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Abstract. We introduce a lattice-based group signature scheme that provides several noticeable
improvements over the contemporary ones: simpler construction, weaker hardness assumptions, and
shorter sizes of keys and signatures. Moreover, our scheme can be transformed into the ring setting,
resulting in a scheme based on ideal lattices, in which the public key and signature both have bit-
size Õ(n·logN), for security parameter n, and for group of N users. Towards our goal, we construct
a new lattice-based cryptographic tool: a statistical zero-knowledge argument of knowledge of a
valid message-signature pair for Boyen’s signature scheme (Boyen, PKC’10), which potentially can
be used as the building block to design various privacy-enhancing cryptographic constructions.

1 Introduction

Group signatures [CvH91] have been an active research topic in public-key cryptography. Such
schemes allow users of a group to anonymously sign messages on behalf of the whole group
(anonymity). On the other hand, in cases of disputes, there is a tracing mechanism which can
link a given signature to the identity of the misbehaving user (traceability). These two appealing
features allow group signatures to find applications in various real-life scenarios, such as digital
right management, anonymous online communications, e-commerce systems, and much more.
On the theoretical front, designing secure and efficient group signature schemes is interesting and
challenging, since those advanced constructions usually require a sophisticated combination of
carefully chosen cryptographic ingredients: digital signatures, encryptions, and zero-knowledge
protocols. Over the last two decades, numerous group signature schemes have been proposed
(e.g., [CS97,ACJT00,BMW03,BBS04,BS04,Gro07,LPY12]).

In recent years, lattice-based cryptography, possessing nice features such as provable security
under worst-case hardness assumptions, conjectured resistance against quantum computers and
asymptotic efficiency, has become one of the most trendy research directions, especially after the
emergence of fully-homomorphic encryption schemes from lattices, pioneered by Gentry [Gen09].
Along with other primitives, lattice-based group signatures has received noticeable attention.
Prior to our work, several schemes were proposed, each of which has its own strengths and weak-
nesses. The first group signature from lattices was introduced by Gordon et al. [GKV10]. While
their scheme is of great theoretical interest, its public key and signature have sizes N · Õ(n2), for
security parameter n, and for group of N users. In terms of efficiency, this is a noticeable dis-
advantage when the group is large, e.g., group of all employees of a big company. Camenisch et
al. [CNR12] later proposed lattice-based anonymous attribute tokens system - a generalization
of group signature. Their scheme supports CCA-anonymity, a stronger security requirement than
the relaxed notion CPA-anonymity achieved by [GKV10], but the signature size is still linear
in N . The linear-size barrier was finally overcome by Laguillaumie et al. [LLLS13], who designed
a scheme featuring public key and signature sizes logN · Õ(n2). Yet, their scheme requires large
parameters (e.g., q = logN ·Õ(n8)), and its anonymity and traceability properties have to rely on
the hardness of SIVP

logN ·Õ(n8)
and SIVP

logN ·Õ(n7.5)
, respectively. Thus, the scheme produces sig-

nificant overheads in terms of hardness assumptions, considering the fact that it is constructed



based on Boyen’s signature [Boy10] and the Dual-Regev encryption [GPV08] which rely on
much weaker assumptions. Recently, Langlois et al. [LLNW14] introduced a lattice-based group
signature scheme with verifier-local revocation, that also achieves logarithmic signature size.
However, their scheme only satisfies a weak security model suggested by Boneh et al. [BBS04].
As in the schemes from [GKV10,CNR12,LLLS13], we consider the currently strongest model
for static groups provided by Bellare et al. [BMW03].

The present state of lattice-based group signatures raises several interesting open questions.
One of them is whether it is possible to design a scheme in the BMW model that simultaneously
achieves signature size logN · Õ(n) and weak hardness assumptions. Another open question,
pointed out in [LLLS13], is to construct group signatures based on the ring variants of the
Small Integer Solutions (SIS) and Learning with Errors (LWE) problems. This would make a
noticeable step towards practice, since in those schemes, the public key size can be as small
as logN · Õ(n). Furthermore, we remark that the design approach of [GKV10,CNR12,LLLS13]
are relatively complex. First, in all of these schemes, the encryption layer (needed for enabling
traceability) has to be initialized in accordance with the signature layer (used for key generation),
which, to some extent, limits the choice of encryption mechanisms. In addition, the encryption
layer requires the costly generation of at least O(logN) matrices in Zn×mq , and the signer has

to encrypt at least logN · Õ(n) bits, which leads to a growth in public key and signature sizes.
Moreover, these schemes have to employ involved zero-knowledge protocols to prove the well-
formedness of the obtained ciphertexts: in [GKV10,CNR12], the main protocols are obtained
by OR-ing N proofs, while in [LLLS13], logN + 2 different proofs are needed. This somewhat
unsatisfactory situation highlights the challenge of simplifying the design of lattice-based group
signatures.

Our Contributions and Summary of Our Techniques.

In this work, we reply positively to all the open questions discussed above. Specifically, we
introduce a lattice-based group signature scheme in the random oracle model (in Section 4),
which simultaneously achieves the following features:

– The public key and signature have sizes logN · Õ(n2) and logN · Õ(n), respectively 1. In
comparison with [LLLS13], the key is around 4 times smaller, and the signature contains a
shorter ciphertext.

– The scheme relies on relatively weak hardness assumptions: it is CCA-anonymous and trace-
able if SIVP

logN ·Õ(n2)
is hard in the worst-case. In contrast to [LLLS13], the scheme produces

no overhead in terms of security: its anonymity and traceability properties rely exactly on
the hardness assumptions of the underlying encryption scheme and signature scheme, re-
spectively.

Furthermore, our scheme can be transformed into the ring setting, resulting in a scheme based
on ideal lattices (in Section 5), in which the key and signature both have size Õ(n · logN). In
Table 1, we summarize the features of our two schemes in comparison with the existing ones.

Another contribution of this work is that our schemes are obtained via a simple design approach.
We rely on Boyen’s signature scheme [Boy10], and consider group of N = 2` users, where each
user is identified by a string d ∈ {0, 1}`, as in [LLLS13]. Yet, in our scheme, the user’s secret
key is simply a Boyen signature z ∈ Z2m on d (in [LLLS13], it is a matrix in Z2m×2m - which is
2m = Õ(n) times longer). To sign a message on behalf of the group, the user first encrypts his
identity d to obtain a ciphertext c, and then generates a zero-knowledge argument to prove that
he possesses a valid message-signature pair (d, z) for Boyen’s signature scheme, and that c is a

1 It was noted by Bellare et al. [BMW03], that the dependency of keys and signatures sizes on logN is unavoidable
for group signature schemes in the their model.
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Scheme [GKV10] [CNR12] [LLLS13] Section 4 Section 5

Signature size N · Õ(n2) N · Õ(n2) logN · Õ(n) logN · Õ(n) logN · Õ(n)

Public key size N · Õ(n2) N · Õ(n2) logN · Õ(n2) logN · Õ(n2) logN · Õ(n)

Anonymity SIVPÕ(n2) SIVPÕ(n2) SIVPlogN·Õ(n8) SIVPlogN·Õ(n2) SVP∞
logN·Õ(n3.5)

Traceability SIVPÕ(n1.5) SIVPÕ(n2) SIVPlogN·Õ(n7.5) SIVPlogN·Õ(n2) SVP∞
logN·Õ(n2)

Table 1. Comparison among lattice-based group signature schemes, for security parameter n, and groups of
N users. The [GKV10] scheme and our scheme in Section 5 only satisfy the CPA-anonymity notion, while the
schemes from [CNR12] and [LLLS13], and our scheme in Section 4 support the stronger notion CCA-anonymity.

correct encryption of d. The protocol then is repeated to make the soundness error negligibly
small, and then is made non-interactive using the Fiat-Shamir heuristic. The group signature is
simply the pair (c, Π), where Π is the obtained non-interactive argument. To verify a signature,
one checks Π, and to open it, the group manager decrypts c. We remark that in our design, the
signer has to encrypt only ` = logN bits. Furthermore, the underlying encryption scheme is
totally independent of the underlying standard signature (i.e., Boyen’s signature in this case).
This provides us a flexible choice of encryption schemes.

1. In the scheme in Section 4, to achieve CCA-anonymity, we rely on a CCA-secure encryption
scheme, obtained by the standard technique of combining a one-time signature scheme and an
identity-based encryption (IBE) scheme [BCHK07]. In particular, we employ the IBE scheme
by Gentry et al. [GPV08] to gain efficiency in the random oracle model.

2. In the ring-based scheme in Section 5, since our main goal is efficiency, we employ the CPA-
secure encryption scheme from [LPR13], for which the public key and ciphertext consist of
only 2 ring elements.

In the process, we introduce a new lattice-based cryptographic tool: a statistical zero-knowledge
argument of knowledge of a valid message-signature pair for Boyen’s signature scheme. We
remark that previous protocols in lattice-based cryptography (e.g., [MV03][Lyu08][LNSW13])
only allow to prove in zero-knowledge the possession of a signature on a publicly given message.
The challenging part is to hide both the signature and message from the verifier, which we
overcome by a non-trivial technique described in Section 3. We believe that our new protocol
is of independent interest. Indeed, apart from group signatures, such protocols are essential
for designing various privacy-enhancing constructions, such as anonymous credentials [CL01],
compact e-cash [CHL05], policy-based signatures [BF14], and much more.

Comparison to related work. In a concurrent and independent work, Nguyen, Zhang and
Zhang [NZZ15], based on a new zero-knowledge protocol corresponding to a simple identity-
encoding function, also obtain a simpler lattice-based group signature than [GKV10,LLLS13].
In the [NZZ15] scheme, the public key size and signature size are shorter by a O(logN) factor
than in the previous works, and are shorter than ours. On the other hand, the user’s secret
key in [NZZ15] is still a matrix in Z2m×2m (as in [LLLS13]), and the scheme requires larger
parameters, e.g., q = m2.5 max(m6ω(log2.5m), 4N), as well as stronger security assumptions
than ours.

2 Preliminaries

Notations. For integer n ≥ 1, we denote by [n] the set {1, . . . , n}. The set of all permutations of
k elements is denoted by Sk. We assume that all vectors are column vectors. The concatenation
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of vectors x ∈ Rm and y ∈ Rk is denoted by (x‖y). We denote the column concatenation of
matrices A ∈ Rn×m and B ∈ Rn×k by

[
A
∣∣B]. The identity matrix of order k is denoted by Ik.

If S is a finite set, y
$←− S means that y is chosen uniformly at random from S.

2.1 Group Signatures

Definition 1 ([BMW03]). A group signature scheme is a tuple of 4 polynomial-time algo-
rithms:

– KeyGen: This randomized algorithm takes as input 1n, 1N , where n ∈ N is the security param-
eter and N ∈ N is the number of group users, and outputs a triple (gpk, gmsk, gsk), where gpk
is the group public key; gmsk is the group manager’s secret key; and gsk = {gsk[i]}i∈{0,...,N−1},
where for i ∈ {0, . . . , N − 1}, gsk[i] is the secret key for the group user of index i.

– Sign: This randomized algorithm takes as input a secret signing key gsk[i] for some i ∈
{0, . . . , N − 1}, and a message M , and returns a group signature Σ on M .

– Verify: This deterministic algorithm takes as input the group public key gpk, a message M , a
purported signature Σ on M , and returns either 1 (Valid) or 0 (Invalid).

– Open: This deterministic algorithm takes as input the group manager’s secret key gmsk, a
message M , a signature Σ on M , and returns an index i ∈ {0, . . . , N − 1}, or ⊥ (to indicate
failure).

Correctness. The correctness requirement for a group signature scheme is as follows. For all
n,N ∈ N, all (gpk, gmsk, gsk) produced by KeyGen(1n, 1N ), all i ∈ {0, . . . , N − 1}, and all
M ∈ {0, 1}∗,

Verify
(
gpk,M, Sign(gsk[i],M)

)
= 1 and Open

(
gmsk,M, Sign(gsk[i],M)

)
= i.

Security Notions. A secure group signature scheme must satisfy two security notions:

– Traceability requires that all signatures, even those produced by a coalition of group users
and the group manager, can be traced back to a member of the coalition.

– Anonymity requires that, signatures generated by two distinct group users are computa-
tionally indistinguishable to an adversary who knows all the user secret keys. In Bellare et
al.’s model [BMW03], the anonymity adversary is granted access to an opening oracle (CCA-
anonymity), namely, it is allowed to see the results of openings of all signatures (except for
the target one). Boneh et al. [BBS04] later proposed a relaxed notion, where the adversary
cannot query the opening oracle (CPA-anonymity).

Formal definitions of the above notions are provided in Appendix A.

2.2 Average-case Lattices Problems and Their Ring Variants

We first recall the definitions and hardness results for average-case problems SIS, LWE.

Definition 2 ([Ajt96,GPV08]). The SISpn,m,q,β problem is as follows: Given uniformly ran-

dom matrix A ∈ Zn×mq , find a non-zero vector x ∈ Zm such that ‖x‖p ≤ β and Ax = 0 mod q.

If m,β = poly(n), and q >
√
nβ, then the SIS∞n,m,q,β problem (in the `∞ norm) is at least as

hard as SIVPγ for some γ = β · Õ(
√
nm) (see [GPV08,MP13]).
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Definition 3 ([Reg05]). Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution on Z. For

s ∈ Znq , let As,χ be the distribution obtained by sampling a
$←− Znq and e ←↩ χ, and outputting

the pair (a,aT · s + e) ∈ Znq × Zq. The LWEn,q,χ problem asks to distinguish m samples chosen

according to As,χ (for s
$←− Znq ) and m samples chosen according to the uniform distribution

over Znq × Zq.

If q is a prime power, b ≥
√
nω(log n), γ = Õ(nq/b), then there exists an efficient sampleable

b-bounded distribution χ (i.e., χ outputs samples with norm at most b with overwhelming
probability) such that LWEn,q,χ is as least as hard as SIVPγ (see [Reg05,Pei09,MM11,MP12]).

We now recall the ring variants of the SIS and LWE, as well as their hardness results. Let
f = xn+1, where n is a power of 2, and let q > 2 be prime. Let R = Z[x]/〈f〉 and Rq = R/qR. (As
an additive group, Rq is isomorphic to Znq .) For an element a = c0 +c1x+ . . .+cn−1x

n−1 ∈ R, we
define ‖a‖∞ = maxi(|ci|). For a vector a = (a1, . . . , am) ∈ Rm, we define ‖a‖∞ = maxj(‖aj‖∞).
To avoid ambiguity, we will denote the multiplication operation of two ring elements by the
symbol ⊗.

Definition 4 ([LM06,PR06,LMPR08]). The Ring-SISn,m,q,β problem is as follows: Given
a uniformly random a = (a1, . . . , am) ∈ Rmq , find a non-zero vector x = (x1, . . . , xm) ∈ Rmq such
that ‖a‖∞ ≤ β and ax = a1 ⊗ x1 + . . . am ⊗ xm = 0 mod q.

For m > log q
log(2β) , γ = 16βmn log2 n, and q ≥ γ

√
n

4 logn , the Ring-SISn,m,q,β problem is at least as

hard as SVP∞γ in any ideal in the ring R (see, e.g., [LM06]).

Definition 5 ([LPR10]). Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution on

R. For s ∈ Rq, let As,χ be the distribution obtained by sampling a
$←− Rq and e ←↩ χ, and

outputting the pair (a, a⊗s+e) ∈ Rq×Rq. The Ring-LWEn,m,q,χ problem asks to distinguish m

samples chosen according to As,χ (for s
$←− Rq) and m samples chosen according to the uniform

distribution over Rq ×Rq.

Let q = 1 mod 2n, b ≥ ω(
√
n log n) and γ = n2(q/b)(nm/ log(nm))1/4. Then there exists an

efficient sampleable b-bounded distribution χ such that the Ring-LWEn,m,q,χ problem is at least
as hard as SVP∞γ in any ideal in the ring R (see [LPR10]).

Note that the hardness of LWE is not affected if the secret s is sampled from the error dis-
tribution χ [ACPS09]. The same holds for Ring-LWE (see [LPR13]). This is called the “Hermite
Normal Form” (HNF) of these problems.

2.3 Boyen’s “Lattice-mixing” Signature Scheme and Its Ring-based Variant

Boyen’s signature scheme [Boy10] is a lattice analogue of Water’s pairing-based signature [Wat05].
Here we consider its improved version provided in [MP12]. The scheme uses the following inte-
ger parameters: n is the security parameter, ` is the message length, q = poly(n) is sufficiently
large, m ≥ 2n log q, σ = Ω(

√
`n log q log n) and β = σω(

√
logm). The public key is a tuple

(A,A0, . . . ,A`,u), and the signing key is a trapdoor TA, where:

– Matrix A is statistically close to uniform over Zn×mq and its trapdoor TA ∈ Zm×m is a short

basis for the lattice Λ⊥(A) =
{
x ∈ Zm : A ·x = 0 mod q

}
. The pair (A,TA) is generated by

a PPT algorithm GenTrap(n,m, q) (see [GPV08,AP11,MP12]).

– Matrices A0, . . . ,A` ∈ Zn×mq and vector u ∈ Znq are uniformly random.
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To sign a message d = (d1, . . . , d`), the signer forms A(d) =
[
A |A0 +

∑`
i=1 diAi

]
∈ Zn×2m

q , then
runs the deterministic algorithm ExtBasis(TA,A(d)) from [CHKP10] to obtain a short basis

T(d) for the lattice Λ⊥(A(d)). Finally he runs the PPT algorithm SamplePre(T(d),A(d),u, σ)
from [GPV08] to output a signature z ∈ Z2m satisfying ‖z‖∞ ≤ β and A(d)z = u mod q.
It follows from the improved security reduction in [MP12] that scheme is unforgeable under
adaptive chosen-message attack if the SIS∞n,m,q,β′ problem is hard for some β′ = `Õ(n). Therefore,
for the given parameters, the security of the scheme can be based on the worst-case hardness
of SIVP

`Õ(n2)
.

The public key in Boyen’s signature scheme has bit-size `O(nm log q) = `Õ(n2), but can
be reduced to `Õ(n) by transforming the scheme into the ring setting, because the parameter
m then can be set as m = Ω(log q). This can be done rather straightforwardly, thanks to the
constructions of the algorithms GenTrap, SamplePre, and ExtBasis for ideal lattices given by
Stehlé et al. [SSTX09]. For an element a ∈ Rq, define rot(a) ∈ Zn×nq as the matrix whose i-th
column is xi ⊗ a, for i = 0, . . . , n − 1. For a vector a = (a1, . . . , am) ∈ Rmq , define rot(a) =[
rot(a1) | . . . | rot(am)

]
∈ Zn×nmq .

In the ring variant of Boyen’s signature, the public key is a tuple (a,a0, . . . ,a`, u) ∈
(
Rmq
)`+2×

Rq, and the signing key is a trapdoor Ta ∈ Znm×nm for the lattice Λ⊥
(
rot(a)

)
. Similarly, a sig-

nature on message d ∈ {0, 1}` is a small-norm vector z ∈ R2m such that
[
a |a0 +

∑`
i=1 diai

]
z =

u mod q. By adapting the security reduction from [MP12] into the ring setting, the security
of the scheme can be based on the average-case hardness of Ring-SISn,m,q,β′ problem for some

β′ = `Õ(n), which in turn can be based on the worst-case hardness of SVP∞
`Õ(n2)

on ideal lattices.

2.4 Zero-knowledge Argument Systems for Lattices

We will work with statistical zero-knowledge argument systems, namely, interactive protocols
where the soundness property only holds for computationally bounded cheating provers, while
the zero-knowledge property holds against any cheating verifier. More formally, let the set of
statements-witnesses R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation. A two-party game
〈P, V 〉 is called an interactive argument system for the relation R with soundness error e if the
following two conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[
〈P (y, w), V (y)〉 = 1

]
= 1.

– Soundness. If (y, w) 6∈ R, then for every PPT P ∗: Pr[〈P ∗(y, w), V (y)〉 = 1] ≤ e.

An interactive argument system is called statistical zero-knowledge if for any V ∗(y), there
exists a PPT simulator S(y) producing a simulated transcript that is statistically close to
the one of the real interaction between P (y, w) and V ∗(y). A related notion is argument of
knowledge, which requires the witness-extended emulation property. For protocols consisting of
3 moves (i.e., commitment-challenge-response), witness-extended emulation is implied by special
soundness [Gro04], where the latter assumes that there exists a PPT extractor which takes as
input a set of valid transcripts with respect to all possible values of the ‘challenge’ to the same
‘commitment’, and outputs w′ such that (y, w′) ∈ R.

Statistical zero-knowledge arguments of knowledge (sZKAoK) are usually constructed us-
ing a statistically hiding and computationally binding string commitment scheme. Kawachi et
al. [KTX08] designed such commitment scheme from lattices, where the binding property relies
on the hardness of SIVPÕ(n)

. Using this primitive, Ling et al. [LNSW13] proposed a Stern-

type [Ste96] sZKAoK for the Inhomogeneous SIS relation:

RISIS(n,m, q, β) =
{(

(A ∈ Zn×mq ; u ∈ Znq ),x ∈ Zm
)

: ‖x‖∞ ≤ β ∧Ax = u mod q
}
.
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The core technique in Ling et al.’s work is called Decomposition-Extension. This technique is as
follows. Letting p = blog βc+ 1, Ling et al. observe that an integer x ∈ [0, β] if and only if there
exist x1, . . . , xp ∈ {0, 1} such that x =

∑p
j=1 βjxj , where the sequence of integers β1, . . . , βp is

determined as follows:

β1 = dβ/2e;β2 = d(β − β1)/2e;β3 = d(β − β1 − β2)/2e; . . . ;βp = 1.2

The above observation allows the prover to efficiently decompose x ∈ [−β;β]m into x̃1, . . . , x̃p ∈
{−1, 0, 1}m such that

∑p
j=1 βjx̃j = x. To argue the possession of the x̃j ’s in zero-knowledge,

the prover extends x̃j to xj ∈ B3m, where B3m is the set of all vectors in {−1, 0, 1}3m having
exactly m coordinates equal 0, m coordinates equal to 1, and m coordinates equal to −1.
This set has a helpful property: if π is a permutation of 3m elements, then xj ∈ B3m if and
only if π(xj) ∈ B3m. Then in the framework of Stern’s 3-move protocol, the prover is able to
demonstrate that:

1. For each j, a random permutation of xj belongs to B3m, which implies that xj ∈ B3m, and
thus, x̃j ∈ {−1, 0, 1}m. This will convinces the verifier that x ∈ [−β, β]m.

2. A∗
∑p

j=1 βj(xj + rj)−u = A∗
∑p

j=1 βjrj mod q, where A∗ ∈ Zn×3m
q is the extended matrix

obtained by appending 2m “dummy” zero-columns to A, and r1, . . . , rp ∈ Z3m
q are uniformly

“masking” vectors for the xj ’s. This equation implies that Ax = A∗
∑p

j=1 βjxj = u mod q.

3 New Zero-knowledge Protocols for Lattice-based Cryptography

In this section, we first present a sZKAoK of a valid message-signature pair (d, z) for Boyen’s
signature scheme ([Boy10], see also Section 2.3). Then we provide a lattice-based verifiable
encryption protocol to show that a given ciphertext correctly encrypts d. The combined protocol
of these two ones, which will serve as the building block in both constructions of our group
signatures, is described in detail in Section 3.3.

3.1 ZKAoK of a Valid Message-Signature Pair for Boyen’s Signature Scheme

Suppose that the verification key for Boyen’s signature scheme is a tuple (A,A0, . . . ,A`,u).
Our goal is to design a sZKAoK of a pair (d, z) ∈ {0, 1}` × Z2m satisfying ‖z‖∞ ≤ β and
A(d)z = u mod q, where A(d) =

[
A |A0 +

∑`
i=1 diAi

]
∈ Zn×2m

q . We first observe that obtaining
a ZKAoK of a Boyen signature on a given message d is relatively straightforward: one can just
run a zero-knowledge protocol for an Inhomogeneous SIS solution (e.g., [MV03,Lyu08,LNSW13])
on public input (A(d),u), and prover’s witness z. However, constructing a ZKAoK of a message-
signature pair (d, z) is challenging, because on one hand, the prover has to convince the verifier
that A(d)z = u mod q, while on the other hand, both z and d should be kept secret from the
verifier.

Our first step towards solving the above challenge is to make the public verification matrix

independent of d. Let A =
[
A|A0|A1| . . . |A`

]
∈ Zn×(`+2)m

q , and let z = (x‖y), where x,y ∈ Zm,
then we have:

u = A(d)z = Ax + A0y +
∑̀
j=1

Ai(diy) = Az mod q,

where z ∈ Z(`+2)m has the form z = (x‖y‖d1y‖ . . . ‖d`y). Now our goal is: Given (A,u), arguing
in zero-knowledge the possession of z ∈ Z(`+2)m such that:

2 We note that such sequence of integers was previously used by Lipmaa et al. [LAN02] in the context of range
proofs, but under a different representation: βj = b(β + 2j−1)/2jc for each j ∈ [p].
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1. “‖z‖∞ ≤ β and Az = u mod q.” This part can be done using the Decomposition-Extension
technique from [LNSW13] for an ISIS solution. Specifically, we transform x and y into
p = blog βc+ 1 vectors x1, . . . ,xp ∈ B3m and y1, . . . ,yp ∈ B3m, respectively.

2. “z has the form z = (x‖y‖d1y‖ . . . ‖d`y) for certain d ∈ {0, 1}`.” At a high level, to argue
that d ∈ {0, 1}`, we first extend d to d∗ = (d1, . . . , d`, d`+1, . . . , d2`) ∈ B2`, where B2` is
the set of all vectors in {0, 1}2` having Hamming weight `, and then show that a random
permutation of d∗ belongs to the set B2`, which implies that the original d ∈ {0, 1}`.

Now, for simplicity of description of our technique, we introduce the following notations:

– For permutations π, ψ ∈ S3m; τ ∈ S2`, and for vector t = (t−1‖t0‖t1‖ . . . ‖t2`) ∈ Z(2`+2)3m
q

consisting of (2`+ 2) blocks of size 3m, we define:

Fπ,ψ,τ (t) =
(
π(t−1)‖ψ(t0)‖ψ(tτ(1))‖ψ(tτ(2))‖ . . . ‖ψ(tτ(2`))

)
.

Namely, Fπ,ψ,τ (t) is a composition of 3 permutations. It rearranges the order of the 2` blocks
t1, t2, . . . , t2` according to τ , and then permutes block t−1 according to π, and the other
(2`+ 1) blocks according to ψ.

– Given e = (e1, e2, . . . , e2`) ∈ {0, 1}2`, we say that vector t ∈ VALID(e) if t ∈ {−1, 0, 1}(2`+2)3m,
and there exist v,w ∈ B3m such that t = (v‖w‖e1w‖e2w‖ . . . ‖e2`w).

We now describe our technique. We define the sequence β1, . . . , βp as in [LNSW13], and let:

A∗ =
[
A |0n×2m |A0 |0n×2m |A1 |0n×2m | . . . |A` |0n×2m |0n×3m`

]
∈ Zn×(2`+2)3m

q , (1)

zj =
(
xj ‖yj ‖d1yj ‖ . . . ‖d`yj ‖d`+1yj ‖ . . . ‖d2`yj

)
∈ {−1, 0, 1}(2`+2)3m, ∀j ∈ [p]. (2)

We then have: A∗(
∑p

j=1 βjzj) = u mod q, and zj ∈ VALID(d∗) for all j ∈ [p]. In Stern’s
framework, we proceed as follows:

– To argue that A∗(
∑p

j=1 βjzj) = u mod q, we instead show that

A∗
p∑
j=1

βj(zj + r
(j)
z )− u = A∗(

p∑
j=1

βjr
(j)
z ) mod q,

where r
(1)
z , . . . , r

(p)
z ∈ Zn×(2`+2)3m

q are uniformly random “masking” vectors for the zj ’s.
– We sample a uniformly random permutation τ ∈ S2`, and for each j ∈ [p], sample uniformly

random πj , ψj ∈ S3m, and send td = τ(d∗) together with t
(j)
z = Fπj ,ψj ,τ (zj), for all j. Seeing

that td ∈ B2`, and t
(j)
z ∈ VALID(td), the verifier will be convinced that zj ∈ VALID(d∗) while

learning no additional information about zj or d∗.

Based on the above discussion, we can build a ZKAoK of a valid message-signature pair for
Boyen’s signature scheme. For convenience, we will present the details in the combined protocol
in Section 3.3.

3.2 A Lattice-based Verifiable Encryption Protocol

We consider two lattice-based encryption schemes:

1. The GPV-IBE scheme [GPV08] based on LWE, to be employed in the group signature in
Section 4.

2. The LPR encryption scheme [LPR13] based on Ring-LWE, to be employed in the ring-based
group signature in Section 5.
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We observe that, in both of these schemes, if one encrypts a plaintext d ∈ {0, 1}` using the
HNF variants of LWE and Ring-LWE, respectively, then the relation among the related objects
can be expressed as:

Pe + (0k1−` ‖bq/2cd ) = c mod q,

where P ∈ Zk1×k2
q is a matrix obtained from the public key, c ∈ Zk1

q is a ciphertext, e ∈ Zk2 is
the encryption randomness satisfying ‖e‖∞ ≤ b. Here k1, k2, b are certain parameters depending
on the underlying scheme.

Our goal is to construct a verifiable encryption protocol for both of the mentioned above
schemes, namely, a protocol such that: given (P, c), the prover, possessing (e, d), can argue in
zero-knowledge that c is a correct encryption of d. We observe that, this task can be achieved
by adapting the Decomposition-Extension technique by Ling et al., as follows:

– To argue that d ∈ {0, 1}`, we can use the same technique as in the previous section, i.e., extend
d to d∗ ∈ B2`, then use a random permutation.

– To argue that e ∈ Zk2 and ‖e‖∞ ≤ b, we form the vectors e1, . . . , ep̄ ∈ B3k2 , where p̄ =
blog bc+ 1, then use random permutations to show the membership of the ej ’s in B3k2 .

– Next, we define the following two extended matrices:

P∗ =
[

P | 0k1×2k2
]
∈ Zk1×3k2

q ; Q =

 0(k1−`)×` | 0(k1−`)×`

−−−−− −−−−−
bq/2cI` | 0`×`

 ∈ {0, bq/2c}k1×2`. (3)

– We then have that:

P∗
( p̄∑
j=1

bjej
)

+ Qd∗ = Pe + (0k1−` ‖bq/2cd ) = c mod q. (4)

In Stern’s framework, to argue that (4) is true, we instead show that:

P∗
( p̄∑
j=1

bj(ej + re
(j)) + Q(d∗ + rd)− c = P∗(

p̄∑
j=1

bjr
(j)
e ) + Qrd mod q,

where r
(j)
e ∈ Z3k2

q , for every j ∈ [p̄], and rd ∈ Z2`
q are uniformly random masking vectors.

3.3 The Combined Protocol

We now describe in detail the combined protocol that allows the prover to argue that it knows
a valid message-signature pair (d, z) for Boyen’s signature scheme, and that a given ciphertext
correctly encrypts d. The associated relation Rgs(n, `, q,m, k1, k2, β, b) is defined as follows.

Definition 6.

Rgs =
{((

A,A0, . . . ,A` ∈ Zn×mq ; u ∈ Znq ; P ∈ Zk1×k2
q ; c ∈ Zk1

q

)
; d ∈ {0, 1}`; z ∈ Z2m; e ∈ Zk2

)
:

(
‖z‖∞ ≤ β ∧

[
A
∣∣A0 +

∑̀
i=1

diAi

]
z = u mod q

)
∧
(
‖e‖∞ ≤ b ∧Pe + (0k1−` ‖bq/2cd ) = c mod q

)
.
}

Let COM be the statistically hiding and computationally binding string commitment scheme
from [KTX08]. Let p = blog βc + 1 and p̄ = blog bc + 1 and define two sequences of integers
β1, . . . , βp and b1, . . . , bp̄ as in sections [LNSW13]. The inputs of two parties are as follows:
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– The common input is (A,A0, . . . ,A`,u,P, c). Both parties form matrices A∗, P∗, Q as
described in (1) and (3).

– The prover’s witness is (d, z, e). Using the techniques above, the prover extends d to some
d∗ ∈ B2` and forms vectors z1, . . . , zp ∈ VALID(d∗), and e1, . . . , ep̄ ∈ B3k2 . The obtained
vectors satisfy:

A∗
( p∑
j=1

βjzj) = u mod q ∧ P∗
( p̄∑
j=1

bjej
)

+ Qd∗ = c mod q.

The interaction between P and V is described in Figure 1.
The following theorem summarizes the properties of the above protocol.

Theorem 1. Let COM be a statistically hiding and computationally binding string commitment
scheme. Then the protocol in Figure 1 is a statistical zero-knowledge argument of knowledge
for the relation Rgs(n, `, q,m, k1, k2, β, b). Each round of the protocol has perfect completeness,
soundness error 2/3, and communication cost (O(`m) log β +O(k2) log b) log q.

The proof of Theorem 1 employs the standard proof technique for Stern-type protocols. It is
given in Appendix B.

4 An Improved Lattice-based Group Signature Scheme

4.1 Description of Our Scheme

We first specify the parameters of the scheme. Let n be the security parameter, and let N =
2` = poly(n) be the maximum expected number of group users. Then we choose other scheme
parameters such that Boyen’s signature scheme and the GPV-IBE scheme function properly,
and are secure. Specifically, let modulus q = O(` · n2) be prime, dimension m ≥ 2n log q, and
Gaussian parameter s = ω(logm). The infinity norm bound for signatures from Boyen’s scheme
is integer β = Õ(

√
`n). The norm bound for LWE noises is integer b such that q/b = `Õ(n).

Choose hash functions H1 : {0, 1}∗ → Zn×`q and H2 : {0, 1}∗ → {1, 2, 3}t, to be modeled as
random oracles, and select a one-time signature scheme OT S = (OGen,OSign,OVer). Let χ be
a b-bounded distribution over Z.

Our group signature scheme is described as follows:

KeyGen(1n, 1N ): This algorithm performs the following steps:
1. Generate verification key (A,A0, . . . ,A`,u) and signing key TA for Boyen’s signature

scheme (see Section 2.3 for more details). Then for each d = (d1, . . . , d`) ∈ {0, 1}`, use
TA to generate gsk[d] as a Boyen signature on message d.

2. Generate encrypting and decrypting keys for the GPV-IBE scheme: Run algorithm Gen-
Trap(n,m, q) from [GPV08] to output B ∈ Zn×mq together with a trapdoor basis TB for

Λ⊥(B).
3. Output

gpk =
(
(A,A0, . . . ,A`,u), B

)
; gmsk = TB; gsk = {gsk[d]}d∈{0,1}` .

Sign(gsk[d],M): Given gpk, to sign a message M ∈ {0, 1}∗ using the secret key gsk[d] = z, the
user generates a key pair (ovk, osk)← OGen(1n) for OT S, and then performs the following
steps:
1. Encrypt the index d with respect to “identity” ovk as follows. Let G = H1(ovk) ∈ Zn×`q .

Sample s←↩ χn; e1 ←↩ χm; e2 ←↩ χ`, then compute the ciphertext:(
c1 = BT s + e1, c2 = GT s + e2 + bq/2cd

)
∈ Zmq × Z`q.
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1. Commitment: P samplesr
(1)
z , . . . , r

(p)
z

$←− Z(2`+2)3m
q ; r

(1)
e , . . . , r

(p̄)
e

$←− Z3k2
q ; rd

$←− Z2`
q

τ
$←− S2`; π1, . . . , πp, ψ1, . . . , ψp

$←− S3m; φ1, . . . , φp̄
$←− S3k2 .

Then P sends the commitment CMT =
(
c1, c2, c3

)
to V , where

c1 = COM
(
τ ; {πj}pj=1; {ψj}pj=1; {φj}p̄j=1; A∗(

∑p
j=1 βjr

(j)
z ); P∗(

∑p̄
j=1 bjr

(j)
e ) + Qrd

)
,

c2 = COM
(
{Fπj ,ψj ,τ (r

(j)
z )}pj=1; {φj(r(j)

e )}p̄j=1; τ(rd)
)
,

c3 = COM
(
{Fπj ,ψj ,τ (zj + r

(j)
z )}pj=1; {φj(ej + r

(j)
e )}p̄j=1; τ(d∗ + rd)

)
.

(5)

2. Challenge: V sends a challenge Ch
$←− {1, 2, 3} to P.

3. Response: Depending on Ch, P computes the response RSP as follows:

– Case Ch = 1: For each j ∈ [p], let t
(j)
z = Fπj ,ψj ,τ (zj) and v

(j)
z = Fπj ,ψj ,τ (r

(j)
z ). For each j ∈ [p̄], let

t
(j)
e = φj(ej) and v

(j)
e = φj(r

(j)
e ). Let td = τ(d∗) and vd = τ(rd). Then the prover sends:

RSP =
(
{t(j)

z }pj=1; {v(j)
z }pj=1; {t(j)

e }p̄j=1; {v(j)
e }p̄j=1; td; vd

)
. (6)

– Case Ch = 2: For each j ∈ [p], let π̂j = πj ; ψ̂j = ψj ; and w
(j)
z = zj + r

(j)
z . For each j ∈ [p̄], let φ̂j = φj ;

and w
(j)
e = ej + r

(j)
e . Let τ̂ = τ and wd = d∗ + rd. Then the prover sends:

RSP =
(
τ̂ ; {π̂j}pj=1; {ψ̂j}pj=1; {φ̂j}p̄j=1; {w(j)

z }pj=1; {w(j)
e }p̂j=1; wd

)
. (7)

– Case Ch = 3: For each j ∈ [p], let π̃j = πj ; ψ̃j = ψj ; and y
(j)
z = r

(j)
z . For each j ∈ [p̄], let φ̃j = φj ; and

y
(j)
e = r

(j)
e . Let τ̃ = τ and yd = rd. Then the prover sends:

RSP =
(
τ̃ ; {π̃j}pj=1; {ψ̃j}pj=1; {φ̃j}p̄j=1; {y(j)

z }pj=1; {y(j)
e }p̄j=1; yd

)
. (8)

Verification: Receiving RSP, the verifier proceeds as follows:

– Case Ch = 1: Parse RSP as in (6). Check that td ∈ B2`; t
(j)
z ∈ VALID(td), ∀j ∈ [p]; t

(j)
e ∈ B3k2 , ∀j ∈ [p̄]; and

that c2 = COM
(
{v(j)

z }pj=1; {v(j)
e }p̄j=1; vd

)
c3 = COM

(
{t(j)

z + v
(j)
z }pj=1; {t(j)

e + v
(j)
e }p̄j=1; td + vd

)
.

– Case Ch = 2: Parse RSP as in (7). Check that:c1 = COM
(
τ̂ ; {π̂j}pj=1; {ψ̂j}pj=1; {φ̂j}p̄j=1; A∗(

∑p
j=1 βjw

(j)
z )− u; P∗(

∑p̄
j=1 biw

(j)
e ) + Qwd − c

)
,

c3 = COM
(
{Fπ̂j ,ψ̂j ,τ̂

(w
(j)
z )}pj=1; {φ̂j(w(j)

e )}p̄j=1; τ̂(wd)
)
.

– Case Ch = 3: Parse RSP as in (8). Check that:c1 = COM
(
τ̃ ; {π̃j}pj=1; {ψ̃j}pj=1; {φ̃j}p̄j=1; A∗(

∑p
j=1 βjy

(j)
z ); P∗(

∑p̄
j=1 biy

(j)
e ) + Qyd

)
,

c2 = COM
(
{Fπ̃j ,ψ̃j ,τ̃

(y
(j)
z )}pj=1; {φ̃j(y(j)

e )}p̄j=1; τ̃(yd)
)
.

In each case, V outputs 1 if and only if all the conditions hold. Otherwise, it outputs 0.

Fig. 1: A zero-knowledge argument that the prover possesses a valid message-signature pair
(d, z) for Boyen’s signature scheme, and that a given ciphertext correctly encrypts d.

2. Generate a NIZKAoKΠ to show the possession of a valid message-signature pair (d, z) for
Boyen’s signature, and that (c1, c2) is a correct GPV-IBE encryption of d with respect
to “identity” ovk. This is done as follows:
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– Let k1 := m+ ` and k2 := n+m+ `, and form the following:

P =


BT

∣∣∣
−−−−−

∣∣∣ Im+`

GT
∣∣∣

 ∈ Zk1×k2
q ; c =

(
c1

c2

)
∈ Zk1 ; e =

 s
e1

e2

 ∈ Zk2 ,(9)

Then we have ‖e‖∞ ≤ b, and Pe + (0k1−` ‖bq/2cd ) = c mod q. Now one can observe
that: (

(A,A0, . . . ,A`,u,P, c), d, z, e
)
∈ Rgs(n, `, q,m, k1, k2, β, b).

– Run the protocol in Section 3.3 with public input (A,A0, . . . ,A`,u,P, c) and prover’s
witness (d, z, e). The protocol is repeated t = ω(log n) times to make the sound-
ness error negligibly small, and then made non-interactive using the Fiat-Shamir
heuristic as a triple Π =

(
{CMTj}tj=1,CH, {RSPj}tj=1

)
, where CH = {Chj}tj=1 =

H2

(
M, {CMTj}tj=1, c1, c2

)
.

3. Compute a one-time signature sig = OSign(osk; c1, c2, Π).
4. Output the group signature Σ =

(
ovk, (c1, c2), Π, sig

)
.

Verify(gpk,M,Σ) : This algorithm works as follows:

1. Parse Σ as
(
ovk, (c1, c2), Π, sig

)
. If OVer(ovk; sig; (c1, c2), Π) = 0 then return 0.

2. Parse Π as
(
{CMTj}tj=1, {Chj}tj=1, {RSPj}tj=1

)
.

If
(
Ch1, . . . , Cht

)
6= H2

(
M, {CMTj}tj=1, c1, c2

)
, then return 0.

3. Compute G = H1(ovk) and form P, c as in (9). Then for j = 1 to t, run the verification
step of the protocol from Section 3.3 with public input

(
A,A0, . . . ,A`,u,P, c

)
to check

the validity of RSPj with respect to CMTj and Chj . If any of the conditions does not
hold, then return 0.

4. Return 1.

Open(gmsk,M,Σ) On input gmsk = TB and a signature Σ =
(
ovk, (c1, c2), Π, sig

)
, this algo-

rithm decrypts (c1, c2) as follows:
1. Extract the decryption key for “identity” ovk: Let G = [g1| . . . |g`] = H1(ovk). Then for
i ∈ [`], sample yi ←↩ SamplePre(TB,B,gi, s) (see [GPV08]), and let Y = [y1| . . . |y`] ∈
Zm×`.

2. Compute d
′

= (d
′
1, . . . , d

′
`) = c2 −YT c1 ∈ Z`q. For each i ∈ [`], if d

′
i is closer to 0 than to

bq/2c modulo q, then let di = 0; otherwise, let di = 1.
3. Return d = (d1, . . . , d`) ∈ {0, 1}`.

4.2 Analysis of the Scheme

Efficiency and Correctness. The given group signature scheme can be implemented in poly-
nomial time. The bit-size of the NIZKAoK Π is roughly t = ω(log n) times the communication
cost of the interactive protocol in Section 3.3, which is Õ(`n) for the chosen parameters. This
is also the asymptotical bound on the size of the group signature Σ.

The correctness of algorithm Verify follows from the facts that every group user with a valid
secret key is able to compute a satisfying witness for the relation Rgs(n, `, q,m, k1, k2, β, b)

)
, and

that the underlying argument system is perfectly complete. Moreover, we set the parameters so
that the GPV-IBE scheme is correct, which implies that algorithm Open is also correct.

Theorem 2 (CCA-anonymity). Suppose that OT S is a strongly unforgeable one-time sig-
nature. In the random oracle model, the group signature scheme described in Section 4.1 is
CCA-anonymous if the LWEn,q,χ problem is hard.
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As a corollary, the CCA-anonymity of the scheme can be based on the quantum worst-case
hardness of SIVPγ , with γ = Õ(nq/b) = `Õ(n2).

Proof. Let A be any PPT adversary attacking the CCA-anonymity of the scheme with advan-
tage ε. Using the strong unforgeability of OT S, the statistical ZK property of the underlying
argument system, and the LWE assumption, we will prove that ε = negl(n). Specifically, we

construct a sequence of indistinguishable experiments G
(b)
0 , G

(b)
1 , G

(b)
2 , G

(b)
3 , G

(b)
4 , G5, such that,

AdvA(G
(b)
0 ) = ε and AdvA(G5) = 0.

Experiment G
(b)
0 . This is the real CCA-anonymity game. The challenger runs KeyGen(1n, 1N )

to obtain (gpk, gmsk = TB, {gsk[d]}d∈{0,1}`), and then gives gpk and {gsk[d]}d∈{0,1}` to A.
Using the decryption key TB, the challenger can answer all the signature opening queries. In
the challenge phase, A sends a message M together with two indices d0, d1 ∈ {0, 1}`. The
challenger sends back a challenge signature Σ∗ =

(
ovk∗, (c∗1, c

∗
2), Π∗, sig∗

)
← Sign(gpk, gsk[db]).

The adversary then outputs b′ ∈ {0, 1}. The experiment returns 1 if b′ = b or 0 otherwise. We
remark that, in this experiment, all the queries to random oraclesH1 andH2 are responded with
truly uniformly random elements in the respective ranges. By assumption, A has advantage ε
in this experiment.

Experiment G
(b)
1 . In this experiment, we make a slight modification with respect to G

(b)
0 : the

one-time signature key pair (ovk∗, osk∗) is generated in the start of the experiment. During
the game, if A requests for opening of valid signatures of the form Σ =

(
ovk, (c1, c2), Π, sig

)
,

where ovk = ovk∗ then the challenger outputs a random bit and aborts. We will demonstrate

that the strong unforgeability of OT S implies that experiments G
(b)
1 and G

(b)
0 are indistin-

guishable. Indeed, before the challenge phase, ovk∗ is independent of A’s view, and thus, the
probability that ovk∗ shows up in A’s requests is negligible. On the other hand, after seeing
the challenge signature Σ∗ =

(
ovk∗, (c∗1, c

∗
2), Π∗, sig∗

)
, if A comes up with a valid signature

Σ =
(
ovk, (c1, c2), Π, sig

)
such that ovk = ovk∗, then sig is a forged one-time signature, which

violates the strong unforgeability of OT S. Therefore, the probability that the challenger aborts
in this experiment is negligible. Without loss of generality, in the subsequent experiments, we
assume that A does not request for opening of valid signatures that include ovk∗.

Experiment G
(b)
2 . In this experiment, we modify the generation of the encrypting matrices

B and G and program the random oracle H1 accordingly. Instead of generating B with a
trapdoor, and then computing G based on the trapdoor, we use uniformly random B∗ ∈ Zn×mq ,

and G∗ ∈ Zn×`q . The distribution of (B∗,G∗) is statistically close to what in the real attack game
(see, e.g., [GPV08]). In the challenge phase, the challenger programs H1(ovk∗) = G∗, computes
ciphertext (c∗1, c

∗
2), and generates the challenge signature Σ∗ as in the previous experiments.

To answer requests for opening of signature Σ =
(
ovk, (c1, c2), Π, sig

)
, the challenger samples

a “decrypting matrix” Y ←↩ (DZm,σ0)`, computes G = B∗Y ∈ Zn×`q , programs H1(ovk) = G,
and uses G for opening Σ. The challenger also locally records (ovk,Y,G) to be reused in case
A repeats the request for H1(ovk). The distribution of G is statistically close to uniform over

Zn×`q (see, e.g., [GPV08]). It then follows that this experiment is indistinguishable from G
(b)
1 .

Experiment G
(b)
3 . In this experiment, instead of faithfully generating the NIZKAoK Π∗, the

challenger simulates it without using the witness. This is done by running the simulator for the
underlying interactive protocol for each j ∈ [t], and then programming the random oracle H2

accordingly. The challenge signature Σ∗ =
(
ovk∗, (c∗1, c

∗
2), Π∗, sig∗

)
is statistically close to the

one in the previous experiments, because the argument system is statistically zero-knowledge.

As a result, experiments G
(b)
2 and G

(b)
3 are indistinguishable.
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Experiment G
(b)
4 . In this experiment, we modify the generation of the ciphertext (c∗1, c

∗
2).

Recall that in experiment G
(b)
3 , one has

(c∗1 = (B∗)T s + e1; c∗2 = (G∗)T s + e2 + bq/2cdb) ∈ Zmq × Z`q,

where B∗ ∈ Zn×mq ,G∗ ∈ Zn×`q , s ∈ Znq are uniformly random, and e1 ∈ χm, e2 ∈ χ`. Now we

instead let (c∗1 = z1; c∗2 = z2 + bq/2cdb), where z1 ∈ Zm and z2 ∈ Z` are uniformly random. The

assumed hardness of the LWEn,q,χ problem (for the HNF variant [ACPS09]) implies that G
(b)
3 and

G
(b)
4 are computationally indistinguishable. Indeed, if A can distinguish these two experiments,

then it can also distinguish
(
B∗, (B∗)T s+e1

)
and

(
G∗, (G∗)T s+e2

)
from (B∗, z1) and (G∗, z2),

respectively, which violates LWEn,q,χ assumption.

Experiment G5. In this experiment we make a conceptual modification to G
(b)
4 . Namely, we

sample uniformly random z
′
1 ∈ Zmq , z

′
2 ∈ Z`q and assign c∗1 = z

′
1, and c∗2 = z

′
2. It is clear that G5

and G
(b)
4 are statistically indistinguishable. Moreover, since G5 is no longer dependent on the

challenger’s bit b, the advantage of A in this experiment is 0.
It follows from the above construction that the advantage ε of A in attacking the CCA-

anonymity of the scheme is negligible. This concludes the proof.

Theorem 3 (Traceability). In the random oracle model, the group signature scheme described
in Section 4.1 is fully traceable if the SIVP

`·Õ(n2)
problem is hard.

Proof. Without loss of generality, we assume that the string commitment scheme COM used in
the underlying NIZKAoK is computationally binding, because an adversary breaking its com-
putational binding property can be used to solve SIVP

`·Õ(n2)
.

Let A be an PPT traceability adversary against our group signature scheme with advan-
tage ε, we construct a PPT forger F for Boyen’s signature scheme whose advantage is polyno-
mially related to ε. Since the unforgeability of Boyen’s signature scheme can be based on the
hardness of SIVP

`·Õ(n2)
[Boy10,MP12], this completes the proof.

The forger F is given the verification key (A,A0, . . . ,A`,u) for Boyen’s signature scheme. It
then generates a key-pair (B,TB) for the GPV IBE encryption scheme, and begins interacting
with the adversary A by sending gpk = (A,A0, . . . ,A`,u,B) and gsk = TB, the distribution
of which is statistically close to that in the real attack game. Then F sets CU = ∅ and handles
the queries from A as follows:

– Queries to the random oracles H1 and H2 are handled by consistently returning uniformly
random values in the respective ranges. Suppose that A makes QH2 queries to H2, then for
each κ ≤ QH2 , we let rκ denote the answer to the κ-th query.

– Queries for the secret key gsk[d], for any d ∈ {0, 1}`: F queries its own signing oracle
for Boyen’s signature of d, and receives in return z(d) ∈ Z2m such that ‖z(d)‖∞ ≤ β and
A(d)z(d) = u mod q, where A(d) is computed in the usual way. Then F sets CU := CU ∪{d}
and sends z(d) to A.

– Queries for group signatures of user d on arbitrary message M : F returns with a simulated
signature Σ =

(
ovk, (c1, c2), Π ′, sig

)
, where (ovk, (c1, c2), sig) are faithfully generated, while

the NIZKAoK Π ′ is simulated without using the legitimate secret key (as in experiment G
(b)
3

in the proof of CCA anonymity). The zero-knowledge property of the underlying argument
system guarantees that Σ is indistinguishable from a legitimate group signature.

Eventually A outputs a message M∗ and a forged group signature

Σ∗ =
(
ovk, (c1, c2), ({CMTj}tj=1, {Chj}tj=1, {RSPj}tj=1), sig

)
,

14



which satisfies the requirements of the traceability game. Then F exploits the forgery as follows.
First, one can argue that A must have queried H2 on input

(
M, {CMTj}tj=1, c1, c2

)
, since

otherwise, the probability that
(
Ch1, . . . , Cht

)
= H2

(
M, {CMTj}tj=1, c1, c2

)
is at most 3−t.

Therefore, with probability at least ε− 3−t, there exists certain κ∗ ≤ QH2 such that the κ∗-th
oracle query involves the tuple

(
M, {CMTj}tj=1, c1, c2

)
. Next, F picks κ∗ as the target forking

point and replays A many times with the same random tape and input as in the original
run. In each rerun, for the first κ∗ − 1 queries, A is given the same answers r1, . . . , rκ∗−1

as in the initial run, but from the κ∗-th query onwards, F replies with fresh random values

r
′
κ∗ , . . . , r

′
qH2

$←− {1, 2, 3}t. The Improved Forking Lemma of Pointcheval and Vaudenay [PV97,

Lemma 7] implies that, with probability larger than 1/2, algorithm F can obtain a 3-fork
involving the tuple

(
M, {CMTj}tj=1, c1, c2

)
after less than 32 ·QH2/(ε − 3−t) executions of A.

Now, let the answers of F with respect to the 3-fork branches be

r
(1)
κ∗ = (Ch

(1)
1 , . . . , Ch

(1)
t ); r

(2)
κ∗ = (Ch

(2)
1 , . . . , Ch

(2)
t ); r

(3)
κ∗ = (Ch

(3)
1 , . . . , Ch

(3)
t ).

A simple calculation shows that: Pr
[
∃j ∈ {1, . . . , t} : {Ch(1)

j , Ch
(2)
j , Ch

(3)
j } = {1, 2, 3}

]
=

1− (7/9)t. Conditioned on the existence of such j, one parses the 3 forgeries corresponding to

the fork branches to obtain
(
RSP

(1)
j ,RSP

(2)
j ,RSP

(3)
j

)
. They turn out to be 3 valid responses

with respect to 3 different challenges for the same commitment CMTj . Since COM is assumed
to be computationally-binding, we can use the knowledge extractor of the underlying argument
system to extract (d∗, z∗, s∗, e∗1, e

∗
2) ∈ {0, 1}` × Z2m × Znq × Zm × Z` such that ‖z∗‖∞ ≤ β and

A(d∗)z
∗ = u mod q; and s∗, e∗1, e

∗
2 has infinity norm bounded by b, and BT s∗ + e∗1 = c1 mod q,

GT s∗ + e∗2 + bq/2cd∗ = c2 mod q, where G = H1(ovk). Now observe that, (c1, c2) is a correct
encryption of d∗, the opening algorithm Open(TB,M

∗, Σ∗) must return d∗. It then follows from
the requirements of the traceability game that d∗ 6∈ CU . As a result, (z∗, d∗) is a valid forgery
for Boyen’s signature with respect to the verification key (A,A0, . . . ,A`,u). Furthermore, the
above analysis shows that, if A has non-negligible success probability and runs in polynomial
time, then so does F . This concludes the proof.

5 A Ring-based Group Signature Scheme

5.1 Description of the Scheme

Let f = xn + 1, where n = 2k for some k ≥ 2, and let N = 2` = poly(n) be the number of group
users. Then we choose other scheme parameters such that ring variant of Boyen’s signature
scheme and the LPR encryption scheme function properly, and are secure. Let q be a prime
such that q = 1 mod 2n and q = O(`·n2). Let R = Z[x]/〈f〉 and Rq = R/qR. Let m = O(log q).

The infinity norm bound for signatures from Boyen’s scheme is integer β = Õ(
√
`n). The norm

bound for Ring-LWE noises is integer b such that q/b = `Õ(n1.5). Choose a hash function
H : {0, 1}∗ → {1, 2, 3}t to be modeled as random oracles. Let χ be a b-bounded distribution
over R.

KeyGen(1n, 1N ): This algorithm performs the following steps:

1. Generate verification key (a,a0, . . . ,a`, u) and signing key Ta for the ring variant of
Boyen’s signature (see Section 2.3 for more details). Then for each d = (d1, . . . , d`) ∈
{0, 1}`, generate gsk[d] as a ring-based Boyen’s signature on message d.

2. Generate keys for the LPR encryption scheme: Sample f
$←− Rq and x, e ←↩ χ. Then

compute g = f ⊗ x+ e ∈ Rq.
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3. Output

gpk =
(
(a,a0, . . . ,a`, u), (f, g)

)
; gmsk = x; gsk = {gsk[d]}d∈{0,1}` .

Sign(gsk[d],M): Given gpk, to sign a message M ∈ {0, 1}∗ using the secret key gsk[d] = z ∈ R2m,
the user performs the following steps:
1. Encrypt d: First extend d to d̄ = (0n−`‖d) ∈ {0, 1}n and view d̄ as an element of R with

coefficients 0− 1. Then sample s, e1, e2 ←↩ χ, and compute the ciphertext:

(c1 = f ⊗ s+ e1, c2 = g ⊗ s+ e2 + bq/2cd̄) ∈ R2
q . (10)

2. Generate a NIZKAoK Π to show the possession of a valid message-signature pair (d, z)
for the ring variant of Boyen’s signature, and that (c1, c2) is a correct LPR encryption
of d̄. This is done as follows:
– Let A = rot(a) ∈ Zn×nmq , and Ai = rot(ai) ∈ Zn×mnq for every i = 0, . . . , `. Next,

consider z as a vector in Z2mn with infinity norm bounded by β, and consider u as
vector u ∈ Znq . Then one has

[
A |A0 +

∑`
i=1 diAi

]
z = u mod q.

Furthermore, let P0 = [rot(b) | rot(g)]T ∈ Z2n×n
q and form P =

[
P0

∣∣ I2n

]
∈ Z2n×3n

q .
Next, consider c = (c1‖c2) as a vector in Z2n

q , and e = (s‖e1‖e2) as a vector in Z3n.

Then (10) can be equivalently written as: c = Pe + (02n−` ‖bq/2cd) mod q.
The above transformation leads to the following observation:(

(A,A0, . . . ,A`,u,P, c), d, z, e
)
∈ Rgs(n, `, q,m

′, k1, k2, β, b),

where m′ = nm, k1 = 2n, and k2 = 3n.
– Thus, the user can run the protocol for the relation Rgs(n, `, q,m

′, k1, k2, β, b) in
Section 3.3 with public input (A,A0, . . . ,A`,u,P, c) and prover’s witness (d, z, e).
The protocol is repeated t = ω(log n) times to make the soundness error negligibly
small, and then made non-interactive using the Fiat-Shamir heuristic as a triple Π =(
{CMTj}tj=1,CH, {RSPj}tj=1

)
, where CH = {Chj}tj=1 = H

(
M, {CMTj}tj=1, (c1, c2)

)
.

3. Output the group signature Σ =
(
(c1, c2), Π

)
.

Verify(gpk,M,Σ) This deterministic algorithm works as follows:

1. Parse Σ as
(
(c1, c2), ({CMTj}tj=1,CH, {RSPj}tj=1)

)
.

If
(
Ch(1), . . . , Ch(t)

)
6= H

(
M, {CMTj}tj=1, (c1, c2)

)
, then return 0.

2. Then for j = 1 to t, run the verification step of the protocol from Section 3 with public
input (A,A0, . . . ,A`,u,P, c) to check the validity of RSPj with respect to CMTj and
Chj . If any of the conditions does not hold, then return 0.

3. Return 1.

Open(gmsk,M,Σ) On input gmsk = x and a signature Σ =
(
(c1, c2), Π

)
, decrypt (c1, c2) as

follows:
1. Compute d̄ = c2 − x⊗ c1 ∈ Rq. For each i ∈ [n], if the coefficient d̄i is closer to 0 than

to bq/2c modulo q, then let d̄i = 0; otherwise, let d̄i = 1.
2. If d̄ is of the form (0n−`‖d), then return d ∈ {0, 1}`. Otherwise, return ⊥.

5.2 Analysis

Efficiency and Correctness. The ring-based group signature scheme can be implemented in
polynomial time. The group public key

(
(a,a0, . . . ,a`, u), (f, g)

)
has bit-size Õ(`n). In com-

parison with the scheme from Section 4, a factor of O(n) is saved. The signature size is also
bounded by Õ(`n).

16



The correctness of algorithm Verify follows from the facts that every group user with a valid
secret key is able to compute a satisfying witness for the relation Rgs(n, `, q, nm, 2n, 3n, β, b)

)
,

and that the underlying argument system is perfectly complete. We also set the parameters so
that the LPR encryption scheme is correct, which implies that algorithm Open is also correct.
The anonymity and traceability properties of the scheme are stated in Theorem 4 and 5, re-
spectively.

Theorem 4. In the random oracle model, the group signature scheme described in Section 5.1
is CPA-anonymous if SVP∞

`·Õ(n3.5)
on ideal lattices in the ring R is hard in the worst case.

The proof of Theorem 4 uses the fact that the underlying argument system is statistical zero-
knowledge, and the assumed hardness of the HNF variant of Ring-LWEn,q,χ. The proof is given
in Appendix C.1.

Theorem 5. In the random oracle model, the group signature scheme described in Section 5.1
is traceable if SVP∞

`·Õ(n2)
on ideal lattices in the ring R is hard in the worst case.

The proof of Theorem 5 is similar to that of Theorem 3, and is given in Appendix C.2.
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A Security Requirements for Group Signatures

The presentation in this section follows the security model of Bellare et al. [BMW03], and the
relaxed anonymity notion proposed by Boneh et al. [BBS04].

A.1 Anonymity

Consider the following anonymity experiment Expt-anon
GS,A (n,N) between a challenger C and an

adversary A, where t ∈ (CPA, CCA).

Experiment Expt-anon
GS,A (n,N):

– Initialization Phase: The challenger C runs the key generation algorithm KeyGen(1n, 1N )
to obtain (gpk, gmsk, gsk), then it gives (gpk, gsk) to A.

– Query phase 1: If t = CCA, then A can make queries to the opening oracle. On input a
message M and a signature Σ, the oracle returns Open(gmsk,M,Σ) to A.

– Challenge phase: A outputs two distinct identities i0, i1 and a message M∗. The challenger

picks a coin b
$←− {0, 1}, computes the target signature Σ∗ = Sign(gsk[ib],M

∗) and sends Σ∗

to A.

– Query phase 2: If t = CCA, then the adversary A can make queries to the opening oracle.
On input (M,Σ), if (M,Σ) = (M∗, Σ∗), then the challenger outputs 0 and halts; otherwise
it returns Open(gmsk,M,Σ) to A.

– Guessing phase: Finally, A outputs a guess b
′ ∈ {0, 1}. If b

′
= b, then C outputs 1,

otherwise it outputs 0.

Definition 7. Let A be an adversary against the anonymity of a group signature scheme GS.
Define the advantage of A in the above experiment as

Advt-anonGS,A (n,N) =
∣∣∣Pr
[
Expt-anon

GS,A (n,N) = 1
]
− 1/2

∣∣∣.
We say that GS is CPA-anonymous (respectively, CCA-anonymous) if for all polynomial N(·)
and all PPT adversaries A, the function AdvCPA-anonGS,A (n,N) (respectively, AdvCCA-anonGS,A (n,N))
is negligible in the security parameter n.

19



A.2 Traceability

Consider the following traceability experiment Exptrace
GS,A(n,N) between a challenger C and an

adversary A.

Experiment Exptrace
GS,A(n,N):

– Initialization Phase: The challenger C runs KeyGen(1n, 1N ) to obtain (gpk, gmsk, gsk),
then it sets CU ← ∅ and gives (gpk, gmsk) to A.

– Query Phase: The adversary A can make the following queries adaptively, and in any
order:
• Secret key query: On input and index i, the challenger adds i to CU , and returns gsk[i]

to A.
• Signing query: On input i,M , the challenger returns Sign(gsk[i],M).

– Challenge Phase: A outputs a message M , and a signature Σ. The challenger proceeds
as follows:
If Verify(gpk,M,Σ) = 0 then return 0. If Open(gmsk,M,Σ) = ⊥ then return 1.
If ∃i such that the following are true then return 1, else return 0:
1. Open(gmsk,M,Σ) = i 6∈ CU ,
2. A has never made a signing query for i,M .

Definition 8. Let A be an adversary against the traceability of a group signature scheme GS.
Define the advantage of A in the above experiment as

AdvtraceGS,A(n,N) = Pr
[
Exptrace

GS,A(n,N) = 1
]
.

We say that GS is fully traceable if for all polynomial N(·) and all polynomial-time adversaries
A, the function AdvtraceGS,A(n,N) is negligible in the security parameter n.

B Proof of Theorem 1

Let COM be a statistically hiding and computationally binding string commitment scheme. We
will prove that the protocol in Figure 1 is a sZKAoK for the relation Rgs(n, `, q,m, k1, k2, β, b);
and each round of the protocol has perfect completeness, soundness error 2/3, and communica-
tion cost (O(`m) log β +O(k2) log b) log q.

B.1 Communication Cost

As we use the commitment scheme COM from [KTX08], the commitment CMT sent by the
prover P in the beginning of the interaction has bit-size 3n log q. The challenge Ch from the
verifier V belongs to the set {1, 2, 3}, and thus, can be represented by 2 bits. The response RSP
from P is a subset of the set of the following items:

– 2p permutations of 3m elements.
– p̄ permutations of 3k2 elements.
– One permutation of 2` elements.

– p vectors in Z(2`+2)3m
q .

– p̄ vectors in Z3k2
q .

– One vector in Znq .

– One vector in Z2`
q .

Therefore, the the bit-size of RSP is bounded by (O(`m)p + O(k2)p̄) log q. Recall that p =
blog βc + 1 and p̄ = blog bc + 1, we obtain that the overall communication cost of the protocol
is bounded by (O(`m) log β +O(k2) log b) log q.
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B.2 Completeness

We will show that, given the public input (A,A0, . . . ,A`,u,P, c) if the honest prover P pos-
sesses a valid witness (d, z, e), and he follows the protocol, then he always gets accepted by V . We
first recall that after the pre-interaction preparation, P obtains d∗ ∈ B2`, z1, . . . , zp ∈ VALID(d∗),
and e1, . . . , ep̄ ∈ B3k2 satisfying:

A∗
( p∑
j=1

βjzj) = u mod q ∧ P∗
( p̄∑
j=1

bjej
)

+ Qd∗ = c mod q, (11)

where A∗,P∗,Q are the extended matrices formed from the public input (as in Section 3.3).

Now we will demonstrate that P passes the verification steps for every Ch ∈ {1, 2, 3}. Indeed,
apart from the checks for correct computations, which are obviously true, it suffices to note that:

– Case Ch = 1: One has td = τ(d∗) ∈ B2` because d∗ ∈ B2`, and the set B2` is invariant under

permutations from S2`. Similarly, for all j ∈ [p̄], one has t
(j)
e = φj(ej) ∈ B3k2 , as ej ∈ B3k2 ,

and the set B3k2 is invariant under permutations from S3k2 . Furthermore, as discussed in

Section 3.1, for all j ∈ [p], one has t
(j)
z = Fπj ,ψj ,τ (zj) ∈ VALID(td).

– Case Ch = 2: The critical point is the check with respect to c1. The honest prover should
pass this step, since, by (11) the following are true:

A∗(
∑p

j=1 βjw
(j)
z )− u = A∗

∑p
j=1 βj(zj + r

(j)
z )− u = A∗(

∑p
j=1 βjr

(j)
z ) mod q,

P∗(
∑p̄

j=1 bjw
(j)
e ) + Qwd − c = P∗

∑p̄
j=1 bj(ej + r

(j)
e ) + Q(d∗ + rd)− c

= P∗(
∑p̄

j=1 bir
(j)
e ) + Qrd mod q.

It then follows from the above discussion that the given protocol has perfect completeness.

B.3 Statistical Zero-knowledge Property

To prove that the given protocol is statistically zero-knowledge, we construct an efficient simula-
tor S interacting with a (possibly cheating) verifier V̂ , such that, given only the public input, the
simulator outputs with probability negligibly close to 2/3 a simulated transcript that is statisti-
cally close to the one produced by the honest prover in the real interaction. The construction of
S follows the standard simulation technique for Stern-type protocols ([Ste96,KTX08,LNSW13]).

The simulator S begins by selecting a random Ch ∈ {1, 2, 3}. This is a prediction of the
challenge value that V̂ will not choose.

Case Ch = 1: S proceeds as follows:

1. Compute z′1, . . . , z
′
p ∈ Z(2`+2)3m

q such that A∗ · (
∑p

j=1 ·βj · z′j) = u mod q. This can efficiently
be done using linear algebra.

2. Compute e′1, . . . , e
′
p̄ ∈ Z3k

q ; and d′ ∈ Z2`
q such that P∗

(∑p̄
j=1 bje

′
j

)
+ Qd′ = c mod q. This can

also efficiently be done using basic linear algebra.

3. Now S samples uniformly random vectors and permutations, and sends the commitment com-
puted in the same manner as of the real prover. Namely, it samples:r

(1)
z , . . . , r

(p)
z

$←− Z(2`+2)3m
q ; r

(1)
e , . . . , r

(p̄)
e

$←− Z3k
q ; rd

$←− Z2`
q

τ
$←− S2`; π1, . . . , πp, ψ1, . . . , ψp

$←− S3m; φ1, . . . , φp̄
$←− S3k,
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and sends CMT =
(
c′1, c

′
2, c
′
3

)
to V̂ , where

c′1 = COM
(
τ ; {πj}pj=1; {ψj}pj=1; {φj}p̄j=1; A∗(

∑p
j=1 βjr

(j)
z ); P∗(

∑p̄
j=1 bir

(j)
e ) + Qrd

)
,

c′2 = COM
(
{Fπj ,ψj ,τ (r

(j)
z )}pj=1; {φj(r(j)

e )}p̄j=1; τ(rd)
)
,

c′3 = COM
(
{Fπj ,ψj ,τ (z′j + r

(j)
z )}pj=1; {φj(e′j + r

(j)
e )}p̄j=1; τ(d′ + rd)

)
.

(12)

Receiving a challenge Ch from V̂ , the simulator responds as follows:

– If Ch = 1: Output ⊥ and abort.
– If Ch = 2: Send

RSP =
(
τ ; {πj}pj=1; {ψj}pj=1; {φj}p̄j=1; {z′j + r

(j)
z }pj=1; {e′j + r

(j)
e }p̂j=1; d′ + rd;

)
.

– If Ch = 3: Send

RSP =
(
τ ; {πj}pj=1; {ψj}pj=1; {φj}p̄j=1; {r(j)

z }pj=1; {r(j)
e }p̂j=1; rd

)
.

Case Ch = 2: S samples
d′

$←− B2`; z′1, . . . , z
′
p

$←− VALID(d′); e′1, . . . , e
′
p̄

$←− B3k;

r
(1)
z , . . . , r

(p)
z

$←− Z(2`+2)3m
q ; r

(1)
e , . . . , r

(p̄)
e

$←− Z3k
q ; rd

$←− Z2`
q

τ
$←− S2`; π1, . . . , πp, ψ1, . . . , ψp

$←− S3m; φ1, . . . , φp̄
$←− S3k,

and sends the commitment CMT computed in the same manner as in (12). Receiving a chal-
lenge Ch from V̂ , it responds as follows:

– If Ch = 1: Send

RSP =
(
{Fπj ,ψj ,τ (z′j)}

p
j=1; {Fπj ,ψj ,τ (r

(j)
z )}pj=1; {φj(e′j)}

p̄
j=1; {φj(r(j)

e )}p̄j=1; τ(d′); τ(rd)
)
.

– If Ch = 2: Output ⊥ and abort.
– If Ch = 3: Send

RSP =
(
τ ; {πj}pj=1; {ψj}pj=1; {φj}p̄j=1; {r(j)

z }pj=1; {r(j)
e }p̂j=1; rd

)
.

Case Ch = 3: The simulator proceeds the preparation as in the case Ch = 2 above. Then it
sends the commitment CMT := (c′1, c

′
2, c
′
3), where c′2, c

′
3 are computed as in (12), while

c′1 = COM
(
τ ; {πj}pj=1; {ψj}pj=1; {φj}p̄j=1; A∗

p∑
j=1

βj(z
′
j+r

(j)
z )−u; P∗

p̄∑
j=1

bi(z
′
j+r

(j)
e )+Q(d′+rd)−c

)
.

Receiving a challenge Ch from V̂ , it responds as follows:

– If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).
– If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).
– If Ch = 3: Output ⊥ and abort.

We observe that, in every case we have considered above, since COM is statistically hiding,
the distribution of the commitment CMT and the distribution of the challenge Ch from V̂ are
statistically close to those in the real interaction. Hence, the probability that the simulator
outputs ⊥ is negligibly close to 1/3. Moreover, one can check that whenever the simulator
does not halt, it will provide a successful transcript, and the distribution of the transcript is
statistically close to that of the prover in the real interaction. Hence, we have constructed a
simulator that can successfully impersonate the honest prover with probability 2/3.
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B.4 Argument of Knowledge

We will prove that the given protocol is an AoK for the relation R(n, `, q,m, k1, k2, β, b) by
showing that it satisfies the special soundness property. Namely, we will demonstrate that, for
public input (A,A0, . . . ,A`,u,P, c), if there exists a (possibly cheating) prover P̂ who can
correctly respond to all 3 challenges with respect to the same commitment CMT, then there
exists an efficient knowledge extractor K who produces (d, z, e) such that:(

(A,A0, . . . ,A`,u,P, c), d, z, e
)
∈ R(n, `, q,m, k, β, b).

Indeed, based on the 3 valid responses of P̂ , the extractor K can extract the following:

td ∈ B2`; t
(j)
z ∈ VALID(td), ∀j ∈ [p]; t

(j)
e ∈ B3k, ∀j ∈ [p̄],

c1 = COM
(
τ̂ ; {π̂j}pj=1; {ψ̂j}pj=1; {φ̂j}p̄j=1; A∗(

∑p
j=1 βjw

(j)
z )− u; P∗(

∑p̄
j=1 biw

(j)
e ) + Qwd − c

)
= COM

(
τ̃ ; {π̃j}pj=1; {ψ̃j}pj=1; {φ̃j}p̄j=1; A∗(

∑p
j=1 βjy

(j)
z ); P∗(

∑p̄
j=1 biy

(j)
e ) + Qỹd

)
,

c2 = COM
(
{v(j)

z }pj=1; {v(j)
e }p̄j=1; vd

)
= COM

(
{F

π̃j ,ψ̃j ,τ̃
(y

(j)
z )}pj=1; {φ̃j(y(j)

e )}p̄j=1; τ̃(yd)
)
,

c3 = COM
(
{t(j)

z + v
(j)
z }pj=1; {t(j)

e + v
(j)
e }p̄j=1; td + vd

)
= COM

(
{F

π̂j ,ψ̂j ,τ̂
(w

(j)
z )}pj=1; {φ̂j(w(j)

e )}p̄j=1; τ̂(wd)
)
.

Since COM is computationally binding, K then obtains that:

td ∈ B2`; τ̂ = τ̃ ; vd = τ̃(yd); td + vd = τ̂(wd);

A∗(
∑p

j=1 βjw
(j)
z )− u = A∗(

∑p
j=1 βjy

(j)
z ) mod q;

P∗(
∑p̄

j=1 biw
(j)
e ) + Qwd − c = P∗(

∑p̄
j=1 biy

(j)
e ) + Qyd mod q;

∀j ∈ [p] : π̂j = π̃j ; ψ̂j = ψ̃j ; v
(j)
z = F

π̃j ,ψ̃j ,τ̃
(y

(j)
z ); t

(j)
z + v

(j)
z = F

π̂j ,ψ̂j ,τ̂
(w

(j)
z ); t

(j)
z ∈ VALID(td);

∀j ∈ [p̄] : φ̂j = φ̃j ; v
(j)
e = φ̃j(y

(j)
e ); t

(j)
e + v

(j)
e = φ̂j(w

(j)
e ); t

(j)
e ∈ B3k.

Let d∗ = wd − yd = τ̂−1(td); for each j ∈ [p], let zj = w
(j)
z − y

(j)
z = F−1

π̂j ,ψ̂j ,τ̂
(t

(j)
z ); and

for each j ∈ [p̄], let ej = w
(j)
e − y

(j)
e = φ̂−1

j (t
(j)
e ). Then it follows that d∗ ∈ B2`; and zj ∈

VALID(τ̂−1(td)) = VALID(d∗), for all j ∈ [p]; and ej ∈ B3k for all j ∈ [p̄]. Moreover:A∗(
∑p

j=1 βjzj) = u mod q

P∗(
∑p̄

j=1 biej) + Qd∗ = c mod q.

Now let d∗ = (d1, . . . , d`, d`+1, . . . , d2`) and let d = (d1, . . . , d`) ∈ {0, 1}`. Then K extracts z and
e as follows:

– Let z∗ =
∑p

j=1 βjzj ∈ Z(2`+2)3m, then it is true that ‖z∗‖∞ ≤
∑p

j=1 βj‖zj‖∞ ≤ β and

A∗z∗ = u mod q. Moreover, since zj ∈ VALID(d∗), for all j ∈ [p], there exist x∗,y∗ ∈ Z3m,
whose infinity norms are bounded by β, such that z∗ =

(
x∗‖y∗‖d1y

∗‖ . . . ‖d2`y
∗). Now let

z = (x‖y) ∈ Z2m, where x and y are obtained by dropping the last 2m coordinates from x∗

and y∗, respectively. Then one has ‖z‖∞ ≤ β, and
[
A
∣∣A0 +

∑`
i=1 diAi

]
z = u mod q.

– Similarly, let e∗ =
∑p̄

j=1 biej , then it is true that ‖e∗‖∞ ≤
∑p̄

j=1 bj‖ej‖∞ ≤ b, and that

P∗e∗ + Qd∗ = c mod q. Now let e ∈ Zk be the vector obtained by dropping the last 2k
coordinates from e∗, then ‖e‖∞ ≤ b, and Pe + (0k−` ‖bq/2cd) = c mod q

K finally outputs (d, z, e), which is a satisfying witness for the relation R(n, `, q,m, k1, k2, β, b).
This concludes the proof.
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C Security Proofs for the Ring-based Group Signature

C.1 Proof of CPA-anonymity

Let A be any PPT adversary attacking the CPA-anonymity of the ring-based signature scheme
with advantage ε. Using the statistical zero-knowledge property of the underlying argument
system, and the Ring-LWE assumption, we will prove that ε = negl(n). Specifically, we construct

a sequence of indistinguishable experiments G
(b)
0 , G

(b)
1 , G

(b)
2 , G3, such that, AdvA(G

(b)
0 ) = ε and

AdvA(G3) = 0.

Experiment G
(b)
0 . This is the real CPA-anonymity game. The challenger runs KeyGen(1n, 1N )

to obtain (gpk, gmsk = x, {gsk[d]}d∈{0,1}`), and then gives gpk and {gsk[d]}d∈{0,1}` to A. In the

challenge phase, A sends a message M together with two indices d0, d1 ∈ {0, 1}`. The challenger
sends back a challenge signature Σ∗ =

(
(c∗1, c

∗
2), Π∗,

)
← Sign(gpk, gsk[db]). The adversary then

outputs b′ ∈ {0, 1}. The experiment returns 1 if b′ = b or 0 otherwise. We remark that, in
this experiment, queries to the random oracles H are responded with truly uniformly random
elements in {1, 2, 3}t. By assumption, A has advantage ε in this experiment.

Experiment G
(b)
1 . In this experiment, the following modification is introduced: Instead of

faithfully generating the NIZKAoK Π∗, the challenger simulates it without using the witness.
This is done by running the simulator for the underlying interactive protocol for each j ∈ [t], and
then programming the random oracleH accordingly. The challenge signatureΣ∗ =

(
(c∗1, c

∗
2), Π∗

)
is statistically close to the one in experiment G

(b)
0 , because the argument system is statistically

zero-knowledge. As a result, experiments G
(b)
0 and G

(b)
1 are indistinguishable.

Experiment G
(b)
2 . In this experiment, we modify the generation of the ciphertext (c∗1, c

∗
2). Recall

that in experiment G
(b)
1 , one has

(c∗1 = f ⊗ s+ e1, c
∗
2 = g ⊗ s+ e2 + bq/2cd̄b) ∈ R2

q .

where f, g ∈ Rq are uniformly random, and s, e1, e2 ∈ R are sampled from distribution χ.

Now we instead let (c∗1 = z1, c
∗
2 = z2 + bq/2cd̄b), where z1, z2

$←− Rq. The assumed hardness of

the HNF variant of the Ring-LWEn,q,χ problem for the case of 2 samples implies that G
(b)
1 and

G
(b)
2 are computationally indistinguishable. Indeed, if A can distinguish these two experiments,

then it can also distinguish two Ring-LWE samples (f, f ⊗ s+ e1), (g, g ⊗ s+ e2) from uniform
samples (f, z1), (g, z2), which violates the Ring-LWE assumption.

Experiment G3. In this experiment we make a conceptual modification to G
(b)
2 . Namely, we

set (c∗1 = z
′
1, c
∗
2 = z

′
2), where z

′
1, z

′
2

$←− Rq. It is clear that G3 and G
(b)
2 are statistically indistin-

guishable. Moreover, since G3 is no longer dependent on the challenger’s bit b, the advantage
of A in this experiment is 0.

It follows from the above construction that the advantage of any polynomial-time adversary
attacking the CPA-anonymity of our ring-based group signature is negligible. By the reduc-
tion from SVP∞ to Ring-LWE, for the chosen parameters, the scheme is CPA-anonymous if
SVP∞

`·Õ(n3.5)
on ideal lattices in the ring R is hard in the worst case. This concludes the proof.

C.2 Proof of Traceability

Let A be an PPT traceability adversary against our group signature scheme with advantage ε,
we construct a PPT forger F attacking the ring variant of Boyen’s signature scheme whose
advantage is polynomially related to ε. Since the unforgeability of the ring variant of Boyen’s
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signature scheme can be based on the worst-case hardness of SVP∞
`·Õ(n2)

on ideal lattices, this

completes the proof.
The forger F is given the verification key (a,a0, . . . ,a`, u) for the ring variant of Boyen’s

signature scheme. It then generates a key-pair
(
(f, g), x

)
for the LPR encryption scheme, and

begins interacting with the adversary A by sending gpk = (a,a0, . . . ,a`, u, (f, g)) and gsk = x,
the distribution of which is statistically close to that in the real attack game. Then F sets
CU = ∅ and handles the queries from A as follows:

– Queries to the random oracles H are handled by consistently returning uniformly random
values in {1, 2, 3}t. Suppose that A makes QH queries to H, then for each κ ≤ QH, we let
rκ denote the answer to the κ-th query.

– Queries for the secret key gsk[d], for any d ∈ {0, 1}`: F queries its own signing oracle for the
ring-based Boyen signature of d, and receives in return z(d) ∈ R2m such that ‖z(d)‖∞ ≤ β and
a(d)z(d) = u mod q, where a(d) is computed in the usual way. Then F sets CU := CU ∪ {d}
and sends z(d) to A.

– Queries for group signatures of user d on arbitrary message M : F returns with a simulated
signature Σ =

(
(c1, c2), Π ′

)
, where (c1, c2) are faithfully generated, while the NIZKAoKΠ ′ is

simulated without using the legitimate secret key (as in experiment G
(b)
1 in the proof of CPA

anonymity). The zero-knowledge property of the underlying argument system guarantees
that Σ is indistinguishable from a legitimate group signature.

Eventually A outputs a message M∗ and a forged group signature

Σ∗ =
(
(c1, c2), ({CMTj}tj=1, {Chj}tj=1, {RSPj}tj=1)

)
,

which satisfies the requirements of the traceability game. Then F exploits the forgery as fol-
lows. First, one can argue that A must have queried H on input

(
M, {CMTj}tj=1, c1, c2

)
, since

otherwise, the probability that
(
Ch1, . . . , Cht

)
= H

(
M, {CMTj}tj=1, c1, c2

)
is at most 3−t.

Therefore, with probability at least ε − 3−t, there exists certain κ∗ ≤ QH such that the κ∗-
th oracle queries involves the tuple

(
M, {CMTj}tj=1, c1, c2

)
. Next, F picks κ∗ as the target

forking point and replays A many times with the same random tape and input as in the orig-
inal run. In each rerun, for the first κ∗ − 1 queries, A is given the same answers r1, . . . , rκ∗−1

as in the initial run, but from the κ∗-th query onwards, F replies with fresh random values

r
′
κ∗ , . . . , r

′
qH

$←− {1, 2, 3}t. The Improved Forking Lemma of Pointcheval and Vaudenay [PV97,
Lemma 7] implies that, with probability larger than 1/2, algorithm F can obtain a 3-fork in-
volving the tuple

(
M, {CMTj}tj=1, c1, c2

)
after less than 32 · QH2/(ε − 3−t) executions of A.

Now, let the answers of F with respect to the 3-fork branches be

r
(1)
κ∗ = (Ch

(1)
1 , . . . , Ch

(1)
t ); r

(2)
κ∗ = (Ch

(2)
1 , . . . , Ch

(2)
t ); r

(3)
κ∗ = (Ch

(3)
1 , . . . , Ch

(3)
t ).

A simple calculation shows that: Pr
[
∃j ∈ {1, . . . , t} : {Ch(1)

j , Ch
(2)
j , Ch

(3)
j } = {1, 2, 3}

]
=

1− (7/9)t. Conditioned on the existence of such j, one parses the 3 forgeries corresponding to

the fork branches to obtain
(
RSP

(1)
j ,RSP

(2)
j ,RSP

(3)
j

)
. They turn out to be 3 valid responses

with respect to 3 different challenges for the same commitment CMTj . Since COM is assumed
to be computationally-binding, we can use the knowledge extractor of the underlying argument
system to extract (d∗, z∗, s∗, e∗1, e

∗
2) ∈ {0, 1}` ×R2m ×R×R×R such that:

‖z∗‖∞ ≤ β; a(d∗)z
∗ = u mod q,

‖e∗1‖∞ ≤ b; ‖s∗‖∞ ≤ β; f ⊗ s∗ + e∗1 = c1 mod q,

‖e∗2‖∞ ≤ b; g ⊗ s∗ + e∗2 + bq/2cd∗ = c2 mod q,
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Now observe that, (c1, c2) is a correct encryption of d∗, the opening algorithm Open(x,M∗, Σ∗)
must return d∗. It then follows from the requirements of the traceability game that d∗ 6∈ CU . As
a result, (z∗, d∗) is a valid forgery for the Boyen signature with respect to the verification key
(a,a0, . . . ,a`, u). Furthermore, the above analysis shows that, if A has non-negligible success
probability and runs in polynomial time, then so does F . This concludes the proof.
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