon that based on Yao’s garbled
circuits in [19, 4] in that we replace the dependency on a computational security parameter with that on
a statistical security parameter. Here, instead of our partial garbling scheme from Corollary 1, we may
also use a direct construction based on secret-sharing for boolean formula implicit in [32, 23].
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7 Attribute-Based Encryption for ABPs

In this section, we present our ABE schemes for ABPs. Here, ciphertexts are associated with x ∈ Fn
q , and

secret keys are associated with an ABP f : Fn
q → Fq . In Z-ABP, decryption is possible iff f (x) = 0, and in

N-ABP, decryption is possible iff f (x) ̸= 0. Roughly speaking, instead of using secret-sharing schemes as
in the literature on ABE for boolean formula [23, 30], we will use CDS for ABP given in Section 5.1, which
support linear reconstruction. The latter is important since we need to reconstruct the secret “in the
exponent”. As with ABE for boolean formula, it is more convenient to work with span programs [28] for
the proof of security; a side-benefit is that we can simultaneously capture both Z-ABP and N-ABP.

7.1 Arithmetic span programs

We define arithmetic span programs, a generalization of (boolean) span programs [28].

Definition 3 (arithmetic span program [28]). An arithmetic span program (V,ρ) is a collection of vectors
V= {(y j ,z j ) : j ∈ [m]} in Fℓq and ρ : [m] → [n]. We say that

x ∈ Fn
q satisfies (V,ρ) iff eℓ ∈ span〈xρ( j )y j +z j 〉,

where eℓ := (0,0, . . . ,0,1) ∈ Fℓq and span refers to linear span of a collection of column vectors.

We relate Z-ABP and N-ABP to arithmetic span programs. That is, given an ABP Γ for f : Fn
q → Fq on ℓ

vertices, we construct an arithmetic span program (V,ρ) so that

– for Z-ABP: x ∈ Fn
q satisfies (V,ρ) iff f (x) = 0;

– for N-ABP: x ∈ Fn
q satisfies (V,ρ) iff f (x) ̸= 0.

In both cases, we start with an ABP Γ′ for f on ℓ+ 1 vertices, obtained by adding an edge labeled 1
connecting the original sink in Γ to a new sink in Γ′ (an analogous construction appears in Section 5.1).
Next, we apply the transformation in Lemma 1 to Γ′ to obtain a ℓ×ℓ matrix L such that det(L(x)) = f (x),
where L(x) has the following form: 

∗ ∗ ∗ ·· · ∗ ∗ 0

−1 ∗ ∗ ·· · ∗ ∗ 0

0 −1 ∗ ·· · ∗ ∗ 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 ∗ 0

0 0 0 · · · 0 −1 1


Observe that the first ℓ−1 columns of L(x) are linearly independent. We will actually need to first modify
Γ (by replacing each edge e with a pair of edges labeled ϕ(e) and 1) so that every vertex has at most one
incoming edge of degree 1, so that each column of L depend on the same variable and can be written as
xρ( j )y j +z j . We may then derive the arithmetic span program (V,ρ) as follows:
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– for Z-ABP: Here,

f (x) = det(L(x)) = 0 ⇐⇒ eℓ lies in the column span of the first ℓ−1 columns of L(x)

We then take (V,ρ) to describe the column span of the first ℓ−1 columns of L(x).

– for N-ABP: Here,

f (x) = det(L(x)) ̸= 0 ⇐⇒ e1 lies in the column span of L(x)

We take (V,ρ) to describe the column span of L(x), with the first and ℓ’th row switched.

7.2 Computational assumptions

We now briefly recall bilinear pairing groups and then state the decisional bilinear Diffie-Hellman
(DBDH) assumption that are required in our security proof. A generator G which takes as input a security
parameter 1λ and outputs a description G := (p,G ,GT ,e), where p is a prime of Θ(λ) bits, G and GT are
cyclic groups of order p, and e : G ×G →GT is a non-degenerate bilinear map. We require that the group
operations in G and GT as well the bilinear map e are computable in deterministic polynomial time with
respect to λ. Furthermore, the group descriptions of G and GT include generators of the respective cyclic
groups.

Assumption 1 (DBDH: Decisional Bilinear Diffie-Hellman Assumption) Given a group generatorG(1λ),
we define the following distribution:

G := (p,G ,GT , g ,e) ←R G(1λ),

a,b, s, z ←R Zq ,

T0 := g abs , T1 := g abs+z ,

D := (G; g a , g b , g s).

We assume that for any PPT algorithm A (with output in {0,1}),

AdvDBDH
A (λ) := |Pr[A(D,T0) = 1]−Pr[A(D,T1) = 1]|

is negligible in the security parameter λ.

7.3 Attribute-Based Encryption

We present the definitions for attribute-based encryption [34, 23].

Syntax. A attribute-based encryption (ABE) scheme for arithmetic span programs with message space
M consists of four algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ,1n) → (mpk,msk). The setup algorithm gets as input the security parameter λ, the length
parameter 1n and outputs the public parameter mpk, and the master key msk.

Enc(mpk, x,m) → ctx . The encryption algorithm gets as input mpk, an attribute x ∈ X and a message
m ∈M. It outputs a ciphertext ctx .
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KeyGen(msk, (V,ρ)) → skV,ρ . The key generation algorithm gets as input msk and an arithmetic span
program (V,ρ). It outputs a secret key skV,ρ .

Dec(skV,ρ ,ctx ) → m. The decryption algorithm gets as input skV,ρ and ctx and outputs a message m.

Correctness. If x satisfies (V,ρ), for all messages m ∈M, we have

Pr[Dec(skV,ρ ,Enc(mpk, x,m)) = m] = 1.

where the probability is taken over (mpk,msk) ← Setup(1λ,1n);sky ← KeyGen(msk, (V,ρ)) and the coins
of all the algorithms in the expression above.

7.4 Security Model

We consider the following selective CPA security game for attribute-based encryption played between a
challenger and an adversary A.

Selective. The adversary A submits the challenge attribute x∗.

Setup. The challenger generates (mpk,msk) ← Setup(1λ,1n) and gives mpk to the adversary A.

Phase 1. The adversary A adaptively requests keys for any (V,ρ) not satisfied by x∗. The challenger
responds with the corresponding secret key skV,ρ ←KeyGen(msk, (V,ρ)).

Challenge. The adversary A submits two messages m0,m1 of equal length. The challenger picks β←R

{0,1} and sends A the ciphertext ct∗ ←Enc(mpk, x,mβ).

Phase 2. A continues to request keys for any (V,ρ) of its choice, subject to the same constraints as
before.

Guess. The adversary A outputs a guess β′ for β.

We define the advantage function AdvABE
A (λ) to be |Pr[β′ =β]−1/2|.

7.5 Construction

We present our ABE scheme for arithmetic span programs:

– Setup(1λ,1n): generate G := (q,G ,GT ,e) ←R G(1λ), pick α←R Zq , a ←R Z
∗
q ,v ←R Z

n
q , and output

mpk := (
G;e(g , g )α, g , g a , g v )

and msk := ( α, a,v )

– Enc(mpk, x,m): pick s ←R Zq and output

ctx := (
C0 := g s , Ci := g (axi+vi )s : i ∈ [n], C ′ := e(g , g )αs ·m

)
– KeyGen(mpk,msk, (V,ρ)): pick u ←R Z

ℓ
q subject to the constraint 〈u,eℓ〉 =α, and compute

β j := 〈u,y j 〉 and γ j := 〈u,z j 〉.

17



Output

skV,ρ :=
(

(K j ,0,K j ,1) := (g
β j
a , gγ j−

β j vρ( j )
a ) : j ∈ [m]

)
.

– Dec(mpk,skV,ρ ,ctx ): If eℓ ∈ span〈xρ( j )y j +z j 〉, first compute ω1, . . . ,ωm ∈Zq such that

eℓ =
m∑

j=1
ω j (xρ( j )y j +z j )

Parse the ciphertext as (C0,C1, . . . ,Cn ,C ′) and output

m ←C ′ ·
( m∏

j=1

(
e(C0,K j ,1) ·e(Cρ( j ),K j ,0)

)ω j
)−1

.

Theorem 4. Under DBDH assumption (described in Section 7.2), our ABE scheme defined in Section 7.5 is
selectively secure (in the sense of Definition 7.4).

Correctness. Observe that

e(C0,K j ,1) ·e(Cρ( j ),K j ,0) = e(g , g )s(xρ( j )β j+γ j ).

Correctness then follows readily from the fact that

α=
m∑

j=1
ω j (xρ( j )β j +γ j ).

7.6 Proof of ABE Security

We prove the following lemma:

Lemma 4. For any adversary A against the ABE scheme, there exist an adversary B against the DBDH
assumption whose running time is roughly that of A such that

AdvABE
A (λ) ≤AdvDBDH

B (λ)+1/p.

Proof. Recall that B is given

D := (G; g , g a , g b , g s),

along with T , where T equals e(g , g )abs or is drawn uniformly from GT . Here, we assume that a ←R Z∗
q ,

which yields a 1/p negligible difference from DBDH assumption in the advantage.B proceeds as follows:

Setup. On input selective challenge x∗, pick ṽ ←R Z
n
q and implicitly set

α := ab and v := ṽ−ax∗.

Observe that we can compute mpk given g , g a , g b as follows:

mpk := ( G;e(g a , g b), g , g a , g ṽ(g a)−x∗
).

Key Queries. On input a key query (V,ρ) not satisfied by x∗, by duality, we can efficiently compute u∗

such that

〈u∗,eℓ〉 = 1 and 〈u∗, x∗
ρ( j )y j +z j 〉 = 0, ∀ j ∈ [m].
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In addition, we pick ũ ←R Z
ℓ
q subject to the constraint 〈ũ,eℓ〉 = 0 and implicitly set

u := abu∗+aũ.

It suffices to show how to simulate

(K j ,0,K j ,1) = (g
β j
a , g x∗

ρ( j )β j+γ j−
β j ṽρ( j )

a )

for each j , where

β j := ab〈u∗,y j 〉+a〈ũ,y j 〉, γ j := ab〈u∗,z j 〉+a〈ũ,z j 〉
Now, observe that we can readily simulate K j ,0 given g b , since

K j ,0 = g b〈u∗,y j 〉+〈ũ,y j 〉

Next, observe that

x∗
ρ( j )β j +γ j = ab〈u∗, x∗

ρ( j )y j +z j 〉+a〈ũ, x∗
ρ( j )y j +z j 〉 = a〈ũ, x∗

ρ( j )y j +z j 〉
since 〈u∗, x∗

ρ( j )y j +z j 〉 = 0. We can then simulate K j ,1 given g a , ṽρ( j ), since

K j ,1 = (g a)〈ũ,x∗
ρ( j )y j+z j 〉 ·K

−ṽρ( j )

j ,0

Challenge Ciphertext. Upon receiving m0 and m1 from A, B picks β←R {0,1} and outputs the challenge
ciphertext as:

ctx∗ := (
g s , (g s)ṽ, T ·mβ

)
.

Now, if T equals e(g , g )abs , then ctx∗ is indeed an encryption of mβ. On the other hand, if T ←R GT ,
then ctx∗ is an encryption of a random message in GT and thus independent of β.

Guess. When A halts with output β′, B outputs 1 if β=β′ and 0 otherwise.

We may therefore conclude that AdvABE
A (λ) ≤AdvDBDH

B (λ)+1/p. ⊓⊔
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