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Abstract

Boneh et al. (Crypto 13) and Banerjee and Peikert (Crypto 14) constructed pseudorandom
functions (PRFs) from the Learning with Errors (LWE) assumption by embedding combinatorial
objects, a path and a tree respectively, in instances of the LWE problem. In this work, we show
how to generalize this approach to embed circuits, inspired by recent progress in the study of
Attribute Based Encryption.

Embedding a universal circuit for some class of functions allows us to produce constrained
keys for functions in this class, which gives us the first standard-lattice-assumption-based con-
strained PRF (CPRF) for general bounded-description bounded-depth functions, for arbitrary
polynomial bounds on the description size and the depth. (A constrained key w.r.t a circuit C
enables one to evaluate the PRF on all x for which C(x) = 1, but reveals nothing on the PRF
values at other points.) We rely on the LWE assumption and on the one-dimensional SIS (Short
Integer Solution) assumption, which are both related to the worst case hardness of general lattice
problems. Previous constructions for similar function classes relied on such exotic assumptions
as the existence of multilinear maps or secure program obfuscation. The main drawback of our
construction is that it does not allow collusion (i.e. to provide more than a single constrained
key to an adversary). Similarly to the aforementioned previous works, our PRF family is also
key homomorphic.

Interestingly, our constrained keys are very short. Their length does not depend directly
either on the size of the constraint circuit or on the input length. We are not aware of any prior
construction achieving this property, even relying on strong assumptions such as indistinguisha-
bility obfuscation.

1 Introduction

A pseudorandom function family (PRF) [GGM86] is a finite set of functions {Fs : D → R}s,
indexed by a seed (or key) s, such that for a random s, Fs is efficiently computable given s, and is
computationally indistinguishable from a random function from D to R, given oracle access. Since
the introduction of this concept, PRFs have been one of the most fundamental building blocks in
cryptography. Many variants of PRFs with additional properties have been introduced and have
found a plethora of applications in cryptography. In this work, we will focus on Constrained PRFs
and Key-Homomorphic PRFs.
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Constrained PRFs. Constrained PRFs (CPRFs) have been introduced simultaneously by Boneh
and Waters [BW13], Kiayias et al. [KPTZ13] (as “Delegatable PRFs”) and by Boyle, Goldwasser
and Ivan [BGI14] (as “Functional PRFs”). Here an adversary is allowed to ask for a constrained
key which should allow it to evaluate the PRF on a subset of the inputs, while revealing nothing
about the values at other inputs. It has been shown [BW13, KPTZ13, BGI14] how to construct
CPRFs for function classes of the form x ∈ [i, j] (where the input is interpreted as an integer) based
on any one-way function. This in particular allows for the “puncturing” technique of Sahai and
Waters [SW14] that found many uses in the obfuscation literature. Further, [BW13] showed how to
achieve more complicated function classes such as bit fixing functions and even arbitrary circuits,
but those require use of cryptographic multilinear maps. They also introduce a number of appli-
cations for such CPRFs, including broadcast encryption schemes and identity based key exchange.
Hofheinz et al. [HKKW14] show how to achieve adaptively secure CPRFs from indistinguishability
obfuscation using a random oracle.

The original definition of CPRFs requires resilience to arbitrary collusion. Namely, a constrained
key for C1, C2 should give no more information than a constrained key for C1 ∨ C2 and must
not reveal anything about values where C1(x) = C2(x) = false. Many of the applications of
CPRFs (e.g. for broadcast encryption and identity based key exchange) rely on collusion resilience.
Unfortunately, our construction in this work will not allow collusions, and therefore will not be
useful for these applications. We hope that future works will be able to leverage our ideas into
collusion resilient CPRFs.

Key-Homomorphic PRFs. In key-homomorphic PRFs, there is a group structure associated
with the set of keys, and it is required that for any input x and keys s, t, Fs(x) + Ft(x) = Fs+t(x).
A construction in the random oracle model was given by Naor, Pinkas and Reingold [NPR99],
and the first construction in the standard model was given by Boneh et al. [BLMR13] based on
the Learning with Errors assumption (LWE), building on a (non key homomorphic) lattice-based
PRF of Banerjee, Peikert and Rosen [BPR12]. This was followed by an improved construction
by Banerjee and Peikert [BP14] based on quantitatively better lattice assumptions. The LWE
based constructions achieved a slightly weaker notion, namely “almost” key-homomorphism, in
which ‖(Fs(x) + Ft(x))− Fs+t(x)‖ is small, for an appropriately defined norm. This notion is
sufficient for the known applications. Applications of key-homomorphic PRFs include distributed
key-distribution, symmetric proxy re-encryption, updatable encryption and PRFs secure against
related-key attacks [NPR99, BLMR13, LMR14].

Our Results. We view the main contribution of this work as showing how to impose hidden
semantics into the evaluation process of LWE-based PRFs. Namely, we allow multiple computation
paths for computing Fs(x), such that we can selectively block some of these paths based on logic
described by a circuit. This is done by extending ideas from the ABE literature, and in particular
the ABE scheme of Boneh et al. [BGG+14] (see more about this connection below).

It is particularly interesting that previous constructions of PRFs [BLMR13, BP14] can be
viewed as a special case of our framework, but ones that only allow a single computational path.
Our work therefore highlights that the techniques used for constructing PRFs and for constructing
ABE are special cases of the same grand schema. This could hopefully lead to new insights and
constructions.

We employ our methods towards presenting a family of (single key secure) constrained key-
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homomorphic PRFs based on worst-case general lattice assumptions. This is a first step in solving
the open problem posed in [BW13] of achieving (collusion resilient) CPRFs from standard assump-
tions.

Our construction is selectively secure in the constraint query, namely the adversary needs to
decide on the constraint before seeing the public parameters, but is adaptive with regards to PRF
oracle queries. We achieve the latter without “complexity leveraging”, contrary to [BW13], and
thus we do not require sub-exponential hardness assumptions as they do. This is done by employing
our technique of embedding semantics into the evaluation process again. In particular, we embed
the semantics of an admissible hash function, introduced by Boneh and Boyen [BB04] into the PRF,
which allows us to handle adaptive queries.

Our proofs rely on two closely related hardness assumptions: The Learning with Errors (LWE)
assumption, and the one-dimensional Short Integer Solution (1D-SIS) assumption. Both assump-
tions can be tied to the worst case hardness of general lattice problems such as GapSVP and SIVP,
with similar parameters. LWE is sufficient for proving pseudorandomness in the absence of a con-
strained key. However, once the adversary is given a constrained key, the situation becomes more
delicate. In particular, even showing correctness in this setting is not straightforward. (Correctness
refers to the property that evaluation using the constrained key and using the actual seed result in
the same output.) One can show unconditionally that the value computed using the constrained
key is close (in norm) to the real value of the function but not that they are always equal. A similar
issue comes up in the security proof (since the reduction “fabricates” oracle answers in a similar way
to the constrained evaluation). Our solution is to use computational arguments. Namely to show
that it is computationally intractable, under the 1D-SIS assumption, to come up with an input
for which the constrained evaluation errs. Therefore even the correctness of our scheme relies on
computational assumptions. We note that similar techniques can be used to strengthen the almost
key-homomorphism property into computational key-homomorphism where it is computationally
hard to find an input for which key homomorphism does not hold.

The following theorem presents the simplest application of our method, we explain how it can
be extended below.

Theorem 1.1. Let C`,d be the class of size-` depth-d circuits. Then for all polynomials `, d, there
exists a C`,d-constrained (almost) key-homomorphic family of PRFs without collusion, based on the
(appropriately parameterized) LWE and 1D-SIS assumptions (and hence on the worst-case hardness
of appropriately parameterized GapSVP and SIVP problems).

Interestingly, we can go beyond bounded size circuits. In fact, we can support any function
family with bounded length description, so long as there is a universal evaluator of depth d that
takes a function description and an input, and executes the function on the input. Namely, consider
a sequence of universal circuits {Uk}k∈N, where Uk : {0, 1}`×{0, 1}k → {0, 1}. This sequence defines
a class of functions {0, 1}∗ → {0, 1}, where each function F in the class is represented by a string
f ∈ {0, 1}`, and for x ∈ {0, 1}k, it holds that F (x) = Uk(f, x). We call such a function class
`-uniform. We are only able to support Uk whose depth is bounded by some a-priori polynomial
in the security parameter d, however in some cases this is sufficient to support all k’s that are
polynomial in the security parameter. The following theorem states our result with regards to such
families.

Theorem 1.2. Let C`,d be a class of `-uniform functions with depth-d evaluator. Then for all
polynomials `, d, there exists a C`,d-constrained (almost) key-homomorphic family of PRFs without
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collusion, based on the (appropriately parameterized) LWE and 1D-SIS assumptions (and hence on
the worst case hardness of appropriately parameterized GapSVP, SIVP).

Lastly, we show that the bit-length of the constrained keys in our scheme can be reduced to
poly(λ) for some fixed polynomial. Namely, completely independent of all of the parameters of the
scheme. This is done by using an ABE scheme with short secret keys as a black box. In particular
we resort to the same scheme, namely the ABE scheme of Boneh et al. [BGG+14], which inspired
our constrained PRF construction. This is done by encrypting all of the “components” of the
constrained key, and providing them in the public parameters of the construction. Then, the actual
constrained key is an ABE secret key which only allows to decrypt the relevant components. We
note that this short representation for constrained keys is not homomorphic (however the scheme
is still almost key homomorphic with respect to the seed). A theorem statement follows.

Theorem 1.3. There exists a constrained PRF scheme with the same properties as in Theorem 1.2,
and under the same hardness assumptions, where the constrained keys are of asymptotic bit-length
poly(λ), for an a-priori fixed polynomial.

See Section 2 for an extended overview of the construction.

Relation to the ABE Construction of Boneh et al. [BGG+14]. Our techniques are greatly
influenced by the aforementioned LWE-based ABE construction of Boneh et al. [BGG+14]. Recall
that in ABE, messages are encrypted relative to attributes and decryption keys are drawn relative to
functions. Decryption is possible only if the function f of the decryption key accepts the attribute
x of the ciphertext. In order to decrypt a ciphertext, [BGG+14] first applies a public procedure
that depends on f, x on the ciphertext and then applies the decryption key on the resulting value.
Their construction makes sure that for any f , encryptions with regards to all accepting x’s will
derive a decryptable ciphertext (and all non-accepting x’s cannot be decrypted).

Our constrained key for a circuit C is almost identical to an encryption of 0 with attribute C
in [BGG+14]. The randomness in the encryption roughly corresponds to the seed of the PRF. An
application of the PRF on the constrained key includes applying the public procedure of the ABE
on the ciphertext, with respect to the function f = U , the universal circuit for the function class
to which C belongs. However, there is the question of how to represent the input: We need to
be able to evaluate C on any possible input while preserving security. One of our main technical
ideas is in showing that this is possible, and in fact can be achieved regardless of the input length.
Combined with the framework from [BGG+14], we can guarantees that for all x, regardless which
C was used to generate the “ciphertext”, the output of the public procedure will only depend on x
and not on C. The basic idea is therefore to use this value as the PRF value. This does not work
as is (for example, it does not imply pseudorandomness for non-accepting x’s) and additional ideas
are required.

As mentioned above, the PRFs of [BLMR13, BP14] that seem to stem from different ideas and
have quite different proofs than [BGG+14] can be shown to be special cases of the above paradigm,
except f is taken to be an arbitrary formula (a multiplication tree). For details see Section 2.

The novelty in our approach is to show the extra power that is obtained from generalizing these
two approaches. We use the universal circuit as a way to embed an undisclosed computation into
an LWE instance, and show how to achieve pseudorandomness using tools such as admissible hash
functions (which are also embedded into an LWE instance).
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Relation with the Constrained PRF of Hofheinz et al. [HKKW14]. The work of [HKKW14]
constructs adaptively secure collusion-resistant CPRFs, namely ones where the challenge x∗ needs
not be provided ahead of time. Their building blocks are “universal parameters” and adaptively
secure ABE, which are used as black-box. Note that we achieve adaptive security w.r.t the chal-
lenge (but not with respect to the constraint) while relying on techniques which are only known
to imply selectively secure ABE. Further, whereas [HKKW14] use ABE only to implement access
control and therefore need to rely on strong assumptions to implement the PRF so as to interface
with the ABE, we use ABE techniques to achieve both pseudorandomness and access control. On
the flip side, our construction is not collusion resistant, contrary to [HKKW14].

Open Problems. The main drawback of our CPRF is its vulnerability to collusion, which
severely limits its applicability as a building block. It is an open problem to achieve bounded
collusion resilience, even for two constrained keys instead of one and even at the cost of increasing
the parameters. Any improvement on this front should be very interesting. Another avenue for
research is trying to extend the construction so that there is no restriction on the constraint circuit
size, similarly to the multilinear map based construction of [BW13]. Finally, it would also be inter-
esting to apply this methodology of imposing semantics on a cryptographic computation to other
primitives in order to allow more fine-grained access control.

2 Overview of Our Construction

We recall that the LWE assumption asserts that for a uniform vector s and a matrix A of appropriate
dimensions (over Zq for an appropriate q), it holds that (A, sTA + eT ), is indistinguishable from
uniform, where e is taken from an appropriate distribution over low norm vectors and referred to
as the noise vector. In this outline we will ignore the generation of eT and its evolution during
computation process, and just denote it by noise (but of course care will need to be taken in the
formal arguments).

The PRF of Banerjee and Peikert [BP14]. A high-level methodology for constructing PRFs,
taken by [BLMR13, BP14] and also in this work, is to take s as the seed, and to generate for each
PRF input x, an LWE matrix Ax such that the values sTAx + noise for the different inputs x are
jointly indistinguishable from uniform. Note that almost key homomorphism follows naturally for
any implementation of this template, up to the accumulation of noise. The noise issue is handled
by taking the PRF value to be a properly scaled down and rounded version of the above, so that
the effect of the noise is minimal (and its norm can be bounded below 1). This property is also
inherited by our scheme.

As a starting point for deriving our construction, let us revisit the key-homomorphic PRF
construction of [BP14]. Their PRF family was associated with a combinatorial object – a binary
tree. Each node v of the tree was associated with an LWE matrix Av, where the PRF input
x determined the matrices for the leaves, and matrices for internal nodes are derived as follows.
Given a node v whose children are associated with Al,Ar, they define Av = Al · G−1(Ar). In
this notation, G−1(·) is the binary decomposition operator, which breaks each entry in the matrix
into the bit vector of length log(q) of its binary representation. Note that G−1(·) will always have
small norm, and that the inverse operator G, representing binary composition, is linear so it can
be represented by a matrix. Thus for all A it holds that G ·G−1(A) = A.
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Going back to the PRF of [BP14], the derivation procedure described above allows to associate
a matrix with the root of the tree, which depends only on the input x (and on the topology of the
tree which is fixed). We will use the root’s matrix as our Ax. The proof hinges on the invariant that
LWE instances will be multiplied on the right only by low-norm matrices (of the form G−1(·)), and
therefore sTAlG

−1(Ar) + noise ≈ (sTAl + noise)G−1(Ar), which allows to replace (sTAl + noise)
with a new uniform vector and propagate to the right.

From Embedded Trees to Embedded Circuits. We show that the operation Av = Al ·
G−1(Ar) is in fact a special case of a more general operation, inspired by the recent Attribute
Based Encryption (ABE) construction of Boneh et al. [BGG+14]. We will associate a matrix Av

as well as a binary value xv with each node, and pay special attention to the matrix (Av − xvG).
In particular, considering a node v with children l, r, it holds that

(Al − xlG) ·G−1(Ar) + (Ar − xrG) · xl = AlG
−1(Ar)− xrxlG .

This generalization associates the semantics of the multiplication operation with the syntactic
definition Av = AlG

−1(Ar), and it also maintains the invariant that the matrices (Al − xlG) and
(Ar − xrG) are only multiplied on the right by low norm elements, so that

sT
(

(Al − xlG) ·G−1(Ar) + (Ar − xrG) · xl
)

+ noise ≈(
sT (Al − xlG) + noise

)
·G−1(Ar) +

(
sT (Ar − xrG) + noise

)
· xl ,

which will play an important role in the security proof. Put explicitly, if the evaluator holds
sT (Al−xlG) +noise and sT (Al−xlG) +noise, then it can compute sT (Av−xl ·xrG) +noise (and
we will obviously define xv = xl · xr).

This semantic relation can be extended beyond multiplication gates, and in particular NAND
gates can be supported in a fairly similar manner. Furthermore, there is no need to stick to tree
structure and one can support arbitrary DAGs, which naturally correspond to circuits. Extending
the above postulate, if our DAG corresponds to a circuit C, then having sT (Ai − xiG) + noise, for
all leaves (= inputs), allows to compute sT (Ax − C(x)G) + noise. Recalling that the value of the
PRF on input x is sTAx + noise, the aforementioned information allows us to evaluate the PRF at
points where C(x) = 0. It can also be shown that it is computationally hard to compute the value
at points where C(x) = 1. We note that this process is practically identical to the public part of
the decryption procedure in the [BGG+14] ABE (as we explained in Section 1). We also note that
since [BP14] were trying to minimize the complexity of evaluating their PRF, it made no sense
in their construction to consider DAGs which only increase the complexity. However, as we show
here, there are benefits to embedding a computational process in the PRF evaluation.

Utilizing the Universal Circuit. The tools we describe so far indeed seem to get us closer to
our goal of producing constrained keys, but we are still not quite there. What we showed is that
for any circuit C, we can devise a PRF with a constrained key for C. Note that we use the negated
definition to the one we used before, and allow to evaluate when C(x) = 0 and not when C(x) = 1.
This will be our convention throughout this overview.

In order to reverse the order of quantifiers, we take C to be the universal circuit U(F, x), and the
constrained keys will be of the form sT (Ai−fiG)+noise, where the fi is the ith bit of the description

6



of the constraint F , as well as values for the x wires, which will be of the form sT (Âb− bG)+noise,
for both b ∈ {0, 1}. These values will allow us to execute F on any input x. Note that we can
use the same matrices Â0, Â1 for all input wires, hence we don’t need to commit to the input size
when we provide the constrained key.1 From this description it is obvious why our construction is
not collusion resistant: Given two constrained keys for two non identical functions, there exists an
i such that the adversary gets both sTA + noise and sT (Ai−G) + noise. Recovering sT from these
values is straightforward and hence all security is lost. Note that for the input values, unlike the
function description, we use two different matrices for 0 and 1: Â0, Â1, so a similar problem does
not occur.

The Problem with Correctness, and a Computational Solution. We introduced two ways
to compute the value of the PRF at x: One is to compute Ax and use the seed sT to compute
sTAx + noise, and the other is to use the constrained key to obtain sT (Ax−F (x)G) + noise, which
for F (x) = 0 gives sTAx + noise. The problem is that the noise value in these two methods could
differ. It is possible to make the difference small by scaling down and rounding, but this is not going
to suffice for our purposes (mostly because a similar problem comes up in the security proof). We
solve this issue using the 1D-SIS assumption as follows. We first note that the evaluation using the
constrained key is essentially evaluation of a linear function with small coefficients on the vectors
constituting the constrained key (essentially they get multiplied by bits and by low norm matrices
G−1(·)). Secondly, the only way for the two computation paths to not agree is if the value sTAx

is very close to an integer multiple of a number p (which is part of the PRF description). Finally,
we notice that by LWE, the vectors in the constrained key are indistinguishable from uniform and
independent. Thus, if we encounter such x for which correctness does not work, we can also find a
short linear combination of random elements whose scaled down rounded value is close to an integer.
In other words, given a uniform vector v in Zq, we can find z such that b〈v, z〉/pc is “close” to an
integer. This is similar to solving a one-dimensional instance of the SIS problem, i.e. 〈v, z〉 = 0
(mod p). Indeed, one can show that the 1D-SIS problem is as hard as standard worst-case hard
lattice problems via a reduction from [Reg04].

Pseudorandomness and Adaptive Security. Given a constrained key for F , one can compute
sT (Ax − F (x)G) + noise, and indeed if F (x) = 1 it is hard to compute PRFs(x) = sTAx + noise.
However, we want to argue that this value is pseudorandom and furthermore that it remains
pseudorandom after adaptive queries to the PRF. Namely, after the adversary sees as many values
of the form PRFs(x) = sTAx + noise as it wishes.

To achieve these goals, we add another feature to the PRF. We consider a new independent
LWE matrix D, and define PRFs(x) = sTAx · G−1(D) + noise. First of all, we note that given
the constrained key, we can still compute the PRF for values where C(x) = 0, by first computing
(sTAx + noise) as before, and then multiplying by G−1(D), which has low norm. However, in
general we have

PRFs(x) ≈
(
sT (Ax − F (x)G) + noise

)
·G−1(D) + F (x)

(
sTD + noise

)
,

and it can be shown that for F (x) = 1, the second term randomizes the expression, by the LWE
assumption.

1Recall that in [BLMR13, BP14] there are only two matrices altogether. This is sufficient here for the input wires
for the same reason, but we need additional matrices to encode the constraint description.
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This handles pseudorandomness for a single query, but not for the case of adaptive queries
(since we can only use the pseudorandomness of (sTD + noise) once). To handle adaptive queries
we embed semantics into the matrix D itself. Namely, D = Dx will be derived by an application of
the universal circuit to the input x and an admissible hash function h. Admissible hash functions,
introduced by Boneh and Boyen [BB04], allow (at a very high level) to partition the input space such
that with noticeable probability all of the adaptive queries have value h(x) = 0, but the challenge
query will have h(x) = 1. This means that in the proof of security, we can hold a constrained
key for h, which will allow us to compute (sTDx + noise), for all the queries of the adversary, but
leave the challenge query unpredictable (to make it pseudorandom, we will multiply in the end by
another final D′). This concludes the security argument for adaptive queries.

Key-Homomorphism. As we mention above, key-homomorphism follows since we use the tem-
plate PRFs(x) = sTAx + noise. We note that the existence of noise means that homomorphism
may not be accurate and with some low probability (PRFs(x) + PRFs′(x)) will only be close to
PRFs+s′(x) and not identical. However this property is sufficient for many applications.

We point out that our constrained keys are a collection elements of the form (sTAi + noise),
and therefore the scheme is also homomorphic with respect to constrained keys, i.e. constrained
keys for the same F w.r.t different keys s, s′ can be added to obtain a constrained key w.r.t s + s′.

Reducing the Constrained Key Size. From the above, it follows that the constrained key
contains `+2 vectors, where ` is the bit length of a description of F relative to the universal circuit
for the function class. Note that this does not depend directly on the input size to the function.
However, indirectly the depth of the universal circuit affects the modulus q that needs to be used.

We show that we can remove the dependence on ` altogether using an ABE scheme with short
secret keys, such as that of [BGG+14]. To do this, we notice that for each constraint function
F , the adversary gets either sTAi + noise or sT (Ai − G) + noise, according to the value of the
bit fi. We can prepare for both options by encrypting both vectors using the ABE, each with its
own attribute (i, 0) and (i, 1) respectively. All of these encryptions, for all i, will be placed in the
public parameters. Then in order to provide a constrained key, we will provide an ABE secret key
for the function that takes (i, b) and returns 0 if and only if fi = b. Given this key, the user can
decrypt exactly those vectors that constitute its constrained key. Note that this function can be
computed by a depth O(log(`)) = O(log(λ)) circuit, and thus the size of the secret key can be made
asymptotically independent of all parameters except λ, e.g. by setting the parameters to support
depth log2(λ) circuits.

3 Preliminaries

We first recall some background. For an integer modulus q, let Zq = Z/qZ denote the ring of
integers modulo q. For an integer p ≤ q, we define the modular “rounding” function

b·ep : Zq → Zp that maps x→ b(p/q) · xe

and extend it coordinate-wise to matrices and vectors over Zq. We denote the elements of the
standard basis by u1,u2, . . ., where the dimension will be clear from the context.

We denote distributions (or random variables) that are computationally indistinguishable by

X
c
≈ Y . This refers to the standard notion of negligible distinguishing gap for any polynomial
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time distinguisher. Our reductions preserve the uniformity of the adversary so by assuming the
hardness of our assumption for uniform adversary we get security for our construction against
uniform adversaries, and likewise for non-uniform assumptions and adversaries.

The Gadget Matrix. Let ` = dlog qe and define the “gadget matrix” G = g⊗In ∈ Zn×n`q where

g = (1, 2, 4, . . . , 2`−1) ∈ Z`q

We will also refer to this gadget matrix as the “powers-of-two” matrix. We define the inverse
function G−1 : Zn×mq → {0, 1}n`×m which expands each entry a ∈ Zq of the input matrix into a
column of size ` consisting of the bit decomposition of a. We have the property that for any matrix
A ∈ Zn×mq ,

G ·G−1(A) = A

Norms for Vectors and Matrices. We will always use the infinity norm for vectors and matri-
ces. Namely for a vector x, the norm ‖s‖ is the maximal absolute value of an element in x. Similarly,
for a matrix A, ‖A‖ is the maximal absolute value of any of its entries. If x is n-dimensional and
A is n ×m, then

∥∥xTA
∥∥ ≤ n · ‖x‖ · ‖A‖. We remark that L1 or L2 norms can also be used and

even achieve somewhat tighter parameters, but the proofs become more complicated.

3.1 Constrained Pseudorandom Function: Definition

In a constrained PRF family [BW13, BGI14, KPTZ13], one can compute a constrained PRF key
KC corresponding to any Boolean circuit C. Given KC , anyone can compute the PRF on inputs
x such that C(x) = 0. Furthermore, KC does not reveal any information about the PRF values at
the other locations. Below we recall their definition, as given by [BW13].

Syntax A constrained pseudo-random function (PRF) family is defined by a tuple of algorithms
(KeyGen,Eval,Constrain,ConstrainEval) where:

• Key Generation KeyGen(1λ, 1kin , 1kout) is a ppt algorithm that takes as input the security
parameter λ, an input length kin and an output length kout, and outputs a PRF key K;

• Evaluation Eval(K,x) is a deterministic algorithm that takes as input a key K, a string
x ∈ {0, 1}kin and outputs y ∈ {0, 1}kout ;

• Constrained Key Generation Constrain(K,C) is a ppt algorithm that takes as input a
PRF key K, a circuit C : {0, 1}kin → {0, 1} and outputs a constrained key KC ;

• Constrained Evaluation ConstrainEval(KC , x) is a deterministic algorithm that takes as
input a constrained key KC and a string x ∈ {0, 1}kin and outputs either a string y ∈ {0, 1}kout
or ⊥.

We define the notion of (single key) selective-function security for constrained PRFs.

Definition 3.1. A family of PRFs (KeyGen,Eval,Constrain,ConstrainEval) is a single-key selective-
function constrained PRF (henceforth, referred to simply as constrained PRF) if it satisfies the
following properties:
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• Functionality computationally preserved under constraining. For every ppt adver-
sary (A0, A1), consider an experiment where we choose K ← KeyGen(1λ, 1kin , 1kout), (C, σ0)←
A0(1λ), and KC ← Constrain(K,C). Then:

Pr

[
x∗ ← A

Eval(K,·)
1 (1λ,KC , σ0); :

C(x∗) = 0 ∧
Eval(K,x∗) 6= ConstrainEval(KC , x

∗)

]
is negligible in the security parameter, where C,K,KC are selected as described above.

In words, it is computationally hard to find an x∗ such that C(x∗) = 0, and yet the result of
the constrained evaluation differs from the actual PRF evaluation.

• Pseudorandom at constrained points. For every ppt adversary (A0, A1, A2), consider an
experiment where K ← KeyGen(1λ, 1kin , 1kout), (C, σ0)← A0(1λ), and KC ← Constrain(K,C).
Then:

Pr


b← {0, 1};

:(x∗, σ1)← A
Eval(K,·)
1 (1λ,KC , σ0); C(x∗) = 1 ∧

If b = 0, y∗ = Eval(K,x∗), A2(1λ, y∗, σ1) = b
Else y∗ ← {0, 1}kout

 ≤ 1

2
+ negl(λ)

The correctness and security properties could potentially be combined into one game, but we choose
to present them as two distinct properties for the sake of clarity.

3.2 Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev [Reg05] as a generalization
of “learning parity with noise” [BFKL93, Ale03]. We now define the decisional version of LWE.
(Unless otherwise stated, we will treat all vectors as column vectors in this paper).

Definition 3.2 (Decisional LWE (DLWE) [Reg05]). Let λ be the security parameter, n = n(λ),
m = m(λ), and q = q(λ) be integers and χ = χ(λ) be a probability distribution over Z. The
DLWEn,q,χ problem states that for all m = poly(n), letting A ← Zn×mq , s ← Znq , e ← χm, and
u← Zmq , the following distributions are computationally indistinguishable:(

A, sTA + eT
) c
≈
(
A,uT

)
There are known quantum (Regev [Reg05]) and classical (Peikert [Pei09]) reductions between

DLWEn,q,χ and approximating short vector problems in lattices. Specifically, these reductions take
χ to be a discrete Gaussian distribution DZ,αq for some α < 1. We write DLWEn,q,α to indicate
this instantiation. We now state a corollary of the results of [Reg05, Pei09, MM11, MP12]. These
results also extend to additional forms of q (see [MM11, MP12]).

Corollary 3.1 ([Reg05, Pei09, MM11, MP12]). Let q = q(n) ∈ N be either a prime power q = pr,
or a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n), and let α ≥

√
n/q. If

there is an efficient algorithm that solves the (average-case) DLWEn,q,α problem, then:

• There is an efficient quantum algorithm that solves GapSVP
Õ(n/α)

(and SIVP
Õ(n/α)

) on any

n-dimensional lattice.
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• If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for GapSVPÕ(n/α) on any
n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis for a lattice and
a parameter d, between the case where the lattice has a vector shorter than d, and the case where
the lattice doesn’t have any vector shorter than γ · d. SIVP is the search problem of finding a set
of “short” vectors. The best known algorithms for GapSVPγ ([Sch87]) require at least 2Ω̃(n/ log γ)

time. We refer the reader to [Reg05, Pei09] for more information.
In this work, we will only consider the case where q ≤ 2n. Furthermore, the underlying security

parameter λ is assumed to be polynomially related to the dimension n.

3.3 One-Dimensional Short Integer Solution (SIS) and Variants

We present a special case of the well known Short Integer Solution (SIS) problem [Ajt96].

Definition 3.3. The One-Dimensional Short Integer Solution problem, denoted 1D-SISq,m,t, is the

following problem. Given a uniformly distributed vector v
$← Zmq , find z ∈ Zm such that ‖z‖ ≤ t

and also 〈v, z〉 ∈ [−t, t] + qZ.

For appropriately chosen moduli q, the 1D-SISq,m,t problem is as hard as worst-case lattice
problems. This follows from the techniques in the classical worst-case to average-case reduction of
Ajtai [Ajt96]. We state below the version due to Regev [Reg04].

Corollary 3.2 (Section 4 in [Reg04] and Proposition 4.7 in [GPV07]). Let n ∈ N and q =
∏
i∈n pi,

where all p1 < p2 < . . . < pn are co-prime. Let m ≥ c · n log q (for some universal constant c).
Assuming that p1 ≥ t · ω(

√
mn log n), the one-dimensional SIS problem 1D-SISq,m,t is at least as

hard as SIVP
t·Õ(
√
mn)

and GapSVP
t·Õ(
√
mn)

.

Proof. The hardness of a closely related problem is established by combining the techniques in

[Reg04, Section 4] and [GPV07, Proposition 4.7]: Given a
$← Zm+1

q , find y with ‖y‖ ≤ t such that
〈a,y〉 = 0 (mod q).

We now show how to convert an instance for this problem into an instance of 1D-SIS. Given an
instance a ∈ Zm+1

q , we consider the first component a1. If this element is not a unit (i.e. invertible)

in Zq, then the reduction aborts. Otherwise it defines v = a−1
1 · [a2, . . . , am+1]. Given a solution

z for 1D-SIS on input v, we define y by letting y = [−〈v, z〉, x1, . . . , xm]. It is easy to verify that
〈a,y〉 = a1 · (−〈v, z〉+ 〈v, z〉) = 0 (mod q). Further, by definition, ‖y‖ ≤ t.

Next, we define a related problem which will be useful for our reductions.

Definition 3.4. Let q = p ·
∏
i∈n pi, where all p1 < p2 < . . . < pn are all co-prime and co-prime

with p as well. Further let m ∈ N. The 1D-SIS-Rq,p,t,m problem is the following: Given v
$← Zmq ,

find z ∈ Zm with ‖z‖ ≤ t such that 〈v, z〉 ∈ [−t, t] + (q/p)Z.

The following corollary establishes the hardness of 1D-SIS-R based on 1D-SIS.

Corollary 3.3. Let q, p, t,m be as in Definition 3.4. Then 1D-SIS-Rq,p,t,m is at least as hards as
1D-SISq/p,t,m.
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Proof. The reduction works in the obvious way: Given an input v ∈ Zmq/p for 1D-SISq/p,t,m, we

embed v in v′ ∈ Zmq , using CRT representation. Namely v′ = v (mod q/p) and v′ = r (mod p),

where r
$← Zmp . Then given a solution z for 1D-SIS-Rq,p,t,m with input v′, we claim that z is

also a solution for 1D-SISq/p,t,m with input v. This follows since by definition ‖z‖ ≤ t, and since
〈v, z〉 ≡ 〈v′, z〉 (mod q/p).

3.4 Admissible Hash Functions

The concept of admissible hash functions was defined by Boneh and Boyen [BB04] to convert
selectively secure identity based encryption (IBE) schemes into fully secure ones. In this paper,
we use admissible hash functions for our PRF construction. Our definition of admissible hash
functions below will follow that of Cash, Hofheinz, Kiltz and Peikert [CHKP12] with minor changes
(in particular, note that we do not require that the bad set is efficiently recognizable).

Definition 3.5 ([BB04, CHKP12]). Let H = {Hλ}λ be a family of hash functions such that
Hλ ⊆

(
{0, 1}∗ → {0, 1}`

)
for some ` = `(λ). We say that H is a family of admissible hash

functions if for every H ∈ H there exists a set badH of “bad string-tuples” such that the following
two properties hold:

1. For every PPT algorithm A, there is a negligible function ν such that

Pr[(x(0), . . . , x(t)) ∈ badH | H ← Hλ, (x(0), . . . , x(t))← A(1λ, H)] ≤ ν(λ)

where the probability is over the choice of H ← Hλ and the coins of A.

2. Let L = {0, 1}2`, and for all L ∈ L define ΠL : {0, 1}` → {0, 1} to be the string comparison
with wildcards function. Namely, write L as a pair of strings (α, β) ∈ {0, 1}`, and define

ΠL=(α,β)(w) = 1⇔ ∀i ∈ [`]
(
(αi = 0) ∨ (βi = wi)

)
.

Intuitively, Π is a string comparison function with wildcards. It compares w and β only at
those points where αi = 1. Note that this representation is somewhat redundant but it will be
useful for our application.

Then, we require that for every polynomial t = t(λ) there exists a noticeable function ∆t(λ)
and an efficiently sampleable distribution Lt over L such that for every H ∈ Hλ and sequences
(x(0), . . . , x(t)) /∈ badH with x(0) /∈ {x(1), . . . , x(t)}, we have:

Pr
L←Lt

[ΠL(H(x(0))) ∧ΠL(H(x(1))) ∧ · · · ∧ΠL(H(x(t)))] ≥ ∆t(λ)

It has been shown by [BB04] that a family of admissible hash functions can be constructed
based on any collision resistant hash function. In particular one can instantiate it based on the SIS
problem (for virtually any parameter setting for which the problem is hard), which is at least as hard
as LWE. Therefore throughout this manuscript we assume the existence of an LWE-based family
of admissible hash functions, which will not add an additional assumption to our construction.
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3.5 Attribute-Based Encryption

We define (leveled) attribute-based encryption, following [GPSW06, GVW13]. An attribute-based
encryption scheme for a class of predicate circuits C (namely, circuits with a single bit output)
consists of four algorithms (ABE .Setup,ABE .KeyGen,ABE .Enc, ABE .Dec).

ABE .Setup(1λ, 1`, 1d)→ (pp,msk) : The setup algorithm gets as input the security parameter λ,
the length ` of the attributes and the maximum depth of the predicate circuits d, and outputs
the public parameter (pp,mpk), and the master key msk. All the other algorithms get pp as
part of their input.

ABE .KeyGen(msk, C)→ skC : The key generation algorithm gets as input msk and a predicate
specified by C ∈ C (of depth at most d). It outputs a secret key (C, skC).

ABE .Enc(pp,x,m)→ ct : The encryption algorithm gets as input mpk, attributes x ∈ {0, 1}` and
a message m ∈M. It outputs a ciphertext (x, ct).

ABE .Dec((C, skC), (x, ct))→ m : The decryption algorithm gets as input a circuit C and the
associated secret key skC , attributes x and an associated ciphertext ct, and outputs either ⊥
or a message m ∈M.

Correctness. We require that for all `, d, all (x, C) such that x ∈ {0, 1}`, C has depth at most
d and C(x) = 1, for all (pp,msk) ← ABE .Setup(1λ, 1`, 1d), all skC ← ABE .KeyGen(msk, C), all
ct← ABE .Enc(pp,x,m), and all m ∈M,

Dec((C, skC), (x, ct)) = m) .

Security Definition. We define selective security of ABE, which is sufficient for our purposes.
We allow the adversary to make multiple challenge message queries, which is equivalent to the
single query case but will be easier for us to work with.

Definition 3.6. For a stateful adversary A, we define the advantage function AdvABE
A to be

Pr


b = b′ :

b
$← {0, 1};

x1, . . . ,xQ ← A(1λ, 1`, 1d);
(pp,msk)← ABE .Setup(1λ, 1`, 1d);

{(m0,i,m1,i)}i∈[Q] ← AABE.KeyGen(msk,·)(pp),∀i.|m0,i| = |m1,i|;
cti ← ABE .Enc(pp,xi,mb,i);

b′ ← AABE.KeyGen(msk,·)(ct1, . . . , ctQ)


− 1

2

with the restriction that all queries C that A makes to ABE .KeyGen(msk, ·) satisfies C(xi) = 0 for
all i (that is, skC does not decrypt the ciphertext corresponding to any of the xi). An attribute-based
encryption scheme is selectively secure if for all PPT adversaries A, the advantage AdvABE

A is a
negligible function in λ.

We will use a special type of attribute-based encryption scheme with succinct keys, namely one
where |skC | does not grow with the size of the circuit C, but rather only its depth.
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Theorem 3.4 ([BGG+14]). Let λ be the security parameter, and d ∈ N. Let n = n(λ, d), q =
q(λ, d) = nO(d), and let χ be a poly(n)-bounded error distribution. Then, there is a selectively
secure ABE scheme for the class of depth-d-bounded circuits, based on the hardness of DLWEn,q,χ.
Furthermore, the secret key skC for a circuit C has size poly(λ, n, d).

4 Embedding Circuits into Matrices

In this section, we present the core techniques that we use in our construction. In essence, we use
a method, developed in a recent work by Boneh et al. [BGG+14] to “embed” bits x1, . . . , xk into
matrices A1, . . . ,Ak and compute a circuit F on these matrices. This is done through a pair of
algorithms (ComputeA,ComputeC) satisfying the following properties:

1. The deterministic algorithm ComputeA takes as input a circuit F : {0, 1}k → {0, 1} and k
matrices A1, . . . ,Ak, and outputs a matrix AF ; and

2. The deterministic algorithm ComputeC takes as input a bit string x = (x1, . . . , xk) ∈ {0, 1}k,
and k LWE samples sT (Ai+xiG) + ei, and outputs an LWE sample sT (AF +F (x) ·G) + eF
associated to the output matrix AF and the output bit F (x).

These algorithms are closely modeled on the work of Boneh et al. [BGG+14]. We now describe how
these algorithms work, and what their properties are.

The Algorithm ComputeA. Given a circuit F , input matrices A1, . . . ,Ak (corresponding to
the k input wires) and an auxiliary matrix A0, the ComputeA procedure works inductively, going
through the gates of the circuit F from the input to the output. Assume without loss of generality
that the circuit F is composed of NOT and AND gates. For every AND gate g = (u, v;w), assume
inductively that we have computed matrices Au and Av for the input wires u and v. Define

Aw = −Au ·G−1(Av)

For every NOT gate g = (u;w), define

Aw = A0 −Au

The Algorithm ComputeC. Given a circuit F , an input x ∈ {0, 1}k and LWE samples (Ai,yi),
the ComputeC algorithm works as follows. For each AND gate g = (u, v;w), assume that we have
computed LWE samples (Au,yu) and (Av,yv) for the input wires u and v. Define

yw = xu · yv − yu ·G−1(Av)

where xu and xv are the bits on wires u and v when evaluating the circuit F on input x. For every
NOT gate g = (u;w), define

yw = y0 − yu

We will need the following lemma about the behavior of ComputeA and ComputeC. (We remind
the reader that we use || · || to denote the `∞ norm).
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Lemma 4.1. Let F be a depth-d Boolean circuit on k input bits, and let x ∈ {0, 1}k be an input.
Let A0,A1, . . . ,Ak ∈ Zn×mq and y0, . . . ,yk ∈ Zmq be such that

||yi − sT (Ai + xiG)|| ≤ B for i = 0, 1, . . . , k.

for some s ∈ Znq and B = B(λ). Let AF ← ComputeA(F,A0, . . . ,Ak) and yF ← ComputeC(F, x,A0, . . . ,Ak,y0, . . . ,yk).

Then, ||yF − sT (AF + F (x) ·G)|| ≤ mO(d) ·B.

Furthermore, yF is a “low-norm” linear function of y0, . . . ,yk. That is, there are matrices Z0, . . . ,Zk
(which depend on the function F , the input x, and the input matrices A0, . . . ,Ak) such that
yF =

∑k
i=0 yiZi and ||Zi|| ≤ mO(d) ·B.

Proof. We show this by induction on the levels of the circuit F , starting from the input. Consider
two cases.

AND gate. Consider an AND gate g = (u, v;w) where the input wires are at level L, and assume
that yu = sT (Au +xuG) + eu and yv = sT (Av +xvG) + ev, with ||eu||, ||ev|| ≤ (m+ 1)L ·B. Now,

yw = xu · yv − yu ·G−1(Av)

= xu ·
(
sT (Av + xvG) + ev

)
−
(

sT (Au + xuG) + eu

)
·G−1(Av)

= sT
(
xuAv + xuxvG−AuG

−1(Av)− xuAv

)
+

(
− euG

−1(Av) + xuev

)
= sT (Aw + xwG) + ew

where Aw = −Au ·G−1(Av), xw = xuxv, and

||ew|| ≤ m · ||eu||+ ||ev|| ≤ (m+ 1) · (m+ 1)L ·B ≤ (m+ 1)L+1 ·B

NOT gate. In a similar vein, for a NOT gate g = (u;w), assume that yu = sT (Au + xuG) + eu,
with ||eu|| ≤ (m+ 1)L ·B. Then,

yw = y0 − yu = sT (A0 + G−Au − xuG) + (e0 − eu)

= sT (Aw + (1− xu)G) + ew

where Aw = A0 −Au, xw = 1− xu, and

||ew|| ≤ ||e0||+ ||eu|| ≤ B + (m+ 1)L ·B ≤ (m+ 1)L+1 ·B

Thus, yF = sTAF + eF where ||eF || ≤ mO(d) · B. Furthermore, both transformations are linear
functions on yu and yv, as required.

5 Constrained PRF

5.1 Construction

A family of functions F ⊆ ({0, 1}∗ → {0, 1}) is z-uniform if each function F ∈ F can be described
by a string in {0, 1}z (we associate F with its description), and there exists a uniform circuit
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family {Uk}k∈N such that Uk : {0, 1}z × {0, 1}k → {0, 1} such that for all x ∈ {0, 1}k it holds that
Uk(F, x) = F (x). We assume for the sake of simplicity that the depth of Uk grows monotonically
with k and for all d we let kd to be the maximal input size for which Uk has depth at most d. We
define Fd to be such that F ∈ F is undefined for inputs of length k > kd. We call such a family
d-depth-bounded.

Our constrained PRF for a z-uniform d-depth-bounded family F works as follows.

• KeyGen(1λ, 1z, 1d): The key generation algorithm takes as input the maximum size z and
depth d of the constraining circuits. Let H be a family of admissible hash functions (see
Section 3.4) and let ` = `(λ) be the output length of hash functions in the family.

Let n = n(λ, d), q = q(λ, d), p = p(λ, d) be parameters chosen as described in Section 5.2
below, let m = n dlog qe.
Generate z+2`+3 matrices as follows: let A0 and A1 be the “input matrices”, let B1,B2, . . . ,Bz

be the “function matrices”, let C1, . . . ,C2` be the “partitioning matrices”, and let D be an
“auxiliary matrix”. All of these matrices are uniform in Zn×mq (note that the “gadget matrix”

G has the same dimensions). In addition sample an admissible hash function H
$← Hλ.

The public parameters consist of

PP = (H,A0,A1,B1, . . . ,Bz,C1, . . . ,C2`,D)

The seed of the PRF is a uniformly random vector s ∈ Znq .

• Eval(s,PP,x) takes as input the PRF seed s, the public parameters PP, and an input x ∈
{0, 1}k such that k ≤ kd (i.e. Uk is of depth ≤ d), and works as follows.

Recall that Uk : {0, 1}z × {0, 1}k → {0, 1} is the universal circuit that takes a description of
a function F and an input x and outputs Uk(F, x) = F (x). Let Π : {0, 1}2`×{0, 1}` → {0, 1}
denote the circuit that computes Π(L,w) = ΠL(w) from Definition 3.5. Note that Π can be
implemented by a binary circuit of depth log(`) +O(1).

Let (x1, . . . , xk) denote the bits of x. Let w = H(x), and let w1, . . . , w` be its bits. Compute

BU ← ComputeA
(
Uk,B1, . . . ,Bz,Ax1 ,Ax2 , . . . ,Axk

)
(1)

CΠ ← ComputeA
(
Π,C1, . . . ,C2`,Aw1 ,Aw2 , . . . ,Aw`

)
(2)

and output
PRFs(x) =

⌊
sTBU ·G−1(CΠ) ·G−1(D)

⌉
p

• Constrain(s,PP, F ) takes as input the PRF key s and a circuit F (of size at most z) and does
the following. Compute

ab = sT (Ab + b ·G) + eT1,b ∈ Zmq for b ∈ {0, 1}
bi = sT (Bi + fi ·G) + eT2,i ∈ Zmq for all i ∈ [z]

where the vectors e are drawn from an error distribution χ to be specified later (in Section 5.2).

The constrained seed KF is the tuple
(
a0,a1,b1, . . . ,bz

)
∈ (Zmq )z+2.
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• ConstrainEval(KF ,PP,x) takes as input the constrained key KF and an input x. It computes

bU ,x ← ComputeC

(
U , (b1, . . . ,bz,ax1 , . . . ,axk), (f1, . . . , fz, x1, . . . , xk)

)
and outputs

⌊
bU ,x ·G−1(CΠ) ·G−1(D)

⌉
p
, where CΠ is defined as above.

5.2 Setting the Parameters

Let us start by providing a typical parameter setting, and then explain how parameters can be
modified and the effect on security.

Consider setting n(λ, d) = (λ · d)c, for a constant c that will be discussed shortly. We will
set χ to be a discrete Gaussian distribution DZ,αq s.t. αq = Θ(

√
n). We define n′ = λ and let

p1, . . . , pn′ = mO(d+log `) be all primes, and p = poly(λ) (in fact, there is a lot of freedom in the
choice of p, and it can be as large as mO(d+log `) under the same asymptotic hardness). Finally, let

q = p · (αq) ·
∏
i∈[n′] pi = mn′·O(d+log `) = 2Õ(λ·d) = 2Õ(n1/c) (recall that ` = poly(λ)).

This parameter setting translates into a PRF with m = n dlog qe·Θ(log λ) output bits per input,
whose security is based (as we show in the next section) on the hardness of approximating lattice

problems to within a factor of 2Õ(n1/c).
Taking larger values of c will increase the hardness of the underlying lattice problem, but at

the cost of considerably increasing the element sizes.

5.3 Security

Throughout this section, we let F be a family of z-uniform functions and let d be a depth bound
(both can depend on λ). We let n = n(λ, d), m = m(λ, d), q = q(λ, d), p = p(λ, d) and the noise
distributions χ = χ(λ, d) be as defined in Section 5.2. We let H be the family of admissible hash
functions as described in Section 3.4, with range {0, 1}`.

Theorem 5.1. Let F be a family of z-uniform functions and let d be a depth bound (both can depend
on λ). Let n = n(λ, d), m = m(λ, d), q = q(λ, d), p = p(λ, d) and the noise distributions χ = χ(λ, d)
be as defined in Section 5.2. Further let m′ = m · (z + 2`+ 3), and γ = ω(

√
n log λ) · p ·mO(d+log `).

Assuming the hardness of DLWEn,q,χ, 1D-SIS-Rq,p,γ,m′ and the admissible hash function family
H, the scheme CPRF = (KeyGen,Eval,Constrain,ConstrainEval) is a single-key secure selective-
function secure constrained PRF for F .

We note that the hardness of all three assumptions translates to the worst case hardness of
approximating lattice problems such as GapSVP and SIVP to within sub-exponential factors.

Proof. Let A be a PPT selective-constraint adaptive-input adversary against CPRFz,d. Let t =
poly(λ) be the (polynomial) number of input queries made by A (w.l.o.g). Let ε be the advantage
of A in the constrained PRF game. We let B = αq ·ω(

√
log λ). It holds that with all but negligible

probabilities, all samples that we take from χ will have absolute value at most B. For the duration
of the proof we assume that this is indeed the case.

The proof will proceed by a sequence of hybrids (or experiments) where the challenger samples
a bit b ∈ {0, 1} and interacts with A. We let AdvH(A) denote the probability that A outputs b in
hybrid H.
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Hybrid H0. This hybrid is the legitimate constrained PRF security game. The challenger gen-
erates (s,PP)←KeyGen(1λ, 1z, 1d). It gets F ∈ {0, 1}z from A and produces a constrained key
KF←Constrain(s,PP, F ). It then sends PP,KF to A. At this point A adaptively makes queries
x(i) ∈ {0, 1}∗, and the challenger computes y(i)←Eval(s,PP, x(i)) and returns it to A. Finally, A
outputs x∗ ∈ {0, 1}∗. If b = 0 then the challenger returns y∗←Eval(s,PP, x∗), and if b = 1 it
returns a random y∗. Therefore, we have

AdvH0(A) ≥ 1/2 + ε .

Hybrid H1. This is the notorious “artificial abort” phase. Let ∆t = ∆t(λ) be the noticeable
function from Definition 3.5. This hybrid is identical to the previous one, except in the last step
the challenger flips a coin and with probability 1 −∆t/2 aborts the experiment (hence giving the
adversary no information on b).

The adversary’s advantage thus degrades appropriately:

AdvH1(A) ≥ (∆t/2) · (1/2 + ε) + (1−∆t/2) · (1/2) = 1/2 + ε ·∆t/2 .

Hybrid H2. In this hybrid, we associate some meaning with the artificial abort. Intuitively, the
abort will be associated with a failure of the admissible hash function to partition the queries
correctly. We are guaranteed that correct partitioning happens with probability ≥ ∆t (except for
sequences that are hard to generate), but we would like to make it (almost) exactly ∆t/2 so as to
not correlate the adversary’s success probability with the string L (the loss of the 2 factor is due
to probability estimation).

Specifically, in this hybrid, rather than flipping a coin at the end of the experiment, the chal-
lenger does the following. For all ~x = (x(1), . . . , x(t), x∗), we define the event GoodPartitionL,~x to
be the event in which ΠL(H(x(1))) = · · · = ΠL(H(x(t))) = 0 and ΠL(H(x∗)) = 1, and define
δ~x = Pr

L
$←Lt

[GoodPartition~x,L]. The challenger will first compute an estimate δ̃~x of δ~x by sam-

pling multiple values of L from Lt and using Chernoff (both additive and multiplicative). Using
poly(λ)-many samples we can compute δ̃~x such that

Pr
[∣∣∣δ~x − δ̃~x∣∣∣ > ∆t/4

]
≤ 2−λ .

and in addition if δ~x ≥ ∆t/2 then

Pr

[∣∣∣∣δ~xδ̃~x − 1

∣∣∣∣ > ε/2

]
≤ 2−λ .

The challenger will then perform as follows: (i) It first verifies that δ̃~x ≥ 3
4∆t, and aborts if this

is not the case. (ii) It then samples L
$← Lt and aborts if GoodPartition~x,L did not occur (note that

by our definitions above, this happens with probability 1 − δ~x over the choice of L). (iii) Then it

flips a coin with probability δ̃~x−∆t/2

δ̃~x
and aborts if the outcome is 1. Otherwise it carries out the

experiment towards completion.
To analyze the effect on the success probability, we first notice that the probability that δ̃~x <

3
4∆t

(abortion is step (i)) is negligible. This is since, except with 2−λ probability, this indicates that
δ~x < ∆t, which implies that ~x ∈ badH . Definition 3.5 guarantees that this happens with probability
at most ν(λ) = negl(λ).
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If the above abort did not occur, we know that δ~x ≥ ∆t/2 (except with probability 2−λ), we
first notice that the total probability of abort in steps (ii) + (iii)

1− δ~x + δ~x ·
δ̃~x −∆t/2

δ̃~x
= 1− δ~x

δ̃~x
∆t/2 ∈

[
(1−∆t/2)− ε∆t/4, (1−∆t/2) + ε∆t/4

]
It therefore follows that if there was no abort in step (i), then the adversary’s view in H2 is

within statistical distance 2−λ + ε∆t/4 from its view in H1.
Putting all steps together, we get that

AdvH2(A) ≥ 1/2 + ε ·∆t/2− ν(λ)−O(2−λ)− ε∆t/4 = 1/2 + ε ·∆t/4− negl(λ) .

Hybrid H3. In this hybrid, the challenger first samples L
$← Lt, and then, for each x(i) in turn,

it checks whether ΠL(H(x(i))) = 0, and immediately aborts if not. Similarly, upon receiving x∗, it
checks whether ΠL(H(x∗)) = 1 and immediately aborts if not. Otherwise it continues the same as
H2.

It is rather straightforward to see that the A’s advantage does not change. The cases in which
we abort are exactly the same as the ones in the previous hybrid (since it is sufficient that a single
x(i) does not give the required value in order to abort). Further, the sampling of L has been
completely independent of all the other randomness in the experiment so it might as well happen
in the beginning. We conclude that

AdvH3(A) = AdvH2(A) ≥ 1/2 + ε ·∆t/4− negl(λ) .

Hybrid H4. In this hybrid, the challenger changes the way the matrices A,B,C are generated.
Recall that our security game is constraint-selective, namely A produces the constraint F before
seeing the public parameters.

Therefore, here, the challenger waits until receiving F from A and only generates the public
parameters at that point (note that by then L has also been specified). To generate the public
parameters, the matrix D is produced identically to before. In addition, the challenger samples
matrices {Âβ}β∈{0,1}, {B̂i}i∈[z], {Ĉi}i∈[2`] It then sets

Aβ = Âβ − βG

Bi = B̂i − fiG
Ci = Ĉi − LiG

The remainder of the experiment remains unchanged.
Since the distributions of the A,B,C matrices is identical to their original uniform distributions,

it follows that
AdvH4(A) = AdvH3(A) .

Hybrid H5. In this hybrid, the adversary changes the way it computes the outputs y(i). Recall
that KF = (a0,a1,b1, . . . ,bz) is the constrained key given to A. Let us denote

ci = sT (Ci + LiG) + eT3,i for all i ∈ [z]

d = sTD + eT4
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where e3,i are sampled coordinate-wise from χ, and e4 is sampled coordinate-wise from χ′.
In this hybrid, in order to answer input queries, the challenger first computes

bU ,x(i) ← ComputeC

(
U , (b1, . . . ,bz,ax1 , . . . ,axk), (f1, . . . , fz, x

(i)
1 , . . . , x

(i)
k )

)
and then, letting w(i) = H(x(i))

cΠ,w(i) ← ComputeC

(
Π, (c1, . . . , c2`,aw1 , . . . ,aw`

), (L1, . . . , L2`, w
(i)
1 , . . . , w

(i)
` )

)
We recall that by Lemma 4.1 it holds that

bTU ,x(i) = sT (BU ,x(i) + F (x(i)) ·G) + eTU

cT
Π,w(i) = sT (CΠ,w(i) + ΠL(w(i)) ·G) + eTΠ ,

for some eU , eΠ for which ‖eU‖ ≤ B ·mO(d), ‖eΠ‖ ≤ B ·mO(log `).
We recall that by definition

PRFs(x
(i)) =

⌊
sTBU ,x(i) ·G

−1(CΠ,w(i))G−1(D)
⌉
p

=

⌊
sT (BU ,x(i) + F (x(i))G) ·G−1(CΠ,w(i))G−1(D)

− F (x(i))sTCΠ,w(i)G−1(D)

⌉
p

=
⌊
sT (BU ,x(i) + F (x(i))G) ·G−1(CΠ,w(i))G−1(D)

−F (x(i))sT (CΠ,w(i) + ΠL(w(i))G)G−1(D)

+F (x(i))ΠL(w(i))sTD
⌉
p

=
⌊
bTU ,x(i) ·G

−1(CΠ,w(i))G−1(D)− F (x(i))cT
Π,w(i)G

−1(D)

+F (x(i))ΠL(w(i))dT + e′T
⌉
p
, (3)

where

e′T = −eTUG−1(CΠ,w(i))G−1(D) + F (x(i))eTΠG−1(D)− F (x(i))ΠL(w(i))eT4 (4)

which implies that ‖e′‖ ≤ E for some E = (mO(d) +mO(log `)) ·B.
To analyze the distinguishing probability between these hybrids, for any input x (and w = H(x))

we define the event Borderlinex as the event where there exists j ∈ [m] such that:

(bTU ,x ·G−1(CΠ,w) ·G−1(D)−F (x) · cTΠ,w ·G−1(D)

+ F (x) ·ΠL(w) · dT ) · uj ∈ [−E,E] + (q/p)Z ,

where we recall that uj is the jth indicator vector. Namely, this is the probability that one of
the coordinates of the vector bTU ,x · G−1(CΠ,w)G−1(D) − F (x)cTΠ,wG−1(D) + F (x)ΠL(w)dT is
“dangerously close” to being rounded in the wrong direction.
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By definition of rounding, if ¬Borderlinex(i) , then

PRFs(x
(i)) = bbTU ,x(i) ·G

−1(CΠ,w(i))G−1(D)− F (x(i))cT
Π,w(i)G

−1(D)

+ F (x(i))ΠL(w(i))dT ep .

The challenger in this hybrid, given a query x(i), will first check whether Borderlinex(i) . If the
event happens, the challenger aborts. Otherwise it returns PRFs(x

(i)) as defined above. Note that
the challenger only needs to respond to queries x(i) for which ΠL(w(i)) = ΠL(H(x(i))) = 0, which
do not depend on d, a fact that will be important later on.

Finally, on the challenge query x∗, unless abort is needed, it holds that F (x∗) = 1 and ΠL(w∗) =
1 (where w∗ = H(x∗)) and therefore, unless the event Borderlinex∗ happens, it holds that

PRFs(x
∗) =

⌊
bTU ,x∗ ·G−1(CΠ,w(i))G−1(D)− cTΠ,w∗G

−1(D) + dT
⌉
p
.

The challenger will therefore abort if Borderlinex∗ and return the aforementioned value otherwise
(that is if the bit b is 0; if b = 1 then of course a uniform value is returned).

It follows that if we define Borderline = (∨iBorderlinex(i)) ∨ Borderlinex∗ , then

|AdvH5(A)−AdvH4(A)| ≤ Pr
H5

[Borderline] .

We will bound PrH5 [Borderline] as a part of our analysis in the next hybrid.
As a final remark on this hybrid, we note that in order to execute this hybrid, the challenger

does not need to access s itself, but rather only the aβ,bi, ci,d vectors. This will be useful in the
next hybrid.

Hybrid H6. In this hybrid, all aβ,bi, ci,d are sampled from the uniform distribution. Everything
else remains the same. We note that by definition, in hybrid H5:

aTβ = sT Âβ + eT1,β

bTi = sT B̂i + eT2,i

cTi = sT Ĉi + eT3,i

dT = sTD + eT4 ,

where all Âβ, B̂i, Ĉi,D are uniformly distributed, and all eT1,β, e
T
2,i, e

T
3,i, e

T
4 are sampled coordinate-

wise from χ. The DLWEn,q,χ assumption therefore asserts that:

|AdvH6(A)−AdvH5(A)| ≤ negl(λ) .

Furthermore, since Borderline is an efficiently recognizable event, it also holds that∣∣∣∣Pr
H6

[Borderline]− Pr
H5

[Borderline]

∣∣∣∣ = negl(λ) . (5)

In H6, the probability of Borderline can be bounded under the 1D-SIS-R assumption.

Claim 5.1.1. Under the 1D-SIS-Rq,p,γ,m′ assumption, it holds that PrH6 [Borderline] = negl(λ),
where m′ = m · (2 + z + 2`+ 1), and γ = p ·B ·mO(d+log `).
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Proof. Let v ∈ Z(2+z+2`+1)m
q be an input to 1D-SIS-Rq,p,γ,m′ . Then define aβ,bi, ci,d be so that

their concatenation is v.
The reduction executes H6 as the challenger, using the vectors defined above. We claim that

if Borderline occurs, then we solve 1D-SIS-R. This follows since if Borderline occurs then we found
x, j such that

(bTU ,x ·G−1(CΠ,w)G−1(D)− F (x(i))cTΠ,wG−1(D) + F (x)ΠL(w)dT )uj

∈ [−E,E] + (q/p)Z .

However, by Lemma 4.1, it follows that

bTU ,x =
∑

β∈{0,1}

aTβR′1,β +
∑
i∈[z]

bTi R′2,i

cTΠ,x =
∑

β∈{0,1}

aTβR′′1,β +
∑
i∈[2`]

cTi R′′3,i

where
∥∥∥R′1,β∥∥∥ ,∥∥∥R′2,i∥∥∥ ≤ mO(d) and

∥∥∥R′′1,β∥∥∥ ,∥∥∥R′′3,i∥∥∥ ≤ mO(log `). It follows that there exists an

(efficiently derivable) matrix R0 such that

bTU ,x ·G−1(CΠ,w)G−1(D)− F (x(i))cTΠ,wG−1(D) + F (x)ΠL(w)dT = vTR0 ,

and ‖R0‖ ≤ mO(d+log `).
Finally,

〈v,R0 · uj〉 ∈ [−E,E] + (q/p)Z ,

with ‖R0 · uj‖ ≤ ‖R0‖ ≤ mO(d+log `) and E = B ·mO(d+log `) = mO(d+log `). Thus R0 · uj is a valid
solution for 1D-SIS-Rq,p,γ,m′ . The claim thus follows. �

Putting together Claim 5.1.1 and Eq. (5), we get that

Pr
H5

[Borderline] ≤ Pr
H6

[Borderline] + negl(λ) ≤ negl(λ) .

and thus, finally
|AdvH5(A)−AdvH6(A)| ≤ negl(λ) .

Finally, we notice that the vector d is only used when answering the challenge query in the case
of b = 0. This means that in the adversary’s view, the answer it gets when b = 0 is uniform and
independent of its view so far, exactly the same as the case b = 1 where an actual random vector
is returned. It follows that

AdvH6(A) = 1/2 .

On the other hand
AdvH6(A) ≥ 1/2 + ε∆t/4− negl(λ) ,

and thus

ε ≤ negl(λ)

∆t/4
= negl(λ) .

It follows that A cannot achieve a noticeable advantage in the constrained PRF experiment under
the DLWEq,n,χ assumption.
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5.4 Computational Functionality Preserving

We now prove the computational functionality preservation of our scheme, as per Definition 3.1.
Throughout this section, we let F be a family of z-uniform functions and let d be a depth bound
(both can depend on λ). We let n = n(λ, d), m = m(λ, d), q = q(λ, d), p = p(λ, d) and the noise
distributions χ = χ(λ, d) be as defined in Section 5.2. We let H be the family of admissible hash
functions as described in Section 3.4, with range {0, 1}`.

Theorem 5.2. Let F be a family of z-uniform functions and let d be a depth bound (both can depend
on λ). Let n = n(λ, d), m = m(λ, d), q = q(λ, d), p = p(λ, d) and the noise distributions χ = χ(λ, d)
be as defined in Section 5.2. Further let m′ = m · (z + 2`+ 3), and γ = ω(

√
n log λ) · p ·mO(d+log `).

Assuming the hardness of DLWEn,q,χ and 1D-SIS-Rq,p,γ,m′, the scheme CPRF is computation-
ally functionality preserving.

We note that the hardness of both assumptions translates to the worst case hardness of approx-
imating lattice problems such as GapSVP and SIVP to within sub-exponential factors.

outline. The theorem follows from an argument practically identical to that made in Hybrids H5,H6

of the proof of Theorem 5.1.
Recall that we showed that Borderline events only happen with negligible probability, and there-

fore with all but negligible probability, it holds that the PRF value at point x(i) is exactly equal
to ⌊

bTU ,x(i) ·G
−1(CΠ,w(i))G−1(D)− F (x(i))cT

Π,w(i)G
−1(D) + F (x(i))ΠL(w(i))dT

⌉
p
.

However, when F (x(i)) = 0, this term simplifies to⌊
bTU ,x(i) ·G

−1(CΠ,w(i))G−1(D)
⌉
p

which is exactly ConstrainEval(KF ,PP, x(i)) by definition. Functionality is thus preserved with all
but negligible probability.

5.5 Other Properties

We describe several other properties that our construction satisfies.

Unconditional Almost-Correctness. We have shown that our constrained PRF satisfies a
computational correctness property, namely that it is hard to find an input x such that PRFK(x) 6=
ConstrainEval(KF ,PP,x). We are also able to show unconditionally that the constrained evaluation
and the actual PRF evaluation do not differ by much, for any input x. Indeed, by Equation 3 and
4, we have

||PRFK(x)− ConstrainEval(KF ,PP,x)||∞ ≤ mO(d) ·B

Key Homomorphism. Our PRF is also “almost key homomorphic” in the sense that PRFs(x)+
PRFs′(x) is close to PRFs+s′(x) for any keys s and s′ and any input x. Recall that our PRF is

PRFs(x) =
⌊
sTBU ·G−1(CΠ) ·G−1(D)

⌉
p
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For any keys si and input x, denoting sTi BU ·G−1(CΠ) ·G−1(D) as hi, we have

||PRF∑ si(x)−
∑

PRFsi(x)||∞ =

∣∣∣∣∣∣∣∣⌊∑
i

hi
⌉
p
−
∑
i

bhiep

∣∣∣∣∣∣∣∣
∞
≤ k + 1

Constrained-Key Homomorphism. Our constrained keys are “almost homomorphic” as well,
in the same sense as above. That is, if KF and K ′F are constrained versions of PRF keys K and K ′

for the same function F , the summation KF +K ′F is a constrained version of K+K ′ for the function
F . For any input x, we then have that ConstrainEval(KF +K ′F ,PP,x) is close to PRFK+K′(x).

We remark that techniques similar to what we used in showing computational correctness can be
used to strengthen the almost key-homomorphism property into computational key-homomorphism
where it is computationally hard to find an input for which key homomorphism does not hold.

6 Succinct Constrained Keys

In this section we show how to reduce the size of the constrained key so that asymptotically it
depends only on the security parameter and independent of the function class. The construction
builds upon the scheme CPRF from Section 5 but reduces the key size by utilizing an attribute
based encryption scheme (ABE). In particular, the constrained keys in our new system have size
poly(λ), independent of the parameters of the constraining circuit (namely, its size or depth).

Our succinct constrained PRF SCPRF for a z-uniform d-depth-bounded family F works as
follows.

• KeyGen(1λ, 1z, 1d): The key generation algorithm takes as input the maximum size z and
depth d of the constraining circuits. Let t = O(log z) to be specified later.

It starts by calling CPRF .KeyGen(1λ, 1z, 1d) to obtain the seed s, and public parameters
PP = (H,A0,A1, {Bi}i∈[z]).

It then generates: aβ = sT (Aβ + βG) + eT1,β and bi,β = sT (Bi + βG) + eT2,i,β. Note that
any possible constrained key of CPRF consists of a0 and a1, together with a subset of
{bi,β}i∈[z],β∈{0,1}.

Next it generates parameters for the ABE scheme (ABE .msk,ABE .pp)← ABE .Setup(1λ, 1t),
and generates cti,β ← ABE .Enc(ABE .pp, (i, β),bi,β), encryptions with (i, β) as the “at-
tributes” and bi,β as the “message”.

The public parameters consist of

SCPRF .PP = (CPRF .PP,ABE .PP,a0,a1, {cti,β}i,β)

The seed for SCPRF contains a seed for CPRF , namely a uniformly random vector s ∈
Znq , and in addition the ABE master secret key ABE .msk. We note that in fact s can be
retrieved from the public parameters using ABE .msk and therefore it is not necessary to give
it explicitly. However, it is more natural to think of s as a part of the seed. In particular
s will be used to evaluate SCPRF (see Eval below) and ABE .msk will be used to produce
constrained keys (see Constrain below).
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• Eval(s,PP,x) takes as input the PRF seed s, the public parameters PP which contains
CPRF .pp, and an input x ∈ {0, 1}k such that k ≤ kd (i.e. Uk is of depth ≤ d), and outputs
the result of the CPRF evaluation, namely CPRF .Eval(s, CPRF .pp,x).

• Constrain(ABE .msk, F ) takes as input the ABE master secret key ABE .msk and a circuit F
(represented as a string in {0, 1}z) and does the following. Consider the function:

φF (i, β) =

{
1, if Fi = β
0, otherwise

Note that φF can be computed by a depth O(log z) circuit (whose depth is independent of
the depth of F itself), the parameter t from above is set to be equal to this depth. We recall
Section 3.5

The constrained key for F is the ABE token for φF , namely

KF = ABE .KeyGen(ABE .msk, φF )

• ConstrainEval(KF ,PP,x) takes as input the constrained key KF , the public parameters PP
and an input x.

Recalling that PP = (CPRF .pp,ABE .pp,a0,a1, {cti,β}), and that KF is the ABE decryption
key for the function φF , it first decrypts to obtain bi = ABE .Dec(KF , cti,Fi), and then applies
the constrained evaluation algorithm CPRF .ConstrainEval

(
(a0,a1, {bi}), CPRF .PP,x

)
.

The correctness follows in a straightforward manner from the correctness of ABE and CPRF .
The constrained key size of SCPRF is derived from that of ABE and is poly(λ, t) = poly(λ, log z).
It follows that there exists a poly(λ) asymptotic upper bound on the key sizes that applies for all
polynomial values of z. Security is proven in the following theorem.

Theorem 6.1. If CPRF is a single-key secure constrained pseudorandom function for function
class F (Definition 3.1), which is built according to the template in Section 5, and if ABE is
a selectively secure ABE scheme (Definition 3.6), then the scheme SCPRF described above is a
secure single-key CPRF for F .

Proof. Let A be a CPRF adversary against SCPRF . The proof will proceed by a sequence of
hybrids where in each hybrid the challenger will sample a random bit b and the adversary’s success
in inferring b will be A’s advantage in the hybrid.

Hybrid H0. This hybrid is the constrained PRF security game for SCPRF . The challenger
generates (SK,PP)←KeyGen(1λ, 1z, 1d). It gets F ∈ {0, 1}z from A and produces a constrained
key KF←Constrain(SK,PP, F ). It then sends PP,KF to A. At this point A adaptively makes
queries x(i) ∈ {0, 1}∗, and the challenger computes y(i)←Eval(s,PP, x(i)) and returns it to A.
Finally, A outputs x∗ ∈ {0, 1}∗. If b = 0 then the challenger returns y∗←Eval(s,PP, x∗), and if
b = 1 it returns a random y∗.

AdvH0(A) ≥ 1/2 + ε .
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Hybrid H1. In this hybrid, the challenger does the following. It first receives the function F
and then generates (SK,PP) with one change compared to the previous hybrid. The ciphertexts
cti,1−Fi will now be generated as ABE .Enc(ABE .pp, (i, β), 0).

Claim 6.1.1. Under the selective security of ABE, it holds that

|AdvH0(A)−AdvH1(A)| ≤ negl(λ) ,

Proof. Let B be the following adversary against multi-message selective security of ABE (see Defi-
nition 3.6), which will work by simulating the interaction of A in the CPRF security game against
SCPRF . First of all B generates a key pair (s, CPRF .PP)←CPRF .KeyGen(1λ, 1z, 1d), and pro-
duces the vectors aβ, bi,β as in the key generation process of SCPRF .

Then B runs A to obtain the function description F ∈ {0, 1}z. It sends to the ABE challenger
the attribute sequence {(i, 1 − Fi)}i∈[z]. Then, for each i, it will send to the ABE challenger the
message pair m0,i = bi,1−Fi , m1,i = 0. It receives ABE .PP and ciphertexts cti,1−Fi which encrypt
either m0,i or m1,i. Using ABE .PP it generates cti,Fi by itself as in SCPRF .KeyGen. Further, B
generates SCPRF .PP using CPRF .PP, ABE .PP and cti,β, and forwards this value to A. Note
that this is distributed identically to an SCPRF .PP in H0 if b = 0 and identically to SCPRF .PP
in H1 if b = 1.

Next, B queries the ABE challenger on the function token φF , noting that φF (i, 1−Fi) = 0 for
all i. The challenger responds with the appropriate token, which will be forwarded to A as KF .
Note that this value is correctly distributed.

The adversary B continues to simulate A, answering its oracle queries using the seed s. Finally,
when A halts and outputs some b′, B halts as well and outputs b′ as its own output.

By definition, the advantage of B against ABE is exactly AdvH0(A)−AdvH1(A), and the claim
follows from the selective security of ABE . �

Next, we notice that the adversary’s advantage in this hybrid cannot be noticeable without
breaking the security of CPRF .

Claim 6.1.2. If CPRF is a secure single-key constrained PRF then |AdvH1(A)− 1/2| = negl(λ).

Proof. We present an adversary B against CPRF whose advantage is |AdvH1(A)− 1/2| as follows.
It will first get F from A and forward it to the CPRF challenger. Then, upon receiving CPRF .PP,
aβ, bi, it will generate (ABE .msk,ABE .PP) by itself. Then it will encrypt bi as bi,Fi to obtain
cti,Fi , and will encrypt zero to obtain cti,1−Fi . Finally it will generate KF by running ABE .KeyGen
on the function φF . This will allow generating SCPRF .PP,KF which are consistent with the
distribution that A receives in H1.

The values SCPRF .PP,KF will be sent to A, and when A makes PRF queries they will
be forwarded to the CPRF challenger, and the response forwarded back to A. In addition, A’s
challenge will be forwarded, and the response forwarded back. When A terminates and returns b′,
the same b′ will be returned by B.

It is straightforward to see that whenever A wins in H1, B wins against CPRF . The claim
follows. �

Putting the two claims together, it follows that

1/2 + ε ≤ AdvH0(A) ≤ AdvH1(A) + negl(λ) ≤ 1/2 + negl(λ) ,

which completes the proof of the theorem.
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