
Cryptanalysis of a (Somewhat) Additively
Homomorphic Encryption Scheme Used in PIR

Tancrède Lepoint1 and Mehdi Tibouchi2

1 CryptoExperts, tancrede.lepoint@cryptoexperts.com
2 NTT Secure Platform Laboratories, tibouchi.mehdi@lab.ntt.co.jp

Abstract. Private Information Retrieval (PIR) protects users’ privacy
in outsourced storage applications and can be achieved using additively
homomorphic encryption schemes. Several PIR schemes with a “real world”
level of practicality, both in terms of computational and communication
complexity, have been recently studied and implemented. One of the
possible building block is a conceptually simple and computationally
efficient protocol proposed by Trostle and Parrish at ISC 2010, that
relies on an underlying secret-key (somewhat) additively homomorphic
encryption scheme, and has been reused in numerous subsequent works
in the PIR community (PETS 2012, FC 2013, NDSS 2014, etc.).
In this paper, we show that this encryption scheme is not one-way: we
present an attack that decrypts arbitrary ciphertext without the secret
key, and is quite efficient: it amounts to applying the LLL algorithm twice
on small matrices. Used against existing practical instantiations of PIR
protocols, it allows the server to recover the users’ access pattern in a
matter of seconds.

1 Introduction

Cloud computing has gained widespread importance and adoption in recent
years. One of the main concerns of cloud security is user privacy. Encryption of
data at rest is a first step towards the protection of user data in such a setting.
In combination with fully homomorphic encryption [Gen09], cloud servers can
continue to provide services to users while only manipulating encrypted data.
However, encryption of users’ data is only a partial solution to cloud security.
Private Information Retrieval (PIR), introduced by Chor, Goldreich, Kushilevitz
and Sudan [CKGS98], allows a user to retrieve its data in a manner that prevents
the server from knowing which data was retrieved. In a PIR protocol with a
single server, the only way to information theoretically hide the users’ access
pattern is to send the entire data back at each query. (By considering several
servers with a copy of the data, secure information theoretic PIR protocols with
smaller communication complexity can be achieved.)

In [KO97], Kushilevitz and Ostrovsky presented the first (single database)
computational PIR (cPIR) where security is achieved against a computationally
bounded server. More generally, they present a construction of a cPIR from
an additively homomorphic encryption scheme, i.e. from an encryption scheme

that allows to publicly compute an encryption of the sum of the plaintexts from
the ciphertexts (see, e.g., [DSH14] for one example). Since this result, numerous
protocols of cPIR have been proposed.

In this paper, we focus on the cPIR protocol proposed by Trostle and Parrish
at ISC 2010, and more precisely on its underlying (somewhat) additively homo-
morphic encryption scheme—the TP scheme. Due to its conceptual simplicity and
computational efficiency, this scheme was used as a building block of other PIR
protocols [BPMÖ12,MBC13,MBC14,EÖM14], and to a private spectrum avail-
ability information retrieval protocol [GZL+13]. In particular, it was implemented
in Java by Mayberry et al. [MBC13,MBC14] to demonstrate the practicality of
PIR in a “real world” setting.

Our Contributions. In this paper we focus on the TP scheme. We present a
concrete attack showing that the scheme is not one-way: one can in fact recover
the plaintext of any given ciphertext. Our attack is based on the notion of
orthogonal lattice introduced by Nguyen and Stern at Crypto ’97 [NS97], and it
is very efficient: it amounts to applying LLL reduction twice on lattices of small
dimension. We implemented it and carried out the attack on the parameters
suggested in [TP10] as well as those used in existing implementations of the TP
scheme [MBC13,MBC14]. Every time, it succeeded in a matter of seconds on a
desktop computer. Our technique can be described as follows.

The secret key in the TP scheme consists of a pair (b,m) where m is a large
secret prime and b ∈ Zm is a secret odd multiplicative mask. A bit µ is encrypted
as c ∈ Zm given by

c = b · (2r + µ) mod m = b · e+m · k ,

where r is some random small noise value, e = 2r + µ, and k is quotient in the
Euclidean division of c by m.

Now consider a vector c ∈ Zt of ciphertexts associated with the plaintext
vector µ, and let e,k be the corresponding vectors of “noisy plaintexts” and
Euclidean quotients:

c = b · e+m · k.

The first step of our attack is similar to [NS98,CNT10]: by applying lattice
reduction on the lattice of vectors orthogonal to c in Zt, we can obtain a short
basis {u1, . . . ,ut−2} of the lattice orthogonal to L = Ze⊕ Zk, and taking the
orthogonal again, we get a short basis {x,y} of L. In particular, e = ux+ vy
for some integers u, v. As a result, µ = e mod 2 is equal modulo 2 to one of 0, x,
y or x+ y, and can thus be recovered with probability at least 1/4.

We stress that our attack differs from [NS98,CNT10] in at least two respects:
on the one hand, the modulus m is secret, which is the main reason why Trostle
and Parrish believed their scheme to be secure; and on the other hand, the vectors
x,y are actually too short to allow us to recover r and k (or the integers u, v
above) directly, due to an exponentially large search space. To the best of our
knowledge, this last point is an unheard of situation in the realm of orthogonal

2

lattice techniques so far, and makes this particular attack quite interesting from
a theoretical cryptanalytic viewpoint as well.

Outline. In Section 2, we recall Trostle and Parrish’s scheme, some of its
applications to PIR and provide some background on orthogonal lattices. In
Section 3, we describe our attack against the scheme. And finally, we assess its
practicality in Section 4. (For the reader’s convenience, the source code of the
attack is also made available in Appendix A).

2 Preliminaries

For any integer n ∈ Z, we denote by [n] the set {1, . . . , n}. Vectors are denoted
in bold characters. For any vectors x,y ∈ Zt, ‖x‖ denotes the Euclidean norm of
x, [x]n = (xi mod n)i∈[t] denotes the componentwise reduction of the coefficients
of x modulo n, and 〈x,y〉 denotes the scalar product of x and y.

2.1 Trostle and Parrish’s SHE Scheme

In this section, we present the secret-key encryption scheme of Trostle and
Parrish [TP10], a key ingredient of their PIR protocol.

Let λ be the security parameter, η the bit-length of the secret modulus m
and ρ the bit-length of the noise in a fresh ciphertext (both η and ρ are functions
of λ).

KeyGen(1λ). On input the security parameter λ, generate a η-bit secret modulus
m, and an odd secret random invertible mask b ∈ Zm. Output sk = {m, b}.

Encrypt(sk, µ ∈ {0, 1}). On input the secret key sk = {m, b} and a message µ,
sample r u← [0, 2ρ−1) and output c = b · (2 · r + µ) mod m.

Decrypt(sk, c). On input the secret key sk = {m, b}, a ciphertext c, output
µ = (b−1 · c mod m) mod 2.

This scheme is (somewhat) additively homomorphic, i.e. can be used to
compute the sum of (a bounded number of) values only manipulating encrypted
values. More precisely consider two ciphertexts c1 = b · (2r1 + µ1) mod m and
c2 = b · (2r2 +µ2) mod m where r1 (resp. r2) is a ρ1-bit (resp. ρ2-bit) integer. One
can homomorphically add the ciphertexts: the ciphertext c1 + c2 is an encryption
of µ1 + µ2 mod 2 under a (max(ρ1, ρ2) + 1)-bit noise. Note that the ciphertext
noise must remain smaller than m to maintain correctness.

Remark 1. In [TP10], the scheme is also described with message space ZN for any
N > 2. An encryption of µ ∈ ZN is an integer c such that c = b ·(N ·r+µ) mod m
with r u← [0, 2ρ/N), and we recover µ from c by µ = (b−1 · c mod m) mod N . We
discuss extension of our attack to this setting in Section 3.3.

3

2.2 Applications to PIR

Due to its simplicity and computational efficiency (the homomorphic addition
being a simple addition of integers), the TP scheme is used as building block
in several PIR protocols [TP10,GZL+13,MBC13,MBC14,EÖM14]. Below, we
briefly describe the original PIR protocol, and the protocols implemented by
Mayberry et al. [MBC13,MBC14]. In the following, assume a user want to recover
a file among t files of bitsize s from a server.

In their initial paper, Trostle and Parrish described the following protocol
(we present the variant in which a user wants to recover one row of a database
that is a square bit array). The database D is a t× s matrix of bits, and a user
send c = (c1, . . . , ct) to the server, where ci ← Encrypt(1) if the user requests the
i-th row of D and cj ← Encrypt(0) for j 6= i. The server then multiplies the j-th
row by cj for all j, adds all the rows and sends the result to the user. Since the
TP scheme is additively homomorphic, the users recovers a vector c′ such that
c′k encrypts the k-th coefficient of the i-th row of D.

In [MBC13], Mayberry et al. considered the TP scheme with plaintext space
ZN with N = 2`, and use the fact that if c← Encrypt(1) and µ ∈ ZN , then µ · c
encrypts µ (this is a special property of the TP scheme – and could be obtained
from any somewhat homomorphic encryption scheme [Gen09] by “encrypting”
µ). The database D is a table of t× (s/`) `-bit integers. The rest of the protocol
is as above.

Finally, in [MBC14], Mayberry et al. combined the previous approach with
an Oblivious RAM protocol to obtain an ORAM-like protocol in which the
communication complexity is significantly improved compared to previous ORAM
protocols, at the cost of some computational complexity on the server side (coming
from the PIR protocol).3

Note that in all three protocols, a user seeking to recover the i-th row of the
database will send a vector of ciphertexts

c = (c1, . . . , ct) ,

where ci encrypts 1 and the cj ’s for j 6= i encrypt 0. Without loss of generality
(see Remark 3 page 7), we assume that N = 2 and we describe an attack which
allows to recover the index of the queried row efficiently.

2.3 The Orthogonal Lattice

In this section, we recall some useful facts about the notion of orthogonal lattice
and LLL [NS97,NS01,LLL82].
3 The TP scheme was one possible building block of this protocol; therefore the latter
might still be secure when instantiated with a different homomorphic encryption
scheme.

4

Let t be an integer. For any vectors u,v ∈ Zt, we say that u and v are
orthogonal if 〈u,v〉 = 0, and we denote it u⊥v. For any vector u ∈ Zt, we denote
u⊥ the set of vectors in Zt orthogonal to u. More generally, if L is a lattice in
Zt, its orthogonal lattice L⊥ is defined as the set of vectors in Zt orthogonal to
the points in L, i.e.

L⊥ = {v ∈ Zt | ∀u ∈ L, 〈u,v〉 = 0} .

We have the following theorems [NS97]:
Theorem 1. If L is a lattice in Zt, then dim(L) + dim(L⊥) = t.
Theorem 2. There exists an algorithm which, given any basis {b1, . . . , bd} of a
lattice L in Zt of dimension d, outputs an LLL-reduced basis of the orthogonal
lattice L⊥, and whose running time is polynomial with respect to t, d and any
upper bound on the bit-length of the ‖bj‖’s.
Most of the vectors of a reduced basis of L⊥ are quite shorts, with norm around
det(L⊥)1/(t−dim(L)). In practice, a very simple algorithm for Theorem 2 consists
in a single call to LLL [LLL82]; we refer the reader to [NS97] for details, and will
use that algorithm in Section 4.

3 Breaking the One-Wayness of the Scheme
In this section, we show that the scheme described in Section 2.1 is not one-way.

3.1 Overview
Let sk = {m, b} ← KeyGen(1λ) be a secret key, and c = (ci)i∈[t] ∈ Zt be a vector
of ciphertexts such that ci ← Encrypt(sk, µi) where µ = (µi)i∈[t] ∈ {0, 1}t. We
can write, for each i ∈ [t]:

ci = b · (2ri + µi) mod m = b · ei +m · ki
with ei = 2ri + µi and ki the quotient in the Euclidean division of b · ei by m.
Thus, if we let e = (ei)i∈[t] and k = (ki)i∈[t] we have:

c = b · e+m · k. (1)

Now a rough sketch of the attack is as follows. Consider short vectors
u1, . . . ,ut−2 ∈ Zt orthogonal to c. For all j ∈ [t− 2], we get that

0 = 〈uj , c〉 = b · 〈uj , e〉+m · 〈uj ,k〉 .

If the ‖uj‖’s are sufficiently short, the fact that e and k are also short yields:

〈uj , e〉 = 0 and 〈uj ,k〉 = 0

for all j, and hence e and k belong to the orthogonal L⊥ of the lattice L spanned
by u1, . . . ,ut−2. Then, if {x,y} is any basis of L⊥ (easy to find from the uj ’s),
there are only three possible non-zero linear combinations of x and y modulo 2
(namely x,y and x+ y), and we know that the vector of plaintexts µ = e mod 2
is either one of them or equal to 0. The encryption scheme is therefore not
one-way.

5

3.2 Applying Orthogonal Lattice Techniques
The first steps of our attack resemble the attack of Nguyen and Stern [NS98]
against the Itoh-Okamoto-Mambo cryptosystem [IOM97], and similar attacks
such that the one of Coron et al. on EMV signatures [CNT10]. See also [NT12]
for a relevant theoretical discussion. In particular, a simple observation common
with those previous attacks is that a vector orthogonal to c is either large, or
orthogonal to both e and k.
Lemma 1. Let u ∈ Zt. If u⊥c, then (u⊥e and u⊥k), or ‖u‖ > m/(t1/2 ·2ρ+1).
Proof. Let u ∈ Zt such that ‖u‖ < m/(t1/2 · 2ρ+1) and u⊥c. We have that
|〈u, e〉| 6 ‖u‖ · ‖e‖ < m. Now,

0 = 〈u, c〉 = b · 〈u, e〉+m · 〈u,k〉 ,

and since gcd(b,m) = 1, this yields that 〈u, e〉 = 0, and then that 〈u,k〉 = 0. ut
From Theorem 2, it is possible to compute a reduced basis {u1, . . . ,ut−1}

of c⊥ ⊂ Zt of vectors orthogonal to c in Zt. From Lemma 1, we get that for all
j ∈ [t− 1], there are two possibilities:
(1) uj⊥e and uj⊥k, in which case uj belongs to the lattice {e,k}⊥ of vectors

in Zt orthogonal to both e and k;
(2) ‖uj‖ > m/(t1/2 · 2ρ+1).

Since e and k are linearly independent, the first possibility cannot hold for all
j ∈ [t− 1] (for reasons of dimensions) and the largest uj , say ut−1, must satisfy
‖ut−1‖ > m/(t·2ρ+1). Now the other vectors form a lattice L = Zu1⊕· · ·⊕Zut−2
of rank t− 2 and of volume

V = vol(L) ≈ vol(c⊥)
‖ut−1‖

= ‖c‖
‖ut−1‖

6 t · 2ρ+1 ,

which can heuristically be expected to behave like a random lattice. In particular,
assuming the Gaussian heuristic, we should have

‖uj‖ = O(
√
t− 2 · V 1/(t−2)) = O(t1/2 · V 1/(t−2)) for j ∈ [t− 2].

Thus, the condition for u1, . . . ,ut−2 all being orthogonal to e,k becomes:(
t · 2ρ+1)1+ 1

t−2 � m.

Taking logarithms and ignoring logarithmic factors, this means:

t & 2 + ρ+ 1
η − ρ− 1 = 2− α

1− α where α = ρ+ 1
η

. (2)

Assuming this condition (2) is satisfied, the vectors e and k belong to L⊥. Denote
{x,y} an arbitrary basis of that lattice. Since e ∈ L⊥, there exist integers
u, v ∈ Z such that e = ux+ vy. This yields

µ = [e]2 ∈ {0, [x]2, [y]2, [x+ y]2} ,

which breaks the one-wayness of the scheme (and in applications to e.g. PIR, the
case µ = 0 is excluded, so we really find µ as one of three possible bit vectors).

6

Remark 2. It is interesting to note that we can find a (short) basis such that

‖x‖, ‖y‖ = O(
√

2 · V 1/2) = O(t1/2 · 2ρ/2) .

Quite surprisingly these vectors x,y (of the “doubly orthogonal” lattice) are
actually too short to provide a direct break, in the sense that the coefficients
(u, v) of e in the basis {x,y} of L⊥ are actually exponentially large (of ≈ ρ/2
bits), so that we cannot hope to recover the vector e itself from this data.

In fact, e and k are in some sense hidden, since for any pair (u′, v′) of coprime
integers of the same size as (u, v), we can complete the “fake” vector e′ = u′x+v′y
into a basis {e′,k′} of L⊥ of the correct size, and deduce a “fake” secret key
(m′, b′) also of the correct size such that c = b′ · e′ +m′ · k′. This is, to the best
of our knowledge, an unheard of situation for orthogonal lattice attacks!

But again, our attack does not need to recover e completely to break the
one-wayness of the scheme. Since the scheme encrypts bits, we only need to
recover [e]2, and that is easy.

3.3 Larger Message Space

As mentioned in Remark 1, instead of Z2, the message space could be ZN for
N > 2. Let N0 be the smallest prime factor of N (if N is prime, N0 = N).

Using the notation of previous section, our attack recovers a basis {x,y} of
L⊥. Since e ∈ L⊥, there exists u, v ∈ Z such that e = ux+ vy. Now there are at
most N2 pairs (u mod N, v mod N). Therefore, we can recover the plaintext by
a random guess with probability at least N−2, and the scheme is therefore not
one-way provided that N = poly(λ).

Similarly, if N0 = poly(λ), the same attack shows that the scheme is not
IND-CPA-secure, because for every component µi of µ divisible by N0, the
corresponding components xi, yi of x,y are both divisible by N0 with significant
probability 1/N2

0 , whereas this cannot happen if µi is not divisible by N0.
Finally, for a superpolynomial choice of N0, our attack allows to recover

small messages µ. Denote e = N · r + µ. If the ‖uj‖’s and ‖µ‖ are sufficiently
small (e.g. such that 〈uj ,µ〉 < N for all j), then uj ⊥ e yields uj ⊥ r and
uj ⊥ µ for all j. Therefore µ is likely to be the shortest vector of L⊥ and can
be efficiently recovered by lattice reduction. Our attack seems only ineffective
against a superpolynomial choice of N0 when encrypting large messages.

Remark 3. In the PIR protocols of [MBC13,MBC14], the message space is chosen
to be N = 2` for ` > 1. From the discussion above, it follows that one can recover
the queried index file to the server.4

4 Note that taking selecting N as a superpolynomial prime does not thwart the attack
since the users sends encryption of bits.

7

4 Implementation of the Attack
Since the attack is heuristic, one needs to assess its behavior in practice. We
implemented the attack described in Section 3 using SAGE [S+14]; the source
code is provided in Appendix A.

4.1 Attack Summary
Assume that, for t bits µ1, . . . , µt, we know the ciphertexts c1, . . . , ct. Then we
can heuristically recover µ = (µi)i∈[t] as follows.
(1) Define c = (c1, . . . , ct) ∈ Zt.
(2) Compute an LLL-reduced [LLL82] basis {u1, . . . ,ut−1} of the lattice c⊥ ⊂ Zt

of vectors in Zt orthogonal to c. This is done by applying LLL to the lattice
in Z1+t generated by the rows of the following matrix:γ · c1 1 0

...
. . .

γ · ct 0 1

 ,

where γ is a large constant, and keeping only the t last coefficients of each
resulting vector.

(3) Compute an LLL-reduced basis {x,y} of the orthogonal L⊥ to the lattice
L = Zu1 ⊕ · · · ⊕ Zut−2 ⊂ Zt of rank t− 2. Again, this amounts at applying
LLL to the lattice in Zt−2+t generated by the rows ofγ

′ · u1,1 · · · γ′ · ut−2,1 1 0
...

...
. . .

γ′ · u1,t · · · γ′ · ut−2,t 0 1

 ,

where γ′ is a large constant, and keeping only the t last coefficients of each
resulting vector.

(4) Output 0, [x]2, [y]2 and [x+ y]2.
Heuristically, this attack allows us to guess µ with probability at least 1/4.

Moreover, if we know t− 1 coefficients of µ and have to guess the last one (as
in a security game, or in PIR protocols where only one bit is 1), the previous
method is likely for large enough t’s to make us guess it with probability 1.

4.2 Experimental Results
We ran our attack against the parameters suggested by Trostle and Parrish [TP10]
and the parameters used in the proof-of-concept implementations in Java of
Mayberry et al. [MBC13,MBC14] – we give these parameters in Table 1.

Table 2a gives the success probability of our attack in function of the parame-
ters and the number of ciphertext t used. As expected when (log2 m−ρ) becomes
small, one will need more ciphertexts for the attack to be successful. Finally, our
attack proves to be really efficient against parameters of Table 1, i.e. parameters
used in “real world” implementations of PIR protocols [TP10,MBC13,MBC14] –
cf. Table 2b.

8

Set of parameters log2(m) ρ

Set-Ia [TP10] 200 188
Set-Ib [TP10] 400 385
Set-IIa [MBC13] 4513 4113
Set-IIb [MBC13] 2195 1155
Set-IIIa [MBC14] 522 384
Set-IIIb [MBC14] 396 296

Table 1: Parameters sets.

ciphertexts t 10 20 40
Set-Ia 0% 0% 100%
Set-Ib 0% 0% 100%
Set-IIa 0% 100% 100%
Set-IIb 100% 100% 100%
Set-IIIa 100% 100% 100%
Set-IIIb 100% 100% 100%
(a) Attack success probability

ciphertexts t 10 20 40
Set-Ia – – 1.45s
Set-Ib – – 2.92s
Set-IIa – 3.51s 38.1s
Set-IIb 88ms 919ms 10.0s
Set-IIIa 28ms 289ms 3.04s
Set-IIIb 23ms 220ms 2.33s

(b) Efficiency of the attack

Table 2: Attack success probability and efficiency for each parameter set, in
function of the number t of ciphertexts used for the attack (average value over
500 experiments on a single 3.4Ghz Intel Core i7 CPU).

References

[BPMÖ12] Erik-Oliver Blass, Roberto Di Pietro, Refik Molva, and Melek Önen. PRISM
- privacy-preserving search in mapreduce. In Simone Fischer-Hübner and
Matthew Wright, editors, PETS 2012, pages 180–200. Springer, 2012.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. J. ACM, 45(6):965–981, 1998.

[CNT10] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Fault attacks
against EMV signatures. In Josef Pieprzyk, editor, CT-RSA 2010, volume
5985 of Lecture Notes in Computer Science, pages 208–220. Springer, 2010.

[DSH14] Yarkın Doröz, Berk Sunar, and Ghaith Hammouri. Bandwidth efficient PIR
from NTRU. In WAHC 2014, volume 8438. Springer, 2014.

[EÖM14] Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva. Privacy preserving
delegated word search in the cloud. In Mohammad S. Obaidat, Andreas
Holzinger, and Pierangela Samarati, editors, SECRYPT 2014, pages 137–150.
SciTePress, 2014.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, STOC 2009, pages 169–178. ACM, 2009.

[GZL+13] Zhaoyu Gao, Haojin Zhu, Yao Liu, Muyuan Li, and Zhenfu Cao. Loca-
tion privacy in database-driven Cognitive Radio Networks: Attacks and
countermeasures. In INFOCOM 2013, pages 2751–2759. IEEE, 2013.

[IOM97] Kouichi Itoh, Eiji Okamoto, and Masahiro Mambo. Proposal of a fast public
key cryptosystem. In Carlisle Adams and Mike Just, editors, SAC 1997,
pages 224–230, 1997.

9

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In FOCS ’97, pages
364–373. IEEE Computer Society, 1997.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra Jr., and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261(4):515–
534, 1982.

[MBC13] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. PIRMAP: efficient
private information retrieval for MapReduce. In Ahmad-Reza Sadeghi, editor,
FC 2013, pages 371–385. Springer, 2013.

[MBC14] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Efficient private
file retrieval by combining ORAM and PIR. In NDSS 2014, 2014.

[NS97] Phong Q. Nguyen and Jacques Stern. Merkle-Hellman revisited: A crypto-
analysis of the Qu-Vanstone cryptosystem based on group factorizations. In
Burton S. Kaliski Jr., editor, CRYPTO ’97, pages 198–212. Springer, 1997.

[NS98] Phong Q. Nguyen and Jacques Stern. Cryptanalysis of a fast public key
cryptosystem presented at SAC ’97. In Stafford E. Tavares and Henk Meijer,
editors, SAC’98, pages 213–218. Springer, 1998.

[NS01] Phong Q. Nguyen and Jacques Stern. The two faces of lattices in cryptology.
In Joseph H. Silverman, editor, CaLC 2001, pages 146–180. Springer, 2001.

[NT12] Phong Q. Nguyen and Mehdi Tibouchi. Lattice-based fault attacks on
signatures. In Marc Joye and Michael Tunstall, editors, Fault Analysis
in Cryptography, Information Security and Cryptography, pages 201–220.
Springer, 2012.

[S+14] W.A. Stein et al. Sage Mathematics Software (Version 6.2). The Sage
Development Team, 2014. http://www.sagemath.org.

[TP10] Jonathan T. Trostle and Andy Parrish. Efficient computationally private
information retrieval from anonymity or trapdoor groups. In Mike Burmester,
Gene Tsudik, Spyros S. Magliveras, and Ivana Ilic, editors, ISC 2010, pages
114–128. Springer, 2010.

10

A Code in SAGE

def␣orthoListVec(li):
␣␣"Returns␣a␣list␣of␣vectors␣that␣are␣orthogonal␣to␣vectors␣in␣li"

␣␣nli=len(li)
␣␣t=len(li[0])
␣␣eta=int(N(log(max(li[0]),2)))+1

␣␣M=matrix(ZZ,t,t+nli)
␣␣A=2^(eta*nli)

␣␣for␣i␣in␣range(nli):
␣␣␣␣for␣j␣in␣range(t):
␣␣␣␣␣␣M[j,i]=A*li[i][j]

␣␣for␣i␣in␣range(t):
␣␣␣␣M[i,i+nli]=1

␣␣out=[]

␣␣reducedM=M.LLL()
␣␣for␣v␣in␣reducedM:
␣␣␣␣if␣max([v[i]␣for␣i␣in␣range(nli)])==0:
␣␣␣␣␣␣out.append(v[nli:])
␣␣return␣out

def␣testPIR(eta=522,rho=384,t=5):
␣␣m=random_prime(2^eta,proof=False)
␣␣b=randint(1,m-1)

␣␣e=vector(ZZ,[ZZ.random_element(2^(rho+1))␣for␣i␣in␣range(t)])
␣␣c=vector(ZZ,[b*e[i]␣%␣m␣for␣i␣in␣range(t)])

␣␣timer=cputime()
␣␣li␣=␣orthoListVec([c])
␣␣out=orthoListVec(li[:t-2])
␣␣x␣=␣out[0]
␣␣y␣=␣out[1]

␣␣if␣[e[i]%2␣for␣i␣in␣range(t)]␣not␣in␣[[0␣for␣_␣in␣range(t)],
␣␣[x[i]%2␣for␣i␣in␣range(t)],␣[y[i]%2␣for␣i␣in␣range(t)],
␣␣[(x[i]+y[i])%2␣for␣i␣in␣range(t)]]:
␣␣␣␣print␣"Unsuccessful"
␣␣else:
␣␣␣␣print␣"Successful"
␣␣print␣"CPU␣Time:␣",cputime(timer)

11

