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Abstract. We propose an efficient large-universe multi-authority ciphertext-policy attribute-based
encryption system. In a large-universe ABE scheme, any string can be used as an attribute of the system,
and these attributes are not necessarily enumerated during setup. In a multi-authority ABE scheme,
there is no central authority that distributes the keys to users. Instead, there are several authorities,
each of which is responsible for the authorized key distribution of a specific set of attributes. Prior to
our work, several schemes have been presented that satisfy one of these two properties but not both.
Our construction achieves maximum versatility by allowing multiple authorities to control the key
distribution for an exponential number of attributes. In addition, the ciphertext policies of our system
are sufficiently expressive and overcome the restriction that “each attribute is used only once” that
constrained previous constructions. Besides versatility, another goal of our work is to increase efficiency
and practicality. As a result, we use the significantly faster prime order bilinear groups rather than
composite order groups. The construction is non-adaptively secure in the random oracle model under
a non-interactive q-type assumption, similar to one used in prior works. Our work extends existing
“program-and-cancel” techniques to prove security and introduces two new techniques of independent
interest for other ABE constructions. We provide an implementation and some benchmarks of our
construction in Charm, a programming framework developed for rapid prototyping of cryptographic
primitives.

Keywords: Attribute-Based Encryption, Multi-Authority, Large Universe, Unbounded, q-Type As-
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1 Introduction

Public key cryptography allows a sender to encrypt data such that it can only be decrypted by
the owner of the corresponding secret key. Encrypting in this manner is useful for when the sender
knows the specific identity of the recipient at the time the data is encrypted. However, in many
scenarios the data owner might not know the exact recipients that he wishes to target, but instead
wish to express sharing of the data in terms of a policy formulated over the credentials or attributes
of different users. Here the sender might not even know who the exact recipients are that match
this policy or someone might acquire the exact credentials well after the data was encrypted and
stored.

Sahai and Waters [41] put forth a different vision of encryption call Attribute-Based Encryption
(ABE). In a (Ciphertext-Policy) ABE scheme the encryption algorithm takes as input the public
parameters as issued by some authority as well as a boolean formula over a set of attributes. Users
in the system will be issued private keys by the authority that are associated with a set of attributes.
A user is able to decrypt a ciphertext if the attributes of her private key satisfy the boolean formula
associated with the ciphertext.



The typical scenario presented for ABE is where a single authority issues all private keys.
This works well in the setting where data is managed within one organization or trust domain.
However, there are many scenarios when one will wish to describe a policy that spans multiple trust
domains. For example, U.S. military and defense are several organizations that wish to manage
the distribution of their own credentials. If we wished to write an access policy that referenced
credentials from both of them using standard ABE, we would require one organization ceding
control to another or a third party. To address this issue multi-authority or decentralized [14] ABE
systems were introduced where multiple parties could play the role of an authority. Initial attempts
at such systems [14, 15] sacrificed a significant amount of expressiveness compared to analogs in
the one authority setting. Fairly recently, though Lewko and Waters [27] provided a system that
roughly matched the expressiveness. In their system a policy could be expressed as any monotonic
boolean formula3 over attributes that can be issued by any authority which publishes a public key.
Their main construction technique is to use a hash over a global identifier. Upon decryption this
extra component serves as a “blinding factor” that only disappears if the ciphertext is satisfied.

While the expressiveness, of the Lewko-Waters distributed ABE system is relatively strong,
there are three major aspects that impact its practical performance compared to single authority
systems. First, the construction is set in a group of composite order N where N is the product
of three primes. This alone can make certain operations such as exponentiation over an order of
magnitude slower (see App. D). Second, each authority in the system can “natively” support only a
single attribute. If in practice we would like one party to act as an authority for up to c attributes,
the party would have to create a public key consisting of c native public keys (thus blowing up the
size by a factor of c). Furthermore, this only works if the attributes managed by that party can
be enumerated ahead of time. This means that the attribute universe is restricted to polynomial
size. Finally, the system has the native property that each authority can be used only once in each
formula. In practice, if we want to get around this and let it be used up to d times we can apply
a simple encoding technique due to Lewko et. al. [26].4 This encoding however comes at the cost
of blowing up both the parameters of the authority and the private key components issued by the
authority by a factor of d. To make things concrete suppose that we wanted a system with an
authority that managed 20 attributes each of which appeared at most 10 times in the any formula.
Then the published parameters for just that one authority would need to blowup by a factor of 200
(compared to a contemporary single use CP-ABE system [11, 49]) just to deal with the encoding
overhead.

We will construct and implement a new decentralized ABE cryptosystem that aims to get
performance close to existing single authority constructions. Our approach is to use the LW con-
struction as a substrate from which we make two significant changes to improve performance. First,
we take the existing construction and pare it down to the prime order setting. This will make it
inherently faster, but incompatible with the Dual System Encryption [48] proof techniques used
before. (Note we do not simulate subspaces in prime order groups [18, 36, 25] which itself has addi-
tional overhead.) Second, we add an additional piece to each ciphertext and private key component
which allows us to use any string as an attribute — thus addressing the problem of an authority
only supporting a single attribute and the small universe restriction. At the same time, the second
change allows the system to utilize each attribute as many times as needed in each policy.

3 Actually, their system is more general in that it allows for monotone span programs.
4 The one use restriction is needed to make the security proof of Lewko and Waters go through, if the one use

restriction were violated there is neither a known attack nor a security proof.
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With these changes we must prove security of our scheme. As mentioned with the removal of
subgroups, the Dual System Encryption methodology is no longer available. We will create a proof
of security in a static model of security where both the challenge ciphertexts and key queries are
issued before the parameters are published. We needed the keys’ queries to be non-adaptive, a
property which has not been used in prior work, because the private key for a single user is issued
in a piecemeal fashion. Each piece corresponds to a different authority, while in the single authority
setting private key requests are naturally atomic. We extend the existing “program and cancel”
techniques from two large universe constructions presented in [40] in order to adapt to the multi-
authority setting and introduce two new ones. The trade-offs for our performance improvements
are the use of the static model and an assumption whose size depends on the complexity of the
challenge ciphertext policy.

To demonstrate the abilities of our system we implemented our algorithms in Charm and we
provide timing results and comparisons to existing single-authority schemes.

1.1 Related Work

Attribute-Based Encryption was introduced by Sahai and Waters [41]. In this work, the key-policy
and ciphertext-policy notions were defined and many selectively secure constructions followed [6,
16, 21, 37, 39, 49]. Most of them work for non monotonic access structures with the exception
of the schemes by Ostrovsky, Sahai, and Waters [37], who showed how to realize negation by
incorporating specific revocation schemes into the GPSW construction. Fully secure constructions
in the standard model were first provided by Okamoto and Takashima [36] and Lewko, Okamoto,
Sahai, Takashima, and Waters [26]. The first large universe KP-ABE construction in the standard
model was given in [28] (composite order groups). Two large universe constructions in prime order
groups were presented in [40] and both techniques, layering and individual randomness, from that
paper are extended and utilized in our current cosntruction. Okamoto and Takashima initiated the
dual pairing vector space framework in various works [34, 35, 36], which lead to the first large
universe KP-ABE construction in prime order group groups by Lewko [25]. Parameterized (non
static) assumptions were introduced in [7] and used in several subsequent works [20, 49]. The
problem of an environment with multiple central authorities in ABE was considered in [14, 15, 27],
while several authors have presented schemes that do not address the problem of collusion resistance
[45, 30, 12, 2, 3, 4].

We note that several techniques in ABE schemes have roots in Identity-Based Encryption
[42, 8, 17, 7, 47, 20, 9]. Finally, we mention here the related concept of Predicate Encryption
introduced by Katz, Sahai, and Waters [23] and further refined in [44, 43, 35, 26, 36, 10].

2 Preliminaries

2.1 Notation

For n ∈ N, we define [n] = {1, 2, . . . , n}. Also, for n1, n2, . . . , nk ∈ N: [n1, n2, . . . , nk] = [n1]× [n2]×
. . .× [nm]. By {Xi}i∈[n] we denote a sequence of elements X1, X2, . . . , Xn.

When S is a set, we denote by s
R← S the fact that the variable s is picked uniformly at random

from S. We write s1, s2, . . . , sn
R← S as shorthand for s1

R← S, s2
R← S, . . . , sn

R← S.
The set of matrices of size m× n with elements in Zp is denoted by Zm×np . Special subsets are

the set of row vectors of length n: Z1×n
p , and column vectors of length n: Zn×1p . We denote by 〈v,w〉
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the inner product of vector v with w, where each vector can either be a row or a column vector.
Finally, the operation (·)> denotes the transpose vector/matrix.

2.2 Access Structures and Linear Secret - Sharing Schemes

In this subsection, we present the formal definitions of access structures and linear secret-sharing
schemes introduced in [5], adapted to match our setting.

Definition 1 (Access Structures [5]) Let U be the attribute universe. An access structure on
U is a collection A of non-empty sets of attributes, i.e. A ⊆ 2U \ {}. The sets in A are called the
authorized sets and the sets not in A are called the unauthorized sets.

Additionally, an access structure is called monotone if ∀B,C ∈ A : if B ∈ A and B ⊆ C, then
C ∈ A.

In our construction, we only consider monotone access structures, which means that as a user
acquires more attributes, he will not lose his possible decryption privileges. General access structures
in large universe ABE can be realized by splitting the attribute universe in half and treating the
attributes of one half as the negated versions of the attributes in the other half [22].

Definition 2 (Linear Secret-Sharing Schemes) Let p be a prime and U the attribute universe.
A secret-sharing scheme Π with domain of secrets Zp realizing access structures on U is linear over
Zp if

1. The shares of a secret z ∈ Zp for each attribute form a vector over Zp.
2. For each access structure A on U , there exists a matrix A ∈ Z`×np , called the share-generating

matrix, and a function δ, that labels the rows of A with attributes from U , i.e. δ : [`]→ U , which
satisfy the following:

During the generation of the shares, we consider the column vector v = (z, r2, . . . , rn)⊥, where

r2, . . ., rn
R← Zp. Then the vector of ` shares of the secret z according to Π is equal to λ =

Av ∈ Z`×1p . The share λj with j ∈ [`] “belongs” to attribute δ(j).

We will be referring to the pair (A, δ) as the policy of the access structure A.

According to [5], each secret-sharing scheme (not only the linear ones) should satisfy the recon-
struction requirement (each authorized set can reconstruct the secret) and the security requirement
(any unauthorized set cannot reveal any partial information about the secret). More concretely, let
S denote an authorized set of attributes and let I be the set of rows whose labels are in S. There
exist constants {ci}i∈I in Zp such that for any valid shares {λi = (Av)i}i∈I of a secret z according
to Π, it is true that:

∑
i∈I ciλi = z, or equivalently

∑
i∈I ciAi = (1, 0, . . . , 0), where Ai is the i-th

row of A.

On the other hand, for unauthorized sets S′ no such constants exist. In this case, it is also true
that if I ′ is the set of rows whose labels are in S′, there exists a vector d ∈ Z1×n

p , such that its first
component d1 = 1 and 〈Ai,d〉 = 0 for all i ∈ I ′.

Finally, we note that if the access structure is encoded as a monotonic Boolean formula over
attributes there is a generic algorithm that generates the corresponding access policy in polynomial
time [5, 27].
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Multi-Authority Attributes In the multi-authority setting, each attribute is controlled by a
specific authority θ ∈ UΘ, where UΘ is the set (universe) of all authorities. We assume there is a
publicly computable function T : U → UΘ that maps each attribute to a unique authority. Using
this mapping a second labeling of rows is defined in a policy (A, δ), which maps rows to attributes

via the function ρ(·) def
= T(δ(·)).

In our implementation, both the attribute id’s and the authority id’s consist of case-sensitive
alphanumeric strings. The full attributes’ names are of the form “[attribute–id]@[authority–id]” and
the mapping T just extracts the part after the @ of the attribute string.

2.3 Bilinear Groups and Complexity Assumption

For the following we assume familiarity of the reader with bilinear groups of prime order (see App.
B for more information). Our construction, the complexity assumption, and the security proof are
all expressed in the simpler setting of symmetric groups and can be generically transformed to the
asymmetric setting by substituting roughly half of the scheme’s components with the respective
G2 terms (i.e. with the same exponents). Our implementations are all written formally in the
asymmetric setting, since this is what the Charm framework dictates, although 2 out of the 5 test
runs were executed with super-singular symmetric groups (see Sec. 5).

For our security proof we will use a q-type assumption on prime order bilinear groups. It is a
slightly modified version of the q-Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption
[49]. We will be referring to our assumption as q-DPBDHE2 for short. The assumption is defined
as follows:

Choose a bilinear group G of order p according to the security parameter κ, which admits a
non-degenerate bilinear mapping e : G×G→ GT . Pick s, a, b1, b2, . . . , bq

R← Zp and R
R← GT . Let

D =

(
G, p, e, g, gs, {gai} i∈[2q]

i 6=q+1
, {gbjai}(i,j)∈[2q,q]

i 6=q+1
, {gs/bi}i∈[q], {gsa

ibj/bj′}(i,j,j′)∈[q+1,q,q]

j 6=j′

)
The assumption states that no polynomial-time distinguisher can distinguish the distribution(

D, e(g, g)sa
q+1
)

from the distribution (D,R) with more than negligible advantage.

The only difference between the q-DPBDHE assumption in [49] and the above assumption is

that in the latter the {gsaibj/bj′} terms go up to i = q+ 1 instead of q. The q-DPBDHE assumption
was shown generically secure in [49] and following exactly the same proof path, one can prove that
the q-DPBDHE2 assumption is also generically secure. Due to lack of space and the similarity to
[49], the full proof is omitted.

The assumption is closely related to the two assumptions presented in [40]. Although incompa-
rable to both of them, it contains fewer terms, hence it is relatively weaker. This comes in contrast
to the fact that our multi-authority construction supports more features than the two ABE schemes
of [40]. The reason of the apparent paradox is the use of the static security and random oracle model
in this work versus selective security and standard model in [40].

3 Multi-Authority Ciphertext-Policy ABE

In this section we provide the necessary background on multi-authority CP-ABE schemes and the
security definition for static security.

5



3.1 Algorithms

A multi-authority ciphertext-policy attribute-based encryption system consists of the following five
probabilistic polynomial-time algorithms:

GlobalSetup(1κ) → GP: The global setup algorithm takes in the security parameter κ encoded in
unary and outputs the public global parameters for the system. We require that descriptions of
the attribute universe U , the authority universe UΘ, the global identifier universe GID, and the
mapping T are included in the global parameters.

AuthSetup(GP, θ)→ {PKθ,SKθ}: The authority θ ∈ UΘ calls the authority setup algorithm during
its initialization with the global parameters GP as input and receives its public / secret key pair
{PKθ,SKθ}.
KeyGen(GID,SKθ, u,GP) → SKGID,u: The key generation algorithm takes in the global identifier
GID of a user (GID ∈ GID), the secret key of an authority θ, an attribute u controlled by the
authority θ, and the global parameters. It outputs a key for the identity - attribute pair (GID, u).5

Encrypt(M,A, {PKθ},GP) → CT: The encryption algorithm takes in a message M , an access
structure A, a set of public keys {PKθ} of the relevant authorities, and the global parameters. It
outputs the ciphertext CT.

Decrypt(CT, {SKGID,u},GP) → M : The decryption algorithm takes in a ciphertext CT, the set
of keys of a single user GID corresponding to different attributes u, and the global parameters. It
outputs either the message M when the collection of attributes satisfies the access structure of the
ciphertext, or decryption fails.

We require that all schemes satisfy the following correctness property:

Definition 1. A multi-authority CP-ABE scheme is correct if for any GP generated by the global
setup algorithm, for any set of keys {PKθ,SKθ} generated by the authority setup algorithm, for
any CT generated by the encryption algorithm using the relevant authorities’ public keys on any
message M and access structure A, and for any set of keys {KGID,u} generated by the key generation
algorithm using the relevant authorities’ secret keys for one user GID on any A-authorized set of
attributes, it is true that Decrypt(CT, {SKGID,u},GP) = M .

3.2 Static Security

In this section we will define the static (or non-adaptive) security game between a challenger and
an attacker. The difference between this security game and the adaptive one is that all queries
done by the attacker are sent to the challenger immediately after seeing the public parameters. As
usual, we also allow the attacker to corrupt a certain set of authorities that he can control. These
authorities are chosen by the attacker after seeing the global parameters and remain the same until
the end of the game.

The game consists of the following phases:

Global Setup: The challenger calls GlobalSetup(1κ) → GP and gives the global parameters GP
to the attacker.

Attacker’s Queries: Then the attacker responds with:

5 If a user wants a key that corresponds to multiple attributes from the same authority, the key generation algorithm
is trivially extended to take in many attributes by running the “single attribute” version once for each attribute.
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– A set CΘ ⊆ UΘ of corrupt authorities and their respective public keys {PKθ}θ∈CΘ , which he
might have created in a malicious way6.

– A set NΘ ⊆ UΘ of the non-corrupt authorities for which the adversary requests the public keys.
Obviously, it should be disjoint from the set of corrupt authorities.

– A sequence Q = {(GIDi, Si)}mi=1 of the secret key queries, where the global identities GIDi are
distinct and Si ⊆ U with T(Si) ∩ CΘ = ∅.
A pair (GIDi, Si) in this sequence denotes that the attacker requests the secret keys for the
user GIDi with attributes from the set Si. That is, for every u ∈ Si the attacker gets a key
SKGIDi,u ← KeyGen(GIDi,SKT(u), u,GP). According to the restriction T(Si) ∩ CΘ = ∅, none of
these keys come from a corrupt authority.

– Two messages M0,M1 of equal length, and a challenge access structure A encoded in a suitable
form. We require that for every i ∈ [m] the set Si ∪

⋃
θ∈CΘ T−1(θ) is an unauthorized set of

the access structure A, where
⋃
θ∈CΘ T−1(θ) is the set of all the attributes belonging to corrupt

authorities. This way, the attacker will not be able to trivially win the game by decrypting the
challenge ciphertext with a secret key given to him augmented with the key components from
the corrupt authorities.

Challenger’s Replies: The challenger flips a random coin b
R← {0, 1} and replies with:

– The public keys PKθ ← AuthSetup(GP, θ) for all θ ∈ NΘ.

– The secret keys SKGIDi,u ← KeyGen(GIDi,SKT(u), u,GP) for all i ∈ [m] and for all u ∈ Si.
– The challenge ciphertext CT∗ ← Encrypt(Mb,A, {PKθ},GP) where {PKθ} is the set of all

authority public keys (corrupt and non corrupt).

Guess: The attacker outputs a guess b′ ∈ {0, 1}.

Definition 2. We say that an attacker statically breaks the scheme if it has a non negligible
advantage in correctly guessing the bit b in the above security game.

4 Our scheme

Our scheme constitutes an augmented version of the Lewko-Waters [27] CP-ABE construction and
shares several of the existing techniques. Namely, in order to allow for multiple authorities and
prevent collusion between users’ keys it utilizes a hash function H that maps global identities to
group elements. This hash function is modeled as a random oracle in the security proof. As noted
in [27], this allows for a totally decentralized construction, since it provides all authorities with a
secure way to personalize the secret key given to a specific user. To the best of our knowledge, it is
still an open problem whether it is possible to create a multi-authority ABE scheme in the standard
model, where no coordination is allowed between the different authorities.

Since we will be working in the random oracle model and we aim for practically deployable
schemes, we combined the above technique with the technique from [49] that used a hash function
F that hashes attributes to group elements. This way we overcame the restriction that each authority
is used only once and at the same time achieved a large universe construction. This is because the
random oracle usage naturally overcomes the “one-time” restriction and the policies are not any

6 The only requirement is that they have the correct type.
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more controlled by the authorities, but by the underlying attributes. The individual randomness
technique from [28, 40] is integrated to the treatment of each attribute by choosing a fresh random
exponent t.

Finally in order to “bind” the different ciphertext terms together we use the layering technique
of [40]. For the same reason we introduce two secret sharing vectors: one that shares the secret z
of the blinding factor and one that shares 0. In order to decrypt, a user has to use both of them.
However, during decryption the “0-shares” are crucially entangled to the global identifier of the
secret key of the user. As a result in the event that two or more users collude and try to decrypt the
same ciphertext, the “0-shares” will result in a failed decryption, thus preventing collusion attacks.

4.1 Construction

Our proposed scheme consists of the following five algorithms:

GlobalSetup(1κ) → GP: The global setup algorithm takes as input the security parameter κ and
chooses a suitable bilinear group G of prime order p with generator g. It also chooses a function H
mapping global identities GID ∈ GID to elements of G,7 and another function F mapping strings,
interpreted as attributes, to elements of G. Both of these functions will be modeled as random
oracles in the security proof. Finally, it defines U , UΘ, and T as in Sec. 2.2. The global parameters
are GP = {p,G, g,H, F,U ,UΘ,T}.
AuthSetup(GP, θ) → {PKθ,SKθ}: The authority setup algorithm chooses two random exponents

αθ, yθ
R← Zp and publishes PK = {e(g, g)αθ , gyθ} as its public key. It keeps SK = {αθ, yθ} as its

secret key.

KeyGen(GID, θ, u, SKθ,GP)→ {KGID,u,K
′
GID,u}: The key generation algorithm takes as input the

user’s global identifier GID, the identifier θ of the authority, the attribute u to create a key for, as
well as the authority’s secret key and the global parameters. It should be the case that u ∈ T−1(θ),
i.e. that the attribute is controlled by the specific authority.

The algorithm first chooses a random t
R← Zp and it outputs the secret key:

SKGID,u =
{

KGID,u = gαθH(GID)yθF (u)t,K′GID,u = gt
}

Encrypt(M, (A, δ), {PKθ},GP)→ CT: The encryption algorithm takes in a message M , an access
policy (A, δ) with A ∈ Z`×np , the public keys of the relevant authorities, and the global parameters.
As always, we define the function ρ : [`] → UΘ as ρ(·) = T(δ(·)), i.e. the mapping of rows to
authorities.

The algorithm first creates vectors v = (z, v2, . . . , vn)> and w = (0, w2, . . . , wn)>, where z, v2,

. . ., vn, w2, . . ., wn
R← Zp. We let λx denote the share of z corresponding to row x, i.e. λx = 〈Ax,v〉,

and ωx denote the share of 0, i.e. ωx = 〈Ax,w〉, where Ax is the x-th row of A.

For each row x of A, it chooses a random tx
R← Zp. The ciphertext is computed as:

C0 = Me(g, g)z,
{
C1,x = e(g, g)λxe(g, g)αρ(x)tx , C2,x = g−tx , C3,x = gyρ(x)txgωx , C4,x = F (δ(x))tx

}
x∈[`]

Decrypt(CT, {KGID,u,K
′
GID,u},GP) → M : Let (A, δ) be the access policy of the ciphertext. If

the decryptor has the secret keys {KGID,δ(x),K
′
GID,δ(x)} for a subset of rows Ax of A such that

7 The global identifier universe GID can be any set that provides a unique identifier for each user and is mapped
by H.
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(1, 0, . . . , 0) is in the span of these rows, then for each such row x he computes:

C1,x · e(KGID,δ(x), C2,x) · e(H(GID), C3,x) · e(K′GID,δ(x), C4,x) = e(g, g)λxe(H(GID), g)ωx

The decryptor then calculates constants cx ∈ Zp such that
∑

x cxAx = (1, 0, . . . , 0) and com-
putes: ∏

x

(
e(g, g)λxe(H(GID), g)ωx

)cx
= e(g, g)z

This is true because λx = 〈Ax,v〉 and ωx = 〈Ax,w〉, where 〈(1, 0, . . . , 0),v〉 = z and 〈(1, 0, . . .,
0),w〉 = 0. The message can then be obtained as: M = C0/e(g, g)z.

Re-Randomizing Re-randomizing techniques are applicable for the users’ secret keys and the
ciphertexts using only the public parameters, due to the linearity of all exponents. These techniques
can provide properly distributed keys and ciphertexts even if originally the random choices in these
algorithms are not uniform. We will use these techniques in our security reduction.

Specifically, if someone has a key
{

KGID,u,K
′
GID,u

}
, he can acquire a new key for (GID, u) by

picking t′
R← Zp and constructing

{
KGID,uF (u)t

′
,K′GID,ug

t′
}

.

For the ciphertext the re-randomization can be done by picking a new z′
R← Zp, new random

vectors v′ and w′ with the first elements z′ and 0, respectively, and for each row x a new t′x
R← Zp.

Then the re-randomized ciphertext is

C0e(g, g)z
′
,
{
C1,xe(g, g)〈Ax,v′〉e(g, g)αρ(x)t

′
x , C2,xg

−t′x , C3,xg
yρ(x)t

′
xg〈Ax,w′〉, C4,xF (δ(x))t

′
x

}
x∈[`]

5 Implementation and Evaluation

Framework We implemented our scheme in Charm [1]; a framework developed to facilitate the
rapid prototyping of cryptographic schemes and protocols. It is based on the Python language
which allows the programmer to write code similar to the theoretical implementations. However,
the routines that implement the dominant group operations use the PBC library [29] (written
natively in C) and the time overhead imposed by the use of Python is usually less than 1%. Charm
also provides routines for applying and using LSSS schemes needed for Attribute-Based systems.
For more information on Charm we refer the reader to [13, 1].

We tested several ABE constructions on all elliptic curve bilinear groups provided by Charm,
i.e. three super-singular symmetric EC groups and two “MNT” [32] asymmetric EC groups. In
Table 2 of App. C we present the approximate security level each group provides with respect to
the discrete log problem. The source code of our implementations can be found in [46]. All our
benchmarks were executed on a dual core Intel R© Xeon R© CPU W3503@2.40GHz with 2.0GB RAM
running Ubuntu R10.04 and Python3.2.3.

Implementation Details All Charm routines use formally asymmetric groups (although the
underlining groups might be symmetric) and therefore we translated our schemes to the asymmetric
setting. Namely, we have three groups G1,G2 and GT and the pairing e is a function from G1×G2 to
GT . We note here that we tried to implement our algorithms so that more operations are executed
in the G1 group than in the G2 and that encryption consists mainly of operations in G1, compared
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Our CP-ABE [Sec. 4.1] (Multi-authority, random oracle model, statically secure)

Curve GS AS KG(4) KG(8) KG(12) EC(4) EC(8) EC(12) DE(4) DE(8) DE(12)

SS512 8.4 4.1 91.5 182.9 274.6 75.0 150.4 226.4 34.5 59.2 82.3
SS1024 58.0 43.8 631.4 1263.5 1894.5 666.9 1331.2 1997.2 641.4 1275.4 1907.4
MNT159 14.4 3.7 295.9 502.7 799.7 155.9 299.4 450.1 99.3 159.8 237.5
MNT201 19.5 4.6 370.5 787.0 1205.8 191.6 401.2 592.1 133.8 237.9 321.5
MNT224 24.1 5.5 489.5 838.4 1335.2 244.1 473.0 695.9 157.0 273.2 390.3

BSW CP-ABE [6] (Single-authority, generic group model, adaptively secure)

Curve GS AS KG(4) KG(8) KG(12) EC(4) EC(8) EC(12) DE(4) DE(8) DE(12)

SS512 20.1 N/A 52.9 100.1 146.9 51.0 98.5 147.6 22.5 40.3 55.3
SS1024 213.3 N/A 394.0 710.3 1026.5 360.1 681.6 997.1 482.2 909.0 1333.9
MNT159 31.2 N/A 152.8 265.2 399.4 107.5 268.2 376.9 56.4 104.7 149.1
MNT201 42.2 N/A 221.5 335.1 557.8 169.8 331.7 564.5 76.3 142.5 205.5
MNT224 52.3 N/A 192.8 447.5 566.1 209.1 329.3 595.2 94.7 175.0 253.6

Waters CP-ABE [49] (Single-authority, random oracle model, adaptively secure)

Curve GS AS KG(4) KG(8) KG(12) EC(4) EC(8) EC(12) DE(4) DE(8) DE(12)

SS512 20.4 N/A 39.6 73.9 108.0 64.2 124.8 186.4 32.5 60.1 85.3
SS1024 216.3 N/A 237.7 397.5 558.6 516.4 992.9 1464.4 627.0 1200.5 1770.1
MNT159 32.7 N/A 18.3 21.8 25.7 43.4 84.5 125.2 56.3 104.5 148.8
MNT201 44.6 N/A 25.4 31.7 37.2 58.8 118.3 170.7 77.0 143.4 206.9
MNT224 55.1 N/A 31.4 38.4 45.2 71.3 137.3 205.7 95.2 177.9 258.4

Table 1. Average running times in milliseconds of our scheme and two single authority schemes. The algorithms
are denoted as GS: Global setup, AS: Authority setup, KG: Key generation for a user, EC: Encrypt, DE: Decrypt.
The numbers in parentheses refer to the number of attributes in key generation, the number of rows of the policy
in encryption, and the number of rows utilized during decryption. We can see the linear dependence between these
numbers and the corresponding times.

to key generation. The reason is that the time taken to execute them in the G1 group is considerably
smaller than G2 in specific asymmetric groups such as the “MNT” groups.

Regarding the comparisons to other schemes, the only fully decentralized multi-authority ABE
scheme that provides expressive policies is the CP-ABE scheme of Lewko-Waters [27]. However, we
decided to defer implementation and benchmarking of it for several reasons: Firstly, this scheme
utilizes composite order groups, which are several orders of magnitude slower than the prime or-
der groups that provide the same security level. We expect our scheme to be significantly faster.
More information on the comparison between prime and composite groups can be found in Sec.
D. Secondly, as mentioned in the introduction, the attributes utilized in the system have to be
enumerated ahead of time and an one-use restriction is imposed on each attribute per policy. So
even this scheme provides less flexibility than our construction. Thirdly, Charm does not support
composite order groups, and finally, it is questionable the validity of the comparison between a
prime order group and a composite order group, when the underlying elliptic curve is different
and/or different optimizations have been applied to them.

Instead of this, we validate the claim that our system provides similar efficiency to existing
single-authority ABE constructions, by providing implementation results of two single-authority
ABE schemes. These are the Bethencourt-Sahai-Waters CP-ABE scheme [6] and the recent Waters
CP-ABE [49]. Both of them were implemented by the Charm authors as typical examples. The
former scheme is secure in the generic group model, while the implementation of the latter uses the
random oracle version of it.
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Timing Results Timing results in milliseconds are shown in Table 1. We see that our scheme
achieves similar operation times to the two established single-authority schemes. In general, we
attempted to keep execution times for encryption and decryption relatively low, while the times for
setup and key generation can be significantly higher, since they are called only once.

6 Static Security

Our main security theorem is shown below.

Theorem 1. If the q-DPBDHE2 assumption holds, then all probabilistic polynomial-time adver-
saries with a challenge matrix of size at most q×q have a negligible advantage in statically breaking
our scheme in the random oracle model.

In our security proof we combined several techniques, which we think might be of independent
interest in the study of CP-ABE systems. The first technique allows the simulator of our reduction
to isolate an unauthorized set of rows and essentially ignore it for the remaining of the security
reduction. It can ignore the contributions of these rows even in the construction of the challenge
ciphertext. In our case the simulator does that for the corrupt authorities, which are controlled
by the adversary. The lemma that makes this technique possible is shown below and its proof
follows in appendix A. The lemma allows the simulator to “zero-out” a subset of columns for the
unauthorized set.

Lemma 1. Let A ∈ Z`×np be the secret sharing matrix of a linear secret sharing scheme for an
access policy A and let C ⊆ [`] be a non-authorized set of rows. Let c ∈ N be the dimension of the
subspace spanned by the rows of C.

Then the distribution of the shares {λx}x∈[`] sharing the secret z ∈ Zp generated with the matrix
A is the same as the distribution of the shares {λ′x}x∈[`] sharing the same secret z generated with
some matrix A′, where A′x,j = 0 for all (x, j) ∈ C × [n− c] (see figure 1).

A =


A1,1 A1,2 . . . A1,n

A2,1 A2,2 . . . A2,n

A3,1 A3,2 . . . A3,n

...
...

. . .
...

A`,1 A`,2 . . . A`,n

 A′ =


0 . . . 0 A′1,n−c+1 . . . A′1,n

A′2,1 . . . A′2,n−c A′2,n−c+1 . . . A′2,n
0 . . . 0 A′3,n−c+1 . . . A′3,n
...

. . .
...

...
. . .

...
A′`,1 . . . A′1,n−c A′1,n−c+1 . . . A′`,n


Fig. 1. Transformation of the policy matrix A to be used by the simulator. Rows that belong to corrupted authorities
are highlighted.

Another technique utilized in the security proof is the “splitting” of the unknown parameters to
two different vectors. During the generation of the authorities’ public keys, the elements in the first
column of the challenge policy are programmed into the e(g, g)αθ component, while the remaining in
the gyθ . The same technique is applied on the challenge ciphertext, where the secret sharing vector
v will hold the secret z = saq+1 on only the first position and the zero sharing vector w will hold
the unknown terms saq, saq−1, . . . , sa2 on all positions but the first. During the generation of the
users’ secret keys and the generation of the challenge ciphertext, all these terms are “recombined”
to give a full series of q terms.
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Proof. In order to prove the theorem we assume that there exists a probabilistic poly-time adversary
A that breaks the scheme with more than negligible advantage and we show how to construct a
probabilistic poly-time algorithm B that simulates the static security game with A and breaks the
q-DPBDHE2 assumption. Our simulator works as follows:

Global Parameters: Initially, it gets (D,T ) from its q-DPBDHE2 challenger and sends the public
parameters GP = (G, p, g, U , UΘ, T) to A. The two random oracles H,F will be programmed by
the simulator.

Static security: According to the static security game, the attacker A outputs the lists / compo-
nents CΘ, NΘ, Q = {(GIDi, Si)}mi=1, (M0,M1) ∈ G2

T , and (A, δ). Since we are in the random oracle
model, the attacker also outputs a sequence LI of global identities for the H oracle queries and a
sequence L ⊆ U of attributes for the F oracle queries. W.l.o.g. we assume that all global ID’s and
all attributes present in Q are queried on their respective oracle.

In order to proceed, the simulator substitutes the secret sharing matrix A with the matrix A′

from Lemma 1. After B calculates the matrix A′ (shown in figure 1) where C = CΘ it proceeds
to compute all the inputs to A. According to the above lemma, if B uses A′ instead of A in the
simulation the view of A in this game is information-theoretically the same as if it used the given
matrix A. Therefore, the shares will be properly distributed. In the remainder of the proof, we use
n′ = n− c.
Authority Public Keys: The simulator has to provide the public keys of all non-corrupted
authorities in θ ∈ NΘ. To do that it considers two cases:

If the authority in question, θ, is not in the challenge policy, i.e. θ /∈ ρ[`], the simulator B picks

αθ, yθ
R← Zp itself and outputs the public key (e(g, g)αθ , gyθ).

For each authority θ ∈ ρ[`] \ CΘ, let X = {x|ρ(x) = θ} ⊆ [`]. This is the set of rows in the

challenge policy that belong to authority θ. Then the simulator B picks α̃θ, ỹθ
R← Zp and sets

implicitly αθ = α̃θ +
∑

x∈X bxa
q+1A′x,1 and yθ = ỹθ +

∑
x∈X

∑n′

j=2 bxa
q+2−jA′x,j . It outputs the

public key

(e(g, g)αθ , gyθ) = (e(g, g)α̃θ
∏
x∈X

e(gbxa, ga
q
)A
′
x,1 , gỹθ

∏
x∈X

n′∏
j=2

(
gbxa

q+2−j
)A′x,j

)

Since n′ = n− c ≤ q and ` ≤ q, the simulator can compute all these terms using suitable terms
of the assumption. Also due to α̃θ, ỹθ these terms are properly distributed.

H-Oracle Queries: If the queried global identity GID is in LI but not in {GIDi}i∈[m], then the
simulator outputs a random element of G for H(GID). These elements are not going to be used
anywhere else.

If the queried global identity is equal to GIDi for some i and there is no row x such that δ(x) ∈ Si
(i.e. if this user is not entitled to any shares), then the simulator picks h̃i

R← Zp and outputs

H(GIDi) = gh̃i · ga · ga2 · · · · · gan
′−1

= gh̃i
n′∏
k=2

ga
k−1

Otherwise, for some rows X ′ ⊆ [`] it is true that δ(x) ∈ Si. According to our restriction we know
that the set of these rows together with the set of the rows that belong to corrupted authorities
is non-authorized. This means that there exists a vector di ∈ Z1×n

p such that the first element is
di,1 = 1 and the inner product of it with any of the aforementioned rows is equal to zero.
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Additionally, according to the construction of A′ we know that the set of the corrupted rows
spans the entire subspace of dimension c (see Lemma 1). Hence the vector di is orthogonal to any

of the vectors (

n′︷ ︸︸ ︷
0, . . . , 0,

c︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0) ∈ Z1×n

p . These are the vectors with exactly one “1” in
one of the last c positions. This implies that di,j = 0 for n − c + 1 ≤ j ≤ n. Hence 〈A′x,di〉 = 0
even if we restrict the row A′x and the vector di to the first n′ = n − c positions. We will denote
this inner product by 〈A′x,di〉 = 0.

In this case the simulator picks h̃i
R← Zp and outputs

H(GIDi) = gh̃i · (ga)di,2 · (ga2)di,3 · · · · · (gan
′−1

)di,n′ = gh̃i
n′∏
k=2

(
ga

k−1
)di,k

All the answers programmed in the random oracle are uniformly random in G, thus properly
distributed.

F -Oracle Queries: Let θ = T(u) be the authority of the queried attribute u. Then if θ /∈ ρ[`]
or θ ∈ CΘ, the simulator outputs a random element of G for F (u) and stores the value so that he
might reuse it in a secret key query.

If θ ∈ ρ[`], let X ′′ = {x|ρ(x) = θ} \ {x|δ(x) = u} ⊆ [`]. This is the set of rows that belong to

authority θ but do not have u as the corresponding attribute. Then the simulator picks f̃u
R← Zp

and outputs

F (u) = gf̃ug
∑
x∈X′′

∑
j∈[n′] bxa

q+1−jA′x,j = gf̃u
∏
x∈X′′

∏
j∈[n′]

(
gbxa

q+1−j
)A′x,j

Secret Keys: Consider the query (GIDi, Si) where Si ⊆ U . The simulator B has to create the secret
key {KGIDi,u,K

′
GIDi,u

} for every u ∈ Si. It has to consider the following cases and act accordingly:
• T(u) = θ /∈ ρ[`]: That is, the authority of the attribute is not present in the challenge

policy. Here the simulator knows αθ and yθ. Therefore it picks t
R← Zp and outputs KGIDi,u =

gαθH(GIDi)
yθF (u)t and K′GIDi,u

= gt.
• T(u) = θ ∈ ρ[`] and Si ∩ δ[`] = ∅: In this case, the authority of the attribute is present

in the challenge policy, but none of the attributes of this user is in it. Then, according to the

H- and F -oracle phases H(GIDi) = gh̃ig
∑n′
k=2 a

k−1
and F (u) = gf̃ug

∑
x∈X

∑
j∈[n′] bxa

q+1−jA′x,j , where
X = {x|ρ(x) = θ}.

In this case, the simulator sets implicitly t = −
∑

k∈[n′] a
k and computes the key

KGIDi,u = gαθH(GIDi)
yθF (u)t

= g
∑
x∈X bxaq+1A′x,1g

∑
x∈X

∑n′
j=2

∑n′
k=2 bxa

q+1+k−jA′x,jg−
∑
x∈X

∑
j∈[n′]

∑
k∈[n′] bxa

q+1+k−jA′x,j

· gα̃θH(GIDi)
ỹθ (gyθ)h̃i

(
gt
)f̃u

= g−
∑
x∈X

∑n′
j=2 bxa

q+2−jA′x,jg−
∑
x∈X

∑n′
k=2 bxa

q+kAx,1gα̃θH(GIDi)
ỹθ (gyθ)h̃i

(
gt
)f̃u

= gα̃θH(GIDi)
ỹθ (gyθ)h̃i

(
gt
)f̃u ∏

x∈X

n′∏
j=2

(
gbxa

q+2−j
)−A′x,j · ∏

x∈X

n′∏
k=2

(
gbxa

q+k
)−A′x,1

K′GIDi,u = gt =
∏
k∈[n′]

(gak)−1
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Since t is not properly distributed, the simulator re-randomizes this key using the algorithm of
section 4.1 and outputs the re-randomized key.

• T(u) = θ ∈ ρ[`] and Si ∩ δ[`] 6= ∅: Now the user holds some shares of the challenge policy.

Therefore, we have that H(GIDi) = gh̃ig
∑n′
k=2 a

k−1di,k and F (u) = gf̃ug
∑
x∈X′′

∑
j∈[n′] bxa

q+1−jA′x,j

(Notice the X ′′). The simulator sets implicitly t = −
∑

k∈[n′] a
kdi,k and outputs

KGIDi,u = gαθH(GIDi)
yθF (u)t

= g
∑
x∈X bxaq+1A′x,1g

∑
x∈X

∑n′
j=2

∑n′
k=2 bxa

q+1+k−jA′x,jdi,kg−
∑
x∈X′′

∑
j∈[n′]

∑
k∈[n′] bxa

q+1+k−jA′x,jdi,k

· gα̃θH(GIDi)
ỹθ (gyθ)h̃i

(
gt
)f̃u

??
= g

∑
x∈X\X′′ bxa

q+1〈A′x,di〉g

∑
x∈X\X′′

∑n′,n′
j=2,k=2
j 6=k

bxaq+1+k−jA′x,jdi,k

g−
∑
x∈X

∑n′
j=2 bxa

q+2−jA′x,jdi,1

· g−
∑
x∈X

∑n′
k=2 bxa

q+kA′x,1di,kgα̃θH(GIDi)
ỹθ (gyθ)h̃i

(
gt
)f̃u

??
=

∏
x∈X\X′′

n′,n′∏
j=2,k=2

j 6=k

(
gbxa

q+1+k−j
)A′x,jdi,k ∏

x∈X

n′∏
j=2

(
gbxa

q+2−j
)−A′x,j

·
∏
x∈X

n′∏
k=2

(
gbxa

q+k
)−A′x,1di,k

gα̃θH(GIDi)
ỹθ (gyθ)h̃i

(
gt
)f̃u

K′GIDi,u = gt =
∏
k∈[n′]

(gak)−di,k

As before B re-randomizes this key using the public parameters and outputs the re-randomized key.

??: Notice that X \ X ′′ = {x|δ(x) = u} contains rows that map to u in the challenge policy.
Thus, if u /∈ δ[`], this set is empty and the two products after the second equality are eliminated.
On the other hand, if u ∈ δ[`] according to our discussion in the creation of the H-oracle’s answers
〈Ax,di〉 = 0.

Challenge Ciphertext: The first part of the ciphertext is calculated as C0 = Mb · T , where
b

R← {0, 1} is a random bit and T is the challenge term. Thus the simulator B implicitly set
z = saq+1.

The simulator also sets implicitly

v =
(
saq+1, 0, . . . , 0

)
∈ Znp and w =


n′︷ ︸︸ ︷

0, saq, . . . , saq−n
′+2, 0, . . . , 0

 ∈ Znp

Therefore for a row x∗ ∈ [`] that belongs to a corrupted authority we have that λx∗ = 0 and
ωx∗ = 0, due to the fact that these rows have all “0”s in the first n′ columns. Thus for these rows
the simulator picks tx∗

R← Zp and using the public key {e(g, g)αθ , gyθ} of the corrupted authority it
computes:

C1,x∗ = e(g, g)λx∗e(g, g)αρ(x∗)tx∗ = (e(g, g)αρ(x∗))tx∗ C2,x∗ = g−tx∗

C3,x∗ = gyρ(x∗)tx∗gωx∗ = (gyρ(x∗))tx∗ C4,x∗ = F (δ(x∗))tx∗
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On the other hand for a row x∗ that does not belong to corrupted authorities, we have that
λx∗ = saq+1 · A′x∗,1 and ωx∗ =

∑n′

j=2 sa
q+2−jA′x∗,j . For each one of these rows B sets implicitly

tx∗ = −s/bx∗ and computes:

C1,x∗ = e(g, g)λx∗e(g, g)αρ(x∗)tx∗ = e(g, g)
saq+1A′

x∗,1e(g, g)
−

∑
x∈X sbxaq+1A′

x∗,1/bx∗

=
∏

x∈X\{x∗}

e(g, gsbxa
q+1/bx∗ )

−A′
x∗,1

C2,x∗ = g−tx∗ = gs/bx∗

C3,x∗ = gyρ(x∗)tx∗gωx∗ = g
−

∑
x∈X

∑n′
j=2 sbxa

q+2−jA′
x∗,j/bx∗g

∑n′
j=2 sa

q+2−jA′
x∗,j

=
∏

x∈X\{x∗}

n′∏
j=2

(
gsbxa

q+2−j/bx∗
)−A′

x∗,j

C4,x∗ = F (δ(x∗))tx∗ = g
−

∑
x∈X′′

∑
j∈[n′] sbxa

q+1−jA′
x∗,j/bx∗ =

∏
x∈X′′

∏
j∈[n′]

(
gsbxa

q+1−j/bx∗
)−A′

x∗,j

Notice that x∗ /∈ X ′′. Therefore the simulator can compute C4,x∗ . Since v, w and the tx∗ ’s are
not properly distributed, the simulator re-randomizes the ciphertext using the algorithm of section
4.1.

Guess: If the attacker A correctly guessed the bit b, then the simulator B outputs that the
challenge term was e(g, g)sa

q+1
. That is because in this case it simulated the static security game

perfectly. If the attacker did not guess the bit correctly, the simulator answers that T was a random
group element of GT . In this case the simulator produced an encryption of a random message.
Therefore, if A is successful with more than negligible advantage, so is B. ut
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A “Zero-Out” Lemma

In order to prove Lemma 1 we will use the following theorem:

Theorem 2. Let A ∈ Z`×np be the secret sharing matrix of a linear secret sharing scheme for an
access policy A and L ∈ Zn×np be a matrix such that:

– The first row of L is (1, 0, . . . , 0) ∈ Znp .

– The lower right matrix L′ ∈ Z(n−1)×(n−1)
p of L has rank n− 1.

Then the distribution of the shares {λx}x∈[`] sharing the secret z ∈ Zp generated with the matrix A
is the same as the distribution of the shares {λ′x}x∈[`] sharing the secret z ∈ Zp generated with the
matrix A · L.

Proof. Consider the distribution of the shares {λ′x}x∈[`]. According to the construction of LSS
schemes, it is true that λ′x = 〈ALx,v〉 where ALx is the x-th row of the matrix AL and v is a
random vector with its first element equal to z.

This implies that λ′x = 〈Ax,Lv〉, where Lv ∈ Znp is the vector acquired by multiplying L with
v. Since L has the first row (1, 0, . . . , 0) we get that the first element of Lv is z. Moreover the
remaining n−1 elements are uniformly random from Zp because each one, say the i-th one, is equal
to z · Li,1 + 〈L′i,v′〉 where L′i is the i-th row of L′ and v′ ∈ Zn−1p are the last n− 1 elements of v.
Since these are uniformly random and L′ is full rank, we get that 〈L′i,v′〉 is uniformly random.

Therefore, Lv is distributed exactly the same as a secret sharing vector of z. Thus the shares
{λ′x} have the same distribution as the shares {λx}.

Proof of Lemma 1 To convert the matrix A to the target matrix A′ we will apply theorem 2.
Let W 1,W 2, . . . ,W c be the first c independent rows in C. These rows form a basis of size c of
the relevant subspace and they can be computed from C in polynomial time using linear algebra
operations.

Next we are going to extend this basis to size n such that the final basis spans the entire space.
The first step is to add the row U = (1, 0, . . . , 0) ∈ Znp to the set. Since the set of rows in C is
unauthorized, U is not in in the subspace spanned by them and therefore this is a valid choice.

We continue by picking n− c− 1 rows, V 1,V 2, . . . ,V n−c−1, such that the set

{U ,V 1,V 2, . . . ,V n−c−1,W 1,W 2, . . . ,WW }

is a basis of Znp . Using linear algebra operations this can be done in polynomial time as well.
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Finally construct the matrix

L = (L′)−1 =



U
V 1

. . .
V n−c−1
W 1

. . .
W c



−1

∈ Zn×np

Using theorem 2 we will argue that the matrix A′ = A · L will give us same distribution for
the {λx} shares. We should argue first that the matrix L satisfies the requirements of the theorem.
This can be done by trying to compute the inverse matrix, but one straightforward way is to use
the blockwise inversion formula shown in figure 2.

[
A B
C D

]−1

=

[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

Fig. 2. Blockwise inversion formula

In our case we have A = [1], B = (0, 0, . . . , 0) ∈ Z1×(n−1)
p , C = (0, 0, . . . , 0)> ∈ Z(n−1)×1

p , and D
is the lower right submatrix of L′ of size (n− 1)× (n− 1). Therefore we have that

L =


1 0 . . . 0
0
D−1...

0


Since D is of full rank, we can see that L satisfies the requirements of theorem 2. The only thing

left to prove is that A′ has the required form. That is, that for all rows A′
x with x ∈ C, we have

that the first n − c elements are equal to 0. We know that for fixed x ∈ C the row Ax is a linear
combination of the basis rows {W 1,W 2, . . . ,W c}. Therefore Ax =

∑
i∈[c] γiW i with γi constants

in Zp.
Finally, notice that for all k such that n− c+ 1 ≤ k ≤ n we have that

(

n−c terms︷ ︸︸ ︷
0, . . . , 0 ,

c terms
1 on the k-th position︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0) · L′ = W k =⇒ W k · (L′)−1 = (

n−c terms︷ ︸︸ ︷
0, . . . , 0 ,

c terms
1 on the k-th position︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0)

Therefore the row A′
x = Ax · L =

∑
i∈[c] γiZi, where Zi = (

n−c terms︷ ︸︸ ︷
0, . . . , 0 ,

c terms
1 on the i-th position︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0). As a

result the first n− c elements of A′
x are all equal to 0. ut

B Bilinear Groups

Our construction works with instantiations of bilinear groups of prime order. Abstractly, let G and
GT be two multiplicative cyclic groups of prime order p, where the group operation is efficiently
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computable in the security parameter. Let g be a generator of G and e : G × G → GT be an
efficiently computable pairing function that satisfies the following properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp it is true that e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) 6= 1GT .

The above definition considers the so called symmetric groups, where the two arguments of
the pairing belong to the same group. In general, there exist asymmetric bilinear groups, where
e : G1 × G2 → GT and G1, G2, and GT are three different groups of prime order p. Several
asymmetric instantiations of bilinear groups possess beneficial properties such as faster operations
under the same security level and/or easier hashing to group elements.

C Approximate Security Level of all Charm Elliptic Curves

In Table 2 we present the approximate security levels of all the elliptic curves supported by Charm.
Although the results of the table do not necessarily translate to the security level of our assumption
(or the various assumptions of the other ABE schemes), they provides an intuitive comparison
between the security levels of the different instantiations. For more information on the security of
discrete log and of q-type assumptions we refer the reader to [33, 24, 19, 38].

Curve Security Level (Bits)

SS512 80
SS1024 112
MNT159 70
MNT201 90
MNT224 100

Table 2. Approximate security levels of the utilized ECC groups. “SS” are super singular curves (symmetric bilinear
groups), while “MNT” are the Miyaji, Nakabayashi, Takano curves (asymmetric bilinear groups). The number after
the type of the curve denotes the size of the base field in bits.

D Prime vs Composite Order Group Operations

In order to demonstrate the generic difference in the efficiency of prime order vs composite order
implementations, we timed the group exponentiation (of a random group element with a random
exponent) and pairing operations (on random group elements) in the MIRACL framework [31]
for different security levels. The benchmarks were executed on a dual core Intel R© Xeon R© CPU
W3503@2.40GHz with 2.0GB RAM running Ubuntu R10.04. The elliptic curve utilized for all
benchmarks was the super-singular (symmetric) curve y2 = x3 + 1 mod p with embedding degree 2
for suitable primes p.

In table 3 we can see the significant gap between the timings in prime and composite order
groups for the same security levels. This is the main reason that we used prime order groups for
our construction.
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Group exponentiation

Security Level (Bits) Prime Composite(2 primes) Composite (3 primes)

80 3.5 66.9 201.6
112 14.8 448.1 1404.3
128 34.4 1402.5 4512.5
192 273.8 20097.0 66526.0

Pairing

Security Level (Bits) Prime Composite(2 primes) Composite (3 primes)

80 13.9 245.3 762.3
112 65.7 1706.8 5485.2
128 176.6 5428.2 17494.4
192 1752.3 79046.8 263538.1

Table 3. Average timing results in milliseconds over 100 repeats of group exponentiations and pairings in MIRACL.
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