
Block Cipher Speed and Energy Efficiency
Records on the MSP430:

System Design Trade-Offs for 16-bit Embedded
Applications?

Benjamin Buhrow, Paul Riemer, Mike Shea, Barry Gilbert, and Erik Daniel

Mayo Clinic, Rochester, MN, USA
buhrow.benjamin@mayo.edu, riemer.paul@mayo.edu, shea.michael@mayo.edu,

gilbert.barry@mayo.edu, daniel.erik@mayo.edu

Abstract. Embedded microcontroller applications often experience mul-
tiple limiting constraints: memory, speed, and for a wide range of portable
devices, power. Applications requiring encrypted data must simultane-
ously optimize the block cipher algorithm and implementation choice
against these limitations. To this end we investigate block cipher im-
plementations that are optimized for speed and energy efficiency, the
primary metrics of devices such as the MSP430 where constrained mem-
ory resources nevertheless allow a range of implementation choices. The
results set speed and energy efficiency records for the MSP430 device
at 132 cycles/byte and 2.18 µJ/block for AES-128 and 103 cycles/byte
and 1.44 µJ/block for equivalent block and key sizes using the lightweight
block cipher SPECK. We provide a comprehensive analysis of size, speed,
and energy consumption for 24 different variations of AES and 20 dif-
ferent variations of SPECK, to aid system designers of microcontroller
platforms optimize the memory and energy usage of secure applications.

Keywords: AES, SPECK, lightweight, encryption, MSP430, speed, en-
ergy, efficient, measurements, trade-offs

1 Introduction

Many lightweight block ciphers have been established in recent years in response
to the growing use of resource-constrained electronic devices in a wide variety
of embedded applications. Examples include TWINE [1], Piccolo [2], Lblock [3],
LED [4], PRESENT [5], SIMON, and SPECK [6], in addition to the mainstay
AES [7]. Lightweight block ciphers are largely targeted or optimized for small
hardware implementations although some are specifically architected to admit
software-friendly designs for microcontrollers (e.g., TWINE and SPECK).

Microcontroller based software applications occupy an interesting middle
ground: resources are very constrained relative to general purpose 32- or 64-
bit processors but they are abundant relative to devices like RFID tags or smart

? The final publication will be available at Springer via the Latincrypt 2014 proceed-
ings

cards. For example, sensor nodes like the MicaZ [8] or TelosB [9] utilize micro-
controller devices that offer enough ROM and RAM to implement large lookup
tables or to unroll program loops. Further, the programmable nature of micro-
controllers provides support for diverse applications, each with a different set of
resource requirements, of which the block cipher is typically only a small part.
Outside of choosing different block cipher algorithms, the ability to tailor a par-
ticular algorithm to the device resources at hand is desirable; for example when
an algorithm provides exceptional security or energy efficiency.

Overall, many parameters of block ciphers are important to an embedded
system designer such as size, security, speed, and energy efficiency, depending
on the application. Varying a block cipher’s implementation strategy within em-
bedded devices is a relatively unexplored topic, and one that can provide much
in the way of trade-off data to designers. Survey authors do a thorough evalu-
ation over many different ciphers (e.g., [10], [11], and [12]), but in many cases
one implementation strategy (e.g., small size versus high speed or C language
versus assembly language [hereafter, abbreviated to assembler]) is chosen per
cipher without much discussion. In this paper we quantitatively discuss this
issue by measuring multiple implementations of two algorithms: AES and the
lightweight block cipher SPECK. These were chosen for two primary reasons:
both are expected to have good performance on the MSP430 [13] and each can
be implemented in a variety of ways on 16-bit platforms that trade off size for
speed. We focus on SPECK over other lightweight block ciphers because 1) it
is a very recently proposed cipher and its implementation has not been fully
explored on the MSP430 platform and 2) the wide range of block and key sizes
in SPECK are interesting from the standpoint of configurablity. The intent is
not to promote one algorithm as ”better” or ”worse” than the other - their de-
signs are sufficiently different to preclude such a comparison. Nor is the intent to
provide security analysis of either algorithm, other than by increasing key sizes.
The goals are to provide system designers data and analysis over a wider range
of size, speed, and energy efficiency than could be obtained from either block
cipher alone, and to discuss efficient implementations of each algorithm.

The primary contributions of this paper are the presentation of a matrix of
size, speed, and energy consumption data for 8 different implementation strate-
gies of AES coupled with its 3 different key sizes and a first look at similarly
thorough results for the entire family of 10 different SPECK parameterizations,
for both C and assembler implementations. The thorough analysis across AES
implementation strategies on the MSP430 presented here is unavailable else-
where in the literature, to our knowledge. SPECK is a relatively new cipher
and the implementations here represent the most thorough to date. Our fastest
128-bit implementations operate at 132 cycles/byte for AES-128 and 103 cy-
cles/byte for SPECK-128, both setting speed records for 128-bit block ciphers
on the MSP430. Measured energy of 2.18 µJ/block for AES and 1.44 µJ/block
for SPECK fit in at numbers 5 and 6 in Guneysu’s list of top energy efficient AES
implementations for any platform [14], but notably the results are considerably
more efficient than all other microcontroller platforms tested in that report.

In addition, we provide C and assembler implementation tactics for our AES
designs as well as a detailed review of SPECK implementations in C that improve
performance relative to conventional approaches. None of the implementation
strategies used here for AES are new; however the 16-bit optimization of Gouvea
[15] is fairly recent and led to the record speed and energy efficiency results. For
all implementations we concentrate solely on encryption and omit decryption.

The remainder of the paper is organized as follows. In Section 2 we discuss
related work, in Section 3 the algorithms of study and their implementation
variations, in Section 4 efficient implementation details, in Section 5 the experi-
mental setup, metrics, and results, and in Section 6 our conclusions.

2 Related Work

To a system designer choosing a block cipher for adoption in a microcontroller-
based application, several relevant works exist. As previously mentioned, many
lightweight block ciphers have been recently proposed and their authors typically
offer performance results and/or implementation tactics although the scope of
these efforts varies. Several surveys help distill the relative performance of these
lightweight and other block ciphers. For example Eisenbarth et al. in [10] provides
results of several ciphers on an 8-bit ATtiny45 device. The authors concentrate on
small size as a design goal and provide energy consumption data but the results
are of limited relevance to this study given the differences in target platform.
Law et al. in [11] compares block ciphers on an MSP430F149 device. They adopt
source code from public sources such as OpenSSL [16]. This approach ensures
quality code, but fixes the implementation strategy to that of the public source
that is not necessarily optimized for embedded devices. Cazorla et al. in [12]
compare 12 lightweight and 5 conventional block ciphers on an MSP430F1611
device. The authors compare many ciphers, but understandably chose a single
implementation for each and do not state any particular optimization goals.
Didla in [17] investigates implementation tactics of AES in a MSP430F1611
device; however, all are variations of AES for 8-bit platforms. Finally, in [18] the
authors compare AES with other block ciphers on both MSP430- and ATmega-
based platforms. They address the variable key size of AES but otherwise choose
a single implementation (unstated, but from their provided ROM size it appears
to be a table-based one).

Concerning speed records for AES on microcontroller devices, Hyncica in [19]
presents optimized AES results of 172 cycles/byte for the MSP430 platform that
is based on 32-bit table-based code ported from LibTomCrypt [20]. Gouvea [15]
first presented the 16-bit lookup table strategy for AES in which they reported
180 cycles/byte on a MSP430 platform. On an AVR device the current speed
record is described by Bos in [21], previously held by Poettering in [22].

Implementation and analysis results have begun to appear for SPECK. The
designers present implementation results for SPECK on Atmels ATmega128 8-
bit processor and the BLOC project [13] provides preliminary performance data
on the MSP430. Cryptanalysis of SPECK can be found in [23], [24], and [25].

3 Algorithms and Implementation Variations

3.1 AES

The AES algorithm uses a substitution-permutation approach and operates on
a block size of 128-bits organized as a 4x4 array of bytes [7]. Four basic trans-
formations are iteratively applied over a variable number of rounds (depending
on key size) to complete each block encryption. These operations are SubBytes,
ShiftRows, MixColumns, and AddRoundKey. Of these, MixColumns is the most
complex operation requiring multiplication of state bytes by constants over the
Galois Field GF(2)8. Most of the AES implementation variations in common use
concern themselves with optimizing this transformation.

Daemen and Rijmen in [26] discuss implementation aspects for both 8-bit and
32-bit processors. In the 8-bit approach, SubBytes, ShiftRows, and AddRound-
Key can be easily combined and executed byte-by-byte for each of the 16 input
bytes and the MixColumns step can also be implemented efficiently. In this paper
the 8-bit approach is implemented in 4 different ways. The first is optimized for
speed by unrolling all transformations within each round. It was adapted from
the implementation provided by Texas Instruments (TI) in [27]. The second also
follows [27], but condenses the transformations into nested loops to reduce ROM
size. The third and fourth variations further optimize for speed by introducing
extra 256-byte lookup tables to speed up the field multiplications within Mix-
Columns. In the sections below, these four 8-bit variations are referred to as
8-BIT-UNROLL, 8-BIT-LOOPED, 8-BIT-2T, and 8-BIT-2SBOX, respectively.

The 32-bit approach discussed by Daemen and Rijmen is also practical using
the 16-bit instruction set of the MSP430. The matrix formulation of the round
transformation can be used to define a set of four 256-entry 32-bit lookup tables,
known as T-tables, for a total of 4096 precomputed and stored bytes. One iter-
ation of the round function amounts to 16 table lookups and 16 XORs. Three
of the T-tables are byte rotations of the first T-table, thus as a space/speed
tradeoff, 1024 bytes of storage can be used together with cyclic 8-bit shifts of
the single table. Both of these 32-bit variations are implemented; in the sections
below they are referred to as 32-BIT-4T and 32-BIT-1T, respectively.

A new optimization was proposed by Gouvea [15] targeting 16-bit processors.
This new approach is a variation of the 32-bit table lookup approach where 4
tables of 16-bit entries are defined such that each of the original 32-bit tables
can be constructed by concatenating two of the 16-bit tables. This formulation
reduces the memory requirement by a factor of 2. After initial tests showed that
this variation was the best performing in terms of speed and energy consumption,
it was also implemented in assembler. In the sections below these variations are
referred to as 16-BIT-4T and 16-BIT-4T-ASM, respectively.

3.2 SPECK

SPECK is a family of lightweight block ciphers with a wide range of block
and key size choices and hence is potentially interesting to system designers

desiring trade-offs between size, speed, and security. SPECK is a Feistel-like
algorithm that uses the map Rk : GF(2)N × GF(2)N → GF(2)N × GF(2)N ,
where k ∈ GF(2)N , defined by

Rk(x, y) = ((S−αx+ y)⊕ k, Sβy ⊕ (S−αx+ y)⊕ k) (1)

where ⊕ denotes bitwise XOR, + denotes addition modulo 2N , Sj , S−j denote
left and right circular shifts by j bits, and α, β are constants defined according
to the block size chosen.

The family of SPECK algorithms is defined according to Table 4.1 in [6],
reproduced here for convenience in Table 1. We implemented each of the 10
parameterizations of SPECK shown in Table 1 in both C and assembler. In the
sections below we refer to these implementations by the version name with an
-ASM or -C suffix for assembler or C, respectively.

Table 1. SPECK parameters

Block size Key size Word size Key words Rotation Rotation Rounds Version
2n mn n m α β T Name

32 64 16 4 7 2 22 32-BIT

48 72 24 3 8 3 22 48-BIT
96 4 23

64 96 32 3 8 3 26 64-BIT
128 4 27

96 96 48 2 8 3 28 96-BIT
144 3 29

128 128 64 2 8 3 32 128-BIT
192 3 33
256 4 34

4 Implementation Details

In all cases the interface to the block ciphers consists of two byte-pointer argu-
ments to an array of bytes to be encrypted and to the expanded key, respectively.
We use IAR Embedded Workbench version 5.51 as a development platform. The
target device is the MSP430F5528.

4.1 AES 8-BIT

The first 8-bit version of AES, 8-BIT-UNROLL, is based on the implementation
by TI for the MSP430 [27] that makes use of the efficient 8-bit implementation
hints given in [26].

The 8-BIT-LOOPED version replaces the unrolled MixColumns step with a
loop over the 4 columns of the state, and replaces the unrolled AddRoundKey
step with another loop over the 16 bytes of the state.

The 8-BIT-2T version replaces each AES GF(2)8 multiply-by-2, requiring
test, branch, shift, and XOR instructions with a single table lookup. The goal
with this version is to increase speed at the expense of program size, and increase
side-channel timing attack resistance (see Section 4.5).

The 8-BIT-2SBOX version precomputes the 256-byte table 2Sbox = 2 ⊗
Sbox[a], where ⊗ denotes multiplication in the Galois Field, for each input byte
a. To see how this is effective, recall that the MixColumns step computes a
vector-matrix multiplication, for example,

b0
b1
b2
b3

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

Sbox[a0]
Sbox[a1]
Sbox[a2]
Sbox[a3]

 (2)

Also recall that in multiplication over GF(2)8 we have that 3⊗SBox[ax] ==
(2⊗SBox[ax])⊕SBox[ax] . Therefore multiplication of Sbox[ax] by 1, 2, and 3 can
be done in a straightforward way by application of Sbox and 2Sbox. Once the row
shifts are folded into each column’s matrix-vector multiplication, clever ordering
of the resulting systems of equations yields a very efficient implementation, as
realized by Pottering in [22]. We adapted his 8-bit AVR assembler code for the
MSP430.

4.2 AES 32-BIT

The two 32-bit versions of AES use the T-table approach as described by Daemen
and Rijmen in section 4.2 of [26]. On 8-bit architectures this approach may not be
practical because each of the 32-bit table lookups would require 4 byte-lookups.
In total, 64 byte-lookups and 64 XORs per round would be required, which is
comparable to the instruction count of a non-table-lookup approach. However on
16-bit architectures 32 word-lookups and 32 XORs per round are required, thus
the overall instruction count is reduced quite a bit compared to 8-bit approaches.

In our implementation, the input array of bytes to be encrypted is used
directly as the state matrix. The state bytes are used to index the table lookups
and the resulting new columns are stored in four temporary 32-bit variables.
These are XORed with a 32-bit pointer aliased to the expanded key byte-array.
The results are stored back into the state matrix using a 32-bit pointer aliased
to the state byte-array. Aliasing the pointer allows access to the same data bytes
at different granularity without use of temporary storage. Reducing temporary
storage is an important strategy in fast designs, (discussed further in Section
4.5). Pointer aliasing is accomplished using casting, e.g.:

state32 = (uint32_t *)state;

32-BIT-1T is very similar to the above, except T1, T2, and T3 are replaced
with T0 and macros to perform left circular byte shifts by 1, 2, and 3 bytes
respectively.

4.3 AES 16-BIT

As described by Gouvea in [15], the 32-bit lookup tables can be reduced to 16-bit
lookup tables such that concatenations of two of the 16-bit tables can produce
any of the original 32-bit tables. The pointer aliasing approach used in the 32-
bit case applies similarly to the 16-BIT-4T version. Of note, by directly using
16-bit operations on 16-bit data types the compiler is no longer relied upon to
synthesize 16-bit instructions from source code using 32-bit operations on 32-bit
data types. Compilers are not perfect in this regard, so in addition to reducing
the memory footprint by a factor of two, this approach was found to be faster as
well. There is no equivalent byte-rotation-based memory/speed tradeoff in the
16-bit approach as there is in the 32-bit approach.

After initial testing, the 16-BIT-4T version of AES was found to be the fastest
and lowest energy of all of the AES implementation variations tested. A complete
listing of 16-BIT-4T can be found in Listing A in the Appendix. To further
enhance the performance, 16-BIT-4T was also implemented in assembler, using
the IAR generated assembler as a starting point. In the generated assembler, the
compiler was unable to utilize the 12 general purpose registers (R4-R15 [28]) of
the MSP430 efficiently enough and thus required temporary data to be loaded
from and stored to the stack (in RAM). As discussed in Section 4.5, accessing
temporary data in RAM is detrimental to speed.

The following register scheme in our assembler version avoids storing tem-
porary data to RAM, thus increasing the speed and further reducing the energy
consumption of the 16-BIT-4T-ASM code version. Registers R4 through R11 are
used to hold the 8 temporary 16-bit column results, R12 and R13 hold point-
ers to the state array and expanded key respectively, R14 is the loop counter,
and R15 is used to compute offsets into the tables. An excerpt of the resulting
assembler round function is shown in the Appendix, Listing B.

It is likely that other AES versions implemented in assembly language would
also see performance improvements. For instance, an assembler implementation
of the 32-BIT-4T version could likely be made identical to the 16-BIT-4T-ASM
version, speed-wise, since in assembler the only difference would be different
offsets into the larger 32-bit tables. Based on the preceeding reasoning, we limit
our AES assembly language analysis to a single implementation variation; we
do not anticipate that 32-bit table-based variations re-implemented in assembly
language would exceed the performance of 16-BIT-4T-ASM.

4.4 SPECK

The round function of SPECK is very succinct; therefore all implementations
fully unroll the round function, leaving a single loop over the required number of
rounds. Beyond decisions like unrolling or not, or inlining or not, Beaulieu in [6]
provides no guidance on implementation of the round function. In this section
implementations in C and assembly language are discussed.

SPECK performs all operations modulo n, the word size. Whenever the C
data type (e.g., uint32 t or uint64 t) is larger than the 16-bit processor word size,

then the compiler must translate XOR, addition (+), and shift operations within
C code into multi-precision operations over the native 16-bit instructions of the
MSP430 [28]. For example, let X = {X3, X2, X1, X0} and Y = {Y3, Y2, Y1, Y0}
be 64-bit integers composed of 16-bit words Xi and Yi (0 <= i < 4). Adding
X + Y in C would ideally result in the following sequence of operations in a
16-bit instruction set:

add X0, Y0 ; add X0 to Y0

adc X1, Y1 ; add X1 and previous carry to Y1

adc X2, Y2 ; add X2 and previous carry to Y2

adc X3, Y3 ; add X3 and previous carry to Y3

C implementations may be preferred by developers (e.g., to simplify the cod-
ing effort), and our particular compiler generated efficient multi-precision code
for the XOR and addition operations within SPECK. However, the generated
code for the circular shifts was not very efficient. Since at least one compiler ap-
pears to have difficulty generating efficient code for the SPECK round function,
we also implement the round function in assembler to quantify the trade-off.

The SPECK round function in most cases requires both a left circular shift
(LCS) by 3 bits and a right circular shift (RCS) by 8 bits. The LCS can be
implemented in an efficient way in assembler using three one bit circular shifts,
as follows, where 64 bits of data are stored in the four 16-bit registers R4 through
R7 :

; assembly language 1-bit LCS

; each instruction takes one clock cycle

; (in register addressing mode)

rla r4 ; shift first 16-bit word

rlc r5 ; shift with carry second 16-bit word

rlc r6 ; shift with carry third 16-bit word

rlc r7 ; shift with carry second 16-bit word

adc r4 ; rotate final carry back to first word

The 8-bit RCS can be performed in assembler in an efficient way using swap-
byte and XOR operations, as shown in Listing C on a 64-bit word held in registers
R4-R7. Equivalent LCS and RCS operations in C were not as efficient. For
example the RCS implemented as x = (((x) << 56)|((x) >> 8)), did not use an
extra temporary register and final swap-byte/XOR, as in Listing C, instead using
two AND operations (in immediate mode), a swap-byte, and an OR operation.
(The immediate addressing mode is slower than the register addressing mode on
the MSP430, two clock cycles versus one [28].)

For developers who do not want to proceed to assembler there unfortunately
may be limited options to optimize the multi-precision LCS/RCS operations.
Typically there is not enough direct access to machine status words, for example
to access/modify carry flags, or access to specialized instructions like ”rotate
left through carry” (rlc), from within high level languages such as C. Listing D
in the Appendix shows the full implementation of SPECK-128 in C. The listing

illustrates different ways to implement LCS and RCS that resulted in an 8%
speedup over versions that used the C language methods shown above.

4.5 MSP430 features and capabilities

Several features of the MSP430 family of microcontrollers have direct bearing
on the implementation results presented in Section 5. Chiefly, these are 1) the
instruction set, 2) the addressing modes, and 3) the register set. The MSP430
Family User Guide [28] provides detailed information on all of these features. In
this section, we offer comments on specific use of several of the features as they
pertain to SPECK and AES implementations.

Instructions on the MSP430 allow operations on either bytes or 16-bit words
(via .b or .w suffixes). The swap bytes (swpb) instruction is very useful to SPECK
implementations (for the RCS operation). Byte operations to registers clear the
most significant byte of the word; this effect is also used during the RCS opera-
tion (Appendix, Listing C).

The addressing modes of the MSP430 include register modes (operations on
data held in processor registers) and several memory modes (operations on data
held in processor memory, RAM or ROM). Operations on data held in memory
are generally much slower than data held in registers. For example, to XOR two
words held in processor registers takes one clock cycle, but to XOR two words
held in memory takes five or six clock cycles, depending on the specific addressing
mode employed. As such, whenever possible AES and SPECK code is structured
to attempt to minimize loading from and storing to memory. Unfortunately there
are only 12 general purpose registers (designated R4 through R15) in which to
hold data. A consequence of the limited register set is that temporary variables
must be used very sparingly in C code. As the compiler encounters ”larger”
numbers of temporary variables (e.g., function locals) it will utilize stack memory
(physically stored in RAM) to hold them. Accessing these temporary values will
therefor incur a speed penalty due to slower memory addressing modes on the
MSP430. We do not attempt to quantify ”larger” in this study, since detailed
examination of the compiler is not our goal (and will be different, for other
compilers). However, as the number of temporary variables grows it becomes
more difficult for the compiler to avoid temporary use of RAM-based stack.

The MSP430’s addressing modes have the advantage that memory accesses
are constant time. There are no cache hierarchy effects or interactions with
other concurrently running processes to worry about [29]. AES versions that
use table lookups thus do not have key- or input-dependent timing variability
and appear to have resistance to timing attacks on the MSP430. In our suite of
implementations, the only AES versions that do not use table lookups are 8-BIT-
UNROLL and 8-BIT-LOOPED. In these implementations, the computation of
multiply-by-2 over GF(2)8 depends on the input (a branch containing an extra
instruction may or may not be taken). We have not investigated the feasibility
of a timing attack on these AES implementations. The SPECK round function
involves no branches and on the MSP430 takes constant time. Based on the
constant time property of the round function, we expect SPECK to be resistant

to timing-based side-channel attacks on the MSP430, although this has not been
investigated.

5 Results and Discussion

5.1 Experimental Setup and Procedure

The 8 variations of AES were evaluated for each of the 3 AES key sizes along
with the 20 variations of SPECK (10 in C and 10 in assembler). The metrics for
each test were speed of encryption, code size, and energy consumption. Speed
was measured using the IAR debugger and function profiler tools in simulation
mode. (Speed was also independently verified using timing information obtained
from the measured waveforms described below, running released code.) Code size
is provided by the IAR linker, broken down into CODE, DATA, and CONST
segment sizes. Since all CONST segment data is stored in ROM along with
the CODE segment, below we have grouped CODE and CONST together as a
total ROM size, reported along with total RAM size (DATA segments). Energy
consumption was calculated by first measuring the voltage drop across a 10 ohm
resistor in series with the MSP430 digital voltage supply, Vdvcc, on a custom
evaluation board (nominally Vdvcc = 2.85 V). Voltage drop was measured using
a National Instruments PXI-1024Q chassis, PXI-8108 controller, and PXI-4071
7 digit, 26-bit digitizer. Custom MATLAB scripts then converted the voltage to
current and performed integration of the current waveforms over the encryption
time-period to get charge, Q. Finally, energy is calculated as E = QVdvcc.

In every case key expansion was performed and all round keys were stored in
RAM (code to perform key expansion is included in our ROM figures; however,
we omit key expansion speed results). (In most cases the key expansion speed is
within a factor of 2 of the number of cycles for a block encryption.) Stack utiliza-
tion also consumes RAM; stack usage was determined by careful examination of
compiler generated code.

5.2 Results and Discussion

The results are shown in Figures 1 through 5 below. Figure 1 shows the speed
data for each algorithm, arranged right-to-left from fastest to slowest. Figure
2 through Figure 5 are presented in the same x-axis order as Figure 1, i.e., all
results are sorted according to speed. Figure 2 through Figure 5 show energy
consumption per byte, ROM size, RAM size, and a combined metric, the code
size × cycle count product normalized by block size [10]. In all figures smaller
bars are better. In the SPECK charts, ”Small Key” refers to the smaller of the
key options for each block size shown in Table 1. Similarly, ”Large Key” refers
to the larger of the key options. The 256-bit key only applies to the 128-bit block
size.

For AES, the fastest and most energy efficient C implementation is the 16-
BIT-4T variation at 152 cycles/byte and 2.46 µJ/block. The speedup obtained

Fig. 1. Speed of AES (left) and SPECK (right) (Block encryption only) (44520)

Fig. 2. Energy consumption per byte of AES (left) and SPECK (right) (44522)

over Gouvea’s implementation [30] is due to the avoidance of storing the state
matrix in temporary stack space. This was accomplished via the pointer aliasing
technique discussed in Section 4.3: aliasing the input state array (uint8 t *),
used to index the lookup tables, with a word-array pointer (uint16 t *), used
for assignments to the state matrix. The 16 extra stack bytes in Gouvea’s round
function implementation cause more data movement to and from RAM that in
addition to adding instructions, incurs the memory addressing mode cycle-count
penalty discussed in Section 4.5.

The assembler implementation 16-BIT-4T-ASM gives a further 14% speedup
and 12% decrease in energy usage over the C implementation, to 132 cycles/byte
and 2.18 µJ/block. This improvement is again a direct consequence of improving
register utilization (and thus reducing the memory addressing mode cycle-count
penalty). The register utilization scheme that was employed is discussed in Sec-
tion 4.3.

Of the lighter weight 8-bit AES versions, 8-BIT-2SBOX is the fastest at 194
cycles/byte but has the disadvantage of needing an assembler implementation to
realize its performance. The 8-BIT-2T version is 25% slower but much simpler
to implement. The combined metric shows that 8-BIT-LOOPED provides very

Fig. 3. ROM usage of AES (left) and SPECK (right) (Including key schedule code)
(44521)

Fig. 4. RAM usage of AES (left) and SPECK (right) (44523)

good overall performance due to its reasonable throughput and small code size,
8-BIT-2SBOX is exceptional for the same reason, and 16-BIT-4T is also good due
to its high speed. Figure 4 shows that table-driven C versions of AES consume
slightly more RAM (beyond that required to hold the expanded key) because of
temporary storage to the stack; however the 16-BIT-4T-ASM version does not
require stack as discussed in section 4.3. The ROM size of AES increases slightly
for 256-bit key versions because the compiler optimizes away the portion of the
AES key schedule that is only valid for 256-bit keys (see, for example, section 5.2
of [7]). Energy consumption generally tracks speed quite well. Slightly varying
average current levels for different implementations (not shown here) is a second
order effect, confirming the observations of other authors [11].

For SPECK, the fastest C implementation is the 64-BIT block size version
at 116 cycles/byte (0.74 µJ/block) and the fastest assembler implementation
was the 32-BIT version at 87 cycles/byte (0.31 µJ/block). Of note, all of the
assembler implementations are faster than the fastest C implementation. The
speed-up from C to assembler is due to two factors. First, in assembly language
the multi-precision rotation operations can be implemented more efficiently (as

Fig. 5. Combined metric of AES (left) and SPECK (right) (code size cycle count /
block size) (44524)

shown in Section 4.4). And second, in the C implementation of the larger block
size versions of SPECK (96- and 128-bit) there is inefficient register utilization.
The two temporary variables x and y (shown in Listing D) fill 8 of 12 available
general purpose registers. This was enough to cause some temporary storage to
stack (RAM) with an associated speed penalty. The assembly implementations
were able to avoid use of extra RAM and the associated speed penalty.

Larger key sizes for similar versions of SPECK use incrementally more code
and energy. However the effect is much less pronounced than in AES. In AES,
the number of extra rounds increases from 10 to 14 when going from 128-bit
keys to 256-bit keys (a 40% increase) while in SPECK the number of rounds
increases from 32 to 34 (just over 6%). Block size has a much stronger impact
than key size on both ROM and RAM, as seen in Figure 3 and Figure 4.

Although we chose to limit our in-depth study to the two tailorable block
ciphers AES and SPECK, related work provides figures on AES and other block
ciphers for the MSP430 platform that can be compared to our results. Related
work is summarized in Table 2. In Table 2, implementations are first sorted by
block size and then by the combined metric, to facilitate comparison of overall
performance between ciphers of similar block size. Note that comparisons such
as these can be difficult to interpret due to differing measurement conditions
or techniques. Our measurement conditions are stated at the beginning of this
section; we have indicated known differences between our approach and the
various references as footnotes to Table 2. In cases where the reference indicated
that the authors implemented both encrypt and decrypt, but provided only one
code size result, the ROM for encrypt only is estimated by dividing the reported
ROM by 2.

Table 2. Related work comparison

Algorithm- Block Reference Speed ROM RAM Energy Combined5

key size size, cycle/byte size, size, per blk,
bits bytes bytes µJ

SPECK-128 128 This work 103 380 288 1.44 538

AES-128 128 This work 132 3147 176 2.18 3427

AES-128 128 [15] 180 2904 NA NA 4084

RC6-128 128 [11]1 1120 917 54 19.654 8496

AES-128 128 [11]1 204 6555 60 3.584 10543

AES-128 128 [19] 172 12400 NA NA 16662

AES-128 128 [12]2 1891 2230 19 NA 33225

Camellia-128 128 [11]1 393 11769 85 6.894 36395

AES-128 128 [18]3 765 4500 1800 28.16 37652

CLEFIA-128 128 [12]2 6134 4780 180 NA 237693

SPECK-96 64 This work 96 260 136 0.66 594

Skipjack-80 64 [18]3 350 3750 40 2.63 20727

XXTEA-128 64 [18]3 2340 1900 200 17.48 76781

TWINE-128 64 [12]2 5125 1108 23 NA 90568

Piccolo-128 64 [12]2 4562 1255 91 NA 95945

Lblock-80 64 [12]2 5369 1784 13 NA 150751

LED-128 64 [12]2 21382 1132 41 NA 391892

PRESENT 64 [12]2 45573 4814 142 NA 3529059

SPECK-64 32 This work 87 174 76 0.31 680
1 ROM and RAM figures do not include expanded key bytes; all metrics

include overhead in Output Feedback mode of operation;
2 Includes key expansion in encryption speed (separated key expansion

speed data not provided in [12])
3 TelosB Data (8 MHz Clock) used to compute speed from provided

timing numbers in [18]
4 Computed using average current of 2.93 mA, voltage of 2.994 V, and

clock of 8 MHz, per [11]
5 code size (bytes) × cycle count (cycles/byte) product normalized by

block size (bits) [10]

6 Conclusions

We have implemented and measured 24 different variations of AES and 20 dif-
ferent variations of the new lightweight block cipher SPECK on the low power
MSP430 platform, in both C and assembler. Many of these implementations
represent records for speed and energy efficiency among lightweight and tradi-
tional block ciphers on that device, e.g. 132 cycles/byte and 2.18 µJ/block for
AES and 103 cycles/byte and 1.44µJ/block for SPECK, both with 128-bit block
and key sizes. The 32-bit block size of SPECK with a 64-bit key produced even
lower numbers at 87 cycles/byte and 0.31 µJ/block. We provide implementa-
tion tactics for both AES and SPECK in both C and assembler for the 16-bit
MSP430 platform. Finally, we provide a thorough analysis of measured results
across algorithm, implementation strategy, and key size to aid system designers
needing to incorporate block ciphers into their designs.

References

1. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: Twine: A lightweight block
cipher for multiple platforms. In Selected Areas in Cryptography - SAC 2012.
LNCS, vol. 7707, pp. 339-354. Springer, Heidelberg (2013).

2. Shibutani, K., Isobe, R., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Pic-
colo:An ultra-lightweight blockcipher. In Cryptographic Hardware and Embedded
Systems - CHES 2011. LNCS, vol. 6917, pp. 342-357. Springer, Heidelberg (2011).

3. Wu, W., Zhang, L.: Lblock: A lightweight block cipher. In Applied Cryptogra-
phy and Network Security - ACNS 2011. LNCS vol. 6715, pp. 327-344. Springer,
Heidelberg (2011).

4. Guo, J., Peyrin, T., Poschmann, A., Robsha, M.: The led block cipher. In Cryp-
tographic Hardware and Embedded Systems - CHES 2011. LNCS, vol. 6917, pp.
326-341. Springer, Heidelberg (2011).

5. Bogdanov, A., Knudson, L. R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In Cryptographic Hardware and Embedded Systems - CHES 2007. LNCS, vol.
4727, pp. 450-466. Springer, Heidelberg (2007).

6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, June 2013. http://eprint.iacr.org/2013/404

7. National Institute of Standards and Technology (NIST).
FIPS-197: Advanced Encryption Standard (AES), 2001.
http://www.csrc.nist.gov/publications/ps/ps197/ps-197.pdf.

8. MICAz wireless measurement system. http://www.memsic.com/userfiles/files/
Datasheets/WSN/micaz datasheet-t.pdf

9. TelosB Platform. http://www.memsic.com/userfiles/files/Datasheets/WSN/
telosb datasheet.pdf

10. Eisenbarth, T., Gong, Z., Guneysu, T., Heyse, S., Indesteege, S., Kerckhof, S.,
Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F.-X., van Oldeneel tot
Oldenzeel, L.: Compact Implementation and Performance Evaluation of Block Ci-
phers in ATtiny Devices. In AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172-187.
Springer, Heidelberg (2012).

11. Law, Y. W., Doumen, J., Hartel, P.: Survey and benchmark of block ciphers for
wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), Volume
2, Issue 1, pp. 65-93. ACM, New York (2006).

12. Cazorla, M., Marquet, K., Minier, M.: Survey and benchmark of lightweight block
ciphers for wireless sensor networks. In SECRYPT 2013 - Proceedings of the 10th
International Conference on Security and Cryptography, Reykjavk, Iceland, 29-31
July, 2013, pages 543-548. SciTePress, 2013.

13. BLOC project performance evaluations, June 2014. http://bloc.project.citi-
lab.fr/library.html

14. Guneysu, T.: Implementing AES on a bunch of processors. ECRYPT
AES day, Bruges, Belgium, 2012. https://www.cosic.esat.kuleuven.be/
ecrypt/AESday/slides/AES-DAY-Gueneysu.pdf

15. Gouvea, C., Lopez, J.: High Speed Implementation of Authenticated Encryption
for the MSP430X Microcontroller. In Progress in Cryptology LATINCRYPT 2012.
LNCS, vol. 7533, pp. 288-304. Springer, Heidelberg (2012).

16. OpenSSL Cryptography and SSL/TLS toolkit. http://www.openssl.org/
17. Didla, S., Ault, A., Bagchi, S.: Optimizing AES for Embedded Devices and Wireless

Sensor Networks. In Proceedings of the 4th International Conference on Testbeds
and research infrastructures for the development of networks & communities (Tri-
denCOM), Article No. 4, 2008. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), Brussels, Belgium (2008).

18. Lee, J., Kapitanova, K., Son, S. H.: The price of security in wireless sensor networks.
Computer Networks vol. 54, no. 17, pp 2967-2978. Elsevier, New York (2010)

19. Hyncica, O., Kucera, P., Honzik, P., Fiedler, P.: Performance Evaluation of Sym-
metric Cryptography in Embedded Systems. In Proceedings of the 6th Interna-
tional Conference on Intelligent Data Acquistion and Advanced Computing Sys-
tems: Technology and Applications, pp. 277-282, Prague (2011)

20. St. Denis, T., LibTomCrypt (source code). http://libtom.org/?page= fea-
tures&newsitems=5&whatfile=crypt

21. Bos, J., Osvik, D., Stefan, D., Canright, D.: Fast Software AES Encryption. In
Proceedings of the 17th international conference on fast software encryption, FSE
2010. LNCS, vol. 6147, pp. 75-93. Springer, Heidelberg (2010).

22. Poettering, B.: AVRAES: The AES block cipher on AVR controllers, 2006.
http://point-at-infinity.org/avraes/.

23. Abed, F., List, E., Wenzel, J., Lucks, S.: Differential Cryptanalysis of round-
reduced Simon and speck. In Fast Software Encryption, FSE. 2014. To appear
in LNCS.

24. Biryukov, A., Roy, A., Velichkov, V.: Differential Analysis of Block Ciphers SIMON
and SPECK. In Fast Software Encryption, FSE. 2014. To appear in LNCS.

25. Dinur, I.: Improved Differential Cryptanalysis of Round-Reduced Speck. In Se-
lected Areas in Cryptography (SAC), August 2014. To appear in LNCS.

26. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Berlin, 2002.
27. Kretzschmar, U.: AES software support for encryption and decryption. MSP430

Systems. http://www.ti.com/litv/zip/slaa397a
28. MSP430 Family, Instruction Set Summary. http://www.ti.com/sc/docs/products/

micro/msp430/userguid/as 5.pdf
29. Bernstein, D. J.: Cache-timing attacks on AES.

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf (2005).
30. Gouvea, C.: Authenticated Encryption on the MSP430 (source code).

http://conradoplg.cryptoland.net/software/authenticated-encryption-for-the-
msp430/

7 Appendix A Code Listings:

Listing A C code for 16-bit AES using four lookup tables T0, T1, T2, and T3:

// ===

void encrypt_aes(uint8_t *s, uint8_t *expanded_key) {

int round;

uint16_t *state16; // 16-bit alias of input array

uint16_t *key16; // 16-bit alias of input array

uint16_t tmp[8]; // 16-bit temporary columns

uint8_t buf1;

uint8_t buf2;

state16 = (uint16_t *)s;

key16 = (uint16_t *)(expanded_key);

state16[0] ^= key16[0]; state16[1] ^= key16[1];

state16[2] ^= key16[2]; state16[3] ^= key16[3];

state16[4] ^= key16[4]; state16[5] ^= key16[5];

state16[6] ^= key16[6]; state16[7] ^= key16[7];

key16 += 8;

for (round = 1; round < NR; round++) {

// use the state array to access byte indices to the tables

tmp[0] = T0[s[0]] ^ T2[s[5]] ^ T1[s[10]] ^ T3[s[15]];

tmp[1] = T1[s[0]] ^ T3[s[5]] ^ T0[s[10]] ^ T2[s[15]];

tmp[2] = T0[s[4]] ^ T2[s[9]] ^ T1[s[14]] ^ T3[s[3]];

tmp[3] = T1[s[4]] ^ T3[s[9]] ^ T0[s[14]] ^ T2[s[3]];

tmp[4] = T0[s[8]] ^ T2[s[13]] ^ T1[s[2]] ^ T3[s[7]];

tmp[5] = T1[s[8]] ^ T3[s[13]] ^ T0[s[2]] ^ T2[s[7]];

tmp[6] = T0[s[12]] ^ T2[s[1]] ^ T1[s[6]] ^ T3[s[11]];

tmp[7] = T1[s[12]] ^ T3[s[1]] ^ T0[s[6]] ^ T2[s[11]];

state16[0] = tmp[0] ^ key16[0];

state16[1] = tmp[1] ^ key16[1];

state16[2] = tmp[2] ^ key16[2];

state16[3] = tmp[3] ^ key16[3];

state16[4] = tmp[4] ^ key16[4];

state16[5] = tmp[5] ^ key16[5];

state16[6] = tmp[6] ^ key16[6];

state16[7] = tmp[7] ^ key16[7];

key16 += 8;

}

//substitution and shift using Bytes

// row 0

s[0] = sbox[s[0]];

s[4] = sbox[s[4]];

s[8] = sbox[s[8]];

s[12] = sbox[s[12]];

// row 1

buf1 = s[1];

s[1] = sbox[s[5]];

s[5] = sbox[s[9]];

s[9] = sbox[s[13]];

s[13] = sbox[buf1];

// row 2

buf1 = s[2];

buf2 = s[6];

s[2] = sbox[s[10]];

s[6] = sbox[s[14]];

s[10] = sbox[buf1];

s[14] = sbox[buf2];

// row 3

buf1 = s[15];

s[15] = sbox[s[11]];

s[11] = sbox[s[7]];

s[7] = sbox[s[3]];

s[3] = sbox[buf1];

state16[0] ^= key16[0]; state16[1] ^= key16[1];

state16[2] ^= key16[2]; state16[3] ^= key16[3];

state16[4] ^= key16[4]; state16[5] ^= key16[5];

state16[6] ^= key16[6]; state16[7] ^= key16[7];

return;

}

Listing B Assembler code snippet for 16-bit AES round function:

// ===

; column 0

mov.b @R12,R15 ; state[0]

rla.w R15 ; address into 16-bit T0

mov.w T0(R15),r4 ; table lookup into temp column

mov.w T1(R15),r5 ; table lookup into temp column

mov.b 0x5(R12),R15 ; state[5]

rla.w R15 ; address into 16-bit T2

xor.w T2(R15),r4 ; accumulate table lookup into temp column

xor.w T3(R15),r5 ; accumulate table lookup into temp column

mov.b 0xA(R12),R15 ; state[10]

rla.w R15 ; address into 16-bit T1

xor.w T1(R15),r4 ; accumulate table lookup into temp column

xor.w T0(R15),r5 ; accumulate table lookup into temp column

mov.b 0xF(R12),R15 ; state[15]

rla.w R15 ; address into 16-bit T3

xor.w T3(R15),r4 ; accumulate table lookup into temp column

xor.w T2(R15),r5 ; accumulate table lookup into temp column

; other columns similar (omitted)

; key add

xor.w @R13+,r4 ; xor key bytes 0-1 with temp bytes

mov.w r4,0x0(R12) ; update state bytes 0-1

xor.w @R13+,r5 ; xor key bytes 2-3 with temp bytes

mov.w r5,0x2(R12) ; update state bytes 2-3

xor.w @R13+,r6 ; xor key bytes 4-5 with temp bytes

mov.w r6,0x4(R12) ; update state bytes 4-5

xor.w @R13+,r7 ; xor key bytes 6-7 with temp bytes

mov.w r7,0x6(R12) ; update state bytes 6-7

xor.w @R13+,r8 ; xor key bytes 8-9 with temp bytes

mov.w r8,0x8(R12) ; update state bytes 8-9

xor.w @R13+,r9 ; xor key bytes 10-11 with temp bytes

mov.w r9,0xA(R12) ; update state bytes 10-11

xor.w @R13+,r10 ; xor key bytes 12-13 with temp bytes

mov.w r10,0xC(R12) ; update state bytes 12-13

xor.w @R13+,r11 ; xor key bytes 14-15 with temp bytes

mov.w r11,0xE(R12) ; update state bytes 14-15

Listing C Assembler code for multi-word Right Circular Shift by 8 bits:

// ===

; register contents (Byte numbers):

; R4 R5 R6 R7 R9

mov.b r4, r9 ; B0 B1 B2 B3 B4 B5 B6 B7 B0 00

swpb r9 ; B0 B1 B2 B3 B4 B5 B6 B7 00 B0

swpb r4 ; B1 B0 B2 B3 B4 B5 B6 B7 00 B0

swpb r5 ; B1 B0 B3 B2 B4 B5 B6 B7 00 B0

swpb r6 ; B1 B0 B3 B2 B5 B4 B6 B7 00 B0

swpb r7 ; B1 B0 B3 B2 B5 B4 B7 B6 00 B0

xor.b r5, r4 ; B1^B3 00 B3 B2 B5 B4 B7 B6 00 B0

xor r5, r4 ; B1 B2 B3 B2 B5 B4 B7 B6 00 B0

xor.b r6, r5 ; B1 B2 B3^B5 00 B5 B4 B7 B6 00 B0

xor r6, r5 ; B1 B2 B3 B4 B5 B4 B7 B6 00 B0

xor.b r7, r6 ; B1 B2 B3 B4 B5^B7 00 B7 B6 00 B0

xor r7, r6 ; B1 B2 B3 B4 B5 B6 B7 B6 00 B0

xor.b r9, r7 ; B1 B2 B3 B4 B5 B6 B7^00 00 00 B0

xor r9, r7 ; B1 B2 B3 B4 B5 B6 B7 B0 00 B0

Listing D C language code for SPECK-128:

// ===

void encrypt_speck(uint8_t * pointer, uint8_t * expanded_key) {

uint64_t *p64 = (uint64_t*)pointer;

uint64_t *k64 = (uint64_t*)expanded_key;

uint64_t y;

uint64_t x;

// Copy values to be encrypted into x and y

y = p64[0];

x = p64[1];

for (int round = 0; round < SPECK_T; round++) {

uint64_t t;

uint8_t y8;

// RCS, addition with y, and key addition

t = x >> 8;

x = x << 56;

x = x + t + y;

x = x ^ k64[round];

// LCS and XOR with x

t = y << 3;

y8 = (uint8_t)(y >> 56);

y8 >>= 5;

y = (t | y8) ^ x;

}

// Copy encrypted values back into ram

p64[0] = y;

p64[1] = x;

}

