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Abstract. Recently, Garg, Gentry and Halevi (GGH) described the first candidate multilinear 
maps using ideal lattices. However, there exists zeroizing attack in the GGH construction. We first 
describe an improved construction of multilinear maps from ideal lattices, by multiplying matrices 
on both sides of the level-1 encoding of non-zero element. The security of our construction depends 
upon new hardness assumption, which is seemingly closely related to hardness problems of lattices. 
Then, we describe an asymmetric construction to avoid any nontrivial encoding of zero. Using our 
constructions over polynomial ring instead of integer ring, we implement one-round multipartite 
Diffie-Hellman key exchange protocol to decrease the public parameter size. 
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1 Introduction 

Boneh and Silverberg [BS03] first introduced the notion of multilinear maps, which are an 
extension of bilinear maps. There exist many applications on bilinear maps, such as [SOK00, Jou00, 
BF03, Sma03] and multilinear maps [BS03, RS09, PTT10, Rot13]. However, different from bilinear 
maps, which come from pairing of elliptic curves, constructing multilinear maps is a long-standing 
open problem. Recently, Garg, Gentry, and Halevi (GGH) described the first plausible construction 
of multilinear maps that use ideal lattices [GGH13]. Their multilinear maps, whose encodings were 
randomized with noise and bounded with a fixed maximum degree, were different from the ideal 
multilinear maps defined by Boneh and Silverberg. Following the basic framework of GGH, Coron, 
Lepoint, and Tibouchi [CLT13] (CLT) described a new and relatively practical construction that 
works over integers instead of ideal lattices, and is implemented using heuristic optimization 
techniques. However, Cheon, Han, Lee, Ryu, and Stehle had broken the CLT construction using 
level-1 encodings of zero. To avoid this zeroizing attack for CLT, Garg, Gentry, Halevi and 
Zhandry [GGH+14], and Boneh, Wu and Zimmerman [BWZ14] proposed two candidate fixes of 
multilinear maps over the integers. However, Coron, Lepoint, and Tibouchi showed that two 
candidate fixes of CLT can be defeated in polynomial time using extensions of the Cheon et al.’s 
attack. Moreover, to improve the efficiency of GGH, Langlois, Stehlé and Steinfeld[LSS14] 
constructed GGHLite, in which the re-randomization process of GGH was reanalyzed by applying 
the Rényi divergence. Recently, Hiromasa, Abe and Okamoto [HAO14] described a new 
construction of multilinear maps from fully homomorphic encryption (FHE) proposed by Gentry, 
Sahai, and Waters (GSW) [GSW13b]. However, the security of the construction [HAO14] is not 
reduced to LWE, although the security of the GSW’s FHE is based on the learning with erros (LWE) 
assumption. At the same time, Gentry, Gorbunov and Halevi [GGH14] described a construction of 
graph-induced multilinear maps from lattices using approximate eigenvector, which encodes LWE 
samples in short square matices of higher dimensions. However, the security of the construction 
[GGH14] is also not reduced to LWE. Moreover, the efficiency of the constructions based on LWE 
is lower than previous schemes. Since the GGH construction is more efficient than other schemes, 
we will focus on the improvement of GGH in this paper. 

We first recall the GGH construction of multilinear maps. GGH works in the polynomial rings 
[ ]/ 1nR x x= < + >]  and /qR R qR= . GGH chooses a secret short R∈g , and a secret 
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random element qR∈z . I R= ⊂g  is the principal ideal generated by g . Plaintexts are 

cosets of /R I . To encode a coset Ie I= +e , set [ ]/
q

c z  with short Ie∈c  as the encoding of 

Ie . Because ,g z  are hidden in GGH, the public parameters of GGH gave the encoding y  of the 

coset 1 I+ . So, the encoding of Ie  is computed as [ ]q
⋅e y . The GGH construction is a graded 

encoding scheme, that is, e  is a level- 0  encoding, [ ]q
⋅e y  a level-1 encoding, and i

q
⎡ ⎤⋅⎣ ⎦e y  

a level- i  encoding. It is easy to verify that encodings can both be added and multiplied if the 
numerator norm remains smaller than q . For a level-κ  encoding u , the GGH can determine 
whether u  is the encoding of zero using the zero-testing parameter ztp . This defines a degree-κ  
multilinear map for level-1 encodings. 

Our results. Our main contribution is to describe a construction of multilinear maps using 
ideal lattices without encoding of zero. Our construction improves GGH in two aspects. First, we 
modify the zero-testing parameter of GGH. The public parameters of our construction only give 
some pairs of the encoding of non-zero element and the zero-testing parameter corresponding to this 
non-zero element. Second, we multiply short matrices on both sides of the public parameters. 
Unlike the GGH construction, our construction does not give level-1 encodings of “1” and “ 0 ”, 
and cannot generate level-1 of given level- 0  encoding. Moreover, our construction only generates 
a level-1 encoding for a hidden level-0 encoding, and the encoding in a sense is a deterministic 
encoding without re-randomization process. 

Our second contribution is to describe an asymmetric variant of our symmetric version. In our 
symmetric construction, one can still compute hidden level-κ  encoding of zero element even if our 
public parameters do not give level-1 encodings of zero elements. This is because one can obtain 
level- κ  encoding of zero by cross-multiplying pairs of the encodings and the zero-testing 
parameters in the public parameters. To avoid this case, our asymmetric variant will not support 
multiplying the encoding by the zero-testing parameter with the same index set. Thus, one cannot 
generate any level encoding of zero in our asymmetric version. Namely, unlike GGH, there exist no 
easily computable quantities in our asymmetric construction. 

Our third contribution is to describe the commutative variant of our constructions using 
polynomial rings instead of the ring of integers. To guarantee the security of our construction, we 
must make sure that the dimension of matrix in our construction is large enough. As a result, our 
construction is less practical than previous schemes. Thus, we use matrices of small dimension, and 
large degree polynomial ring to improve the efficiency of our constructions. 

Our final contribution is to optimize and implement one-round multipartite Diffie-Hellman key 
exchange protocol using our commutative variant of multilinear maps. Experimental results 
demonstrate that our construction of multilinear maps from ideal lattices is practical. 

Organization. We recall some background on multilinear maps in Section 2. In Section 3, we 
describe our symmetric construction, and in Section 4 we provide asymmetric construction. In 
Section 5, we construct the commutative variant of our constructions. In Section 6, we optimize and 
implement one round multipartite Diffie-Hellman key exchange protocol. Finally, we draw 
conclusion and open problem for this paper. 

2 Preliminaries 

2.1 Notations 

We denote , ,] _ \  the ring of integers, the field of rational numbers, and the field of real 
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numbers. We take n  as a positive integer and a power of 2. Notation a bn  denotes the set 

{1,2, , }n" , and [ ]q
a  the absolute minimum residual system [ ] mod ( / 2, / 2]

q
a a q q q= ∈ − . 

Vectors and matrices are denoted in bold, such as , ,a b c  and , ,A B C . Let I  be the identity 
matrix. The j -th entry of a  is denoted as ja , the element of the i -th row and j -th colomn of 

A  is denoted as ,i jA (or [ , ]A i j ). Notation 
∞

a  ( a  for short) denotes the infinity norm of 

a . The polynomial ring [ ]/ 1nX x< + >]  is denoted by R , and [ ]/ 1n
q X x< + >]  by qR . 

The elements in R  and qR  are denoted in bold as well. Similarly, notation [ ]q
a  denotes each 

entry (or each coefficient) ( / 2, / 2]ia p p∈ −  of a . 

2.2 Lattices and Ideal Lattices 

An n-dimension full-rank lattice nL ⊂ \  is the set of all integer linear combinations 

1

n
i ii

x
=∑ b  of n linearly independent vectors n

i ∈b \ . If we arrange the vectors ib  as the 

columns of matrix n n×∈B \ , then { }: nL Z= ∈Bz z . We say that B  spans L  if B  is a 

basis for L . Given a basis B  of L , we define ( ) { | , : 1/ 2 1/ 2}n
iP i z= ∈ ∀ − ≤ <B Bz z \  

as the parallelization corresponding to B . Let det( )B  denote the determinant of B . 
Given R∈g , let I =< >g  be the principal ideal in R  generated by g , whose ] -basis 

is 1( ) ( , ,..., )nRot x x −= ⋅ ⋅g g g g . 

Given n∈c , 0σ > , the Gaussian distribution of a lattice L  is defined as L∀ ∈x ，

, , , ,( ) / ( )LD Lσ σ σρ ρ=c c cx , where 
2 2

, ( ) exp( / )σρ π σ= − −c x x c , , ,( ) ( )
x L

Lσ σρ ρ
∈

=∑c c x . 

In the following, we will write 
, ,0nD
σ]

 as 
,nD
σ]

. We denote a Gaussian sample as ,LD σ←x  

(or ,ID σ←d ) over the lattice L (or ideal lattice I ). 

2.3 Multilinear Maps 

Definition 2.1 (Multilinear Map [BS03]). For 1κ +  cyclic groups 1,..., , TG G Gκ  of the same 

order q , a κ -multilinear map 1: Te G G Gκ× × →"  has the following properties: 

(1) Elements { }
1,...,j j j

g G
κ=

∈ , index a bj κ∈ , and integer qa∈]  hold that 

1 1( , , , , ) ( , , )je g a g g a e g gκ κ⋅ = ⋅" " "  

(2) Map e  is non-degenerate in the following sense: if elements { }
1,...,j j j

g G
κ=

∈  are 

generators of their respective groups, then 1( , , )e g gκ"  is a generator of TG . 
 
Definition 2.2 (κ -Graded Encoding System [GGH13]). A κ -graded encoding system over R  
is a set system of a b{ }( ) : ,jS S R R jα α κ= ⊂ ∈ ∈  with the following properties: 



 

  4

(1) For every index a bj κ∈ , the sets { }( ) :jS Rα α ∈  are disjoint. 

(2) Binary operations ‘+ ’ and ‘− ’ exist, such that every 1 2,α α , every index a bj κ∈ , and 

every 1( )
1 ju S α∈  and 2( )

2 ju S α∈  hold that 1 2( )
1 2 ju u S α α++ ∈  and 1 2( )

1 2 ju u S α α−− ∈ , where 

1 2α α+  and 1 2α α−  are the addition and subtraction operations in R  respectively. 

(3) Binary operation ‘× ’ exists, such that every 1 2,α α , every index a b1 2,j j κ∈  with 

1 2j j κ+ ≤ , and every 1

1

( )
1 ju S α∈  and 2

2

( )
2 ju S α∈  hold that 1 2

1 2

( )
1 2 j ju u S α α×

+× ∈ , where 1 2α α×  

is the multiplication operation in R  and 1 2j j+  is the integer addition. 

3 Construction of symmetric multilinear maps 

In this section, we first describe the symmetric construction of multilinear maps. Then we give 
new hardness assumption and some known cryptanalysis for our construction. 

Setting the parameters. Because our construction uses the GGH construction as the basic 
component, our parameter setting is set as that of GGH to conveniently describe and compare. Let 
λ  be the security parameter, κ  the multilinearity level, n  the dimension of elements of R . 
Concrete parameters are set as nσ λ= , 1.5nσ λ′ = , 2λσ ∗ = , 8 ( )2 Oq nκλ κ≥ , i 2( )n O κλ> , 

2( )O nτ = . 

3.1 Construction 

The starting point of our construction is to remove level-1 encodings of zero in the public 
parameters. We modify the zero-testing parameter of GGH so that the public parameters in our 
construction only include some pairs of the level-1  encoding of non-zero element and the 
zero-testing parameter corresponding to this non-zero element. Moreover, we multiply both sides of 
these encodings and zero-testing parameters by random short matrices. Our construction is as 
follows: 
Instance generation: (par) InstGen(1 ,1 )λ κ← . 

(1) Choose a prime 8 ( )2 Oq nκλ κ≥ ; 

(2) Choose an element 
,nD←g

] σ
 in R  so that 1 2n− ≤g ; 

(3) Choose elements a b, ' ,
, , ,n ni i i q

D D i
σ

τ← ← ∈a e b
] ]

 in R ; 

(4) Choose a random element qR←z  so that -1
qR∈z ; 

(5) Choose two random matrices 
,n nD
σ×←T

]
 and 

,n nD
σ×←S

]
 so that 1 1, n n

q
− − ×∈T S ] ; 

(6) Set 1( )i i
i

q

Rot −+⎡ ⎤= ⎢ ⎥⎣ ⎦

a g eY T T
z

 and ,
( )( )i i

zt i
q

Rot
κ⎡ ⎤+

= ⎢ ⎥
⎣ ⎦

z b g eP T S
g

, a bi∈ τ ; 

(7) Output the public parameter { } a b{ }par , , ,i zt,iq i= ∈Y P τ . 

According to [GGH13], , qR R∈ ∈g z , , ,i i i R∈a b e  can be efficiently sampled. It is easy to 

see that , n n×∈T S ]  can be sampled. This is because that if det( ),det( )T S  are not divisible by 
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q , then 1 1, n n
q

− − ×∈T S ] . Without loss of generality, assume that det( ),det( )T S  are uniform 

over q] . Thus, the probability that ,T S  are invertible is about 1 (1 )O /q− . 

Generating level-1 encoding: enc(par,1, )←U d . 

Given a random vector 
, *

D τ σ
←d

]
, then 

1
( )i ii q
d

=
⎡ ⎤= ⋅⎣ ⎦∑U Yτ

 is the level-1 encoding of 

hidden level-0 encoding 
1
( )i ii

= d
=

⋅∑e eτ
. 

Because both sides of iY  are multiplied by matrices 1, −T T  respectively, iY  multiplied by 

the scalar id  can be commutative with T  to obtain ( )i i
id Rot +
⋅

a g e
z

. Thus, we have 

1 11
1

( )
( ) ( ) ( )i i ii

i ii q q
q

d
d Rot Rot

τ
τ − −=
=

⎡ ⎤+ +⎡ ⎤⎡ ⎤ ⎢ ⎥= ⋅ = = ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦

∑∑
a g e ag eU Y T T T T
z z

, where 

1
( )i ii

= dτ

=
⋅∑a a  and 

1
( )i ii

= d
=

⋅∑e eτ
. That is, U  is the level-1 encoding of hidden plaintext 

element e . 
In our construction, one cannot directly generate the level-1 encoding of a given level- 0  

encoding since one does not know the level- 0  encoding ie  encoded by iY . Although one can 

obtain a level- j  encoding ( ) j
j i=U Y , but one cannot know the level- 0  element ( ) j

ie  

encoded by jU . This point is different from the GGH construction. 

Adding encodings: 1add(par, , , , )mj←U U U" . 

Given m  level- j  encodings lU , their sum 
1

= m
ll q=

⎡ ⎤
⎣ ⎦∑U U  is a level- j  encoding. 

Because the level- j  encoding lU  is the form of 1( )l l
l j

q

Rot −+⎡ ⎤= ⎢ ⎥⎣ ⎦

r g eU T T
z

, their sum 

1 11
1

( )
= ( ) ( )

m
m l ll

l j jl q q
q

Rot Rot− −=
=

⎡ ⎤+ +⎡ ⎤⎡ ⎤ ⎢ ⎥= = ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦

∑∑
r g e rg eU U T T T T
z z

 is a level- j  

encoding, where 
1

m
ll

=
=∑r r  and 

1

m
ll

=
=∑e e . 

Multiplying encodings: 1mul(par,1, , , )κ←U U U" . 

Given κ  level-1 encodings jU , their product 
1

= jj q

κ

=
⎡ ⎤
⎣ ⎦∏U U  is a level-κ  encoding. 

Because the level- 1  encoding jU  is the form of 1( )j j
j

q

Rot −+⎡ ⎤
= ⎢ ⎥
⎣ ⎦

r g e
U T T

z
, the 

product of κ  level-1 encodings is: 



 

  6

1

1
1

1 1

1

=

( )

( )
( )

( )

jj q

j j
j

q

j jj

q

q

Rot

Rot

Rot

κ

κ

κ

κ

κ

=

−
=

= −

−

⎡ ⎤
⎣ ⎦

+⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤+
⎢ ⎥=
⎢ ⎥
⎣ ⎦

+⎡ ⎤= ⎢ ⎥⎣ ⎦

∏

∏

∏

U U

r g e
T T

z

r g e
T T

z

rg eT T
z

, where 
1 1

, ( ( ) ) /j j jj j
= κ κ

= =
= + −∏ ∏e e r r g e e g . 

We use 1−× =T T I  in third equation, and denote the level-κ  encoding U  as the standard 
form in the final equation. 
 
Zero testing: isZero(par, )U .  

To determine whether 1( )
q

Rot κ
−+⎡ ⎤= ⎢ ⎥⎣ ⎦

rg eU T T
z

 is a level- κ  encoding of zero, 

[ ]zt q
⋅V = U P  is computed in n n

q
×]  and checked whether V  is short: 

   
[ ] 3/41 if

isZero(par, )
0 otherwise

zt q
q⎧ ⋅ <⎪= ⎨

⎪⎩

U P
U , where 

1zt i zt,ii
rτ

=
= ∑P P  and 

,
D τ σ

←r
]

. 

Since 
1

( )( )zt i zt,ii
q

r Rot
κ

τ

=

⎡ ⎤+
= = ⎢ ⎥

⎣ ⎦
∑ z bg cP P T S

g
, where 

1
( )i ii

= rτ

=∑b b  and 

1
( )i ii

= rτ

=∑c e . If U  is a level-κ  encoding of zero element, namely mod I=e 0 , then we have 

[ ] [ ]1 ( )( ) ( ) ( ( ))zt q q
q

Rot Rot Rot
κ

κ
−⎡ ⎤+

⋅ = ⋅ = +⎢ ⎥
⎣ ⎦

rg z bg cV = U P T T T S T r bg c S
z g

. 

For our choice of parameter, 1/8q+ = ≤rg e rg  and nσ
∞ ∞
= ≤T S . Moreover, 

V  is not reduced modulo q , that is [ ]q
=V V . Thus, we have 

[ ]

2

3

4 2 1

4 2 1/8 1/2

3/4

( ( ))

( ( ))

( ( ))

( ) ( )

( )

( ) ( )

q
Rot

Rot

n Rot

n n Rot Rot n

n Rot

n q poly n q poly n
q

σ σ

σ

σ

−

<

= +

= +

= ⋅ +

= ⋅ +

= ⋅ ⋅ +

= ⋅ ⋅ ⋅ ⋅

V T r bg c S

T r bg c S

T r bg c S

r bg c

rg g bg c

. 

If U  is a level-κ  encoding of non-zero element, namely mod I≠e 0 . Then, we have 
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[ ] 1 ( )( ) ( ) ( ( ))zt q
qq

Rot Rot Rot
κ

κ
−⎡ ⎤ ⎡ ⎤+ + +

⋅ = ⋅ = +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

rg e z bg c rg eV = U P T T T S T bg c S
z g g

. 

By lemma 4 in [GGH13], we have ( )
q

Rot q⎡ ⎤+
≈⎢ ⎥

⎣ ⎦

rg e
g

. Thus, q≈V . 

Extraction: ext(par, )sk ← U . 

Given a level-κ  encoding U , U  is multiplied by 
1zt i zt,ii
wτ

=
= ∑P P , where 

,
D τ σ

←w
]

 

and (log ) / 4q λ−  most-significant bits of each of the n n×  entries of [ ]zt q
⋅U P  is collected: 

[ ]ext(par, ) Extract(msb( ))zt q
= ⋅U U P . 

Because 
1

( )( )zt i zt,ii
q

w Rot
κ

τ

=

⎡ ⎤+
= = ⎢ ⎥

⎣ ⎦
∑ z bg cP P T S

g
, where 

1 i ii
= wτ

=∑b b  and 

1 i ii
= wτ

=∑c e . Assume 1( )
q

Rot κ
−+⎡ ⎤

⎢ ⎥⎣ ⎦
rg eU = T T

z
 such that 1/8q+ ≤rg e , then we have 

[ ]

[ ]

1 ( )( ) ( )

( )( )( )

( ( )) ( ( ))

zt q

q

q

q
q

Rot Rot

Rot

Rot Rot

κ

κ
−

= ⋅

⎡ ⎤+ +
= ⋅⎢ ⎥
⎣ ⎦

⎡ ⎤+ +
= ⎢ ⎥
⎣ ⎦

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦

V U P

rg e z bg cT T T S
z g

rg e bg cT S
g

eT r bg c S T bg c S
g

. 

For our parameter setting, [ ] 3/4( ( ))
q

Rot q+ <T r bg c S . By Lemma 4 in [GGH13], we 

have ( ( ))Rot q+ ≈
e bg c
g

 for mod I≠e 0 . Therefore, the extraction algorithm can correctly 

work. 

Remark 3.1 (1) Different from the GGH construction, our construction cannot directly generate 

level-1 encoding of a given level-0 encoding, and can only generate level-1 encoding of hidden 

level-0 encoding 
1
( )i ii

= d
=

⋅∑e eτ
. Moreover, the level-1 encoding of our construction is 

deterministic, and it is no longer random and without re-randomization process. However, we do not 

find the necessity generating given level-0 encoding or known level-0 encoding in our construction. 

(2) Choose 2( )O nτ =  is to erase the structure of input encoding applying re-randomization 

process in [GGH13]. Although our construction is deterministic, the level-1 encoding process 
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generating hidden level-0 encoding is same as the re-randomization process of the GGH 

construction. The cost using large τ  is that the public parameter size of our construction is bigger 

a n  factor than that of GGH. We notice that 2> nτ λ+  is the lowest requirement, otherwise 

attacker can directly solve d  applying linear equation system. 

(3) When constructing multipartite key exchange using our symmetric construction, every 

participant can compute the zero testing parameter corresponding to the hidden 
1

0
( )n

i ii
= d−

=
⋅∑e e  

encoded by 
1

0
( )n

i ii q
d−

=
⎡ ⎤= ⋅⎣ ⎦∑U Y , that is, the zero testing parameter corresponding to level- 0  

encoding e  is 

1

0

1 1

0 0
( )

( )

( )( )

n
zt i zt,ii q

n n
i i i ii i

q

q

= d

d d
= Rot

= Rot

κ

κ

−

=

− −

= =

⎡ ⎤⋅⎣ ⎦

⎡ ⎤+
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤+
⎢ ⎥
⎣ ⎦

∑

∑ ∑

P P

z b g e
T S

g

z bg eT S
g

. 

(4) zt,iP  or their combination ztP  can be used as zero testing parameter. In addition, the zero 

testing parameter generated by random combination of zt,iP  can thwart invalid encoding attack for 

only one zero testing parameter. 

(5) The matrices T , S  in our construction are to thwart adversary not only generating less 

than level- k  encoding of zero from the public parameter, but also getting the basis of the secret 

principal ideal lattices in our construction. This is because zt,iP  cannot directly be multiplied. For 

arbitrary a b,i j τ∈ , we have 

( )( )( ) ( )

( )( )( ) ( )

zt,i zt,j

j ji i

q q

j ji i

q

Rot Rot

Rot Rot

κκ

κκ

= ×

⎡ ⎤+⎡ ⎤+
= × ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤++
= ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

P P P

z b g ez b g eT S T S
g g

z b g ez b g eT S T S
g g

. 

Since matrix multiplication does not support commutative rule, the second numerator κz  in P  

cannot be canceled by multiplying a level- 2κ  encoding. Therefore, we may sample 
, 'ni D
σ

←b
]

 

and set 4 ( )2 Oq nκλ κ≥  to decrease by half the size of the public parameter. Moreover, using κz  
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guarantees that zt,iP  can only be used as the zero-testing for a level-κ  encoding. 

3.2 Security 
Similar to the previous constructions [GGH13, CLT13, LSS14], the security of our 

construction cannot be reduced to classic hardness assumptions. In [GGH13], the security of GGH 

is defined as the hardness assumptions of graded computational Diffie-Hellman (GCDH) and 

graded decisional Diffie-Hellman (GDDH). That is, given the public parameters and 1κ +  level-1 

encodings of random elements, it is unfeasible to generate a level-κ  encoding of their product or 

distinguish it from random elements. Langlois, Stehlé and Steinfeld[9] introduced the hardness 

assumptions ext-GCDH/ext-GDD, which is variant of GCDH/GDDH defined in [GGH13]. The 

security of our construction relies on new hardness assumption ext-GCDH/ext-GDDH. In the 

following, we adaptively define the ext-GCDH/ext-GDDH in [LSS14] to our construction. 

Consider the following security experiment: 

(1) par InstGen(1 ,1 )λ κ←  

(2) For 0j =  to κ : 

     Sample 
, *

,j j D τ σ
←r w

]
; 

     Generate level-1 encoding of hidden ,1j j i ii
w

=
= ∑d eτ

: ,1j j i ii q
w

=
⎡ ⎤= ⎣ ⎦∑U Yτ

. 

(3) Compute *
1 jj q

κ

=
⎡ ⎤= ⎣ ⎦∏U U . 

(4) Compute *
C D zt q

⎡ ⎤= = ⎣ ⎦V V U P , where 0, ,1zt i zt ii q
w

=
⎡ ⎤= ⎣ ⎦∑P Pτ

. 

(5) Compute *
_R zt rand q

⎡ ⎤= ⎣ ⎦V U P , where _ 0, ,1zt rand i zt ii q
rτ

=
⎡ ⎤= ⎣ ⎦∑P P . 

Definition 3.2 (ext-GCDH/ext-GDDH). According to the above experiment, the ext-GCDH and 

ext-GDDH are defined as follows: 

Level-κ  extraction CDH (ext-GCDH): Given { }0par, , , κU U" , output a level-κ  extraction 

encoding n n
q
×∈W ]  such that [ ] 3/4

C q
q

∞
− ≤V W . 

Level- κ  extraction DDH (ext-GDDH): Given { }0par, , , ,κU U V" , distinguish between 

{ }0par, , , ,ext GDDH DD κ− = U U V"  and { }0par, , , ,ext RAND RD κ− = U U V" . 

In our construction, the ext-GCDH is harder than the ext-GDDH. This is because given 

{ },ext GDDH ext RANDD D− −∈V , one can compute W  using the oracle of solving ext-GCDH, and 

further determine V . 
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It is easy to verify that breaking our construction is harder than breaking the GGH construction. 

If there exists an algorithm A  which breaks our construction, then there exists an algorithm B  

using A , which breaks the GGH construction. This is because one can sample the matrices ,T S , 

generate the public parameters of our construction using the instance generation, and call A  to 

solve the corresponding problem. 

In the following, we will show that the matrices of both sides of the public parameters cannot 

be removed only using arithmetic operations. 

Lemma 3.3 Given the public parameters { } a b{ }par , , ,i zt,iq i= ∈Y P τ  of our symmetric 

construction, using arithmetic operations cannot remove the matrices, which are multiplied on both 

sides of ,i zt,iY P . 

Proof. (1) By the instance generation, both sides of ,i zt,iY P  are multiplied by matrices 

T , 1−T  and T , S , respectively. (2) Assume a b{ }1 2, , ,i zt,i i τ∈ ∈X X Y P  and 

' '
1 1 1 1 2 2 2 2,= =X T X S X T X S  with ' '

1 2,X X  generated by some principal ideal lattices. It is 

obvious that both sides of the results 1 2 1 2,+ −X X X X  have the matrices if addition or 

subtraction operations can be supported. For multiplication, the left and right sides of 1 2×X X  

will have 1T  and 2S  respectively. Similarly, both sides of 1 1
2 1 1 2 1 2, ( ) , ( )− −× × ×X X X X X X  

also have random matrices. (3) Using recursive method, we show that arbitrary arithmetic 

operations over ,i zt,iY P  cannot remove the matrices of both sides of generating result. □ 

 

3.3 Cryptanalysis 
In this subsection, we describe easily computable quantities in our construction, and then 

analyze possible attacks for our construction using these quantities.  

Easily computable quantities. Because ,i zt,iY P  encode the same level-0 encoding ie , for 

arbitrary a b, ,i j t τ∈  with i j≠ , one can compute , ,i j tV  as follows: 

, ,

1

1

1

( )

( ) ( )( ( )) ( ( ) ( ))

( ( )) ( )

i j t

t i zt,j j zt,i q

j j j jt t i i i i

q

t t i j i j j i j i j i i j q

Rot Rot Rot

Rot Rot

κ

κ κ
κ

κ

−

−

−

⎡ ⎤= × − ×⎣ ⎦

⎡ ⎤+ ++ + +
= ⋅ × − ×⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= + ⋅ + + − − −⎣ ⎦

V

Y Y P Y P

z b g e a g ea g e a g e z b g eT S
z z g z g

T a g e a b g a e b e a b g a e b e S

. 
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According to our parameter setting, it is easy to see that , ,i j tV  is not reduced modulo q , 

namely , , , ,i j t i j tq
⎡ ⎤ =⎣ ⎦V V . Thus, one can obtain many , ,

n n
i j t

×∈V ]  using different combinations 

a b, ,i j t τ∈ . These , ,i j tV ’s have the form , , , , , ,( ( ))i j t i j t i j tRot= +V T r g e S . 

Compute the norm of ideal. By computing the determinant , ,det( )i j tV  of , ,i j tV , one can 

obtain the norm of the ideal t t+a g e  using GCD algorithm. When knowing the norm p , one 

factors 
1

1 ( ) modnn
ii

x x pα
=

+ = −∏ , and solves the generator of the principal ideal lattice 

t t+a g e  generated by two element ( , )ip α . If t t+a g e  can be solved, then our construction is 

broken. This is because given 1 1+a g e  and 2 2+a g e , one solves the matrix T  by 

1 1 1
, ,1 , ,2 1 1 2 2( ) (( )( ) )i j i j

− − −= + +V V T a g e a g e T . Using the same method, one also obtains S . 

However, currently there exists no efficient algorithm which solves the generator of principal ideal 

lattice for large dimension n . 

Eigenvalue attack [CHL+14]. Because , , , , , , , ,( ( ))i j t i j t i j t i j tRot= + =V T r g e S TE S , one can 

generate 1 1 1
, , ', ', ' , , ', ', '( ) ( )i j t i j t i j t i j t

− − −=V V TE E T  and 1 1 1
', ', ' , , ', ', ' , ,( ) ( )i j t i j t i j t i j t

− − −=V V S E E S . 

However, the matrices 1
, , ', ', '( )i j t i j t

−E E  and 1
', ', ' , ,( )i j t i j t

−E E  are not diagonal. Therefore, the 

attack in [CHL+14] cannot work for this case. 

Lattice reduction attack. Given , ,i j tV , one can obtain the bases of the lattices generated by 

T  and S . However, at present there exists no efficient algorithm, which computes T  and S  

for large dimension n . Without loss of generality, assume that 1' = ⋅T T C  and 2' = ⋅S C S  are 

the bases of the lattices generated by T  and S , where 1 2,C C  are unimodular matrices, one can 

compute 1 1 1 1
, , , , 1 , , , , 2( ) ( ) ( ) ( ) ( ( ))( )i j t i j t i j t i j t' ' ' Rot− − − −= = +V T V S C r g e C . However, one cannot 

remove the matrices 1
1( )−C , 1

2( )−C  of both sides of , ,( )i j t 'V . Thus, one cannot get the principal 

ideal , , , ,i j t i j t+r g e  in , ,i j tV . 

Lattice reduction attack for level-1 encoding. Because 
1
( )i ii q
d

=
⎡ ⎤= ⋅⎣ ⎦∑U Yτ

, then the 

entry a b, , ,1
, ,j t i i j ti q

U d Y j t nτ

=
⎡ ⎤= ⋅ ∀ ∈⎣ ⎦∑ . Thus, , , ,, ,j t i j tU Y q  consist of a generalizing subset 

sum problem. However, for large τ  there exist no efficient algorithm, which solves this 

generalizing subset sum problem. Moreover, it is easy to verify that one cannot also use linear 
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equation system to solve a b,id i τ∈  since 2nτ λ> + . 

4 Construction of asymmetric multilinear maps 

Although our symmetric construction does not give level-1 encoding of zero, one can also 

generate level-κ  encodings of zero by using the public parameters. In this section, we describe a 

construction of asymmetric multilinear maps to avoid any non-zero level encoding of zero. 

4.1 Construction 

In our symmetric construction, the level- κ  encodings of zero is generated by 
cross-multiplying the level-1 encoding and the zero-testing parameter in the public parameters. If 
in a scheme, its level-1 encoding cannot multiply by the zero-testing parameter belonging to same 
group, then the level-κ  encodings of zero cannot be generated. Therefore, the starting point of our 
work is to construct an asymmetric version, which assigns “index set” to the encodings and the 
zero-testing parameters in the public parameter. As a result, an encoding and a zero-testing 
parameter cannot be multiplied if their “index sets” are not disjoint. Our asymmetric construction is 
as follows: 
Instance generation: 1 1(par ) InstGen (1 ,1 )λ κ←  

(1) Choose a prime q ; 

(2) Choose 
,nD←g

] σ
 such that 1 2n− ≤g ; 

(3) Choose a b a b, , ,, ' ,
, , , ,n nj i j i j i q

D D j i
σ

κ τ← ← ∈ ∈a e b
] ]

; 

(4) Choose a random element j qR←z ， a bj κ∈  such that 1
j qR− ∈z ; 

(5) Choose matrices 
,

, {0,1,..., }n nj D j
σ

κ×← ∈S
]

 such that a b1 ,n n
j q j κ− ×∈ ∈S ] ; 

(6) Set a b*
1

( ) / ,j t jt
jκ κ

=
= ∈∏z z z , and , {0,1,..., 1}j j j κ= ∈ −T S , 1( )κ κ

−=T S . 

For a bj κ∈ , a bi τ∈ , 

set { }
, 1

1, ( )j i j,i
j jj i

j q

Rot −
−

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦

a g e
Y T T

z
, { }

*
1

1,

( )
( )j j,i j,i

j jj i

q

Rot −
−

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦

z b g e
P T T

g
. 

(7) Output the public parameter { } { }{ } a b a b{ }1 , ,par , , , ,j i j iq j iκ τ= ∈ ∈Y P . 

Generating encodings with index { }j : { } { }1enc(par , , )j j←U d . 

Given 
, *

D τ σ
←d

]
, an index-{ }j encoding of hidden 

1
( )j i j,ii

= dτ

=
⋅∑e e  is computed as 

{ } { }
1

1,1
( ) ( )j j

i j jj j ii q j q

d Rotτ −
−=

⎡ ⎤+⎡ ⎤= ⋅ = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∑

a g e
U Y T T

z
, where ,1

( )j i j ii
dτ

=
= ∑a a . 

Adding encodings with index a b a b\S j t j= + : 1 ,1 ,add(par , , , )S S S m←U U U" . 

Given m  encodings ,S lU , a bl m∈  with index S , their sum ,1
= m

S S ll q=
⎡ ⎤
⎣ ⎦∑U U  is an 

encoding with index S . 
Multiplying encodings: { } { }1 11 1mul(par , , , , )S j j tS + +←U U U" . 
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Given t  encodings { }jU  for a b a b1 1\j S j t j∈ = + , their product 

{ } { }1 11=S j j t q+ +
⎡ ⎤× ×⎣ ⎦U U U"  is an encoding with index a b a b1 1\S j t j= + . 

Zero testing: 1isZero(par , )SU . 

For simplicity, we assume a b1S κ= − . To determine whether SU  with index S  is an 

encoding of zero, { }S qκ
⎡ ⎤×⎣ ⎦V = U P  is computed in n n

q
×]  and checked whether V  is short: 

{ }
3/4

1

1 if
isZero(par , )

0 otherwise

S q
S

qκ
⎧ ⎡ ⎤× <⎪ ⎣ ⎦= ⎨
⎪⎩

U P
U , 

where { } { }1 i ,ii
rτ

κ κ=
= ∑P P  and 

,
D τ σ

←r
]

. 

For a b1j S κ∈ = − , assume { }
1

1 ( )j j
j jj

j q

Rot −
−

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦

a g e
U T T

z
, then we have 

{ }
1 1

1 1*1
= = ( )( )S jj q

q

Rotκ
κ

κ

− −
−=

⎡ ⎤+⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∏ ag eU U T T

z
, 

where 
1

1
= jj

κ −

=∏e e , 
1

1
( ( ) ) /j jj

κ−

=
= + −∏a a g e e g . 

Since { } { }

*
1

11

( )( )( )i ,ii
q

r Rotτ κ
κ κκ κ

−
−=

⎡ ⎤+
= = ⎢ ⎥

⎣ ⎦
∑ z bg cP P T T

g
 , where 

1
= i ,ii

rτ
κ=∑c e , 

,1 i ii
rτ

κ=
= ∑b b , then we have 

{ }

*
1

0 1 1*

1
0

0

( )( )( ) ( )

( ( ))( )

( ( ))

S q

q

q

q

Rot Rot

Rot

Rot

κ

κ
κ κ κ

κ

κ

κ

−
− −

−

⎡ ⎤×⎣ ⎦

⎡ ⎤++
= ⋅⎢ ⎥
⎣ ⎦

⎡ ⎤+
= +⎢ ⎥
⎣ ⎦

⎡ ⎤+
= +⎢ ⎥
⎣ ⎦

V = U P

z bg cag eT T T T
z g

ag eT bg c T
g

ag eS bg c S
g

. 

If SU  is an encoding of zero, namely mod I=e 0 , then V  is not reduced modulo q  

and V  is small. Otherwise, mod I≠e 0 , and ( )
q

Rot q⎡ ⎤+
≈⎢ ⎥

⎣ ⎦

ag e
g

 by lemma 4 in 

[GGH13]. Hence, { }κP  is a zero testing parameter of SU  with index a b1S κ= − . 

For a b,1S j j κ= ≤ < , one can determine whether SU  is an encoding of zero. Without loss 

of generality, assume 
1SU  is an arbitrary encoding with index a b a b1 \ 1S jκ= + , and 

{ } { }1 11 ij j ,ii
rτ

+ +=
= ∑P P  is a random zero-testing parameter for SU . Then 
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{ } 11S Sj q+
⎡ ⎤× ×⎣ ⎦V = U P U  is computed and checked 3/4q<V .  

Similarly, for other index a b a b a b1 1\ ,S j t j S κ= + ⊂ , one can determine whether SU  is an 

encoding of zero by using { } a b1,t t j∈P . 

Extraction: 1ext(par , )Ssk ← U . 

Assume a b1S κ= − . Given an index- S encoding SU , SU  is multiplied by a zero-testing 

parameter { }κP , where { } { }1 i ,ii
rτ

κ κ=
= ∑P P , 

,
D τ σ

←r
]

 and (log ) / 4q λ−  most-significant 

bits of each entry of the n n× -matrix { }S qκ
⎡ ⎤×⎣ ⎦U P  is collected: 

{ }1ext(par , ) Extract(msb( ))S S qκ
⎡ ⎤= ×⎣ ⎦U U P . 

For arbitrary valid index- S  encoding SU , one can extract bit string using the similar 
method. 
Remark 4.1 (1) Because both sides of them are multiplied by random matrices in our asymmetric 
construction, the encodings that have same index can be added, and the encodings that have 
adjacent index can be multiplied. (2) One cannot generate any level non-trivial encoding of zero 
using the public parameter in our construction. Although { },j iY , { },j iP  encode the same coset of 

/R I , they cannot be cross-multiplied since { } { } { } { }1 2 2 1, , , ,j i j i j i j iY P - Y P  is not an encoding of zero. 

(3) When constructing one-round multipartite Diffie-Hellman key exchange using our asymmetric 

scheme, the j -th party generates an index-{ }j  encoding { } { },1
( )j,ij j ii q
dτ

=
⎡ ⎤= ⋅⎣ ⎦∑U Y  and the 

corresponding zero-testing parameter { }

*
, 1

, 11

( )
( )( )j j i j,i

j i j jj i
q

d Rotτ −
−=

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦
∑

z b g e
P T T

g
. Given 

{ } { }1 ,..., κU U , the j -th party computes { } { } { } { }1 1 1j j j qκ− +
⎡ ⎤= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦V U U P U U  and extracts 

the common bit string by using Extract(msb( ))V . 
4.2 Security 

Currently, we cannot also reduce the security of our asymmetric construction to classical 
hardness assumptions. The security of our construction relies on new hardness assumption. 

Consider the following security experiment: 
(1) 1 1par InstGen (1 ,1 )λ κ← . 

(2) For 1j =  to κ : 

     Sample 
, *

,j j D τ σ
←r w

]
; 

     Generate { }j -index encoding of hidden , ,1j j i j ii
wτ

=
= ∑d e : 

{ } { }, ,1 j ij j ii q
wτ

=
⎡ ⎤= ⎣ ⎦∑U Y . 

(3) Set a b { }
1

1 1 jj q

κ

κ

−

− =
⎡ ⎤= ⎣ ⎦∏U U . 
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(4) Set a b { }1C D qκ κ−
⎡ ⎤= = ⎣ ⎦V V U P , where { } { }, ,1 i ii q

wτ
κκ κ=

⎡ ⎤= ⎣ ⎦∑P P . 

(5) Set a b { }1 _R r qκ κ−
⎡ ⎤= ⎣ ⎦V U P , where { } { },_ ,1 ir ii q

rτ
κκ κ=

⎡ ⎤= ⎣ ⎦∑P P . 

Definition 4.2 (ext-GCDH/ext-GDDH). According to the above experiment, the ext-GCDH and 

ext-GDDH are defined as follows: 

Extraction GCDH (ext-GCDH): Given { } { }{ }1 1par , , , κU U" , output an extraction encoding 

n n
q
×∈W ]  such that [ ] 3/4

C q
q

∞
− ≤V W . 

Extraction GDDH (ext-GDDH): Given { } { }{ }1 1par , , , ,κU U V" , distinguish between 

{ } { }{ }1 1par , , , ,ext GDDH DD κ− = U U V"  and { } { }{ }1 1par , , , ,ext RAND RD κ− = U U V" . 

 

5 Commutative Variant 
In our symmetric/asymmetric construction, the dimension n  requires to be large enough to 

guarantee security and 2nτ λ> +  is the lowest requirement to avoid algebraic equation attack. As 
a result, the public parameter size of our construction is larger than that of GGH. To decrease the 
public parameter size, we use polynomial ring instead of the ring of integers. Moreover, we will also 
use polynomial drowning method of Rényi divergence which is used in the security analysis of 
[LLS14]. 

We use [ ]/ 1y mR y y= < + >]  and [ ]/ 1y m
q qR y y= < + >]  instead of ]  and q]  for 

our symmetric/asymmetric constructions. It is easy to verify that our constructions are still correct 
under this case. 

Let λ  be the security parameter, (1)Om λ=  and n  constant number (e.g. 2, 4,8n = ), 

and 2 1nτ = + . Let [ ]/ 1yx y nR R x x= < + >  and [ ][ ]/ 1 1yx m n
q qR y x y x= < + >< + >] . In 

this section, we let a  denote the infinity norm of 1( ,..., )n=v a a  for yxR∈a . 
For completeness, we adaptively describe the commutative variant of the symmetric 

construction in Section 3.1 as follows: 
Instance generation: 2 2(par ) InstGen (1 ,1 )λ κ← . 

(1) Pick a prime q ； 

(2) Choose 
,n mD
σ×←g

]
 over yxR  such that 1 2n− ≤g , where 

1 [ ][ ]/ 1 1m ny x y x− ∈ < + >< + >g _ ; 

(3) Choose a b, *
, , ,n mi i i D i

σ
τ×← ∈a b e

]
 over yxR ; 

(4) Choose randomly qR←z  over yx
qR  such that -1

qR∈z ; 

(5) Choose matrices 
, 'n n mD
σ× ×←T

]
, 

, 'n n mD
σ× ×←S

]
 over ( )y n nR ×  so that 1 ( )y n n

qR− ×∈T ; 

(6) For a bi∈ τ , set 1( )y i i
i

q

Rot −+⎡ ⎤= ⎢ ⎥⎣ ⎦

a g eY T T
z

 and ,
( )( )y i i

zt i
q

Rot
κ⎡ ⎤+

= ⎢ ⎥
⎣ ⎦

z b g eP T S
g
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over ( )y n n
qR × ; 

(7) Output the public parameter { } a b{ }2par , , ,i zt,iq i τ= ∈Y P . 

Generating level-1 encoding: 2enc(par ,1, )i←U d . 

Given τ   elements 
, *mi D
σ

←d
]

, then 
1
( )i ii q

τ

=
⎡ ⎤= ⋅⎣ ⎦∑U d Y  is a level-1 encoding of 

hidden level-0 encoding 
1
( )i ii

= τ

=
⋅∑e d e . 

Adding encodings: 2 1add(par , , , , )mj←U U U" . 

Given m  level- j  encodings lU , their sum 
1

= m
ll q=

⎡ ⎤
⎣ ⎦∑U U  is a level- j  encoding. 

Multiplying encodings: 2 1mul(par ,1, , , )κ←U U U" . 

Given κ  level-1 encodings jU , their product 
1

= jj q

κ

=
⎡ ⎤
⎣ ⎦∏U U  is a level-κ  encoding. 

Zero testing: 2isZero(par , )U .  

To determine whether 1( )
q

Rot κ
−+⎡ ⎤= ⎢ ⎥⎣ ⎦

rg eU T T
z

 is a level- κ  encoding of zero, 

[ ]zt q
⋅V = U P  is computed in ( )y n n

qR ×  and checked whether V  is short: 

   
[ ] 3/41 if

isZero(par, )
0 otherwise

zt q
q⎧ ⋅ <⎪= ⎨

⎪⎩

U P
U , where 

1zt i zt,ii

τ

=
= ⋅∑P r P , 

,mi D
σ

←r
]

. 

Extraction: 2ext(par , , )isk ← d U . 

Given a level- κ  encoding U , U  is multiplied by 
1
( )zt i zt,ii

τ

=
= ⋅∑P d P  and 

(log ) / 4q λ−  most-significant bits of each coefficient of each entry in [ ]zt q
⋅U P  is collected: 

[ ]2ext(par , , ) Extract(msb( ))i zt q
= ⋅d U U P . 

Similarly, we can construct the commutative variant of our asymmetric multilinear maps in 

Section 4.1. 

6 Simplified variant of asymmetric construction 
In this section, we give a simplified variant of our asymmetric multilinear maps using 

polynomial ring, instead of the ring of integers, to reduce the public parameter size. In fact, our 
simplified variant sets i =S I  for our asymmetric construction in Section 4.1. 

Our simplified asymmetric construction is an asymmetric variant in [GGH13]. In a sense, our 
asymmetric simplified variant is an extension of the multilinear Jigsaw puzzles [GGH+13a]. The 
main difference is that our construction modifies the zero-testing parameter, which also encodes the 
hidden plaintext encoded by the level-1 encoding. Hence, in our construction, one can generate 
level- 1  encoding of hidden plaintext, which can be used according to the corresponding 
zero-testing parameter. Moreover, the aim setting , ,nj i q

D←b
]

 is to guarantee that one cannot 
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generate any level nontrivial encoding of zero for our asymmetric simplified variant. To reduce the 
public parameter size, we use polynomial drowning method of Rényi divergence which is used in 
the security analysis of [LLS14] and set 2=τ . 

For completeness, we give our simplified variant as follows: 
Instance generation: 3 3(par ) InstGen (1 ,1 )λ κ←  

(1) Choose a prime q ; 

(2) Choose 
,nD←g

] σ
 such that 1 2n− ≤g ; 

(3) Choose a b a b, , ,, ' ,
, , , ,n nj i j i j i q

D D j i
σ

κ τ← ← ∈ ∈a e b
] ]

; 

(4) Choose random element j qR←z ， a bj κ∈  such that 1
j qR− ∈z ; 

(5) Set a b*
1

( ) / ,j t jt
jκ κ

=
= ∈∏z z z . For a bj κ∈ , a bi τ∈ , 

set { }
,

,
j i j,i

j i
j q

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦

a g e
y

z
, { }

*

,

( )j j,i j,i
j i

q

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦

z b g e
p

g
; 

(6) Output the public parameter { } { }{ } a b a b{ }3 , ,par , , , ,j i j iq j iκ τ= ∈ ∈y p . 

Generating encodings: { }3enc(par , , )i j←u d . 

Given a b, *
,ni D i

σ
τ← ∈d

]
, an index- { }j  encoding of hidden 

1
( )j i j,ii

= τ

=
⋅∑e d e  is 

computed as { } { },1
( ) j j

ij j ii q j q

τ

=

⎡ ⎤+⎡ ⎤= ⋅ = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∑

a g e
u d y

z
, where ,1

( )j i j ii

τ

=
= ⋅∑a d a . 

Adding encodings: 3 ,1 ,add(par , , , )S S S m←u u u" . 

Given m  encodings ,S lu , a bl m∈  with index a bS κ⊂ , their sum ,1
= m

S S ll q=
⎡ ⎤
⎣ ⎦∑u u  is 

an encoding with index S . 
Multiplying encodings: 

1 2 1 23mul(par , , )S S S S←u u u∪ . 

Given  encodings 
1Su ,

2Su  with index a b1 2 1 2, ,S S S Sκ⊂ =∅∩ , their product 

1 2 1 2
=S S S S q
⎡ ⎤×⎣ ⎦u u u∪  is an encoding with index 1 2S S S= ∪ . 

Zero testing: 3isZero(par , )Su . 

Assume a b1S κ= − . To determine whether Su  with index S  is an encoding of zero, 

{ }S qκ
⎡ ⎤×⎣ ⎦v = u p  is computed in qR  and checked whether v  is short: 

{ }
3/4

2

1 if
isZero(par , )

0 otherwise

S q
S

qκ
⎧ ⎡ ⎤× <⎪ ⎣ ⎦= ⎨
⎪⎩

u p
u , 

where { } { }1 i ,ii

τ
κ κ=
= ⋅∑p r p  with 

,ni D
σ

←r
]

. 

Extraction: 3ext(par , )Ssk ← u . 

Given an encoding Su  with index [1, 1]S κ= − , Su  is multiplied by a zero-testing 

parameter { }κp  with { } { }1 i ,ii

τ
κ κ=
= ⋅∑p r p , 

,ni D
σ

←r
]

, and (log ) / 4q λ−  most-significant 
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bits of each coefficient of { }S qκ
⎡ ⎤×⎣ ⎦u p  is collected: 

{ }3ext(par , ) Extract(msb( ))S S qκ
⎡ ⎤= ×⎣ ⎦u u p . 

Lemma 6.1 For the simplified asymmetric variant, one cannot generate a quantity that is not 
reduced modulo q  from the public parameters. 

Proof. Because { },j iy , { },j ip  with same index { }j  encode the same coset '
,j i j,ie I= +e  of 

/R I , we have 

{ } { } { } { }1 2 2 1

1 2 1 2 2 1 2 1 2 1 1 2

, , , ,

*
, , , ,

*

( )

j i j i j i j i q

j j i j,i j i j,i j,i j,i j i j,i j i j,i j,i j,i

j q

j j

j q

⎡ ⎤= −⎣ ⎦

⎡ ⎤+ + − − −
= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

u y p y p

z a b g a e b e a b g a e b e
z

z b
z

. 

To cancel the denominator jz  of u , one must multiply u  by some { }

*

,j t
t

q

t j
⎡ ⎤

= ≠⎢ ⎥
⎢ ⎥⎣ ⎦

z b
p

g
. 

However, by , ,nj i q
D←b
]

 we know j q>b  and t q>b . Thus, { }t q
'⎡ ⎤= ⋅ ⋅⎣ ⎦v u u p  

must be reduced modulo q , where 'u  is an arbitrary rational function of { },j iy , { },j ip . 

On the other hand, since { }1 ,j iy , { }2 ,j iy  with different index encode the different hidden coset 

1 1

'
,j i j ,ie I= +e , 

2 2

'
,j i j ,ie I= +e , one cannot obtain an encoding of zero using arithmetic operations 

for them. Similarly, one cannot obtain a zero-testing encoded zero from { }1 ,j ip , { }2 ,j ip .□ 

7 One round multipartite Diffie-Hellman key exchange 
In this section, we first describe the construction of one round multipartite Diffie-Hellman key 

exchange protocol using commutative variant and asymmetric variant of ideal lattices. Then we 

optimize and implement one round multipartite Diffie-Hellman key exchange protocol.  

7.1 Construction 

7.1.1 Construction based on commutative variant 

We describe the construction of one round multipartite Diffie-Hellman key exchange using our 

symmetric commutative variant as follows: 

(1 ,1 )NλSetup . Output 2 2(par ) InstGen (1 ,1 )λ κ←  as the public parameters. Let 1N κ= + , 

{ } a b{ }3par , , ,i zt,iq i τ= ∈Y P  

2(par , , )zt jPublish p . The j -th party samples a b, , *
,mj i D i

σ
τ← ∈d

]
 , computes and 
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publishes 
1
( )j j,i ii q

τ

=
⎡ ⎤= ⋅⎣ ⎦∑U d Y . 

{ }2 ,(par , , , )j i k k j
j

≠
KeyGen d U . The j -th party computes j kk j≠

=∏C U  and extracts the 

common secret key 2 , ,1
ext(par , , ) Extract(msb( ( ) ))j i j j j i zt,ii q

sk τ

=
⎡ ⎤= = ⋅ ⋅⎣ ⎦∑d C C d P . 

Theorem 7.1 Suppose the ext-GCDH/ext-GDDH defined in Section 3.2 is hard, then our 

construction is one round multipartite Diffie-Hellman key exchange protocol. 

Proof. The proof is similar as Theorem 2 in GGH13.□ 

7.1.2 Construction based on simplified asymmetric variant 

We describe the construction of one round multipartite Diffie-Hellman key exchange using our 
simplified asymmetric variant as follows: 

(1 ,1 )NλSetup . Output 3 3(par ) InstGen (1 ,1 )λ κ←  as the public parameters. Let N κ= , 

{ } { }{ } a b a b{ }3 , ,par , , , ,j i j iq j iκ τ= ∈ ∈y p  

2(par , )jPublish . The j -th party samples a b, , *
,nj i D i

σ
τ← ∈d

]
 , computes and publishes 

{ } { },1
( )j,ij j ii q

τ

=
⎡ ⎤= ⋅⎣ ⎦∑u d y . 

{ }{ }3 ,(par , , , )j i k k j
j

≠
KeyGen d u . The j -th party computes { } a b { },

jS jkk j
S jκ

≠
= = −∏u u  

and extracts the common secret key 3 ,ext(par , , )
jj i Ssk = d u . 

Theorem 7.2 Suppose the ext-GCDH/ext-GDDH defined in Section 4.2 is hard, then our 

construction is one round multipartite Diffie-Hellman key exchange protocol. 

Proof. The proof is similar as Theorem 2 in GGH13.□ 

7.2 Implementation 

7.2.1 Implement the construction based on the commutative variant 

We implement our one round multipartite Diffie-Hellman key exchange protocol using NTL 

[Sho09]. 

Setting parameters. Let λ  be the security parameter, ( )m O λ= , 2, 4n = , 5,17τ = , 

1 7N κ= + = . Let [ ]/ 1y mR y y= < + >] , [ ]/ 1yx y nR R x x= < + > , 

[ ][ ]/ 1 1yx m n
q qR y x y x= < + >< + >] . When setting concrete parameters, the coefficients 

, , ,, , , y
j i j i j i j R∈g a b e  in , , , yx

i i i R∈g a b e  are satisfied to , , , 1j i j i j i j= = = =g a b e , 

the entry of the matrices , ( )y n nR ×∈S T  is satisfied to , , 3i j i j= <S T , and ,S T  are 



 

  20

invertible over qR . Random sampling ( )y
j R τ∈d  is satisfied to , 1j i =d . After sampling 

these parameters, we first compute 1
,1

( ( ) )j i ii
Rot dτ κ +

=∑V = T g a S  over ( )y n nR ×  and 

a b{ }1 1 ,, max | ,i jl q q i j n= = ∈V , then set , (20 25)l δ δ+ ≤ <  as the bit length of modulo 

q . When extracting common bits, we only extract one bit from each coefficient. As a result, the 

probability that the common bits for all parties are inconsistent is about 20(2 )O − . 

Table 1: The parameters of implementing the protocol based on the commutative variant 

n  m  τ  l  δ  |q| pk size 
Setup 

time 

Publish 

time 

Key generation 

time 

Security 

estimation

2 128 5 70 20 90 167KB 18.1s 0.1s 0.17s 50 

2 256 5 79 21 100 342KB 84.2s 0.2s 0.33s 60 

2 512 5 88 22 110 709KB 263.1s 0.4s 2.86s 70 

2 1024 5 97 23 120 1518KB 1520.5s 1.0s 11.5s 80 

4 64 17 70 20 90 972KB 20.9s 0.2s 0.21s 50 

4 128 17 79 21 100 2198KB 100.4s 0.4s 1.23s 60 

4 256 17 88 22 110 4814KB 330.5s 1.0s 5.87s 70 

4 512 17 97 23 120 10325KB 1650.5s 2.0s 92.8s 80 

 

Remark 7.3. (1) All algorithms run over single processor (Intel Xeon E5620 4-core CPU, 2.4GHz). 

In setup stage, solving 1−g , 1−z , 1−T  is the most cost time computation. (2) q  denotes the bit 

length of q . (3) Security estimation is the time computing approximate short vector of a lattice 

using BKZ [CN11].  

7.2.2 Implement the construction based on the simplified asymmetric variant 

Setting parameters. Let λ  be the security parameter, ( )n O λ= , 2τ = , 7N κ= = . Let 

[ ]/ 1nR R x x= < + > , [ ]/ 1n
q qR x x= < + >] . When choosing the parameters, their coefficients 

, , ,, , ,j i j i j i j R∈g a b e  in , , ,i i i R∈g a b e  are satisfied to , , , 1j i j i j i j= = = =g a b e . 

Random sampling ( )j R τ∈d  is satisfied to , 1j i =d . After choosing these parameters, we first 

compute ,1
( )j i ii

τ κ
=∑v = g d a  over R  and a b{ }1 1, max |il q q i n= = ∈v , then set 

, (20 30)l δ δ+ ≤ <  as the bit length of modulo q . When extracting common bits, we only 
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extract one bit from each coefficient. As a result, the probability that the common bits for all parties 

are inconsistent is about 20(2 )O − . 

Table 2: The parameters of implementing the protocol based on the simplified asymmetric variant 

n  l  δ  |q| pk size Setup time Publish time
Key generation 

time 

Security 

estimation

256 73 20 93 210KB 17.1s 0.05s 0.3s 50 

512 84 21 105 469KB 228.1s 0.10s 1.1s 60 

1024 92 23 115 1.0MB 1750.8s 0.30s 2.8s 70 

2048 103 23 126 2.1MB 15682.6s 0.65s 5.8s 80 

 

Remark 7.4. Because { } { } { } { }1 2 2 1

*

, , , ,
j j

j i j i j i j i q
j q

⎡ ⎤
⎡ ⎤− = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

z b
u = y p y p

z
 by Lemma 6.1, u  must be 

multiplied by some { } ,t t j≠p  to remove jz .  Assume { }

* *
j t

t
j

' ⋅ =
z z r

v = u p
z

. Under this case, 

one requires to multiply two times for almost every index encoding to cancel numerator * *
j tz z . By 

our setting of modulo q , we have 2
,1

( )j i ii
qτ κ

=
>∑g d a . Thus, setting , 1i j =b , one cannot 

still obtain a  nontrivial quantity which is not reduced modulo q . 

8 Conclusion and open problem 
In this paper, we describe an improved construction of multilinear maps from ideal lattices, 
multiplying by matrices the level-1 encoding of non-zero. The security of our construction depends 
upon new hardness assumption, which is seemly closely related to hardness problems of lattices. 
We also describe an asymmetric construction to avoid any nontrivial encoding of zero. Furthermore, 
we implement one-round multipartite Diffie-Hellman key exchange protocol to decrease the public 
parameter size according to the commutative variant and the simplified asymmetric variant. 

The security of all current schemes relies on hardness assumption, which cannot be reduced to 
classical hardness problem. An open problem is to reduce the security of our construction of 
multilinear maps to classical hardness problem. 
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