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Abstract—We present Ring ORAM, a simple and low-latency
ORAM construction that can be parameterized for either small or
large client storage. Simply by tuning parameters, Ring ORAM
matches or exceeds the performance of the best-known small and
large client storage schemes and can achieve a constant factor
online bandwidth overhead over insecure systems.

We evaluate Ring ORAM in theory and in practice. On the
theory side, we prove that Ring ORAM matches the asymptotic
bandwidth and client storage of Path ORAM, the prior-art
scheme for small client storage. Tuning parameters for small
client storage, Ring ORAM reduces overall bandwidth relative to
Path ORAM by a factor of 2.7× and reduces online bandwidth to
constant (a 57× improvement over Path ORAM given realistic
parameters). Tuning parameters for large client storage, Ring
ORAM outperforms Path ORAM (which is given equal storage)
by 4.5× and SSS ORAM, the prior-art scheme for large client
storage, by 16-33%.

Using secure processors as a case study for small client storage,
Ring ORAM on average reduces ORAM response time by nearly
5× and improves workload completion time by 2.75×, relative to
Path ORAM. In the large storage setting, running an enterprise
file system trace with bursty requests, Ring ORAM adds negli-
gible overhead to response time given a > 100 Mbps network
bandwidth. By comparison, Burst ORAM incurs large overheads
in response time unless network bandwidth > 350 Mbps. These
results suggest that Ring ORAM is a compelling construction in
both large client storage (e.g., file server) and small client storage
(e.g., remote secure processor) settings.

I. INTRODUCTION

With cloud computing and storage becoming increasingly
popular, privacy of users’ sensitive data has become a large
concern in computation and storage outsourcing. In an ideal
setting, users would like to “throw their encrypted data over
the wall” to a cloud service without revealing anything from
within that data to the server. It is well known, however, that
encryption is not enough to get privacy. The user’s access
pattern has been shown to reveal a lot of information about
the encrypted files [11] or the private user data being computed
upon [28], [14].

1A preliminary version of this paper appears in Cryptology ePrint Archive
Report 2014/431.

Oblivious RAM (ORAM) is a cryptographic primitive that
completely eliminates the information leakage in memory
access trace. In ORAM schemes, a client stores its data in
encrypted and shuffled form on an untrusted server. On each
access, the client reads the untrusted memory, reshuffles that
memory and possibly updates some state in trusted local
storage called the client storage. Under ORAM, any memory
access pattern is computationally indistinguishable from any
other access pattern of the same length.

The most efficient ORAM scheme when a large amount
of client storage is available is the SSS construction [22]
and the most efficient scheme for small client storage is Path
ORAM [24]. In this paper, we define small client storage to
be poly-logarithmic.

In practice, large vs. small client storage leads to very
different use cases. For example, in the oblivious file server
setting [26], [21], [4], clients usually have ample local storage
and use the SSS construction for its better bandwidth. On
the other hand, as on-chip storage is scarce, secure processor
proposals [5], [14] have adopted Path ORAM due to its
simplicity and small client storage. Therefore, Path ORAM
and SSS ORAM schemes are considered ‘best in class’ for
their respective settings only.

A. Our Contributions

This paper proposes Ring ORAM, the most bandwidth-
efficient ORAM protocol to date for both small (poly-log) and
large client storage. Ring ORAM has the following intriguing
properties, which we quantify in Table I:

1) Multi-paradigm Oblivious RAM. Ring ORAM com-
bines the best qualities from the SSS ORAM and Path
ORAM. Most of the bandwidth/latency improving opti-
mizations used by the SSS ORAM (and subsequent work
Burst ORAM [4]) are immediately applicable to Ring
ORAM. At the same time, Ring ORAM is fundamen-
tally a tree-based ORAM [20] and therefore inherits the
simplicity and small client storage that are typical for
tree-based ORAMs.

2) Efficiency and flexible parameters. Partly due to the
above property, Ring ORAM offers appealing perfor-



TABLE I: Our contributions. Overheads are relative to an insecure system. Online bandwidth is the bandwidth needed to serve a request
and overall bandwidth includes background work. XOR refers to the XOR technique from [4] and level comp refers to level compression
from [22]. We show Ring ORAM without the XOR technique for small client storage in case server computation is not available in that
setting. The constant c in the large client storage case is very small for realistic block sizes: i.e., for this parameterization the cN term
constitutes 1/16 of total client storage. Bandwidth in the small client storage case does not include the cost of recursion [20] which is
negligible in practice for large (e.g. 4 KByte) block sizes.

Practical (overheads are relative to insecure), Asymptotic
Online Bandwidth Overall Bandwidth Client Storage Server Storage

Large client storage (ORAM capacity = 64 TeraBytes, Block size 256 KBytes)
SSS ORAM [22] (level comp) 7.8× O(logN) 31.2× O(logN) 16 GBytes O(

√
N) + cN 3.2N

SSS ORAM [22] (XOR) 1× O(1) 35.7× O(logN) 16 GBytes O(
√
N) + cN 3.2N

Path ORAM [24] 60× O(logN) 120× O(logN) 16 GBytes O(
√
N) + cN 8N

Ring ORAM (this paper, XOR) 1× O(1) 26.8× O(logN) 16 GBytes O(
√
N) + cN 6N

Small client storage (ORAM capacity = 1 TeraByte, Block size 4 KBytes)
Path ORAM 80× O(logN) 160× O(logN) 3.1 MBytes O(logN)ω(1) 8N

Ring ORAM (this paper) 20.4× O(logN) 79.3× O(logN) 3.1 MBytes O(logN)ω(1) 6N
Ring ORAM (this paper, XOR) 1.4× O(1) 59.7× O(logN) 3.1 MBytes O(logN)ω(1) 6N

mance at both settings. Given small client storage, Ring
ORAM improves the overall bandwidth of Path ORAM
by 2 − 2.7× and online bandwidth (i.e., bandwidth to
serve a request) by > 50×, for a practical parameter
setting. When given large client storage, Ring ORAM
improves over Path ORAM (which is given equal storage)
by 4.5× and the SSS ORAM by 16-33% (depending on
parameters).

3) Simplified theoretical analysis. Similar to Path ORAM,
Ring ORAM achieves negligible failure probability with
a O(logN)ω(1) size stash. Our novel proof technique
based on properties of the Ring ORAM eviction algo-
rithm leads to a much simpler stash analysis than that of
Path ORAM. We also note that the proof of Lemma 1
in [24], a crucial lemma for both Path ORAM and this
paper, is incomplete, though the lemma itself is correct.
We give a rigorous proof for that lemma in this paper.

We evaluate Ring ORAM in two case studies to show its
performance. First, in an enterprise file server (large client
storage setting) with bursty requests, given medium network
bandwidth (> 100 Mbps), Ring ORAM’s response time is
approximately the same as a baseline system and significantly
outperforms Burst ORAM [4] (unless Burst ORAM is given
> 350 Mbps bandwidth). Second, in a secure processor (small
client storage setting) running SPEC and database workloads,
Ring ORAM improves response time by nearly 5×, which
translates to a 2.75× speedup in program completion time
compared to Path ORAM. These results show how Ring
ORAM is a compelling scheme in both large (file server) and
small (secure processor) client storage settings.

B. Paper Organization

In § II, we give formal definitions for ORAM, related
work and a background for the small and large client storage
settings. § III explains the Ring ORAM protocol in detail. § IV
describes scheduling optimizations for Ring ORAM. § V gives
a complete formal analysis for bounding Ring ORAM’s client
storage. § VI gives a methodology for setting Ring ORAM
parameters. In § VII, we compare Ring ORAM to prior work
in terms of bandwidth vs. client storage and two realistic case

studies. Finally, we conclude in § VIII.

II. BACKGROUND AND RELATED WORK

A. An Overview of ORAM Schemes

ORAM schemes consider a trusted client that wishes to
store private data on an untrusted server. The goal of ORAM
is complete access pattern obfuscation: the server should
learn no information about the data read/written, the sequence
of addresses or operations (reads/writes). For this paper we
follow the standard security definition for ORAM.

Definition 1. (ORAM Definition) Let

←−y = ((opM , addrM , dataM ), . . . , (op1, addr1, data1))

denote a data sequence of length M , where opi denotes
whether the i-th operation is a read or write, addri denotes the
address for that access and datai denotes the data (if a write).
Let ORAM(←−y ) be the resulting randomized data request
sequence of an ORAM algorithm. The ORAM protocol guar-
antees that for any ←−y and ←−y ′, ORAM(←−y ) and ORAM(←−y ′)
are computationally indistinguishable if |←−y | = |←−y ′|, and also
that for any ←−y the data returned to the client by ORAM is
consistant with ←−y (i.e., the ORAM behaves like a valid RAM)
with overwhelming probability.

ORAM was first proposed by Goldreich and Ostrovsky [7],
[8]. Since then, there have been numerous follow-up works
that significantly improved ORAM’s efficiency in the past
three decades [17], [16], [3], [1], [25], [9], [10], [12], [22],
[20], [6], [24].

To compare ORAM schemes, we consider their online band-
width, offline bandwidth and client storage. Online bandwidth
is the work required to serve a client request while offline
bandwidth can be performed in the background. Thus, online
bandwidth is more important in some settings (e.g., for a
workload with bursts of requests and sufficient idle time to
hide background work). When we say overall bandwidth we
mean the sum of online and offline bandwidth. Client storage
is the amount of trusted local memory required at the client
side to manage the ORAM protocol.
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Under these metrics, the two state-of-the-art schemes in
practical settings are the SSS ORAM [22] and Path ORAM
[24]. Both schemes achieve O(logN) overall bandwidth,
the asymptotic lower bound found by Goldreich and Ostro-
vsky [7], [8]. The SSS ORAM has a constant factor of around
1 in overall bandwidth, but requires at least O(

√
N) client

storage. Burst ORAM extends the SSS construction [22] by
reducing its online bandwidth to O(1). Path ORAM has a
larger constant factor in its overall bandwidth—at least 8,
roughly half of which is online bandwidth—but only needs
poly-logarithmic client storage. Since Path ORAM, several
schemes [15] have been developed for constant client storage
but make additional assumptions such as such as PIR/FHE at
the server. Thus, we do not compare to them in this paper.

The bandwidth and storage characteristics of Path ORAM
and SSS ORAM make each the ‘scheme of choice’ in distinct
settings called small client storage and large client storage.
The proposal of this paper, Ring ORAM, matches or exceeds
each scheme in its preferred setting. For context, we now
discuss some characteristics and concrete examples for both
settings (summarized in Figure 1).

Cloud processors

Client

Position map

Stash

TCB

Network

ORAM

Client data

(Can perform computation)

Large client storage: File servers

GBytes of storage

Untrusted 
cloud

(a) File server setting

Secure processor

Client

ORAM

Client data
Position map

Stash

TCB

Initialization, 
Key exchange

Memory bus

TCB

Untrusted 
cloud

Small client storage: Secure processors

Computation
KBytes-MBytes of storage 

(b) Secure processor setting

Fig. 1: ORAM usage settings. The position map and stash are ORAM
client storage data structures that will be explained in § III.

B. Large Client Storage (e.g., Oblivious File Servers)

An example of the large client storage setting is remote
oblivious file servers (Figure 1a). Previous works in this area
include [26], [13], [21], [4]. In this setting, the client runs on
a local machine and interacts with a remote storage provider
(e.g., a datacenter) to retrieve data obliviously. The trusted
computing base (TCB) is the client machine, and the client can
use its main memory or disk for client storage, typically tens of
GBytes (still small compared to a tens of TeraBytes ORAM).
Given this large storage, the preferred ORAM scheme in this
setting is the SSS construction [22], which was implemented
in Oblivistore [21] and extended to minimize online bandwidth
in Burst ORAM [4].

TABLE II: ORAM parameters and notations.

Notation Meaning

N Number of real data blocks in tree
L Depth of Path ORAM tree
Z Maximum number of real blocks per bucket
S Number of slots reserved for dummies per bucket
B Data block size (in bits)
A Eviction rate (larger means less frequent)
P(l) Path l
P(l, i) The i-th bucket (towards the root) on P(l)
P(l, i, j) The j-th slot in bucket P(l, i)

Since ORAM accesses typically are reading/writing files,
the ORAM block size is typically large (at least 4 KBytes).
Since data is sent over a network with potentially large latency,
it is desirable to minimize the number of round-trip operations.
Further, the remote server is usually capable of performing
some public computation on the client’s data to save network
bandwidth or round-trips.

C. Small Client Storage (e.g., Secure Processors)

An example small client setting is when the client is a re-
mote secure processor (Figure 1b). Client storage is restricted
to a processor’s on-chip storage which is on the order of
hundreds of KBytes to MBytes. The ORAM client logic is
typically implemented directly in hardware and needs to be
simple. Therefore, secure processors [14], [5], [27], [19] have
adopted Path ORAM [24] for its small client storage and
simplicity.

Since secure processor main memory is close to the proces-
sor, round trip latency is typically small (tens of nanoseconds).
At the same time, main memory (e.g., stock DRAM) typically
has no computation ability beyond simply writing and reading
data, which may prohibit some optimizations used in the file
server setting.

III. RING ORAM PROTOCOL

A. Overview

We first describe Ring ORAM in terms of its server and
client data structures. All notation used throughout the rest of
the paper is summarized in Table II.

Server storage is organized as a binary tree of buckets
where each bucket is made up a small number of slots which
hold blocks. Levels in the tree are numbered from 0 (the root)
to L (inclusive, the leaves) where L = O(logN) and N is the
number of blocks in the ORAM. Each leaf is given a unique
indentifier. Each bucket has Z + S slots and a small amount
of header information that we will detail in § III-F. Of these
slots, up to Z slots may contain real blocks and the remaining
S slots are reserved for dummy blocks.

Server storage size. Our theoretical analysis in § V will
show that to store N blocks in Ring ORAM, the physical
ORAM tree needs roughly 6N to 8N slots.

Client storage is made up a position map and a stash.
The position map is a dictionary that maps each block in the
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ORAM to a random leaf in the ORAM tree. The stash buffers
blocks that have not been evicted to the ORAM tree and
additionally stores Z(L+ 1) blocks for shuffling operations.

Client storage size. We will prove in § V that stash size is
bounded by O(logN)ω(1) with high probability. The position
map stores N ∗L bits, but can be squashed to constant storage
using the standard recursion trick (§ III-I).

Main invariants. Ring ORAM has two main invariants:
1) (Same as Path ORAM): Every block tracked by the

position map is mapped to a leaf bucket chosen uniformly
at random in the ORAM tree. If a block a is mapped to
leaf l by the position map, block a is contained either in
the stash or in some bucket along the path from the root
of the tree to leaf l.

2) For every bucket in the tree, the physical positions of
the Z + S dummy and real blocks in each bucket are
permuted randomly with respect to all past and future
writes to that bucket.

Since a leaf uniquely determines a path in a binary tree, we
will use leaves/paths interchangeably when the context is clear.

B. Access and Eviction Operations

Algorithm 1 Non-recursive Ring ORAM.

1: function ACCESS(a, op, data′)
2: Global/persistent variables: round

3: l′ ← UniformRandom(0, 2L − 1)
4: l ← PositionMap[a]
5: PositionMap[a] ← l′

6: data ← ReadPath(l, a)
7: if data = ⊥ then
8: B If block a is not found on path l, it must
9: be in Stash C

10: data ← read and remove a from Stash
11: if op = read then
12: return data to client
13: if op = write then
14: data ← data′

15: Stash ← Stash ∪ (a, l′, data)

16: round ← round + 1 mod A
17: if round

?
= 0 then

18: EvictPath()

19: EarlyReshuffle(l)

The Ring ORAM access protocol is shown in Algorithm 1.
At a very high level, this algorithm is similar to the SSS
ORAM [22], although the mechanics of each access and
eviction are very different. In particular, each access is four
steps:

Position Map lookup (Lines 3-5): Lookup the position map
to learn which path l the block being accessed is currently

mapped to. Remap that block to a new random path l′. This
step is unchanged from previous tree-based ORAMs [20], [24].

We denote path l as P(l), and the i-th bucket (towards
the root) on that path as P(l, i). Note that a bucket can have
multiple aliases (e.g., P(l, 0) is the root bucket for any l).

Read Path (Lines 6-15): The ReadPath(l, a) operation
reads all buckets along P(l) to look for the block of interest
(block a), and then reads that block into the stash. The
block of interest is then updated in stash on a write, or is
returned to the client on a read. Our ReadPath operation
differs significantly from Path ORAM in that we read out only
one block—from a random location—from each bucket. This
lowers the bandwidth overhead of ReadPath to L+ 1 blocks
(the number of buckets on a path) or even a single block if
further optimizations are applied (§ III-H).

Evict Path (Line 16-18): The EvictPath operation reads
Z blocks (all the remaining real blocks, and potentially some
dummy blocks) from each bucket along a path into the stash,
and then fills that path with blocks from the stash, trying to
push blocks far down towards the tree leaves as possible. The
sole purpose of an eviction operation is to push blocks back
to the binary tree from the stash.

Unlike Path ORAM, EvictPath for Ring ORAM does not
happen on every access. Its rate is controlled by a public
parameter A: every A ReadPath operations trigger a single
EvictPath operation. This means Ring ORAM needs much
less eviction operations than Path ORAM (which performs
one eviction operation after each access).

Early Reshuffles (Line 19): Finally, we perform a mainte-
nance task called EarlyReshuffle on P(l), the path accessed by
ReadPath. This step is crucial in maintaining blocks randomly
shuffled in each bucket, which enables ReadPath to securely
read only one block from each bucket.

We will present details of ReadPath, EvictPath and
EarlyReshuffle in the next three subsections. The helper func-
tions needed in these three subroutines are given in Algo-
rithm 5 and explained in § III-F after we describe the structure
of buckets. We also explain the security for each subroutine
in § III-G.

C. Read Path Operation

Algorithm 2 ReadPath procedure. Helper functions are defined in
Algorithm 5.

1: function ReadPath(l, a)
2: data ← ⊥
3: for i← 0 to L do
4: offset ← GetBlockOffset(P(l, i), a)
5: data′ ← P(l, i, offset)
6: Invalidate P(l, i, offset)
7: if data′ 6= ⊥ then
8: data ← data′

9: P(l, i).count ← P(l, i).count + 1

return data
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The ReadPath operation is shown in Algorithm 2. For each
bucket along the current path, ReadPath selects a single block
to read from that bucket. For a given bucket, if the block of
interest lives in that bucket, we read and invalidate the block of
interest. Otherwise, we read and invalidate a randomly-chosen
dummy block that is still valid at that point.

Because the position map only tracks the path containing
the block of interest (§ III-A) the client does not know where
in each bucket to look for the block of interest. Thus, for each
bucket we must read some metadata into client memory that
maps each real block in the bucket to one of the Z + S slots
(Lines 4). The details of GetBlockOffset will be presented in
§ III-F after we describe the bucket format. The metadata is
small compared to reasonably large block sizes. When the
block size is small, however, reading metadata becomes a
limiting factor in bandwidth (§ VII-A2). Once we know the
offset into the bucket, Line 5 reads the block in the slot, and
invalidates it.

Each bucket also has a counter which tracks how many
times it is accessed (Line 9). If a bucket is read too many
(> S) times, it may run out of dummy blocks (all the dummy
blocks have been invalidated). On future accesses, if additional
dummy blocks are requested from this bucket, we cannot re-
read a previously invalidated dummy block: doing so reveals
to the adversary that the block of interest is not in this bucket2.
Therefore, we need to reshuffle single buckets on-demand as
soon as they are touched more than S times. We call this step
EarlyReshuffle and describe it in § III-E.

D. Evict Path Operation

Algorithm 3 EvictPath procedure. Helper functions are defined in
Algorithm 5.

1: function EvictPath
2: Global/persistant variables G initialized to 0
3: l ← G mod 2L

4: G ← G+ 1
5: for i← 0 to L do
6: Stash ← Stash ∪ ReadBucket(P(l, i))

7: for i← L to 0 do
8: WriteBucket(P(l, i),Stash)
9: P(l, i).count ← 0

The EvictPath routine is shown in Algorithm 3. As men-
tioned, evictions are scheduled statically: one eviction opera-
tion happens after every A reads. At a high level, an eviction
operation reads all remaining real blocks on a path (in a secure
fashion), and tries to push them down that path as far as
possible. The leaf-to-root order in the writeback step (Lines 9)
reflects this: we wish to fill the deepest buckets as full as
possible. Thus, EvictPath is like a Path ORAM access where
no block is accessed and therefore no block is remapped to a
new leaf.

2We could consider reading (and invalidating) a valid real block from that
bucket, similar to early cache-ins in Oblivistore [21], but this adds extra blocks
into the stash, and will lead to inferior parameter settings.

Time

G = 0 G = 1 G = 2 G = 3

Fig. 2: Reverse-lexicographic order of paths used by EvictPath.
After the G = 3 path is evicted to, the order repeats.

However, there are two important differences from Path
ORAM’s eviction operation. First, evictions in Ring ORAM
are performed to paths in a specific order called the reverse-
lexicographic order shown in Figure 2, and first proposed
by Gentry et al. [6]. The reverse-lexicographic order eviction
aims to minimize the overlap between consecutive eviction
paths, because (intuitively) evictions to the same bucket in
consecutive accesses are likely to be less efficient. This im-
proves eviction quality and allows us to reduce the frequency
of eviction. Evicting using this static order is also a key
component in simplifying our theoretical analysis in § V.

Second, buckets in Ring ORAM are randomly shuffled
(Invariant 2), and we partly rely on EvictPath operations to
keep them shuffled. An EvictPath operation reads Z blocks
from each bucket on a path into the stash (ReadBucket), and
writes out Z + S blocks (only up to Z are real blocks) to
each bucket, permuted (WriteBucket). The details of read-
ing/writing buckets will be described in § III-F.

E. Early Reshuffle Operation

Algorithm 4 EarlyReshuffle procedure. Helper functions are de-
fined in Algorithm 5.

1: function EarlyReshuffle(l)
2: for i← 0 to L do
3: if P(l, i).count ≥ S then
4: Stash ← Stash ∪ ReadBucket(P(l, i))
5: WriteBucket(P(l, i),Stash)
6: P(l, i).count ← 0

In some sense EvictPath are “statically scheduled” reshuf-
fles. But due on randomness, a bucket can be touched > S
times by ReadPath operations before it is processed by the
scheduled EvictPath. In this case, we call EarlyReshuffle
on that bucket to reshuffle it. After each ORAM access,
EarlyReshuffle goes over all the buckets on the accessed
path, and reshuffles all the buckets that have been accessed
more than S times (see § III-C) by performing ReadBucket
and WriteBucket. Again, these two helper functions will be
explained in § III-F. We note that though S does not affect the
security (§ III-G), it has an impact on the performance (how
often we shuffle). We discuss how to select S in § VI-A.

F. Bucket Structure

Table III lists all the fields in a Ring ORAM bucket and
their size. We would like to make two remarks. First, only the
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TABLE III: Ring ORAM bucket format. All logs are taken to their ceiling.

Notation Size (bits) Meaning

count log(S) # of times this bucket has been touched by ReadPath since it was last shuffled
valids (Z + S) ∗ 1 Indicates whether each of the Z + S blocks is valid
addrs Z ∗ log(N) Address for each of the Z (potentially) real blocks
leaves Z ∗ L Leaf label for each of the Z (potentially) real blocks
ptrs Z ∗ log(Z + S) Offset in the bucket for each of the Z (potentially) real blocks
data (Z + S) ∗B Data field for each of the Z + S blocks, permuted according to ptrs

EncSeed λ (security parameter) Encryption seed for the bucket. count and valids are stored in the clear

data fields are permuted and that permutation is stored in ptrs.
Other bucket fields do not need to be permuted because when
they are needed, they will be read in their entirety. Second,
count and valids are stored in plaintext. There is no need to
encrypt them since the server can see which bucket is accessed
(deducing count for each bucket, as mentioned in § III-E), and
which slot is accessed in a bucket (deducing valids for each
bucket). In fact, if the server can do computation and is trusted
to follow the protocol faithfully, the client can let the server
update count and valids. All the other structures should be
probabilistically encrypted.

Having defined the bucket structure, we can be more specific
about some of the operations in earlier sections. For example,
in Algorithm 2 Line 5 means reading P(l, i).data[offset], and
Line 6 means setting P(l, i).valids[offset] to 0.

Now we describe the helper functions in detail.
GetBlockOffset reads in the valids, addrs, ptrs field,
and looks for the block of interest. If it finds the block
of interest, meaning that the address of a still valid block
matches the block of interest, it returns the permuted location
(stored in ptrs) of that block. If it does not find the block of
interest, it returns the permuted location of a random valid
dummy block.

ReadBucket reads all of the remaining real blocks in a
bucket into the stash. For security reasons, ReadBucket always
reads exactly Z blocks from that bucket. If the bucket contains
less than Z valid real blocks, the remaining blocks read
out are random valid dummy blocks. Importantly, since we
allow at most S reads to each bucket before reshuffling
it, it is guaranteed that there are at least Z valid (real +
dummy) blocks left which have not been touched since the
last reshuffle.

WriteBucket evicts as many blocks as possible (up to Z)
from the stash to a certain bucket. If there are z′ ≤ Z real
blocks to be evicted to that bucket, an additional Z + S − z′
dummy blocks are added. The Z+S blocks are then randomly
shuffled based on a Pseudo Random Permutation (PRP). The
permutation is stored in the bucket field ptrs. Then, the func-
tion resets count to 0 and all valid bits to 1, since this bucket
has just been reshuffled and no blocks have been touched.
Finally, the permuted data field along with its metadata are
encrypted (except count and valids) and written out to the
bucket.

Algorithm 5 Helper functions.

count, valids, addrs, leaves, ptrs, data are fields of the input
bucket in each of the following three functions

1: function GetBlockOffset(bucket, a)
2: read in valids, addrs, ptrs
3: decrypt addrs, ptrs
4: for j ← 0 to Z − 1 do
5: if a = addrs[j] and valids[ptrs[j]] then
6: return ptrs[j] . block of interest

return a pointer to a random valid dummy

1: function ReadBucket(bucket)
2: read in valids, addrs, leaves, ptrs
3: decrypt addrs, leaves, ptrs
4: z ← 0 . track # of remaining real blocks
5: for j ← 0 to Z − 1 do
6: if valids[ptrs[j]] then
7: data′ ← read and decrypt data[ptrs[j]]
8: z ← z + 1
9: if addrs[j] 6= ⊥ then

10: block ← (addr[j], leaf[j], data′)
11: Stash ← Stash ∪ block
12: for j ← z to Z − 1 do
13: read a random valid dummy

1: function WriteBucket(bucket,Stash)
2: find up to Z blocks from Stash that can reside
3: in this bucket, to form addrs, leaves, data′

4: ptrs ← PRP(0, Z + S)
5: for j ← 0 to Z − 1 do
6: data[ptrs[j]] ← data′[j]

7: valids ← {1}Z+S

8: count ← 0
9: encrypt addrs, leaves, ptrs, data

10: write out count, valids, addrs, leaves, ptrs, data

G. Security Analysis

We will consider the security of ReadPath, EvictPath, and
EarlyShuffle subroutines.

Claim 1. ReadPath leaks no information.

The path selected for reading will look random to any
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adversary due to Invariant 1 (leaves are chosen uniformly
at random). From Invariant 2, we know that every bucket is
randomly shuffled (through a PRP). Moreover, because we
invalidate any block we read, we will never read the same
slot. Thus, any sequence of reads (real or dummy) to a bucket
between two shuffles is indistinguishable. Thus the adversary
learns nothing during ReadPath. �

Claim 2. EvictPath leaks no information.

The path selected for evicting is chosen statically, and
is public (reverse-lexicographic order). ReadBucket always
reads exactly Z blocks from random looking slots (as a result
of the PRP). WriteBucket similarly writes Z + S encrypted
blocks in a data-independent fashion. �

Claim 3. EarlyShuffle leaks no information.

The frequency and to which buckets EarlyShuffle occur
to is publicly known; i.e., the adversary knows how many
times a bucket has been accessed since the last EvictPath to
that bucket. ReadBucket and WriteBucket are secure as per
observations in Claim 2. �

The three subroutines of the Ring ORAM algorithm are
the only operations that cause externally observable behaviors.
Claim 1, 2, and 3 shows that the subroutines are secure, and
thus the security for Ring ORAM reduces to bounding the
stash size, which we address in § V.

H. Optimizations

Several optimization techniques proposed for other ORAM
constructions also apply to Ring ORAM. Of particular interest
is the XOR technique proposed in Burst ORAM [4] and level
compression proposed in [22]. Both optimizations are designed
for hierarchical ORAM constructions, and are not compatible
with other tree-based ORAMs. Since Ring ORAM buckets
resemble the structure of hierarchical ORAMs, both the XOR
technique and level compression apply to Ring ORAM. We
remark that these two techniques are inherently incompatible
with each other (even for hierarchical ORAM constructions).
Of the two, the XOR technique is more interesting to us since
it reduces online cost, which is essential in the Burst ORAM
setting we evaluate in § VII-B. Below, we describe how to
adopt the XOR technique to Ring ORAM.

XOR Technique. The key observation to enable the
XOR technique is that except for the block of interest,
all the other blocks returned by ReadPath are dummy
blocks. To be more concrete, on each access ReadPath
returns L + 1 blocks in ciphertext, one from each bucket,
Enc(b0),Enc(b2), · · · ,Enc(bL). With the XOR techique,
ReadPath will return a single ciphertext — the ciphertext of
all the blocks XORed together, namely Enc(b0) ⊕ Enc(b2) ⊕
· · · ⊕ Enc(bL). The client can recover the encrypted block of
interest by XORing the returned ciphertext with the encryp-
tions of all the dummy blocks. Computing encrypted dummy

blocks is trivial if the client sets the plaintext of all dummy
blocks to a fixed value of its choosing (e.g., 0).

Tree Top Caching. We also remark that Ring ORAM can
be tree top cached like Path ORAM [14]. The idea is simple:
we can reduce the bandwidth for ReadPath and EvictPath
by storing the top t Ring ORAM tree levels at the client as
an extension of the stash. t is a parameter and for a given t,
the stash grows by approximately (2t − 1)Z ≈ 2tZ blocks.
As an example parameterization, setting t = L/2 makes the
Ring ORAM or Path ORAM stash become O(

√
N) in size

(which matches SSS ORAM [22]) and improves bandwidth
by a factor of 2. As we will show in § VII-A, however, Path
ORAM incurs > 4× more bandwidth than either Ring ORAM
or Burst ORAM even when given this amount of storage.

I. Recursive Construction

With the construction given thus far, the client needs to
store a large position map. To achieve small client storage, we
follow the standard recursion idea in tree-based ORAMs [20]:
instead of storing the position map on the client, we store the
position map on a smaller ORAM on the server, and store
only the position map for the smaller ORAM. The client can
recurse until the final position map becomes small enough to
fit in its storage. Since recursion for Ring ORAM behaves in
the same way as all the other tree-based ORAMs, we omit the
details.

IV. SCHEDULING OPERATIONS

In this section, we describe methods for minimizing ORAM
access response time, handling long bursts of client requests
(as in Burst ORAM [4]) and minimizing the number of round
trips for our construction.

A. De-amortizing Evictions

An interesting property of Ring ORAM is that it is asym-
metric: its online cost (ReadPath, reads L+ 1 blocks) is sig-
nificantly lower than the worst case cost (EvictPath, touches
(2Z+S)(L+ 1) blocks and causes Ring ORAM to go offline
for some time). We can reduce the worst case cost in practice
by de-amortizing a EvictPath operation across the next period
of A ORAM accesses. The idea is to use any available idle
bandwidth between requests to perform some amount of work
for the previous EvictPath. Note that a delayed EvictPath
operation will have at least as good eviction quality as a non-
delayed one, because the WriteBucket steps have more blocks
in the stash to choose from.

B. Bursts and Delayed Evictions

Dautrich el al. [4] consider the scenario where accesses to
ORAM are bursty: e.g., millions of accesses are made in a
short period, followed by a relatively long idle time where
there are few requests. In this section, we propose a very
simple scheme to make Ring ORAM good at handling bursty
requests. The high level idea is to allow Ring ORAM to delay
multiple (potentially millions of) EvictPath operations after
the burst of requests. As the previous subsection pointed out,
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delayed EvictPath can only improve eviction quality, leading
to a smaller stash occupancy (after the delayed evictions fin-
ish). However, with the evenly scheduled EvictPath operations
delayed, we will experience a much higher early reshuffle rate
in levels towards the root. The solution is to coordinate tree
top caching (§ III-H) with the maximum number of delayed
evictions, which we describe below in detail.

Recall from § III-H the parameter t which means we cache
the top t levels of the tree in client storage. For a given
t, we allow at most 2t EvictPath operations to be delayed,
which means we can serve 2tA ReadPath operations back
to back. For any level ≥ t, the early reshuffle rate stays
the same: since a bucket at level t is touched once every 2t

EvictPath operations, delaying up to 2t EvictPath operations
does not affect that bucket. Tree top caching t levels require
2tZ extra blocks in client storage, but notice that handling a
burst length of 2tA fundamentally requires that at least 2tA
blocks will accumulate in client storage anyway. In fact, our
theoretical analysis shows that Z approaches A/2 (§ V-E), so
the additional space for tree top caching is not a majority of
the extra storage. To summerize, we can handle up to 2tA
requests in a burst, with only 2t(A+Z) extra blocks in client
storage.

C. Minimizing Rountrips

To keep the presentation simple, we wrote the ReadPath
and EvictPath algorithms to process buckets one by one.
While bandwidth is usually a bottleneck for ORAM, round-
trip latency can be even more expensive in some settings like
remote file servers (§ II-B). In this section, we describe how
to minimize the number of round-trips for each operation in
our scheme.

1) ReadPath: The entire ReadPath operation can be im-
plemented in two round trips. The first round-trip executes
GetBlockOffset for all buckets along the path, which involves
reading metadata in each bucket. The second round-trip reads
the correct offset to fetch one block from each bucket.

2) ReadBucket: ReadBucket can be implemented in no
more than two round trips. The first round trip reads metadata
to determine the offsets first, and the second one reads Z
blocks from each bucket. For settings where roundtrip cost is
really expensive, we can also read the entire Z+S blocks plus
the metadata in a single round trip, wasting some bandwidth.
WriteBucket can be implemented in one round-trip.

3) EvictPath: It should now be obvious that EvictPath
can be implemented in either two round-trips plus a write
back. It first performs ReadBucket to all buckets on that path
independently. After deciding what blocks each bucket should
receive, it performs WriteBucket to all levels in a single round-
trip.

4) EarlyReshuffle: EarlyReshuffle by itself also needs two
or three round-trips. But we remark that EarlyReshuffle al-
ways follows ReadPath and can piggyback on ReadPath,
which already spends two round-trips reading metadata and
blocks. Thus, EarlyReshuffle only needs an extra round-trip
for WriteBucket.

5) Augmented Position Map: After applying all the above
optimizations, each ReadPath still requires two round trips.
One way to achieve a single round-trip is to store more
metadata in client storage.

The basic position map only tracks which path each block
is mapped to. To perform a ReadPath in a single round trip,
we also need to know (1) which bucket on the path contains
the block of interest, (2) in which permuted slot of that bucket
the block of interest lives, (3) which dummy slot in all other
buckets should be touched.

We can augment the position map to include the first two
pieces of information. I.e., the position map now stores a
(l, i, j) triplet for each block, meaning that a block is in
slot P(l, i, j). When EvictPath (or EarlyReshuffle) reshuffles
a path (or a bucket), it needs to update these two fields of
the position map for all affected blocks. It is worth pointing
out that the augmented position map is not compatible with
recursion for exactly this reason: in a recursive ORAM, each
position map update requires multiple full ORAM accesses.
Therefore, augmented position map only applies in the settings
where client storage is not an issue.

For the third piece of required information, we store on
the client side a dummycount. When a dummy block needs
to be fetched from a bucket, we access the slot with offset
PRP(EncSeed, dummycount)3 and increment dummycount.
We note that count for each bucket also needs to be stored in
client storage, and dummycount is different from count. count
tracks the number of times ReadPath touches a bucket since its
last reshuffle, while dummycount tracks the number of times
ReadPath fetches a dummy block from a bucket. EvictPath or
EarlyReshuffle resets both dummycount and count, and also
refreshes EncSeed.

Obviously, the level and offset fields are logL and log(Z+
S) bits, respectively. dummycount and count are both logS
bits, while the length of EncSeed is a security parameter λ
(e.g. 128). The entire storage overhead for augmented position
map is therefore position map plus bucket metadata, namely
N ∗ (L+ logL+ log(Z + S)) + 2L+1 ∗ (2 logS + λ) bits.

V. STASH ANALYSIS

In this section we analyze the stash occupancy for a non-
recursive Ring ORAM. Following the notations in Path ORAM
[24], by ORAMZ,A

L we denote a non-recursive Ring ORAM
with L+1 levels and bucket size Z which does one RW access
per A RO accesses. The root is at level 0 and the leaves are
at level L. We define the stash occupancy st (SZ) to be the
number of real blocks in the stash after a sequence of ORAM
sequences (this notation will be further explained later). We
will prove that Pr [st (SZ) > R] decreases exponentially in
R for certain Z and A combinations. As it turns out, the
deterministic eviction pattern in Ring ORAM simplifies the
proof.

We note here that the reshuffling of a bucket does not affect
the occupancy of the bucket, and is thus irrelevant to the proof
we present here.

3We are reusing EncSeed to generate the offsets of dummy blocks.
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A. Proof outline

The proof consists of the two steps. The first step is the same
as Path ORAM. Our proof needs Lemma 1 and Lemma 2 in
the Path ORAM paper [24], which we restate in § V-B. Lemma
1 introduces ∞-ORAM, which has a infinite bucket size and
after the post-processing algorithm G has exactly the same
distribution of blocks over all buckets and the stash. Lemma
2 says the stash usage of ∞-ORAM after post-processing
is greater than R if and only if there exists a subtree T in
∞-ORAM whose “usage” exceeds its “capacity” by more
than R. We note, however, that Path ORAM [24] only gives
intuition for the proof of Lemma 1, and unfortunately does not
capture of all subtleties. In Appendix § IX, we rigorously prove
that lemma, which turns out to be quite tricky and requires
significant changes to the post-processing algorithm.

The second step is much simpler than the rest of Path
ORAM’s proof, thanks to Ring ORAM’s static eviction pat-
tern. We simply need to calculate the average usage of subtrees
in ∞-ORAM, and apply a Chernoff-like bound on their
actual usage to complete the proof. We do not need to the
complicated eviction game, negative association, stochastic
dominance etc. in the Path ORAM proof [23].

B. ∞-ORAM

We first introduce ∞-ORAM, denoted as ORAM∞,AL . Its
buckets have infinite capacity, i.e., an infinite Z. It receives
the same input request sequence as a Ring ORAM. We then
label buckets linearly such that the two children of bucket bi
are b2i and b2i+1, with the root bucket being b1. We define
the stash to be b0. We refer to bi of ORAM∞,AL as b∞i , and
bi of ORAMZ,A

L as bZi . We further define ORAM state, which
consists of the states of all the buckets in the ORAM, i.e.,
the blocks contained by each bucket. Let S∞ be state of
ORAM∞,AL and SZ be the state of ORAMZ,A

L .
We now propose a new greedy post-processing algorithm G

(different from the one in [24]), which by reassigning blocks
in buckets makes each bucket b∞i in ∞-ORAM contain the
same set of blocks as bZi . Formally G takes as input S∞ and
SZ after the same access sequence with the same randomness.
For i from 2L+1 − 1 down to 14, G processes the blocks in
bucket b∞i in the following way:

1) For those blocks that are also in bZi , keep them in b∞i .
2) For those blocks that are not in bZi but in some ancestors

of bZi , move them from b∞i to b∞i/2 (the parent of b∞i , and
note that the division includes flooring). If such blocks
exist and the number of blocks remaining in b∞i is less
than Z, raise an error.

3) If there exists a block in b∞i that is in neither bZi nor any
ancestor of bZi , raise an error.

We say S∞ is post-processed to SZ , denoted by
GSZ (S∞) = SZ , if no error occurs during G and b∞i after G
contains the same set of blocks as bZi for i = 0, 1, · · · 2L+1.

4Note that the decreasing order ensures that a parent is always processed
later than its children.

Lemma 1. GSZ (S∞) = SZ after the same ORAM access
sequence with the same randomness.

We leave the proof of Lemma 1 to Appendix § IX.
Next we investigate what state S∞ will lead to the stash us-

age of more than R blocks in a post-processed∞-ORAM. We
say a subtree T is a rooted subtree, denoted as T ∈ ORAM∞,AL

if T contains the root of ORAM∞,AL . This means that if a node
in ORAM∞,AL is in T , then so are all its ancestors. We define
n(T ) to be the total number of nodes in T . We define c(T )
(the capacity of T ) to be the maximum number of blocks T
can hold; for Ring ORAM c(T ) = n(T ) ·Z. Lastly, we define
the usage X(T ) to be the actual number of real blocks that
are stored in T . The following lemma characterizes the stash
size of a post-processed ∞-ORAM:

Lemma 2. st (GSZ (S∞)) > R if and only if ∃T ∈
ORAM∞,AL such that X(T ) > c(T ) + R before post-
processing.

The proof of Lemma 2 remains unchanged from the Path
ORAM paper [24]. For completeness, we restate the proof in
Appendix § IX.

By Lemma 1 and Lemma 2, we have

Pr [st (SZ) > R] = Pr [st (GSZ (S∞)) > R]

≤
∑

T∈ORAM∞,A
L

Pr [X(T ) > c(T ) +R]

<
∑
n≥1

4n max
T :n(T )=n

Pr [X(T ) > c(T ) +R] (1)

C. Average Bucket and Rooted Subtree Load

The following lemma will be used in the next subsection:

Lemma 3. For any rooted subtree T in ORAM∞,AL , if the
number of distinct blocks in the ORAM N ≤ A · 2L−1, the
average load of T has the following upper bound:

∀T ∈ ORAM∞,AL , E[X(T )] ≤ n(T ) ·A/2.

Proof. For a bucket b in ORAM∞,AL , define Y (b) to be the
number of blocks in b before post-processing. It suffices to
prove that ∀b ∈ ORAM∞,AL , E[Y (b)] ≤ A/2.

If b is a leaf bucket, the blocks in it are put there by the last
RW access to that leaf. Note that only real blocks could be
put in b on that last access (stale blocks could not5), although
some of them may have turned into stale blocks. There are at
most N distinct real blocks and each block has a probability
of 2−L to be mapped to b independently. Thus E[Y (b)] ≤
N · 2−L ≤ A/2.

If b is not a leaf bucket, we define two variables m1 and m2:
the last RW access to b’s left child is the m1-th RW access,
and the last RW access to b’s right child is the m2-th RW
access. Without loss of generality, assume m1 < m2. We then
time-stamp the blocks as follows. When a block is accessed
and remapped, it gets time stamp m∗, which is the number

5Stale blocks can never be moved into a leaf by an RW access, because
that RW access would remove all the stale blocks mapped to that leaf.
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of RW accesses that have happened. Blocks with m∗ ≤ m1

will not be in b as they will go to either the left child or
the right child of b. Blocks with m∗ > m2 will not be in b
as the last access to b (m2-th) has already passed. Therefore,
only blocks with time stamp m1 < m∗ ≤ m2 can be in b.
There are at most d = A|m1 −m2| such blocks 6 and each
goes to b independently with a probability of 2−(i+1), where
i is the level of b. The deterministic nature of RW accesses
in Ring ORAM makes it easy to show7 that |m1 −m2| = 2i.
Therefore, E[Y (b)] ≤ d · 2−(i+1) = A/2 for any non-leaf
bucket as well.

D. Bounding the Stash Size

X(T ) =
∑
iXi(T ), where each Xi(T ) ∈ {0, 1} and

indicates whether the i-th block (can be either real or stale)
is in T . Let pi = Pr [Xi(T ) = 1]. Xi(T ) is completely
determined by its time stamp i and the leaf label assigned
to block i, so they are independent from each other. Thus, we
can apply a Chernoff-like bound [2] to get an exponentially
decreasing bound on the tail distribution. To do so, let us first
establish a bound on E

[
etX(T )

]
where t > 0,

E
[
etX(T )

]
= E

[
et

∑
iXi(T )

]
= E

[
Πie

tXi(T )
]

= ΠiE
[
etXi(T )

]
(by independence)

= Πi

(
pi(e

t − 1) + 1
)

≤ Πi

(
epi(e

t−1)
)

= e(et−1)Σipi

= e(et−1)E[X(T )] (2)

For simplicity, we write n = n(T ), a = A/2, u =
E[X(T )] ≤ n · a (by Lemma 3). By Markov Inequality, we
have for all t > 0,

Pr [X(T ) > c(T ) +R] = Pr
[
etX(T ) > et(nZ+R)

]
≤ E

[
etX(T )

]
· e−t(nZ+R)

≤ e(et−1)u · e−t(nZ+R)

≤ e(et−1)an · e−t(nZ+R)

= e−tR · e−n[tZ−a(et−1)]

Let t = ln(Z/a),

Pr [X(T ) > c(T ) +R] ≤ (a/Z)R · e−n[Z ln(Z/a)+a−Z] (3)

Now we will choose Z and A such that Z > a and q =
Z ln(Z/a) + a − Z − ln 4 > 0. If these two conditions hold,
from Equation (1) we have t = ln(Z/a) > 0 and that the stash

6Only real or stale blocks with the right time stamp will be put in b by the
m2-th access. Some of them may be accessed again after the m2-th access
and become stale. But this does not affect the total number of blocks in b as
stale blocks are treated as real blocks.

7One way to see this is that a bucket b at level i will be written every 2i

RW accesses, and two consecutive RW accesses to b always travel down the
two different children of b.

TABLE IV: Maximum stash occupancy for realistic security pa-
rameters λ and several choices of A and Z. We can only achieve
Z = 16,A = 23 in practice.

Z,A Parameters
4,3 8,8 16,20 32,46 16,23

Max Stash Size

λ
80 32 41 65 113 197

128 51 62 93 155 302
256 103 120 171 272 595

overflow probability decrease exponentially in the stash size
R,

Pr [st (SZ) > R] ≤
∑
n≥1

(a/Z)R · e−qn < (a/Z)R

1− e−q
.

E. Stash Size in Practice

Now that we have established that Z ln(2Z/A) + A/2 −
Z− ln 4 > 0 ensures negligible stash overflow probability, we
would like to know how tight this requirement is and what the
stash size should be in practice.

We simulate Ring ORAM with L = 20 for over 1 Billion
accesses in random access pattern, and measure the stash
occupancy (excluding the transient storage of a path). For
several Z values, we look for the maximum A that results in
negligible stash overflow probability. In Figure 3, we plot both
the empirical curve based on simulation and the theoretical
curve based on the proof. In all cases, the theoretical curve
indicates a slightly smaller A than we are able to achieve in
practice, indicating that analysis is tight.
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Fig. 3: For each Z, determine analytically and empirically the
maximum A that results in negligible stash failure probability.

In Figure 4, we show a histogram of stash occupancies for
several Z,A pairs. In all cases, histogram frequency decreases
exponentially as stash occupancy increases. We extrapolate
maximum stash size needed for a stash overflow probability
of 2−λ for several realistic λ in Table V. We show Z = 16,
A = 23 for completeness: this is an aggressive setting that
works for Z = 16 in practice but does not satisfy the theoret-
ical analysis, It results in roughly 3× the stash occupancy for
a given λ.
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Fig. 4: For several Z A pairs, record the probability that the stash
exceeds a certain number of blocks. The stash is sampled immediately
after each EvictPath operation; hence the stash never contains < A
blocks.

VI. BANDWIDTH ANALYSIS

In this section, we answer an important question: how do
Z (the maximum number of real blocks per bucket), A (the
eviction rate) and S (the number of extra dummies per bucket)
impact Ring ORAM’s performance (bandwidth)? We first give
a methodology for choosing A and S, to minimize bandwidth
overhead, for a given Z. After that, we explore trade-offs in
choosing Z.

A. How to Choose A and S Given Z

To begin with, we state an intuitive trade-off: for a given
Z, increasing A causes stash occupancy to increase and
bandwidth overhead to decrease. Let us first ignore early
reshuffles, the XOR technique, and level compression. Then,
the overall bandwidth of Ring ORAM consists of ReadPath
and EvictPath. ReadPath transfers L + 1 blocks, one from
each bucket. EvictPath reads Z blocks per bucket and writes
Z+S blocks per bucket, (2Z+S)(L+ 1) blocks in total, but
happens every A accesses. From the theoretic analysis (§ V)
we have L = log(2N/A), so the ideal overall bandwidth of
Ring ORAM is (1+(2Z+S)/A) log(4N/A). Clearly, a larger
A improves bandwidth for a given Z as it reduces both eviction
frequency and tree depth L. So we simply choose the largest A
that satisfies the requirement from the stash analysis (§ V-D).

Now we consider the extra overhead from early reshuffles
(§ III-E). Recall from § III-F that when we process a bucket
during an EvictPath or EarlyReshuffle, we read Z blocks and
write back Z+S blocks. Thus, we have the following trade-off
in choosing S: as S increases, the early reshuffle rate decreases
(since we have more dummies per bucket) but the cost to
read+write buckets during an EvictPath and EarlyReshuffle
increases. We show this effect through simulation in Figure 5:
for S too small, early shuffle rate is high and bandwidth
increases; for S too large, eviction bandwidth dominates.
Diamonds in the figure show the bandwidth as if there were no
early reshuffles We can see that with the optimal S, bandwidth
overhead from early reshuffles is small.

To analytically choose a good S, we analyze the early
reshuffle rate. First, notice a bucket at level l in the Ring
ORAM tree will be processed by EvictPath exactly once for
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Fig. 5: For different Z, and the corresponding optimal A, vary S
and plot bandwidth overhead. To normalize to different A, we sweep
X where S = A+X .

every 2lA ReadPath operations. This follows directly from the
reverse-lexicographic order of eviction paths (§ III-D). Second,
each ReadPath operation is to an independent and uniformly
random path and thus will touch any bucket in level l with
equal probability of 2−l. Thus, the distribution on the expected
number of times ReadPath operations touch a given bucket in
level l, between two consecutive EvictPath calls, is given by
a binomial distribution of 2lA trials and success probability
2−l. The probability that a bucket needs to be early reshuf-
fled before an EvictPath is given by a binomial distribution
cumulative density function Binom cdf(S, 2lA, 2−l)8. This
probability quickly converges a Poisson cumulative density
function.

Now the overall bandwidth of Ring ORAM, taking early
reshuffles into account, can be accurately approximated as
(L + 1) + (L + 1)(2Z + S)/A · (1 + Poiss cdf(S,A)). We
should then choose the S that minimizes (2Z + S)(1 +
Poiss cdf(S,A)). Not shown, this method always finds the
optimal S and perfectly matches the overall bandwidth in our
simulation in Figure 5.

We recap how to choose A and S for a given Z below. For
the rest of the paper, we will choose A and S this way unless
otherwise stated.

Find largest A ≤ 2Z such that
Z ln(2Z/A) +A/2− Z − ln 4 > 0 holds.

Find S ≥ 0 that minimizes
(2Z + S)(1 + Poiss cdf(S,A))

Ring ORAM overall bandwidth:(
(2Z+S)(1+Poiss cdf(S,A))

A + 1
)

log(4N/A)

B. Trade-offs in Choosing Z

We now discuss bandwidth and client-storage trade-offs in
choosing Z. In Figure 3, we observe that as Z increases, A/Z
increases. In fact, the theoretic analysis in § V-D suggests that
as Z →∞, A/Z increases and approaches 2. Then, since the
bandwidth of EvictPath operations is (2Z+S)/A and S ≈ A

8The possibility that a bucket needs to be early reshuffled twice before an
eviction is negligible.

11



for large A, increasing Z ideally should improve bandwidth.
Additionally, increasing Z by a factor of 2 roughly decreases L
by 1 which further reduces bandwidth. This is indeed the case
given sufficiently large block sizes, e.g. B = ∞ in Figure 6.
For small block sizes (e.g., B = 64 Bytes), however, Figure 6
shows how increasing Z hurts bandwidth. In this regime, the
overhead of accessing bucket metadata becomes the bottleneck
and outweighs the benefit of larger A and Z.
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Fig. 6: Impact on overall bandwidth from increasing Z. All Ring
ORAM points store bucket header metadata externally and B = ∞
approximates the case when the block size is large enough that
reading bucket headers to contribute negligible additional bandwidth.
A and S are set using the method in § VI-A. We show Path ORAM
for reference and note that increasing Z for Path ORAM strictly
increases bandwidth.

It is also worth pointing out that a larger Z increases
the transient stash size because each EvictPath operations
temporarily reads ≤ Z(L + 1) blocks into the stash. Thus,
choosing Z is a trade-off between stash size and eviction
(offline) bandwidth, and depends on block size. In the next
evaluation (§ VII-A), we explore which Z lead to an overall
minimum bandwidth, given concrete client storage budgets and
the costs of additional optimizations such as tree top caching.

VII. EVALUATION

In this section, we compare Ring ORAM to the prior-art
schemes in the large client storage (SSS ORAM [4], [22])
and small client storage (Path ORAM [24]) setting.

A. Overall Bandwidth vs. Client Storage

Our first study compares Ring ORAM, Path ORAM [24]
and SSS ORAM [22] in terms of total bandwidth overhead
(relative to accessing a block without ORAM) as a function
of the client’s local storage budget. All schemes are non-
concurrent (i.e., without delayed/de-amortized evictions, § IV).
A summary of competitive parameters is given in Table V.

1) Large client storage: Figure 7 shows bandwidth vs.
client storage in the large client storage setting (e.g., remote
file servers, § II-B). We show data for N = 228 and
B = 256 KBytes (for a 64 TeraByte ORAM) to match the
results in Figure 9 of [22] and remark that with large client
storage, the trade-offs are similar for different block sizes and
capacities. For all schemes, we account for all sources of client
storage including the position map, extra metadata, shuffle
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Fig. 7: Bandwidth overhead vs. client storage given large client
storage (i.e., appropriate in the remote file server setting).

buffer (SSS ORAM only) and stash for a security parameter
of λ = 80. Ring ORAM uses the augmented position map
from § IV-C5.

For each scheme, we apply all known optimizations and
tune parameters to minimize overall bandwidth given a storage
budget. For Path ORAM we choose Z = 4 (increasing
Z strictly hurts bandwidth) and greedily tree top cache as
much of the ORAM tree as possible. For Ring ORAM we
simultaneously adjust Z and the amount of tree top caching
(§ III-H) to minimize bandwidth for a given storage. We then
select A and S based on the method in § VI-A, and apply the
XOR technique (§ III-H). For A > 1500, we set S = A+50 as
this is sufficient to achieve a negligible early reshuffle rate. The
SSS ORAM uses level compression and adjusts its eviction
rate to fill additional space.9

We plot each scheme starting at the minimum required
client storage, given the position map. In Figure 7, for client
storage 4

√
N ∗ B = 16 GB (the suggested setting from

[22]), Ring ORAM achieves a 4.47× bandwidth reduction
relative to Path ORAM and an 31.2/26.8 = 16% improvement
relative to the SSS construction. For client storage 2

√
N

blocks (the minimum space needed by the SSS construction),
Ring ORAM outperforms the SSS ORAM by 72%. We note
that the SSS ORAM uses level caching and therefore has a
significantly larger online bandwidth than Ring ORAM. By
instead comparing against the SSS ORAM with the XOR
technique at 4

√
N ∗ B storage, the SSS scheme’s online

bandwidth is comparable to Ring ORAM but Ring ORAM
gains a 35.7/26.8 = 33% advantage in overall bandwidth.

2) Small client storage: Figure 8 shows bandwidth vs.
client storage in the small client storage setting (e.g., secure
processors, § II-C). All configurations assume a 1 TeraByte
ORAM capacity. This study does not include the position
map or the cost of recursion (§ III-I) in the client storage
or bandwidth as this effect will be similar for both Path
ORAM and Ring ORAM. (We study the effect of recursion
in § VII-C, where we evaluate Ring ORAM in the secure

9We found applying level compression yields a better overall bandwidth
relative to the XOR technique for the SSS ORAM (which is consistent with
[4]). For completeness, we show the SSS scheme with the XOR technique in
Table V.
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TABLE V: Highlighted parameter settings for different scenarios, optimizing for overall bandwidth given concrete client storage budgets
(§ VII-A). Overheads are relative to an insecure system. Ring is Ring ORAM (this paper), SSS is the scheme from [22] and Path is Path
ORAM [24]. XOR means we apply the XOR technique [4] and LC means we apply level compression [22]. Parameter meaning is given in
Table II.

Ring ORAM parameters Online, Overall Bandwidth (relative to insecure)
N B Z A S Client storage Ring Ring (XOR) SSS (LC) SSS (XOR) Path

Large client storage (ORAM capacity = 64 TeraBytes)
228 256 KByte 742 1395 1445 16 GBytes 13×, 39.9× 1×, 26.8× 7.8×, 31.2× 1×, 35.7× 60×, 120×

Small client storage (ORAM capacity = 1 TeraByte)
234 64 Byte 10 11 16 73 KBytes 48.1×, 137× 24.1×, 113× N/A 117×, 235×
231 512 Byte 21 28 37 489 KBytes 27.9×, 94.5× 5.9×, 71.9× N/A 93×, 186×
228 4 KByte 17 22 29 3.1 MBytes 20.4×, 79.3× 1.4×, 59.7× N/A 80×, 160×
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Fig. 8: Bandwidth overhead vs. client storage given small client
storage (i.e., appropriate in the secure processor setting).

processor setting.) To make Ring ORAM compatible with
recursion, however, we do not use the augmented position map
from § IV-C5. Otherwise, we use the same optimizations as
stated in § VII-A1.

For different block sizes, Ring ORAM uses different strate-
gies to improve bandwidth. For the 64 Byte block size, Ring
ORAM must use a small Z to minimize header bandwidth
and thus bandwidth improves slowly — a function of tree
top caching only. For larger block sizes and sufficient storage,
Ring ORAM quickly improves by increasing Z.

In Table V, we highlight our bandwidth overhead given
log2N∗B blocks of client storage. This budget is large enough
for Ring ORAM to decrease bandwidth by increasing Z yet
small enough for practical scenarios such as secure processors.
At this setting, the 64 Byte, 512 Byte and 4 KByte block size
configurations require 73 KBytes, 489 KBytes and 3.1 MBytes
of client storage and improve over Path ORAM by 2.1×, 2.6×
and 2.7×, respectively. For reference, these storage budgets are
between .4-2.3% of 1.75

√
N ∗ B (the minimum budget for

the SSS construction in § VII-A1, when the position map is
excluded). By increasing storage to 1.75

√
N ∗B, Ring ORAM

overhead (and improvement over Path ORAM) for 512 Byte
and 4 KByte blocks becomes 43× (2.9×) and 32× (3.7×).

We remark that in some cases, the XOR technique may
not be appropriate in the small client storage setting because
memory modules such as DRAM cannot perform computation
(§ II-C). For completeness, we give our results without the
XOR technique in Table V.
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Fig. 9: Response time of a baseline system (without ORAM).

B. Case Study: Bursty File-Server Workloads

We now study Ring ORAM’s online bandwidth and ability
to handle bursts of requests using an enterprise trace of
requests to a remote file server. We use the same trace
and assume the same experimental setup and metric as the
Burst ORAM paper [4] after private correspondence with the
authors [4]. Network latency is fixed to be 50 ms, and we
experiment under different network bandwidth. The metric of
merit is percentile response time. A 90 (or 99) percentile
response time of T means 90% (or 99%) of the requests
complete in T . We first measure and report the percentile
response time of a baseline system without ORAM in Figure 9.
Generally, when network bandwidth is too low we see huge
response time because requests come in faster than the rate
they can be processed and thus they pile up. As bandwidth
increases, response time approaches the ideal network latency
of 50 ms.

We now compare Ring ORAM with Burst ORAM, giving
both schemes 100 GByte as done in [4]. For Ring ORAM,
we use the techniques to handle bursts (§ IV-B) and mini-
mize round-trips (§ IV-C), including augmented position map
(§ IV-C5). We set Z = 90 and A = 150 using the method
in § VI-A. Since the metric of merit is online bandwidth,
increasing Z and A further has little benefit. However, we
set S = 220 which is larger than the analysis-recommended
S = 174, again because the metric of merit is minimum online
bandwidth: we wish to minimize the cost of EarlyReshuffle,
even if that increases the cost of EvictPath.

In Figure 10, we report Ring ORAM and Burst ORAM
percentile response time relative to the baseline (no ORAM).
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Fig. 10: Difference in response time over baseline of Burst ORAM
[4] and Ring ORAM.

The Burst ORAM numbers come directly from Figure 11
of that work [4]. With limited network bandwidth (< 0.05
Gbps), both schemes experience very long response times due
to the bandwidth overhead of ORAM. With ample bandwidth
(> 0.35 Gbps), both ORAMs introduce negligible overhead.
With medium network bandwidth, Ring ORAM shows a sig-
nificant advantage over Burst ORAM. Ring ORAM increases
percentile response time by less than 1 ms, while Burst ORAM
often sees a 102 to 104 ms increase in percentile response time.
We believe that our improvement is due to Burst ORAM’s
early cache-in scheme, which increases their online bandwidth,
causing them to fall behind in requests and also takes up
extra slots from their stash, affecting their ability to handle
long bursts. On the other hand, we do not use early cache-in
and parameterize tree top caching and S to minimize early
reshuffle rate (§ IV-B).

C. Case Study: Secure Processors

In this study, we show how Ring ORAM improves the
performance of secure processors. We assume the same pro-
cessor architecture as [18], given in Table 4 of that work.
That is, we evaluate a 4 GByte ORAM with 64-Byte block
size (matching a typical processor’s cache line size), and use
the standard ORAM recursion technique with 32-Byte block
size for position map ORAMs (§ III-I). Due to the small block
size, we parameterize Ring ORAM at Z = 5, A = 5, X = 2
to reduce metadata overhead. We give both ORAMs up to
256 KBytes for the final position map, which requires applying
recursion 3 times. We do not use tree top caching for any
scheme (as this proportionally benefits both Ring ORAM
and Path ORAM) or the XOR technique (as current DRAM
DIMMs do not have the ability to perform computation).

We evaluate performance for SPEC-int benchmarks and two
database benchmarks, and simulate 3 billion instructions for
each benchmark. Figure 11 shows program slowdown using
Path ORAM and Ring ORAM over an insecure DRAM. Ring
ORAM with de-amortized eviction offers significantly better
performance: most benchmarks see less than 3× slowdown,
with the geometric average slowdown being 2.2×. This is
2.75× speedup over Path ORAM on average.

Figure 12 shows the average response time of ORAM for
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Fig. 11: SPEC benchmark slowdown.
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Fig. 12: SPEC benchmark response time.

each benchmark. Shorter response time means programs are
blocked less by ORAM (which is a function of response time,
i.e. ReadPath, and even EvictPath if the ORAM receives
more requests than it can handle in a given eviction period).
The de-amortized Ring ORAM utilizes idle time in memory
(when programs don’t need memory) to hide the expensive
eviction operation, effectively reducing response time by more
than 50% compared to Ring ORAM without de-amortization.
Compared to Path ORAM, the response time improvement of
the de-amortized Ring ORAM is almost 5×.

VIII. CONCLUSION

This paper proposed and analyzed Ring ORAM, the most
bandwidth-efficient ORAM scheme for both the large and
small (poly-log) client storage setting. Ring ORAM is simple,
flexible and competitive in bandwidth with multiple prior-art
schemes in different settings — simply by tuning parameters.

We show that Ring ORAM improves overall bandwidth
by 2 − 2.7× and online bandwidth by > 50× relative to
Path ORAM — the prior-art poly-log storage scheme. Given
large client storage, Ring ORAM Ring ORAM improves upon
Path ORAM in bandwidth (given equal storage) by 4.5×
and the SSS ORAM by 16-33% — the prior-art scheme for
large storage. Using a realistic enterprise file system trace and
remote secure processor workloads, we further show that Ring
ORAM exceeds prior-art work in their respective setting.
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IX. APPENDIX: PROOF OF LEMMAS

To prove lemma 1, we made a little change to Ring ORAM
algorithm. In Ring ORAM, an RO access adds the block of
interest to the stash and replaces it with a dummy block in
the tree. Instead of making the block of interest in the tree
dummy, we turn it into a stale block. On an RW access to
path l, all the stale blocks that are mapped to leaf l are turned
into dummy blocks. Stale blocks are treated as real blocks
in both ORAMZ,A

L and ORAM∞,AL (including GZ) until they
are turned into dummy blocks. Note that this trick of stale
blocks is only to make the proof go through. It hurts the stash
occupancy and we will not use it in practice. With the stale
block trick, we can use induction to prove Lemma 1.

Proof of Lemma 1. Initially, the lemma obviously holds. Sup-
pose GSZ (S∞) = SZ after some accesses. We need to show
that GS′

Z
(S∞) = S ′Z where S ′Z and S ′∞ are the states after

the next access (either RO or RW). An RO access adds a
block to the stash (the root bucket) for both ORAMZ,A

L and
ORAM∞,AL , and does not move any blocks in the tree except
turning a real block into a stale block. Since stale blocks are
treated as real blocks, GS′

Z
(S∞) = S ′Z holds.

Now we show the induction holds for an RW access. Let
RWZ

l be an RW access to P(l) (path l) in ORAMZ,A
L and

RW∞l be an RW access to P(l) in ORAM∞,AL . Then, S ′Z =
RWZ

l (SZ) and S ′∞ = RW∞l (S∞). Note that RWZ
l has the

same effect as RW∞l followed by post-processing, so

S ′Z = RWZ
l (SZ) = GS′

Z
(RW∞l (SZ))

= GS′
Z

(RW∞l (GSZ (S∞)))

The last equation is due to the induction hypothesis.
It remains to show that

GS′
Z

(RW∞l (GSZ (S∞))) = GS′
Z

(RW∞l (S∞)) ,

which is GS′
Z

(S ′∞). To show this, we decompose G into
steps for each bucket, i.e., GSZ (S∞) = g1g2 · · · g2L+1 (S∞)
where gi processes bucket b∞i in reference to bZi . Similarly, we
decompose GS′

Z
into g′1g

′
2 · · · g′2L+1 where each g′i processes

bucket b′∞i of S ′∞ in reference to b′Zi of S ′Z . We now show
that for any 0 < i < 2L+1, GS′

Z
(RW∞l (g1g2 · · · gi (S∞))) =

GS′
Z

(RW∞l (g1g2 · · · gi−1 (S∞))). This is obvious if we con-
sider the following three cases separately:
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1) If bi ∈ P(l), then gi before RW∞l has no effect since
RW∞l moves all blocks on P(l) into the stash before
evicting them to P(l).

2) If bi 6∈ P(l) and bi/2 6∈ P(l) (neither bi nor its
parent is on Path l), then gi and RW∞l touch
non-overlapping buckets and do not interfere
with each other. Hence, their order can be
swapped, GS′

Z
(RW∞l (g0g1g2 · · · gi (S∞))) =

GS′
Z
gi (RW∞l (g0g1g2 · · · gi−1 (S∞))). Furthermore,

bZi = b′Zi (since RW∞l does not change the content of
bi), so gi has the same effect as g′i and can be merged
into GS′

Z
.

3) If bi 6∈ P(l) but bi/2 ∈ P(l), the blocks moved into bi/2
by gi will stay in bi/2 after RW∞l since bi/2 is the highest
intersection (towards the leaf) that these blocks can go to.
So gi can be swapped with RW∞l and can be merged into
GS′

Z
as in the second case.

We remind the readers that because we only remove stale
blocks that are mapped to P(l), the first case is the only case
where some stale blocks in bi may turn into dummy blocks.
And the same set of stale blocks are removed from ORAMZ,A

L

and ORAM∞,AL .
This shows

GS′
Z

(RW∞l (GSZ (S∞))) = GS′
Z

(RW∞l (S∞))

= GS′
Z

(S ′∞)

and completes the proof.

The proof for lemma 2 is much simpler. We replicate a
version of the proof from [24] here.

Proof of Lemma 2. If part: Suppose T ∈ ORAM∞,AL and
X(T ) > c(T ) + R. Observe that G can assign the blocks
in a bucket only to an ancestor bucket. Since T can store at
most c(T ) blocks, more than R blocks must be assigned to
the stash by G.

Only if part: Suppose that st (GSZ (S∞)) > R. Let T be
the maximal rooted subtree such that all the buckets in T
contain exactly Z blocks after post-processing G. Suppose b is
a bucket not in T . By the maximality of T , there is an ancestor
(not necessarily proper ancestor) bucket b′ of b that contains
less than Z blocks after post-processing, which implies that
no block from b can go to the stash. Hence, all blocks that
are in the stash must have originated from T . Therefore, it
follows that X(T ) > c(T ) +R.
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