

 1

Multilinear Maps Using Ideal Lattices without Encodings of Zero

Gu Chunsheng
School of Computer Engineering, Jiangsu University of Technology, Changzhou 213001, China

E-mail: chunsheng_gu@163.com

January 11, 2015

Abstract. Recently, Garg, Gentry and Halevi (GGH) described the first candidate multilinear
maps using ideal lattices. However, there exists zeroizing attack in the GGH construction. We first
describe an improved construction of multilinear maps from ideal lattices, by multiplying matrices
on both sides of the level-1 encoding of non-zero element. The security of our construction depends
upon new hardness assumption, which is seemingly closely related to hardness problems of lattices.
Then, we describe an asymmetric construction to avoid any nontrivial encoding of zero. Using our
constructions over polynomial ring instead of integer ring, we implement one-round multipartite
Diffie-Hellman key exchange protocol to decrease the public parameter size.
Keywords. Multilinear maps, Ideal Lattices, Diffie-Hellman key exchange, Zeroizing attack

1 Introduction

Boneh and Silverberg [BS03] first introduced the notion of multilinear maps, which are an
extension of bilinear maps. There exist many applications on bilinear maps, such as [SOK00, Jou00,
BF03, Sma03] and multilinear maps [BS03, RS09, PTT10, Rot13]. However, different from bilinear
maps, which come from pairing of elliptic curves, constructing multilinear maps is a long-standing
open problem. Recently, Garg, Gentry, and Halevi (GGH) described the first plausible construction
of multilinear maps that use ideal lattices [GGH13]. Their multilinear maps, whose encodings were
randomized with noise and bounded with a fixed maximum degree, were different from the ideal
multilinear maps defined by Boneh and Silverberg. Following the basic framework of GGH, Coron,
Lepoint, and Tibouchi [CLT13] (CLT) described a new and relatively practical construction that
works over integers instead of ideal lattices, and is implemented using heuristic optimization
techniques. However, Cheon, Han, Lee, Ryu, and Stehle had broken the CLT construction using
level-1 encodings of zero. To avoid this zeroizing attack for CLT, Garg, Gentry, Halevi and
Zhandry [GGH+14], and Boneh, Wu and Zimmerman [BWZ14] proposed two candidate fixes of
multilinear maps over the integers. However, Coron, Lepoint, and Tibouchi showed that two
candidate fixes of CLT can be defeated in polynomial time using extensions of the Cheon et al.’s
attack. Moreover, to improve the efficiency of GGH, Langlois, Stehlé and Steinfeld[LSS14]
constructed GGHLite, in which the re-randomization process of GGH was reanalyzed by applying
the Rényi divergence. Recently, Hiromasa, Abe and Okamoto [HAO14] described a new
construction of multilinear maps from fully homomorphic encryption (FHE) proposed by Gentry,
Sahai, and Waters (GSW) [GSW13b]. However, the security of the construction [HAO14] is not
reduced to LWE, although the security of the GSW’s FHE is based on the learning with erros (LWE)
assumption. At the same time, Gentry, Gorbunov and Halevi [GGH14] described a construction of
graph-induced multilinear maps from lattices using approximate eigenvector, which encodes LWE
samples in short square matices of higher dimensions. However, the security of the construction
[GGH14] is also not reduced to LWE. Moreover, the efficiency of the constructions based on LWE
is lower than previous schemes. Since the GGH construction is more efficient than other schemes,
we will focus on the improvement of GGH in this paper.

We first recall the GGH construction of multilinear maps. GGH works in the polynomial rings
[]/ 1nR x x= < + >] and /qR R qR= . GGH chooses a secret short R∈g , and a secret

 2

random element qR∈z . I R= ⊂g is the principal ideal generated by g . Plaintexts are

cosets of /R I . To encode a coset Ie I= +e , set []/
q

c z with short Ie∈c as the encoding of

Ie . Because ,g z are hidden in GGH, the public parameters of GGH gave the encoding y of the

coset 1 I+ . So, the encoding of Ie is computed as []q
⋅e y . The GGH construction is a graded

encoding scheme, that is, e is a level- 0 encoding, []q
⋅e y a level-1 encoding, and i

q
⎡ ⎤⋅⎣ ⎦e y

a level- i encoding. It is easy to verify that encodings can both be added and multiplied if the
numerator norm remains smaller than q . For a level-κ encoding u , the GGH can determine
whether u is the encoding of zero using the zero-testing parameter ztp . This defines a degree-κ
multilinear map for level-1 encodings.

Our results. Our main contribution is to describe a construction of multilinear maps using
ideal lattices without encoding of zero. Our construction improves GGH in two aspects. First, we
modify the zero-testing parameter of GGH. The public parameters of our construction only give
some pairs of the encoding of non-zero element and the zero-testing parameter corresponding to this
non-zero element. Second, we multiply short matrices on both sides of the public parameters.
Unlike the GGH construction, our construction does not give level-1 encodings of “1” and “ 0 ”,
and cannot generate level-1 of given level- 0 encoding. Moreover, our construction only generates
a level-1 encoding for a hidden level-0 encoding, and the encoding in a sense is a deterministic
encoding without re-randomization process.

Our second contribution is to describe an asymmetric variant of our symmetric version. In our
symmetric construction, one can still compute hidden level-κ encoding of zero element even if our
public parameters do not give level-1 encodings of zero elements. This is because one can obtain
level- κ encoding of zero by cross-multiplying pairs of the encodings and the zero-testing
parameters in the public parameters. To avoid this case, our asymmetric variant will not support
multiplying the encoding by the zero-testing parameter with the same index set. Thus, one cannot
generate any level encoding of zero in our asymmetric version. Namely, unlike GGH, there exist no
easily computable quantities in our asymmetric construction.

Our third contribution is to describe the commutative variant of our constructions using
polynomial rings instead of the ring of integers. To guarantee the security of our construction, we
must make sure that the dimension of matrix in our construction is large enough. As a result, our
construction is less practical than previous schemes. Thus, we use matrices of small dimension, and
large degree polynomial ring to improve the efficiency of our constructions.

Our final contribution is to optimize and implement one-round multipartite Diffie-Hellman key
exchange protocol using our commutative variant of multilinear maps. Experimental results
demonstrate that our construction of multilinear maps from ideal lattices is practical.

Organization. We recall some background on multilinear maps in Section 2. In Section 3, we
describe our symmetric construction, and in Section 4 we provide asymmetric construction. In
Section 5, we construct the commutative variant of our constructions. In Section 6, we optimize and
implement one round multipartite Diffie-Hellman key exchange protocol. Finally, we draw
conclusion and open problem for this paper.

2 Preliminaries

2.1 Notations

We denote , ,] _ \ the ring of integers, the field of rational numbers, and the field of real

 3

numbers. We take n as a positive integer and a power of 2. Notation a bn denotes the set

{1,2, , }n" , and []q
a the absolute minimum residual system [] mod (/ 2, / 2]

q
a a q q q= ∈ − .

Vectors and matrices are denoted in bold, such as , ,a b c and , ,A B C . Let I be the identity
matrix. The j -th entry of a is denoted as ja , the element of the i -th row and j -th colomn of

A is denoted as ,i jA (or [,]A i j). Notation
∞

a (a for short) denotes the infinity norm of

a . The polynomial ring []/ 1nX x< + >] is denoted by R , and []/ 1n
q X x< + >] by qR .

The elements in R and qR are denoted in bold as well. Similarly, notation []q
a denotes each

entry (or each coefficient) (/ 2, / 2]ia p p∈ − of a .

2.2 Lattices and Ideal Lattices

An n-dimension full-rank lattice nL ⊂ \ is the set of all integer linear combinations

1

n
i ii

x
=∑ b of n linearly independent vectors n

i ∈b \ . If we arrange the vectors ib as the

columns of matrix n n×∈B \ , then { }: nL Z= ∈Bz z . We say that B spans L if B is a

basis for L . Given a basis B of L , we define () { | , : 1/ 2 1/ 2}n
iP i z= ∈ ∀ − ≤ <B Bz z \

as the parallelization corresponding to B . Let det()B denote the determinant of B .
Given R∈g , let I =< >g be the principal ideal in R generated by g , whose] -basis

is 1() (, ,...,)nRot x x −= ⋅ ⋅g g g g .

Given n∈c , 0σ > , the Gaussian distribution of a lattice L is defined as L∀ ∈x ，

, , , ,() / ()LD Lσ σ σρ ρ=c c cx , where
2 2

, () exp(/)σρ π σ= − −c x x c , , ,() ()
x L

Lσ σρ ρ
∈

=∑c c x .

In the following, we will write
, ,0nD
σ]

 as
,nD
σ]

. We denote a Gaussian sample as ,LD σ←x

(or ,ID σ←d) over the lattice L (or ideal lattice I).

2.3 Multilinear Maps

Definition 2.1 (Multilinear Map [BS03]). For 1κ + cyclic groups 1,..., , TG G Gκ of the same

order q , a κ -multilinear map 1: Te G G Gκ× × →" has the following properties:

(1) Elements { }
1,...,j j j

g G
κ=

∈ , index a bj κ∈ , and integer qa∈] hold that

1 1(, , , ,) (, ,)je g a g g a e g gκ κ⋅ = ⋅" " "

(2) Map e is non-degenerate in the following sense: if elements { }
1,...,j j j

g G
κ=

∈ are

generators of their respective groups, then 1(, ,)e g gκ" is a generator of TG .

Definition 2.2 (κ -Graded Encoding System [GGH13]). A κ -graded encoding system over R
is a set system of a b{ }() : ,jS S R R jα α κ= ⊂ ∈ ∈ with the following properties:

 4

(1) For every index a bj κ∈ , the sets { }() :jS Rα α ∈ are disjoint.

(2) Binary operations ‘+ ’ and ‘− ’ exist, such that every 1 2,α α , every index a bj κ∈ , and

every 1()
1 ju S α∈ and 2()

2 ju S α∈ hold that 1 2()
1 2 ju u S α α++ ∈ and 1 2()

1 2 ju u S α α−− ∈ , where

1 2α α+ and 1 2α α− are the addition and subtraction operations in R respectively.

(3) Binary operation ‘× ’ exists, such that every 1 2,α α , every index a b1 2,j j κ∈ with

1 2j j κ+ ≤ , and every 1

1

()
1 ju S α∈ and 2

2

()
2 ju S α∈ hold that 1 2

1 2

()
1 2 j ju u S α α×

+× ∈ , where 1 2α α×

is the multiplication operation in R and 1 2j j+ is the integer addition.

3 Construction of symmetric multilinear maps

In this section, we first describe the symmetric construction of multilinear maps. Then we give
new hardness assumption and some known cryptanalysis for our construction.

Setting the parameters. Because our construction uses the GGH construction as the basic
component, our parameter setting is set as that of GGH to conveniently describe and compare. Let
λ be the security parameter, κ the multilinearity level, n the dimension of elements of R .
Concrete parameters are set as nσ λ= , 1.5nσ λ′ = , 2λσ ∗ = , 8 ()2 Oq nκλ κ≥ , i 2()n O κλ> ,

2()O nτ = .

3.1 Construction

The starting point of our construction is to remove level-1 encodings of zero in the public
parameters. We modify the zero-testing parameter of GGH so that the public parameters in our
construction only include some pairs of the level-1 encoding of non-zero element and the
zero-testing parameter corresponding to this non-zero element. Moreover, we multiply both sides of
these encodings and zero-testing parameters by random short matrices. Our construction is as
follows:
Instance generation: (par) InstGen(1 ,1)λ κ← .

(1) Choose a prime 8 ()2 Oq nκλ κ≥ ;

(2) Choose an element
,nD←g

] σ
 in R so that 1 2n− ≤g ;

(3) Choose elements a b, ' ,
, , ,n ni i i q

D D i
σ

τ← ← ∈a e b
]]

 in R ;

(4) Choose a random element qR←z so that -1
qR∈z ;

(5) Choose two random matrices
,n nD
σ×←T

]
 and

,n nD
σ×←S

]
 so that 1 1, n n

q
− − ×∈T S] ;

(6) Set 1()i i
i

q

Rot −+⎡ ⎤= ⎢ ⎥⎣ ⎦

a g eY T T
z

 and ,
()()i i

zt i
q

Rot
κ⎡ ⎤+

= ⎢ ⎥
⎣ ⎦

z b g eP T S
g

, a bi∈ τ ;

(7) Output the public parameter { } a b{ }par , , ,i zt,iq i= ∈Y P τ .

According to [GGH13], , qR R∈ ∈g z , , ,i i i R∈a b e can be efficiently sampled. It is easy to

see that , n n×∈T S] can be sampled. This is because that if det(),det()T S are not divisible by

 5

q , then 1 1, n n
q

− − ×∈T S] . Without loss of generality, assume that det(),det()T S are uniform

over q] . Thus, the probability that ,T S are invertible is about 1 (1)O /q− .

Generating level-1 encoding: enc(par,1,)←U d .

Given a random vector
, *

D τ σ
←d

]
, then

1
()i ii q
d

=
⎡ ⎤= ⋅⎣ ⎦∑U Yτ

 is the level-1 encoding of

hidden level-0 encoding
1
()i ii

= d
=

⋅∑e eτ
.

Because both sides of iY are multiplied by matrices 1, −T T respectively, iY multiplied by

the scalar id can be commutative with T to obtain ()i i
id Rot +
⋅

a g e
z

. Thus, we have

1 11
1

()
() () ()i i ii

i ii q q
q

d
d Rot Rot

τ
τ − −=
=

⎡ ⎤+ +⎡ ⎤⎡ ⎤ ⎢ ⎥= ⋅ = = ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦

∑∑
a g e ag eU Y T T T T
z z

, where

1
()i ii

= dτ

=
⋅∑a a and

1
()i ii

= d
=

⋅∑e eτ
. That is, U is the level-1 encoding of hidden plaintext

element e .
In our construction, one cannot directly generate the level-1 encoding of a given level- 0

encoding since one does not know the level- 0 encoding ie encoded by iY . Although one can

obtain a level- j encoding () j
j i=U Y , but one cannot know the level- 0 element () j

ie

encoded by jU . This point is different from the GGH construction.

Adding encodings: 1add(par, , , ,)mj←U U U" .

Given m level- j encodings lU , their sum
1

= m
ll q=

⎡ ⎤
⎣ ⎦∑U U is a level- j encoding.

Because the level- j encoding lU is the form of 1()l l
l j

q

Rot −+⎡ ⎤= ⎢ ⎥⎣ ⎦

r g eU T T
z

, their sum

1 11
1

()
= () ()

m
m l ll

l j jl q q
q

Rot Rot− −=
=

⎡ ⎤+ +⎡ ⎤⎡ ⎤ ⎢ ⎥= = ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦

∑∑
r g e rg eU U T T T T
z z

 is a level- j

encoding, where
1

m
ll

=
=∑r r and

1

m
ll

=
=∑e e .

Multiplying encodings: 1mul(par,1, , ,)κ←U U U" .

Given κ level-1 encodings jU , their product
1

= jj q

κ

=
⎡ ⎤
⎣ ⎦∏U U is a level-κ encoding.

Because the level- 1 encoding jU is the form of 1()j j
j

q

Rot −+⎡ ⎤
= ⎢ ⎥
⎣ ⎦

r g e
U T T

z
, the

product of κ level-1 encodings is:

 6

1

1
1

1 1

1

=

()

()
()

()

jj q

j j
j

q

j jj

q

q

Rot

Rot

Rot

κ

κ

κ

κ

κ

=

−
=

= −

−

⎡ ⎤
⎣ ⎦

+⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤+
⎢ ⎥=
⎢ ⎥
⎣ ⎦

+⎡ ⎤= ⎢ ⎥⎣ ⎦

∏

∏

∏

U U

r g e
T T

z

r g e
T T

z

rg eT T
z

, where
1 1

, (()) /j j jj j
= κ κ

= =
= + −∏ ∏e e r r g e e g .

We use 1−× =T T I in third equation, and denote the level-κ encoding U as the standard
form in the final equation.

Zero testing: isZero(par,)U .

To determine whether 1()
q

Rot κ
−+⎡ ⎤= ⎢ ⎥⎣ ⎦

rg eU T T
z

 is a level- κ encoding of zero,

[]zt q
⋅V = U P is computed in n n

q
×] and checked whether V is short:

[] 3/41 if

isZero(par,)
0 otherwise

zt q
q⎧ ⋅ <⎪= ⎨

⎪⎩

U P
U , where

1zt i zt,ii
rτ

=
= ∑P P and

,
D τ σ

←r
]

.

Since
1

()()zt i zt,ii
q

r Rot
κ

τ

=

⎡ ⎤+
= = ⎢ ⎥

⎣ ⎦
∑ z bg cP P T S

g
, where

1
()i ii

= rτ

=∑b b and

1
()i ii

= rτ

=∑c e . If U is a level-κ encoding of zero element, namely mod I=e 0 , then we have

[] []1 ()() () (())zt q q
q

Rot Rot Rot
κ

κ
−⎡ ⎤+

⋅ = ⋅ = +⎢ ⎥
⎣ ⎦

rg z bg cV = U P T T T S T r bg c S
z g

.

For our choice of parameter, 1/8q+ = ≤rg e rg and nσ
∞ ∞
= ≤T S . Moreover,

V is not reduced modulo q , that is []q
=V V . Thus, we have

[]

2

3

4 2 1

4 2 1/8 1/2

3/4

(())

(())

(())

() ()

()

() ()

q
Rot

Rot

n Rot

n n Rot Rot n

n Rot

n q poly n q poly n
q

σ σ

σ

σ

−

<

= +

= +

= ⋅ +

= ⋅ +

= ⋅ ⋅ +

= ⋅ ⋅ ⋅ ⋅

V T r bg c S

T r bg c S

T r bg c S

r bg c

rg g bg c

.

If U is a level-κ encoding of non-zero element, namely mod I≠e 0 . Then, we have

 7

[] 1 ()() () (())zt q
qq

Rot Rot Rot
κ

κ
−⎡ ⎤ ⎡ ⎤+ + +

⋅ = ⋅ = +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

rg e z bg c rg eV = U P T T T S T bg c S
z g g

.

By lemma 4 in [GGH13], we have ()
q

Rot q⎡ ⎤+
≈⎢ ⎥

⎣ ⎦

rg e
g

. Thus, q≈V .

Extraction: ext(par,)sk ← U .

Given a level-κ encoding U , U is multiplied by
1zt i zt,ii
wτ

=
= ∑P P , where

,
D τ σ

←w
]

and (log) / 4q λ− most-significant bits of each of the n n× entries of []zt q
⋅U P is collected:

[]ext(par,) Extract(msb())zt q
= ⋅U U P .

Because
1

()()zt i zt,ii
q

w Rot
κ

τ

=

⎡ ⎤+
= = ⎢ ⎥

⎣ ⎦
∑ z bg cP P T S

g
, where

1 i ii
= wτ

=∑b b and

1 i ii
= wτ

=∑c e . Assume 1()
q

Rot κ
−+⎡ ⎤

⎢ ⎥⎣ ⎦
rg eU = T T

z
 such that 1/8q+ ≤rg e , then we have

[]

[]

1 ()() ()

()()()

(()) (())

zt q

q

q

q
q

Rot Rot

Rot

Rot Rot

κ

κ
−

= ⋅

⎡ ⎤+ +
= ⋅⎢ ⎥
⎣ ⎦

⎡ ⎤+ +
= ⎢ ⎥
⎣ ⎦

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦

V U P

rg e z bg cT T T S
z g

rg e bg cT S
g

eT r bg c S T bg c S
g

.

For our parameter setting, [] 3/4(())
q

Rot q+ <T r bg c S . By Lemma 4 in [GGH13], we

have (())Rot q+ ≈
e bg c
g

 for mod I≠e 0 . Therefore, the extraction algorithm can correctly

work.

Remark 3.1 (1) Different from the GGH construction, our construction cannot directly generate

level-1 encoding of a given level-0 encoding, and can only generate level-1 encoding of hidden

level-0 encoding
1
()i ii

= d
=

⋅∑e eτ
. Moreover, the level-1 encoding of our construction is

deterministic, and it is no longer random and without re-randomization process. However, we do not

find the necessity generating given level-0 encoding or known level-0 encoding in our construction.

(2) Choose 2()O nτ = is to erase the structure of input encoding applying re-randomization

process in [GGH13]. Although our construction is deterministic, the level-1 encoding process

 8

generating hidden level-0 encoding is same as the re-randomization process of the GGH

construction. The cost using large τ is that the public parameter size of our construction is bigger

a n factor than that of GGH. We notice that 2> nτ λ+ is the lowest requirement, otherwise

attacker can directly solve d applying linear equation system.

(3) When constructing multipartite key exchange using our symmetric construction, every

participant can compute the zero testing parameter corresponding to the hidden
1

0
()n

i ii
= d−

=
⋅∑e e

encoded by
1

0
()n

i ii q
d−

=
⎡ ⎤= ⋅⎣ ⎦∑U Y , that is, the zero testing parameter corresponding to level- 0

encoding e is

1

0

1 1

0 0
()

()

()()

n
zt i zt,ii q

n n
i i i ii i

q

q

= d

d d
= Rot

= Rot

κ

κ

−

=

− −

= =

⎡ ⎤⋅⎣ ⎦

⎡ ⎤+
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤+
⎢ ⎥
⎣ ⎦

∑

∑ ∑

P P

z b g e
T S

g

z bg eT S
g

.

(4) zt,iP or their combination ztP can be used as zero testing parameter. In addition, the zero

testing parameter generated by random combination of zt,iP can thwart invalid encoding attack for

only one zero testing parameter.

(5) The matrices T , S in our construction are to thwart adversary not only generating less

than level- k encoding of zero from the public parameter, but also getting the basis of the secret

principal ideal lattices in our construction. This is because zt,iP cannot directly be multiplied. For

arbitrary a b,i j τ∈ , we have

()()() ()

()()() ()

zt,i zt,j

j ji i

q q

j ji i

q

Rot Rot

Rot Rot

κκ

κκ

= ×

⎡ ⎤+⎡ ⎤+
= × ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤++
= ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

P P P

z b g ez b g eT S T S
g g

z b g ez b g eT S T S
g g

.

Since matrix multiplication does not support commutative rule, the second numerator κz in P

cannot be canceled by multiplying a level- 2κ encoding. Therefore, we may sample
, 'ni D
σ

←b
]

and set 4 ()2 Oq nκλ κ≥ to decrease by half the size of the public parameter. Moreover, using κz

 9

guarantees that zt,iP can only be used as the zero-testing for a level-κ encoding.

3.2 Security
Similar to the previous constructions [GGH13, CLT13, LSS14], the security of our

construction cannot be reduced to classic hardness assumptions. In [GGH13], the security of GGH

is defined as the hardness assumptions of graded computational Diffie-Hellman (GCDH) and

graded decisional Diffie-Hellman (GDDH). That is, given the public parameters and 1κ + level-1

encodings of random elements, it is unfeasible to generate a level-κ encoding of their product or

distinguish it from random elements. Langlois, Stehlé and Steinfeld[9] introduced the hardness

assumptions ext-GCDH/ext-GDD, which is variant of GCDH/GDDH defined in [GGH13]. The

security of our construction relies on new hardness assumption ext-GCDH/ext-GDDH. In the

following, we adaptively define the ext-GCDH/ext-GDDH in [LSS14] to our construction.

Consider the following security experiment:

(1) par InstGen(1 ,1)λ κ←

(2) For 0j = to κ :

 Sample
, *

,j j D τ σ
←r w

]
;

 Generate level-1 encoding of hidden ,1j j i ii
w

=
= ∑d eτ

: ,1j j i ii q
w

=
⎡ ⎤= ⎣ ⎦∑U Yτ

.

(3) Compute *
1 jj q

κ

=
⎡ ⎤= ⎣ ⎦∏U U .

(4) Compute *
C D zt q

⎡ ⎤= = ⎣ ⎦V V U P , where 0, ,1zt i zt ii q
w

=
⎡ ⎤= ⎣ ⎦∑P Pτ

.

(5) Compute *
_R zt rand q

⎡ ⎤= ⎣ ⎦V U P , where _ 0, ,1zt rand i zt ii q
rτ

=
⎡ ⎤= ⎣ ⎦∑P P .

Definition 3.2 (ext-GCDH/ext-GDDH). According to the above experiment, the ext-GCDH and

ext-GDDH are defined as follows:

Level-κ extraction CDH (ext-GCDH): Given { }0par, , , κU U" , output a level-κ extraction

encoding n n
q
×∈W] such that [] 3/4

C q
q

∞
− ≤V W .

Level- κ extraction DDH (ext-GDDH): Given { }0par, , , ,κU U V" , distinguish between

{ }0par, , , ,ext GDDH DD κ− = U U V" and { }0par, , , ,ext RAND RD κ− = U U V" .

In our construction, the ext-GCDH is harder than the ext-GDDH. This is because given

{ },ext GDDH ext RANDD D− −∈V , one can compute W using the oracle of solving ext-GCDH, and

further determine V .

 10

It is easy to verify that breaking our construction is harder than breaking the GGH construction.

If there exists an algorithm A which breaks our construction, then there exists an algorithm B

using A , which breaks the GGH construction. This is because one can sample the matrices ,T S ,

generate the public parameters of our construction using the instance generation, and call A to

solve the corresponding problem.

In the following, we will show that the matrices of both sides of the public parameters cannot

be removed only using arithmetic operations.

Lemma 3.3 Given the public parameters { } a b{ }par , , ,i zt,iq i= ∈Y P τ of our symmetric

construction, using arithmetic operations cannot remove the matrices, which are multiplied on both

sides of ,i zt,iY P .

Proof. (1) By the instance generation, both sides of ,i zt,iY P are multiplied by matrices

T , 1−T and T , S , respectively. (2) Assume a b{ }1 2, , ,i zt,i i τ∈ ∈X X Y P and

' '
1 1 1 1 2 2 2 2,= =X T X S X T X S with ' '

1 2,X X generated by some principal ideal lattices. It is

obvious that both sides of the results 1 2 1 2,+ −X X X X have the matrices if addition or

subtraction operations can be supported. For multiplication, the left and right sides of 1 2×X X

will have 1T and 2S respectively. Similarly, both sides of 1 1
2 1 1 2 1 2, () , ()− −× × ×X X X X X X

also have random matrices. (3) Using recursive method, we show that arbitrary arithmetic

operations over ,i zt,iY P cannot remove the matrices of both sides of generating result. □

3.3 Cryptanalysis
In this subsection, we describe easily computable quantities in our construction, and then

analyze possible attacks for our construction using these quantities.

Easily computable quantities. Because ,i zt,iY P encode the same level-0 encoding ie , for

arbitrary a b, ,i j t τ∈ with i j≠ , one can compute , ,i j tV as follows:

, ,

1

1

1

()

() ()(()) (() ())

(()) ()

i j t

t i zt,j j zt,i q

j j j jt t i i i i

q

t t i j i j j i j i j i i j q

Rot Rot Rot

Rot Rot

κ

κ κ
κ

κ

−

−

−

⎡ ⎤= × − ×⎣ ⎦

⎡ ⎤+ ++ + +
= ⋅ × − ×⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= + ⋅ + + − − −⎣ ⎦

V

Y Y P Y P

z b g e a g ea g e a g e z b g eT S
z z g z g

T a g e a b g a e b e a b g a e b e S

.

 11

According to our parameter setting, it is easy to see that , ,i j tV is not reduced modulo q ,

namely , , , ,i j t i j tq
⎡ ⎤ =⎣ ⎦V V . Thus, one can obtain many , ,

n n
i j t

×∈V] using different combinations

a b, ,i j t τ∈ . These , ,i j tV ’s have the form , , , , , ,(())i j t i j t i j tRot= +V T r g e S .

Compute the norm of ideal. By computing the determinant , ,det()i j tV of , ,i j tV , one can

obtain the norm of the ideal t t+a g e using GCD algorithm. When knowing the norm p , one

factors
1

1 () modnn
ii

x x pα
=

+ = −∏ , and solves the generator of the principal ideal lattice

t t+a g e generated by two element (,)ip α . If t t+a g e can be solved, then our construction is

broken. This is because given 1 1+a g e and 2 2+a g e , one solves the matrix T by

1 1 1
, ,1 , ,2 1 1 2 2() (()())i j i j

− − −= + +V V T a g e a g e T . Using the same method, one also obtains S .

However, currently there exists no efficient algorithm which solves the generator of principal ideal

lattice for large dimension n .

Eigenvalue attack [CHL+14]. Because , , , , , , , ,(())i j t i j t i j t i j tRot= + =V T r g e S TE S , one can

generate 1 1 1
, , ', ', ' , , ', ', '() ()i j t i j t i j t i j t

− − −=V V TE E T and 1 1 1
', ', ' , , ', ', ' , ,() ()i j t i j t i j t i j t

− − −=V V S E E S .

However, the matrices 1
, , ', ', '()i j t i j t

−E E and 1
', ', ' , ,()i j t i j t

−E E are not diagonal. Therefore, the

attack in [CHL+14] cannot work for this case.

Lattice reduction attack. Given , ,i j tV , one can obtain the bases of the lattices generated by

T and S . However, at present there exists no efficient algorithm, which computes T and S

for large dimension n . Without loss of generality, assume that 1' = ⋅T T C and 2' = ⋅S C S are

the bases of the lattices generated by T and S , where 1 2,C C are unimodular matrices, one can

compute 1 1 1 1
, , , , 1 , , , , 2() () () () (())()i j t i j t i j t i j t' ' ' Rot− − − −= = +V T V S C r g e C . However, one cannot

remove the matrices 1
1()−C , 1

2()−C of both sides of , ,()i j t 'V . Thus, one cannot get the principal

ideal , , , ,i j t i j t+r g e in , ,i j tV .

Lattice reduction attack for level-1 encoding. Because
1
()i ii q
d

=
⎡ ⎤= ⋅⎣ ⎦∑U Yτ

, then the

entry a b, , ,1
, ,j t i i j ti q

U d Y j t nτ

=
⎡ ⎤= ⋅ ∀ ∈⎣ ⎦∑ . Thus, , , ,, ,j t i j tU Y q consist of a generalizing subset

sum problem. However, for large τ there exist no efficient algorithm, which solves this

generalizing subset sum problem. Moreover, it is easy to verify that one cannot also use linear

 12

equation system to solve a b,id i τ∈ since 2nτ λ> + .

4 Construction of asymmetric multilinear maps

Although our symmetric construction does not give level-1 encoding of zero, one can also

generate level-κ encodings of zero by using the public parameters. In this section, we describe a

construction of asymmetric multilinear maps to avoid any non-zero level encoding of zero.

4.1 Construction

In our symmetric construction, the level- κ encodings of zero is generated by
cross-multiplying the level-1 encoding and the zero-testing parameter in the public parameters. If
in a scheme, its level-1 encoding cannot multiply by the zero-testing parameter belonging to same
group, then the level-κ encodings of zero cannot be generated. Therefore, the starting point of our
work is to construct an asymmetric version, which assigns “index set” to the encodings and the
zero-testing parameters in the public parameter. As a result, an encoding and a zero-testing
parameter cannot be multiplied if their “index sets” are not disjoint. Our asymmetric construction is
as follows:
Instance generation: 1 1(par) InstGen (1 ,1)λ κ←

(1) Choose a prime q ;

(2) Choose
,nD←g

] σ
 such that 1 2n− ≤g ;

(3) Choose a b a b, , ,, ' ,
, , , ,n nj i j i j i q

D D j i
σ

κ τ← ← ∈ ∈a e b
]]

;

(4) Choose a random element j qR←z ， a bj κ∈ such that 1
j qR− ∈z ;

(5) Choose matrices
,

, {0,1,..., }n nj D j
σ

κ×← ∈S
]

 such that a b1 ,n n
j q j κ− ×∈ ∈S] ;

(6) Set a b*
1

() / ,j t jt
jκ κ

=
= ∈∏z z z , and , {0,1,..., 1}j j j κ= ∈ −T S , 1()κ κ

−=T S .

For a bj κ∈ , a bi τ∈ ,

set { }
, 1

1, ()j i j,i
j jj i

j q

Rot −
−

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦

a g e
Y T T

z
, { }

*
1

1,

()
()j j,i j,i

j jj i

q

Rot −
−

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦

z b g e
P T T

g
.

(7) Output the public parameter { } { }{ } a b a b{ }1 , ,par , , , ,j i j iq j iκ τ= ∈ ∈Y P .

Generating encodings with index { }j : { } { }1enc(par , ,)j j←U d .

Given
, *

D τ σ
←d

]
, an index-{ }j encoding of hidden

1
()j i j,ii

= dτ

=
⋅∑e e is computed as

{ } { }
1

1,1
() ()j j

i j jj j ii q j q

d Rotτ −
−=

⎡ ⎤+⎡ ⎤= ⋅ = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∑

a g e
U Y T T

z
, where ,1

()j i j ii
dτ

=
= ∑a a .

Adding encodings with index a b a b\S j t j= + : 1 ,1 ,add(par , , ,)S S S m←U U U" .

Given m encodings ,S lU , a bl m∈ with index S , their sum ,1
= m

S S ll q=
⎡ ⎤
⎣ ⎦∑U U is an

encoding with index S .
Multiplying encodings: { } { }1 11 1mul(par , , , ,)S j j tS + +←U U U" .

 13

Given t encodings { }jU for a b a b1 1\j S j t j∈ = + , their product

{ } { }1 11=S j j t q+ +
⎡ ⎤× ×⎣ ⎦U U U" is an encoding with index a b a b1 1\S j t j= + .

Zero testing: 1isZero(par ,)SU .

For simplicity, we assume a b1S κ= − . To determine whether SU with index S is an

encoding of zero, { }S qκ
⎡ ⎤×⎣ ⎦V = U P is computed in n n

q
×] and checked whether V is short:

{ }
3/4

1

1 if
isZero(par ,)

0 otherwise

S q
S

qκ
⎧ ⎡ ⎤× <⎪ ⎣ ⎦= ⎨
⎪⎩

U P
U ,

where { } { }1 i ,ii
rτ

κ κ=
= ∑P P and

,
D τ σ

←r
]

.

For a b1j S κ∈ = − , assume { }
1

1 ()j j
j jj

j q

Rot −
−

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦

a g e
U T T

z
, then we have

{ }
1 1

1 1*1
= = ()()S jj q

q

Rotκ
κ

κ

− −
−=

⎡ ⎤+⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∏ ag eU U T T

z
,

where
1

1
= jj

κ −

=∏e e ,
1

1
(()) /j jj

κ−

=
= + −∏a a g e e g .

Since { } { }

*
1

11

()()()i ,ii
q

r Rotτ κ
κ κκ κ

−
−=

⎡ ⎤+
= = ⎢ ⎥

⎣ ⎦
∑ z bg cP P T T

g
 , where

1
= i ,ii

rτ
κ=∑c e ,

,1 i ii
rτ

κ=
= ∑b b , then we have

{ }

*
1

0 1 1*

1
0

0

()()() ()

(())()

(())

S q

q

q

q

Rot Rot

Rot

Rot

κ

κ
κ κ κ

κ

κ

κ

−
− −

−

⎡ ⎤×⎣ ⎦

⎡ ⎤++
= ⋅⎢ ⎥
⎣ ⎦

⎡ ⎤+
= +⎢ ⎥
⎣ ⎦

⎡ ⎤+
= +⎢ ⎥
⎣ ⎦

V = U P

z bg cag eT T T T
z g

ag eT bg c T
g

ag eS bg c S
g

.

If SU is an encoding of zero, namely mod I=e 0 , then V is not reduced modulo q

and V is small. Otherwise, mod I≠e 0 , and ()
q

Rot q⎡ ⎤+
≈⎢ ⎥

⎣ ⎦

ag e
g

 by lemma 4 in

[GGH13]. Hence, { }κP is a zero testing parameter of SU with index a b1S κ= − .

For a b,1S j j κ= ≤ < , one can determine whether SU is an encoding of zero. Without loss

of generality, assume
1SU is an arbitrary encoding with index a b a b1 \ 1S jκ= + , and

{ } { }1 11 ij j ,ii
rτ

+ +=
= ∑P P is a random zero-testing parameter for SU . Then

 14

{ } 11S Sj q+
⎡ ⎤× ×⎣ ⎦V = U P U is computed and checked 3/4q<V .

Similarly, for other index a b a b a b1 1\ ,S j t j S κ= + ⊂ , one can determine whether SU is an

encoding of zero by using { } a b1,t t j∈P .

Extraction: 1ext(par ,)Ssk ← U .

Assume a b1S κ= − . Given an index- S encoding SU , SU is multiplied by a zero-testing

parameter { }κP , where { } { }1 i ,ii
rτ

κ κ=
= ∑P P ,

,
D τ σ

←r
]

 and (log) / 4q λ− most-significant

bits of each entry of the n n× -matrix { }S qκ
⎡ ⎤×⎣ ⎦U P is collected:

{ }1ext(par ,) Extract(msb())S S qκ
⎡ ⎤= ×⎣ ⎦U U P .

For arbitrary valid index- S encoding SU , one can extract bit string using the similar
method.
Remark 4.1 (1) Because both sides of them are multiplied by random matrices in our asymmetric
construction, the encodings that have same index can be added, and the encodings that have
adjacent index can be multiplied. (2) One cannot generate any level non-trivial encoding of zero
using the public parameter in our construction. Although { },j iY , { },j iP encode the same coset of

/R I , they cannot be cross-multiplied since { } { } { } { }1 2 2 1, , , ,j i j i j i j iY P - Y P is not an encoding of zero.

(3) When constructing one-round multipartite Diffie-Hellman key exchange using our asymmetric

scheme, the j -th party generates an index-{ }j encoding { } { },1
()j,ij j ii q
dτ

=
⎡ ⎤= ⋅⎣ ⎦∑U Y and the

corresponding zero-testing parameter { }

*
, 1

, 11

()
()()j j i j,i

j i j jj i
q

d Rotτ −
−=

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦
∑

z b g e
P T T

g
. Given

{ } { }1 ,..., κU U , the j -th party computes { } { } { } { }1 1 1j j j qκ− +
⎡ ⎤= ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦V U U P U U and extracts

the common bit string by using Extract(msb())V .
4.2 Security

Currently, we cannot also reduce the security of our asymmetric construction to classical
hardness assumptions. The security of our construction relies on new hardness assumption.

Consider the following security experiment:
(1) 1 1par InstGen (1 ,1)λ κ← .

(2) For 1j = to κ :

 Sample
, *

,j j D τ σ
←r w

]
;

 Generate { }j -index encoding of hidden , ,1j j i j ii
wτ

=
= ∑d e :

{ } { }, ,1 j ij j ii q
wτ

=
⎡ ⎤= ⎣ ⎦∑U Y .

(3) Set a b { }
1

1 1 jj q

κ

κ

−

− =
⎡ ⎤= ⎣ ⎦∏U U .

 15

(4) Set a b { }1C D qκ κ−
⎡ ⎤= = ⎣ ⎦V V U P , where { } { }, ,1 i ii q

wτ
κκ κ=

⎡ ⎤= ⎣ ⎦∑P P .

(5) Set a b { }1 _R r qκ κ−
⎡ ⎤= ⎣ ⎦V U P , where { } { },_ ,1 ir ii q

rτ
κκ κ=

⎡ ⎤= ⎣ ⎦∑P P .

Definition 4.2 (ext-GCDH/ext-GDDH). According to the above experiment, the ext-GCDH and

ext-GDDH are defined as follows:

Extraction GCDH (ext-GCDH): Given { } { }{ }1 1par , , , κU U" , output an extraction encoding

n n
q
×∈W] such that [] 3/4

C q
q

∞
− ≤V W .

Extraction GDDH (ext-GDDH): Given { } { }{ }1 1par , , , ,κU U V" , distinguish between

{ } { }{ }1 1par , , , ,ext GDDH DD κ− = U U V" and { } { }{ }1 1par , , , ,ext RAND RD κ− = U U V" .

5 Commutative Variant
In our symmetric/asymmetric construction, the dimension n requires to be large enough to

guarantee security and 2nτ λ> + is the lowest requirement to avoid algebraic equation attack. As
a result, the public parameter size of our construction is larger than that of GGH. To decrease the
public parameter size, we use polynomial ring instead of the ring of integers. Moreover, we will also
use polynomial drowning method of Rényi divergence which is used in the security analysis of
[LLS14].

We use []/ 1y mR y y= < + >] and []/ 1y m
q qR y y= < + >] instead of] and q] for

our symmetric/asymmetric constructions. It is easy to verify that our constructions are still correct
under this case.

Let λ be the security parameter, (1)Om λ= and n constant number (e.g. 2, 4,8n =),

and 2 1nτ = + . Let []/ 1yx y nR R x x= < + > and [][]/ 1 1yx m n
q qR y x y x= < + >< + >] . In

this section, we let a denote the infinity norm of 1(,...,)n=v a a for yxR∈a .
For completeness, we adaptively describe the commutative variant of the symmetric

construction in Section 3.1 as follows:
Instance generation: 2 2(par) InstGen (1 ,1)λ κ← .

(1) Pick a prime q ；

(2) Choose
,n mD
σ×←g

]
 over yxR such that 1 2n− ≤g , where

1 [][]/ 1 1m ny x y x− ∈ < + >< + >g _ ;

(3) Choose a b, *
, , ,n mi i i D i

σ
τ×← ∈a b e

]
 over yxR ;

(4) Choose randomly qR←z over yx
qR such that -1

qR∈z ;

(5) Choose matrices
, 'n n mD
σ× ×←T

]
,

, 'n n mD
σ× ×←S

]
 over ()y n nR × so that 1 ()y n n

qR− ×∈T ;

(6) For a bi∈ τ , set 1()y i i
i

q

Rot −+⎡ ⎤= ⎢ ⎥⎣ ⎦

a g eY T T
z

 and ,
()()y i i

zt i
q

Rot
κ⎡ ⎤+

= ⎢ ⎥
⎣ ⎦

z b g eP T S
g

 16

over ()y n n
qR × ;

(7) Output the public parameter { } a b{ }2par , , ,i zt,iq i τ= ∈Y P .

Generating level-1 encoding: 2enc(par ,1,)i←U d .

Given τ elements
, *mi D
σ

←d
]

, then
1
()i ii q

τ

=
⎡ ⎤= ⋅⎣ ⎦∑U d Y is a level-1 encoding of

hidden level-0 encoding
1
()i ii

= τ

=
⋅∑e d e .

Adding encodings: 2 1add(par , , , ,)mj←U U U" .

Given m level- j encodings lU , their sum
1

= m
ll q=

⎡ ⎤
⎣ ⎦∑U U is a level- j encoding.

Multiplying encodings: 2 1mul(par ,1, , ,)κ←U U U" .

Given κ level-1 encodings jU , their product
1

= jj q

κ

=
⎡ ⎤
⎣ ⎦∏U U is a level-κ encoding.

Zero testing: 2isZero(par ,)U .

To determine whether 1()
q

Rot κ
−+⎡ ⎤= ⎢ ⎥⎣ ⎦

rg eU T T
z

 is a level- κ encoding of zero,

[]zt q
⋅V = U P is computed in ()y n n

qR × and checked whether V is short:

[] 3/41 if

isZero(par,)
0 otherwise

zt q
q⎧ ⋅ <⎪= ⎨

⎪⎩

U P
U , where

1zt i zt,ii

τ

=
= ⋅∑P r P ,

,mi D
σ

←r
]

.

Extraction: 2ext(par , ,)isk ← d U .

Given a level- κ encoding U , U is multiplied by
1
()zt i zt,ii

τ

=
= ⋅∑P d P and

(log) / 4q λ− most-significant bits of each coefficient of each entry in []zt q
⋅U P is collected:

[]2ext(par , ,) Extract(msb())i zt q
= ⋅d U U P .

Similarly, we can construct the commutative variant of our asymmetric multilinear maps in

Section 4.1.

6 Simplified variant of asymmetric construction
In this section, we give a simplified variant of our asymmetric multilinear maps using

polynomial ring, instead of the ring of integers, to reduce the public parameter size. In fact, our
simplified variant sets i =S I for our asymmetric construction in Section 4.1.

Our simplified asymmetric construction is an asymmetric variant in [GGH13]. In a sense, our
asymmetric simplified variant is an extension of the multilinear Jigsaw puzzles [GGH+13a]. The
main difference is that our construction modifies the zero-testing parameter, which also encodes the
hidden plaintext encoded by the level-1 encoding. Hence, in our construction, one can generate
level- 1 encoding of hidden plaintext, which can be used according to the corresponding
zero-testing parameter. Moreover, the aim setting , ,nj i q

D←b
]

 is to guarantee that one cannot

 17

generate any level nontrivial encoding of zero for our asymmetric simplified variant. To reduce the
public parameter size, we use polynomial drowning method of Rényi divergence which is used in
the security analysis of [LLS14] and set 2=τ .

For completeness, we give our simplified variant as follows:
Instance generation: 3 3(par) InstGen (1 ,1)λ κ←

(1) Choose a prime q ;

(2) Choose
,nD←g

] σ
 such that 1 2n− ≤g ;

(3) Choose a b a b, , ,, ' ,
, , , ,n nj i j i j i q

D D j i
σ

κ τ← ← ∈ ∈a e b
]]

;

(4) Choose random element j qR←z ， a bj κ∈ such that 1
j qR− ∈z ;

(5) Set a b*
1

() / ,j t jt
jκ κ

=
= ∈∏z z z . For a bj κ∈ , a bi τ∈ ,

set { }
,

,
j i j,i

j i
j q

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦

a g e
y

z
, { }

*

,

()j j,i j,i
j i

q

⎡ ⎤+
= ⎢ ⎥
⎢ ⎥⎣ ⎦

z b g e
p

g
;

(6) Output the public parameter { } { }{ } a b a b{ }3 , ,par , , , ,j i j iq j iκ τ= ∈ ∈y p .

Generating encodings: { }3enc(par , ,)i j←u d .

Given a b, *
,ni D i

σ
τ← ∈d

]
, an index- { }j encoding of hidden

1
()j i j,ii

= τ

=
⋅∑e d e is

computed as { } { },1
() j j

ij j ii q j q

τ

=

⎡ ⎤+⎡ ⎤= ⋅ = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∑

a g e
u d y

z
, where ,1

()j i j ii

τ

=
= ⋅∑a d a .

Adding encodings: 3 ,1 ,add(par , , ,)S S S m←u u u" .

Given m encodings ,S lu , a bl m∈ with index a bS κ⊂ , their sum ,1
= m

S S ll q=
⎡ ⎤
⎣ ⎦∑u u is

an encoding with index S .
Multiplying encodings:

1 2 1 23mul(par , ,)S S S S←u u u∪ .

Given encodings
1Su ,

2Su with index a b1 2 1 2, ,S S S Sκ⊂ =∅∩ , their product

1 2 1 2
=S S S S q
⎡ ⎤×⎣ ⎦u u u∪ is an encoding with index 1 2S S S= ∪ .

Zero testing: 3isZero(par ,)Su .

Assume a b1S κ= − . To determine whether Su with index S is an encoding of zero,

{ }S qκ
⎡ ⎤×⎣ ⎦v = u p is computed in qR and checked whether v is short:

{ }
3/4

2

1 if
isZero(par ,)

0 otherwise

S q
S

qκ
⎧ ⎡ ⎤× <⎪ ⎣ ⎦= ⎨
⎪⎩

u p
u ,

where { } { }1 i ,ii

τ
κ κ=
= ⋅∑p r p with

,ni D
σ

←r
]

.

Extraction: 3ext(par ,)Ssk ← u .

Given an encoding Su with index [1, 1]S κ= − , Su is multiplied by a zero-testing

parameter { }κp with { } { }1 i ,ii

τ
κ κ=
= ⋅∑p r p ,

,ni D
σ

←r
]

, and (log) / 4q λ− most-significant

 18

bits of each coefficient of { }S qκ
⎡ ⎤×⎣ ⎦u p is collected:

{ }3ext(par ,) Extract(msb())S S qκ
⎡ ⎤= ×⎣ ⎦u u p .

Lemma 6.1 For the simplified asymmetric variant, one cannot generate a quantity that is not
reduced modulo q from the public parameters.

Proof. Because { },j iy , { },j ip with same index { }j encode the same coset '
,j i j,ie I= +e of

/R I , we have

{ } { } { } { }1 2 2 1

1 2 1 2 2 1 2 1 2 1 1 2

, , , ,

*
, , , ,

*

()

j i j i j i j i q

j j i j,i j i j,i j,i j,i j i j,i j i j,i j,i j,i

j q

j j

j q

⎡ ⎤= −⎣ ⎦

⎡ ⎤+ + − − −
= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

u y p y p

z a b g a e b e a b g a e b e
z

z b
z

.

To cancel the denominator jz of u , one must multiply u by some { }

*

,j t
t

q

t j
⎡ ⎤

= ≠⎢ ⎥
⎢ ⎥⎣ ⎦

z b
p

g
.

However, by , ,nj i q
D←b
]

 we know j q>b and t q>b . Thus, { }t q
'⎡ ⎤= ⋅ ⋅⎣ ⎦v u u p

must be reduced modulo q , where 'u is an arbitrary rational function of { },j iy , { },j ip .

On the other hand, since { }1 ,j iy , { }2 ,j iy with different index encode the different hidden coset

1 1

'
,j i j ,ie I= +e ,

2 2

'
,j i j ,ie I= +e , one cannot obtain an encoding of zero using arithmetic operations

for them. Similarly, one cannot obtain a zero-testing encoded zero from { }1 ,j ip , { }2 ,j ip .□

7 One round multipartite Diffie-Hellman key exchange
In this section, we first describe the construction of one round multipartite Diffie-Hellman key

exchange protocol using commutative variant and asymmetric variant of ideal lattices. Then we

optimize and implement one round multipartite Diffie-Hellman key exchange protocol.

7.1 Construction

7.1.1 Construction based on commutative variant

We describe the construction of one round multipartite Diffie-Hellman key exchange using our

symmetric commutative variant as follows:

(1 ,1)NλSetup . Output 2 2(par) InstGen (1 ,1)λ κ← as the public parameters. Let 1N κ= + ,

{ } a b{ }3par , , ,i zt,iq i τ= ∈Y P

2(par , ,)zt jPublish p . The j -th party samples a b, , *
,mj i D i

σ
τ← ∈d

]
 , computes and

 19

publishes
1
()j j,i ii q

τ

=
⎡ ⎤= ⋅⎣ ⎦∑U d Y .

{ }2 ,(par , , ,)j i k k j
j

≠
KeyGen d U . The j -th party computes j kk j≠

=∏C U and extracts the

common secret key 2 , ,1
ext(par , ,) Extract(msb(()))j i j j j i zt,ii q

sk τ

=
⎡ ⎤= = ⋅ ⋅⎣ ⎦∑d C C d P .

Theorem 7.1 Suppose the ext-GCDH/ext-GDDH defined in Section 3.2 is hard, then our

construction is one round multipartite Diffie-Hellman key exchange protocol.

Proof. The proof is similar as Theorem 2 in GGH13.□

7.1.2 Construction based on simplified asymmetric variant

We describe the construction of one round multipartite Diffie-Hellman key exchange using our
simplified asymmetric variant as follows:

(1 ,1)NλSetup . Output 3 3(par) InstGen (1 ,1)λ κ← as the public parameters. Let N κ= ,

{ } { }{ } a b a b{ }3 , ,par , , , ,j i j iq j iκ τ= ∈ ∈y p

2(par ,)jPublish . The j -th party samples a b, , *
,nj i D i

σ
τ← ∈d

]
 , computes and publishes

{ } { },1
()j,ij j ii q

τ

=
⎡ ⎤= ⋅⎣ ⎦∑u d y .

{ }{ }3 ,(par , , ,)j i k k j
j

≠
KeyGen d u . The j -th party computes { } a b { },

jS jkk j
S jκ

≠
= = −∏u u

and extracts the common secret key 3 ,ext(par , ,)
jj i Ssk = d u .

Theorem 7.2 Suppose the ext-GCDH/ext-GDDH defined in Section 4.2 is hard, then our

construction is one round multipartite Diffie-Hellman key exchange protocol.

Proof. The proof is similar as Theorem 2 in GGH13.□

7.2 Implementation

7.2.1 Implement the construction based on the commutative variant

We implement our one round multipartite Diffie-Hellman key exchange protocol using NTL

[Sho09].

Setting parameters. Let λ be the security parameter, ()m O λ= , 2, 4n = , 5,17τ = ,

1 7N κ= + = . Let []/ 1y mR y y= < + >] , []/ 1yx y nR R x x= < + > ,

[][]/ 1 1yx m n
q qR y x y x= < + >< + >] . When setting concrete parameters, the coefficients

, , ,, , , y
j i j i j i j R∈g a b e in , , , yx

i i i R∈g a b e are satisfied to , , , 1j i j i j i j= = = =g a b e ,

the entry of the matrices , ()y n nR ×∈S T is satisfied to , , 3i j i j= <S T , and ,S T are

 20

invertible over qR . Random sampling ()y
j R τ∈d is satisfied to , 1j i =d . After sampling

these parameters, we first compute 1
,1

(())j i ii
Rot dτ κ +

=∑V = T g a S over ()y n nR × and

a b{ }1 1 ,, max | ,i jl q q i j n= = ∈V , then set , (20 25)l δ δ+ ≤ < as the bit length of modulo

q . When extracting common bits, we only extract one bit from each coefficient. As a result, the

probability that the common bits for all parties are inconsistent is about 20(2)O − .

Table 1: The parameters of implementing the protocol based on the commutative variant

n m τ l δ |q| pk size
Setup

time

Publish

time

Key generation

time

Security

estimation

2 128 5 70 20 90 167KB 18.1s 0.1s 0.17s 50

2 256 5 79 21 100 342KB 84.2s 0.2s 0.33s 60

2 512 5 88 22 110 709KB 263.1s 0.4s 2.86s 70

2 1024 5 97 23 120 1518KB 1520.5s 1.0s 11.5s 80

4 64 17 70 20 90 972KB 20.9s 0.2s 0.21s 50

4 128 17 79 21 100 2198KB 100.4s 0.4s 1.23s 60

4 256 17 88 22 110 4814KB 330.5s 1.0s 5.87s 70

4 512 17 97 23 120 10325KB 1650.5s 2.0s 92.8s 80

Remark 7.3. (1) All algorithms run over single processor (Intel Xeon E5620 4-core CPU, 2.4GHz).

In setup stage, solving 1−g , 1−z , 1−T is the most cost time computation. (2) q denotes the bit

length of q . (3) Security estimation is the time computing approximate short vector of a lattice

using BKZ [CN11].

7.2.2 Implement the construction based on the simplified asymmetric variant

Setting parameters. Let λ be the security parameter, ()n O λ= , 2τ = , 7N κ= = . Let

[]/ 1nR R x x= < + > , []/ 1n
q qR x x= < + >] . When choosing the parameters, their coefficients

, , ,, , ,j i j i j i j R∈g a b e in , , ,i i i R∈g a b e are satisfied to , , , 1j i j i j i j= = = =g a b e .

Random sampling ()j R τ∈d is satisfied to , 1j i =d . After choosing these parameters, we first

compute ,1
()j i ii

τ κ
=∑v = g d a over R and a b{ }1 1, max |il q q i n= = ∈v , then set

, (20 30)l δ δ+ ≤ < as the bit length of modulo q . When extracting common bits, we only

 21

extract one bit from each coefficient. As a result, the probability that the common bits for all parties

are inconsistent is about 20(2)O − .

Table 2: The parameters of implementing the protocol based on the simplified asymmetric variant

n l δ |q| pk size Setup time Publish time
Key generation

time

Security

estimation

256 73 20 93 210KB 17.1s 0.05s 0.3s 50

512 84 21 105 469KB 228.1s 0.10s 1.1s 60

1024 92 23 115 1.0MB 1750.8s 0.30s 2.8s 70

2048 103 23 126 2.1MB 15682.6s 0.65s 5.8s 80

Remark 7.4. Because { } { } { } { }1 2 2 1

*

, , , ,
j j

j i j i j i j i q
j q

⎡ ⎤
⎡ ⎤− = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

z b
u = y p y p

z
 by Lemma 6.1, u must be

multiplied by some { } ,t t j≠p to remove jz . Assume { }

* *
j t

t
j

' ⋅ =
z z r

v = u p
z

. Under this case,

one requires to multiply two times for almost every index encoding to cancel numerator * *
j tz z . By

our setting of modulo q , we have 2
,1

()j i ii
qτ κ

=
>∑g d a . Thus, setting , 1i j =b , one cannot

still obtain a nontrivial quantity which is not reduced modulo q .

8 Conclusion and open problem
In this paper, we describe an improved construction of multilinear maps from ideal lattices,
multiplying by matrices the level-1 encoding of non-zero. The security of our construction depends
upon new hardness assumption, which is seemly closely related to hardness problems of lattices.
We also describe an asymmetric construction to avoid any nontrivial encoding of zero. Furthermore,
we implement one-round multipartite Diffie-Hellman key exchange protocol to decrease the public
parameter size according to the commutative variant and the simplified asymmetric variant.

The security of all current schemes relies on hardness assumption, which cannot be reduced to
classical hardness problem. An open problem is to reduce the security of our construction of
multilinear maps to classical hardness problem.

References

[BF03] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing, SIAM
Journal on Computing, 32(3):586–615, 2003.

[BGG+14] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V.
Vaikuntanathan, and D. Vinayagamurthy. Fully keyhomomorphic encryption, arithmetic
circuit abe and compact garbled circuits. EUROCRYPT 2014, LNCS 8441, pp. 533-556.

[BR14] Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits via generic
graded encoding. TCC 2014, LNCS 8349, pp. 1-25.

[BS03] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324:71–90, 2003.

 22

[BWZ14] D. Boneh, D. J. Wu, and J. Zimmerman. Immunizing multilinear maps against zeroizing
attacks. http://eprint.iacr.org/2014/930.

[BZ14]D. Boneh and M. Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. CRYPTO 2014, LNCS 8616, pp. 480-499.

[CHL+14] J. H. Cheon, K. Han, C. Lee, H. Ryu, D. Stehle. Cryptanalysis of the Multilinear Map
over the Integers. http://eprint.iacr.org/2014/906.

[CN11] Y. Chen and P. Q. Nguyen. BKZ 2.0 Better Lattice Security Estimates, ASIACRYPT 2011,
LNCS 7073, pp. 1–20.

[CLT13] J. S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the integers.
CRYPTO 2013, LNCS 8042, pp. 476–493.

[CLT14] J. S. Coron, T. Lepoint, and M. Tibouchi. Cryptanalysis of two candidate fixes of
multilinear maps over the integers. http://eprint.iacr.org/2014/975.

[GGH13] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices.
EUROCRYPT 2013, LNCS 7881, pp. 1–17.

[GGH14] C. Gentry, S. Gorbunov, S. Halevi. Graph-induced Multilinear Maps from Lattices.
http://eprint.iacr.org/2014/645.

[GGH+13a] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. FOCS 2013,
pp.40-49.

[GGH+13b] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryption for
circuits from multilinear maps, CRYPTO (2) 2013, LNCS 8043, 479-499.

[GGH+14] S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Fully secure functional encryption
without obfuscation. http://eprint.iacr.org/2014/666.

[GSW13a] S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its applications.
STOC 2013, pp. 467-476.

[GSW13b] C. Gentry, A. Sahai and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. CRYPTO (1) 2013, LNCS
8042, pp. 75-92.

[HAO14] R. Hiromasa, M. Abe and T. Okamoto. Multilinear Maps on LWE. SCIS 2014, pp. 1-8.

[HIL+99] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 1999, 28(4):1364-1396.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: a ring based public key cryptosystem.
ANTS 1998, LNCS 1423, pp. 267-288.

[Jou00] A. Joux. A one round protocol for tripartite Diffie-Hellman. ANTS 2000, LNCS 1838, pp.
385–394.

[LSS14] A. Langlois, D. Stehlé, and R. Steinfeld, GGHLite: More Efficient Multilinear Maps
from Ideal Lattices, EUROCRYPT 2014, LNCS 8441, 2014, pp. 239–256.

[PTT10] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal authenticated data
structures with multilinear forms. Pairing 2010, LNCS 6487, pp. 246–264.

[Rot13] R. Rothblum. On the circular security of bit-encryption. TCC 2013, LNCS 7785, 2013, pp.
579–598.

[RS09] M. Rückert and D. Schröder. Aggregate and verifiably encrypted signatures from
multilinear maps without random oracles. ISA 2009, LNCS 5576, pp. 750–759.

 23

[Sho09] V. Shoup. NTL: A Library for doing Number Theory. http://shoup.net/ntl/, Version 5.5.2,
2009. 2009.08.14.

[Sma03] Smart, N.P. An identity based authenticated key agreement protocol based on the Weil
pairing, Electronics Letters, 38(13), pp. 630-632, 2002.

[SOK00] R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing, the 2000
Symposium on Cryptography and Information Security, Okinawa, Japan, 2000.

[SS11] D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over ideal
lattices, EUROCRYPT 2011, LNCS 6632, pp. 27–47.

