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Abstract: Linear approximations of modular addition modulo a power of two was studied by
Wallen in 2003. He presented an efficient algorithm for computing linear probabilities of
modular addition. In 2013 Schulte-Geers investigated the problem from another viewpoint and
derived a somewhat explicit formula for these probabilities. In this note we give a closed formula
for linear probabilities of modular addition modulo a power of two, based on what Schulte-Geers
presented: our closed formula gives a better insight on these probabilities and more information
can be extracted from it.
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1. Introduction

Linear cryptanalysis is a strong tool in cryptanalysis of symmetric ciphers. In [1] linear
approximations of modular addition modulo a power of two is investigated and an efficient
algorithm for computing these probabilities is given. A somewhat explicit formula for linear
probabilities of this operator is also given in [2]. In this note, we propose a closed formula for
linear probabilities of modular addition modulo a power of two based on the algorithm presented
in [2]. Our closed formula exhibits a better insight for these probabilities and more information
can be derived from it.

In this note, we use the following notations:

w(x): Hamming weight of a binary vector x = (x,_1, ..., Xp),
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- . Standard dot product,

@®: Bitwise XOR operator,

| B|: Number of symbols in a block B,
a: Complement of a bit «,

o-block: A block of symbols 1,2 or 4,
e-block: A block of symbols 3,5 or 6,
0-block: A block of symbol 0,

7-block: A block of symbol 7,

[cond]: 1 if cond = true and 0 otherwise.

2. A Closed Formula for Linear Probabilities of Modular Addition

Suppose that the input masks (a,_1, ..., ag) and (b,,_4, .., by) and the output mask (c,_1, ..., ¢o)
IS given. We wish to compute

P(a-xEBb-y=c-r)—%, (D

where
r=x+y mod 2",

x=Xn-1, %), Y = Wn-1, -, yo)andr = (r,—1, ...,79). To compute (1), we recall the
algorithm presented in [2]: put

Si=ap-1-i P b1 BPcpgyy, 0=5i<n
Now put z, = 0 and
Ziy1 = ZiGBSi, 1 < i<n-—1.

The bias (1) is zero if there exists an 0 < i < n such that z; = 0 holds and a; = b; = c; does not
hold. Otherwise, we have

1
Pla-x@®b-y=c-r)— 2| = 2-W@HD = (2,4, ., Zp).

We can reformulate the above algorithm in this form: put



Si = ap-1-i + an—l—i + 4Cn—1—i! 0<i<n.

So we have a sequence Sy, ..., S,—1 Of symbols in {0, ...,7}. Is not hard to see that (1) can be
computed by means of the (informal) automata of Picture 1. We begin by state 0 in the automata
and traverse the diagram symbol by symbol. If we meet “halt” then (1) is equal to zero, and
otherwise (1) is equal to 27", We illustrate our algorithm through some examples:
Example 1. Letn =9 and

(a81 ey aO) = (0’1’1F0F1!1F1I0I0)I

(bg, ..., by) = (0,1,1,0,1,1,0,0,0),

(Cg, ey Co) = (0,1,1,0,1,0,1,0,1).
Then we have

Sy ...Sg = 077073504

Traversing the diagram, we get the bias 27°.

Example 2. Letn = 11 and
(aq9, ---,ay) = (0,0,1,1,1,0,1,1,0,0,1),
(b1g, -, by) = (0,0,1,1,1,0,0,0,1,1,1),
(¢10, --»Co) = (0,0,1,1,1,0,0,1,0,1,1).
Then we have
Sy ...S10 = 00777015267.
Traversing the diagram, we get the bias 0.

In the appendix we have presented a pseudo-code for computing (1). It can be easily checked
that the algorithm is very fast.

With the aid of Picture (1) which is by itself derived from [2], the proof of following theorem
is straightforward:
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Theorem 1. Notations as before, let
So, ""STl—l = Bl e Bm

Here, B;’s, 1 <i < m, are o-blocks, e-blocks, 0-blocks or 7-blocks. Define a; = 0 and for
1<i<m

{ 1 #{B;:1<j<iBjis7—block of odd length} +# {B;:1 < j <, B; is o — block} is odd,
a; =

0 #{B;:1<j<iB;is7—blockof odd length} +# {B;:1 < j <, B;is 0 — block} is even.

Then (1) is equal to

where
m
q= 1_[(1 — a;[B; is o — block or e — block]),
i=1

and

w=1+ Z IB,| + Z “i"”+ Z |B;.

Bj is o—block or e—block Bjis 7—block B;jis 0—block

We state some of the direct consequences of Theorem 1 here:



e If (1) is not zero, then we cannot see a symbol in {1,2,4} followed by some blocks which
are not 7-blocks followed by a symbol in {1, ... 6}: as an special case, there cannot be a
symbol in {1,2,4} before a symbol in {1, ...,6}.

e If (1) is not zero, then it is less than or equal to 27(*1 where d is the total number of
symbolsin {1, ...,6}.

e If (1) is not zero, then there are (at least) 3/49 — 1 other sequences with the same
probability, where

f= z |B;l,

Bjis o—block or e—block

g= Z a;|Bl.

Bjis 0—block

e If (1) is zero, then there are (at least) 3/49 — 1 other sequences with zero bias, where

f= > B

Bjis o—block or e—block

g= Z |B;l.

Bjis 0—block
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Appendix

Input: S[0],...,S[n-1]

Output: halt (zero bias) or w (value of the exponent)
i=0, s=0, w=1

while (i<n) do
index=i
j=0
if (S[index]|=7)
while (S[i]=7)
it
i=i+1
end (while)
if (j is odd) s=1-s
w=w + (j div 2)
else if (S[index]=0)
i=i+1
if (s=1) w=w+1
else if (S[index] is in {1,2,4})
if (s=0) halt
s=1-s
w=w+1
i=i+1
else if (S[index] is in {3,5,6})
if (s=0) halt
else
w=w+1
i=i+1
end (if)
end (if)
end (while)



