
High Performance Lattice-based CCA-secure Encryption

Rachid El Bansarkhani and Johannes Buchmann

Technische Universität Darmstadt
Fachbereich Informatik

Kryptographie und Computeralgebra,
Hochschulstraße 10, 64289 Darmstadt, Germany

elbansarkhani@cdc.informatik.tu-darmstadt.de,buchmann@cdc.informatik.tu-darmstadt.de

Abstract. Lattice-based encryption schemes still suffer from a low message throughput per ciphertext. This is mainly
due to the fact that the underlying schemes do not tap the full potentials of LWE. Many constructions still follow
the one-time-pad approach considering LWE instances as random vectors added to a message, most often encoded
bit vectors. Recently, at Financial Crypto 2015 El Bansarkhani et al. proposed a novel encryption scheme based
on the A-LWE assumption (Augmented LWE), where data is embedded into the error term without changing its
target distributions. By this novelty it is possible to encrypt much more data as compared to the traditional one-
time-pad approach and it is even possible to combine both concepts. In this paper we revisit this approach and
propose amongst others several algebraic techniques in order to significantly improve the message throughput per
ciphertext. Furthermore, we give a thorough security analysis as well as an efficient implementation of the CCA1-
secure encryption scheme instantiated with the most efficient trapdoor construction. In particular, we attest that it
even outperforms the CPA-secure encryption scheme from Lindner and Peikert presented at CT-RSA 2011.
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1 Introduction

Lattice-based cryptography emerges as a promising candidate to replace classical systems in case powerful
quantum computers are built. Besides of its conjectured quantum resistance, lattice problems have a long
history in mathematics and gained, for instance in cryptography, a lot of attention in recent years due to
a series of seminal works. For instance, Ajtai’s work [Ajt96] on worst-to-average-case hardness of lattice
problems represents a major cornerstone for lattice-based cryptography in general as it opens up the
possibility to build provably secure schemes based on lattice-problems after some failed constructions such
as GGH [GGH97] and NTRU-Sign [HHGP+03]. One of the main contributions of his work is a proof that
average-case instances of lattice problems enjoy worst-case hardness. In particular for cryptography, the
average-case problems SIS and LWE form the foundation for almost all of the well-known lattice-based
cryptosystems. LWE is often used for primitives from Cryptomania such as provably secure encryption
schemes [LP11, SS11] including chosen-ciphertext secure encryption [PW08, GPV08, Pei09, ABB10, MP12],
identity based encryption [GPV08, CHKP10, ABB10, MP12] and fully homomorhic encryption [BGG+14,
BV11, Gen09, GSW13]. Furthermore, it is applied for building secure key exchange protocols [KV09, JD12]
and oblivious transfer [PVW08]. The decision problem of LWE asks a challenger to distinguish polynomially
many samples (Ai,b

>
i ) ∈ Zn×mq ×Zmq , whereAi ←R Zn×mq , ei ←R χ and b>i = s>Ai+e>i mod q for s ∈ Znq

and discrete Gaussian distribution χ, from uniform random samples in Zn×mq ×Zmq . Regev showed in [Reg05]
that solving the search problem of LWE, where the challenger is supposed to find the secret, is at least
as hard as quantumly approximating SIVP resp. GapSVP to factors Õ(n/α) in n-dimensional worst-case
lattices for error vectors following the discrete distribution with parameter αq ≥ 2

√
n. The SIS problem,

however, usually serves to build provably secure signature schemes [BG14, DDLL13, GLP12, Lyu12,
GPV08, MP12], preimage sampleable trapdoor functions [GPV08, MP12, AP09, Pei10, SS11] and collision-
resistant hash functions [LMPR08, ADL+08]. The corresponding ring variants represent a further milestone
for practical lattice-based cryptography as it allows for small key sizes while speeding up operations. As a
consequence, new problems were formulated (e.g. [EDB15, LPSS14, BF11b]) allowing for fast instantiations
of cryptographic schemes or solving open problems. The hardness of the new established problems (e.g.
k-SIS, k-LWE or PLWE problem) mostly stem from either the SIS or the LWE problem.



Recently, a novel lattice-based encryption scheme [EDB15] has been proposed that encrypts data in a
way that differs from previous constructions following the standard one-time-pad approach. It is equipped
with many nice features such as a high message throughput per ciphertext as compared to current state-of-
the-art encryption schemes while simultaneously ensuring high security standards for many cryptographic
applications, for instance needed to secure financial transactions. More specifically, EL Bansarkhani et
al. [EDB15] introduce the Augmented Learning with Errors problem (A-LWE), a slightly modified LWE
variant, that allows to inject auxiliary data into the error term without changing the target distributions.
In fact, the A-LWE problem has been proven to be hard to solve in the random oracle model assuming the
hardness of LWE. Using a suitable trapdoor function as a black-box such as [MP12, EB14], the owner of the
trapdoor is empowered to recover the secret resp. error-term and hence reveal the injected data. By this,
the authours demonstrate that it is possible to use the error term as a container for the message or further
information such as lattice-based signatures following the distributions of the error-term. Following this
approach, one can realize RCCA-secure resp. CCA2 secure encryption algorithms that are not build upon
the classical one-time-pad approach as before. Beside of its presumed efficiency due to the resemblance of
ciphertexts to ordinary LWE samples, the scheme further allows to be combined with the one-time-pad
concept, hence, taking the best of both worlds.

1.1 Our Contributions

In this paper we revisit the A-LWE problem and the implied encryption schemes from [EDB15]. In partic-
ular, we provide several theoretical improvements and a software implementation of the scheme testifying
its conjectured efficiency.
1. We introduce new techniques in order to increase the message throughput per ciphertext. In fact, we

are able to use almost the full min-entropy of the error term to embed arbitrary messages. Previously
in [EDB15], only one bit of the message was injected into a coefficient of the error term. By our new
method, we are able to inject about log2(αq/4.7) bits per entry for an error vector sampled according to
the discrete Gaussian distribution with parameter αq. Encoding and decoding of the message requires
only to reduce the coefficients modulo some integer. Following this approach we can revise the param-
eters from [EDB15] according to Table 1. Here, for simplicity, the ciphertext size is fixed and the other
parameters are subsequently derived from the ciphertext size. When comparing our approach with the
CPA-secure encryption scheme from Lindner and Peikert [LP11], we attest an improvement factor of
O(log(αq)).

m = c · nk CCA1 CCA1 CCA1 CCA1 CPA

k = log q [MP12] [EDB15] This work This work + [MP12] [LP11]

Ciphertext size m · k m · k m · k m · k m · k

Enc. signature size1 nk c log(αq)nk c log(αq)nk (c log(αq) + 1)nk cnk − n

Message size nk c · nk c · nk log(αq/4.7) (c log(αq/4.7) + 1)nk cnk − n

Message Exp. c · k k k
log(αq/4.7)

k
log(αq/4.7)+1/c

k + k
ck−1

Table 1. Parameters

2. Furthermore, we introduce a new LWE inversion algorithm for arbitrary moduli and hence generalize
the algorithm from Micciancio and Peikert [MP12] using a different approach. There exists many ap-
plications, where it is desirable to have a modulus of a specific shape such as prime modulus satisfying
q ≡ 1 mod 2n in the ring setting such that the fast NTT transformation can be used. The inversion
algorithm given in [MP12] is only suitable for moduli of the form q = 2k. For moduli different to this
shape, the inversion algorithm fails to recover the secret in LWE instances. Our algorithm, however,
can efficiently be applied to LWE instances involving an arbitrary modulus.



3. We give a fast inversion algorithm for ring elements in special classes of rings Rq = Zq[X]/ 〈Xn + 1〉,
where ring elements correspond to polynomials with n = 2l coefficients and q ≡ 1 mod 2n. The inversion
algorithm can check arbitrary ring elements with regard to invertibility by one NTT transformation.
Inverting elements in R×q is reduced to inversion in Z×q , which is cyclic due to prime modulus. When
working in the NTT representation, we are even not required to apply the NTT forward and backward
transformations. This will be particularly important for the tagging approach, where a tag is chosen
uniformly at random from the ring of units and is subsequently applied to the public key when encrypting
messages.

4. We instantiated the CCA1-secure encryption scheme in the ring setting for public keys being both
statistically and computationally indistinguishable from uniform. This mainly follows from the trap-
door construction due to [MP12, EB14]. Moreover, we considered different parameter sets (e.g. error
and secret key parameter) for n = 512 varying the message throughput per ciphertext. The authours
of [EDB15] also proposed a high data load encryption mode that additionally allows to encrypt large
blocks of data using the same secret and at a minimal increase of the running time. The system under
scrutiny will, moreover, be analyzed in terms of security using state-of-the-art tools from cryptanalysis
such as the embedding approach from [AFG13] and [BG14] suitable for a bounded number of LWE
samples. We differentiate key recovery attacks from attacks against the ciphertext.

5. In order to attest the conjectured efficiency of the scheme, we implemented the scheme in software for
n = 512. This implementation is optimized with respect to the underlying architecture using AVX
resp. AVX2. For this, we essentially applied the techniques from [GOPS13], which provides several
optimizations for the polynomial representation and polynomial multiplication applying the NTT. Using
the same platform and optimizations we compared the CCA1-secure scheme with the current state-of-
the-art CPA-secure scheme by Lindner and Peikert [LP11, GFS+12]. In fact, our implementations
testify that our encryption engine is faster by a factor between 10 and 24 as compared to [LP11] for the
considered parameters, whereas our decryption routine is slower in the normal mode l = 0 and faster
for certain parameters in the high data load encryption mode l > 0 (i.e. improvement factors range
between 0.2 and 3.3).

1.2 Organization

This paper is structured as follows. In Section 2 we provide the relevant backround of our work. In Section
3 we introduce the A-LWE problem from [EDB15] and present our improvements and techniques. More-
over, we give a description of the resulting CCA1-secure encryption scheme involving our modifications.
Subsequently in Section 4, we provide a security analysis of the scheme followed by an efficient implementa-
tion in software. Finally, in Section 5 we present the experimental results while comparing with a software
implementation of the current state-of-the-art CPA-secure encryption scheme from Lindner and Peikert.

2 Preliminaries

Notation Let X = {Xn}n∈N and Y = {Yn}n∈N be two distribution ensembles. We say X and Y are
(computationally) indistinguishable, if for every polynomial time distinguisher A we have |Pr[A(X ) =
1]− Pr[A(Y) = 1]| = negl(n), and we write X ≈c Y (resp. X ≈s Y if we allow A to be unbounded).

We will use the polynomial rings R = Z[X]/ 〈Xn + 1〉 and Rq = Zq[X]/ 〈Xn + 1〉 for prime integers
q > 0 and n being a power of two. We denote ring elements by boldface lower-case letters e.g. p, whereas
for vectors of ring elements we use p̂ and upper-case bold letters for matrices (e.g., A). By ⊕ we denote
the XOR operator.



Discrete Gaussian Distribution We define by ρ : Rn → (0, 1] the n-dimensional Gaussian function ρs,c(x) =

e−π·
‖x−c‖22
s2 , ∀x, c ∈ Rn . The discrete Gaussian distribution DΛ+c,s is defined to have support Λ + c,

where c ∈ Rn and Λ ⊂ Rn is a lattice. For x ∈ Λ + c, it basically assigns the probability DΛ+c,s(x) =
ρs(x)/ρs(Λ+ c) .

Lattices. A k-dimensional lattice Λ is a discrete additive subgroup of Rm containing all integer linear
combinations of k linearly independent vectors b1, . . . ,bk with k ≤ m and m ≥ 0. More formally, we have
Λ = { B · x | x ∈ Zk }. Throughout this paper we are mostly concerned with q-ary lattices Λ⊥q (A) and
Λq(A), where q = poly(n) denotes a polynomially bounded modulus and A ∈ Zn×mq is an arbitrary matrix.
Λ⊥q (A) resp. Λq(A) are defined by

Λ⊥q (A) = {x ∈ Zm | Ax ≡ 0 mod q}
Λq(A) = {x ∈ Zm | ∃s ∈ Zm s.t. x = A>s mod q} .

By λi(Λ) we denote the i-th successive minimum, which is the smallest radius r such there exist i linearly
independent vectors of norm r (typically l2 norm) in Λ. For instance, λ1(Λ) = min

x 6=0
‖x‖2 denotes the

minimum distance of a lattice determined by the length of its shortest nonzero vector.

Definition 1. For any n-dimensional lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is
the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε

Lemma 1. ([GPV08, Theorem 3.1]). Let Λ ⊂ Rn be a lattice with basis B, and let ε > 0 . We have

ηε(Λ) ≤‖ B̃ ‖ ·
√

ln(2n(1 + 1/ε))/π .

Specifically, we have ηε(Λ) ≤ b ·
√

ln(2n(1 + 1/ε))/π for basis B = b · I of Λ .

Lemma 2 (statistical, [? ]). Let A ∈ Zn×mq , k = dlog qe ≥ 1 with m = l · k be an arbitrary full-rank
matrix. The statistical distance ∆(DZm,r,DΛ⊥v (A),r) for uniform v←R Zlq and r ≥ ηε(Λ⊥(A)) is negligible.

Lemma 3 (computational,[? ]). Let A ∈ Zn×mq , k = dlog qe ≥ 1 with m = l · k be an arbitrary full-rank
matrix. If the distribution of v ∈ Zlq is computationally indistinguishable from the uniform distribution over
Zlq, then DΛ⊥v (A),r is computationally indistinguishable from DZm,r for r ≥ ηε(Λ⊥(A)).

Lemma 4 (Lemma 2.4, [Ban95]). For any real s > 0 and T > 0, and any x ∈ Rn, we have

P [| 〈x,DZn,s〉 | ≥ T · s ‖x‖] < 2exp(−π · T 2) .

Below we give a description of the LWE distribution and related problems with respect to the matrix
variant of LWE.

Definition 2 (LWE Distribution). Let n,m, q be integers and χe be distribution over Z. By LLWE
n,m,αq we

denote the LWE distribution over Zn×mq × Zmq , which drwas A ←R Zn×mq uniformly at random, samples
e←R DZm,αq and returns (A,b>) ∈ Zn×mq × Zmq for s ∈ Znq and b> = s>A + e>.

Definition 3 (LWE Problem). Let u ∈ be uniformly sampled from Zmq .

– The decision problem of LWE asks to distinguish between (A,b>)← LLWE
n,m,αq and (A,u>) for a uniformly

sampled secret s←R Znq .
– The search problem of LWE asks to return the secret vector s ∈ Znq given an LWE sample (A,b) ←
LLWE
n,m,αq for a uniformly sampled secret s←R Znq .



3 Augmented Learning with Errors

In this section, we give a description of the message embedding approach proposed in [EDB15] and how it
is used in order to inject auxiliary data into the error term of LWE samples. This feature represents the
main building block of the generic encryption scheme from [EDB15], which allows to encrypt huge amounts
of data without increasing the ciphertext size as compared to previous proposals. In fact, it is even possible
to combine this concept with the traditional one-time-pad approach in order to take the best from both
worlds and hence increase the message size per ciphertext at almost no costs.

3.1 Message Embedding

The proposed technique aims at embedding auxiliary data into the error term e such that it still follows the
required error distibution. In particular, Lemma 2 and 3 are used, which essentially state that a discrete
Gaussian over the integers can be simulated by sampling a coset c ∈ Znp uniformly at random for any
full-rank matrix B ∈ Zn×mp and then invoking a discrete Gaussian sampler outputting a vector from
Λ⊥c (B) = c + Λ⊥p (B). However, this requires the knowledge of a suitable basis for Λ⊥p (B). In fact, the
random coset selection can be made deterministically by means of a random oracle H taking a random
seed with enough entropy as input.
The fact, that xoring a message m to the output of H does not change the distribution, allows to hide the
message within the error vector without changing its distribution. As a result we obtain e← DΛ⊥

H(µ)⊕m
(B),r,

which is indistinguishable from DZm,r for a random seed µ and properly chosen parameters.
Subsequently, based on the message embedding approach the authours introduce the Augmented LWE

problem (A-LWE), where A-LWE samples resemble ordinary LWE samples except for the modified error
vectors. In particular, the A-LWE problem is specified with respect to a specific matrix G, which allows
to sample very short vectors efficiently according to the discrete Gaussian distribution. But other choices
are also possible as long as the parameter of the error vectors exceed the smoothing parameter of the used
matrix. We now give a generalized description of the A-LWE distribution using any public matrix B:

Definition 4 (Augmented LWE Distribution). Let n, n′,m,m1,m2, k, q, p be integers with m = m1 +

m2, where αq ≥ ηε(Λ⊥(B)). Let H : Znq ×Zm1 → {0, 1}n
′·log(p) be a function. Let B ∈ Zn′×m2

p be a preimage
sampleable trapdoor function (such as B = G from [EDB15]). For s ∈ Znq , define the A-LWE distribution
LA-LWE
n,m1,m2,αq(m) with m ∈ {0, 1}n

′ log(p) to be the distribution over Zn×mq × Zmq obtained as follows:

• Sample A←R Zn×mq and e1 ←R DZm1 ,αq .

• Set v = encode(H(s, e1)⊕m) ∈ Zn′p .
• Sample e2 ←R DΛ⊥v (B),αq .

• Return (A,b>) where b> = s>A + e> with e = (e1, e2) .

In principal, for A-LWE one differentiates the decision problem decision A-LWEHn,m1,m2,αq from the
corresponding search problem search-s A-LWEHn,m1,m2,αq, as known from LWE. Furthermore, there exists
a second search problem search-m A-LWEHn,m1,m2,αq, where a challenger is asked upon polynomially many
A-LWE samples to find the message m injected into the error vector in polynomial time. Note that the
error distribution could also differ from the discrete Gaussian distribution. For instance, one could use the
uniform distribution, for which one obtains similar results.

All the proofs from [EDB15] go through without any modification, since the security proofs do not
depend on the choice of B at all. In fact, the proofs require only that DΛ⊥v (B),αq is indistinguishable from
DZm,αq for a random vector v. But this is true as per Lemma 3 resp. Lemma 2 for αq > ηε(Λ

⊥(B)) and
ε = negl(λ). Hence, we can directly use all the schemes provided in [EDB15] such that we get the following
adapted variant of the LWE to A-LWE reduction.



Theorem 1 (adapted [EDB15]). Let n, n′,m,m1,m2, k, p, q be integers with k = log q and m = m1 +

m2. Let H : Znq × Zm1 → {0, 1}n
′ log(p) be a random oracle. Let B ∈ Zn′×m2

p be a preimage sampleable
trapdoor function and αq ≥ ηε(Λ

⊥
q (B)) for a real ε = negl(λ) > 0. Furthermore, denote by χs and χe1 the

distributions of the random vectors s and e1 involved in each A-LWE sample. If H∞(s, e1) > λ, then the
following statements hold.

1. If search LWEn,m,αq is hard, then search-s A-LWEn,m1,m2,αq is hard.
2. If decision LWEn,m,αq is hard, then decision A-LWEn,m1,m2,αq is hard.
3. If decision LWEn,m,αq is hard, then search-m A-LWEn,m1,m2,αq is hard.

We note, that these hardness results can directly be translated to the corresponding ring variants.

3.2 Improved Message Embedding

In the following section we propose several techniques in order to enhance the message throughput per
ciphertext. These techniques could also be applied to the error vector in the A-LWE distribution. In other
words, we aim at choosing an appropriate preimage sampleable matrix B ∈ Zn′×m2

p such that n′ is large
enough. For now, we will focus on how to apply this technique to the different encryption schemes and
omit the e1 term when invoking the random oracle, since the secret s ∈ Znq is always resampled and hence
provides enough entropy for each fresh encryption query. Our first approach is based on a method used
to construct homomorphic signatures in [BF11a]. The second approach does not require such complex
procedures in order to allow for the same message throughput.

Intersection Method The intersection method as proposed in [BF11a] considers two m-dimensional
integer lattices Λ1 and Λ2 such that Λ1+Λ2 = Zm, where addition is defined to be elementwise. Therefore, let
m1 and m2 be two messages, where m1 resp. m2 define a coset of Λ1 resp. Λ2 in Zm. As a result, the vector
(m1,m2) defines a unique coset of the intersection set Λ1∩Λ2 in Zm. By the Chinese Remainder theorem one
can compute a short vector t such that t = m1 mod Λ1 and t = m2 mod Λ2 using a short basis for Λ1∩Λ2.
In fact, it is easy to compute any vector t that satisfies the congruence relations. Subsequently, by invoking
a preimage sampler one obtains a short vector from Λ1∩Λ2 +t. For instance, one can efficiently instantiate
the scheme when choosing Λ1 = pZm and Λ2 = Λ⊥q (A) for a matrix A ∈ Zl×mq with a short basis T and
p coprime to q. Doing this, the message spaces are given by m1 ∈ Zm/Λ1

∼= Zmp and m2 ∈ Zm/Λ2
∼= Zlq,

where the isomorphisms are given by x→ (x mod p) and x→ (A · x mod p). Due to the simple choice of
Λ1, we obtain a short basis S = p ·T for Λ1∩Λ2 = p ·Λ2, where ηε(Λ1∩Λ2) ≤ p ·ηε(Λ2). So, if A corresponds
to G ∈ Zm/kmq from [EDB15] for k = log q,we have ηε(Λ1 ∩Λ2) ≤ p · 2 ·ω(

√
log n). In our scheme, however,

we have to sample a short vector e from (H(s) ⊕ t) + Λ1 ∩ Λ2 with parameter αq ≥ ηε(Λ1 ∩ Λ2), where
t is computed as above and the (simplified) description H : Znq → Zmq defines a random oracle taking a
random secret s ∈ Znq as input. The error vector is then given by e← Db+Λ1∩Λ2,αq with b = H(s)⊕ t. Due
to ηε(Λ1 ∩ Λ2) ≤ p · 2 · ω(

√
log n) ≤ αq (e.g. αq = 2

√
n), the error vector is indistinguishable from DZm,αq

following Lemma 2 and Lemma 3. This technique allows to embed m log p + m bits of messages into the
error term as compared to m in [EDB15].

Lattices of the Form p · Zm One realizes that for a given parameter αq of the error vector one can be
much more efficient, if one considers only the lattice Λ = pZm. In this case, the message space is simply
defined by the set m ∈ Zm/Λ ∼= Zmp . When comparing with the previous approach, for instance, it is
only required to increase p by a factor of 2 in order to obtain the same message throughput m log 2p =
m(log p + 1). Furthermore the decoding and encoding phase is much faster, since encoding requires only
to sample e← Db+pZm,αq for b = H(s)⊕m using fast discrete Gaussian samplers such as the Knuth-Yao
algorithm and decoding is performed via H(s) ⊕ (e mod p). Optimizing the message throughput requires
to increase p such that ηε(Λ) ≤ p · ω(

√
log n) ≤ αq still holds. Doing this, one can embed approximately



m log(αq/ω(
√

log n)) bits of data, which almost coincides with the min-entropy of a discrete Gaussian with
parameter αq. Therefore, it is most effective to choose a parameter such that αq = p ·ω(

√
log n) with p = 2i

for some i > 0 in order to embed i bits of data into the error term.

Uniform Error For uniformly distributed errors one can directly use the output of H(·) as the error term.
More specifically, suppose e ∈ ([−p, p] ∩ Z)m, then let H(·) : {0, 1}∗ → ([−p, p] ∩ Z)m be a cryptographic
hash function modeled as random oracle such that e← H(s)⊕m for m ∈ {0, 1}m log2(2p). As a result, one
can use the full bandwidth of the error term and inject m log2(2p) message bits.

3.3 Setting

Prior to starting with a description of our implementation we define our setting, in which we operate and
explain how this affects the performance and usability of the scheme. In particular, we give customized
algorithms that make use of the features accompanying the scheme in consideration. In particular, we
operate in the ring setting, where lattices correspond to ideals in the corresponding rings. This allows for
more efficient algorithms as compared to the unstructured counterparts in Znq . More specifically, we will
focus on cyclotomic rings of the form Rq = Zq[X]/ 〈Xn + 1〉 for integers q > 0 and n being a power of
two, where Φ2n(X) = Xn + 1 is a cyclotomic polynomial that is irreducible over Z[X]. Cyclotomic rings
have very nice structures that allow for efficient and specialized algorithms [Pol71] and furthermore provide
similar worst-case to average-case hardness results [LPR10]. Though it seems to be preferable to operate
with a modulus of the form q = 2l, when considering the trapdoor construction and the corresponding
LWE inversion algorithm from [MP12, EB14], but it might be more advantageous to select a prime q
such that q = 1 mod 2n. In this case Φ2n(X) = Xn + 1 splits into n linear factors over Zq[X] such that
Rq ∼= Zq[X]/ 〈g1(X)〉× . . .×Zq[X]/ 〈gn(X)〉, where gi(X) denote linear polynomials. Due to this fact, there
exists an element ω ∈ Zq of order 2n that satisfies Φ2n(ω) = 0 mod q since 2n|q − 1 and Z×q = Zq\{0} is a
cyclic group. Therefore, we can write gi(X) = X− ξi for some element ξi ∈ Zq and use the NTT [GOPS13]
in order to efficiently perform polynomial multiplication as already observed in [GOPS13]. Let ξ be an
element of order n and ψ2 = ξ mod q. Then two polynomials r,u ∈ Rq are multiplied by first transforming
r = (r0, . . . , rn−1) resp. u to T (r) = (r0, ψr1, . . . , ψ

n−1rn−1) resp. T (u) via the bijective map T : Rq → Rq
and subsequently computing T (c) = NTT−1

ξ (NTTξ(T (r)) ◦NTTξ(T (u))). Following this approach, it is not
required to double the input length to the NTT [Win96] and there is no need to use the less efficient FFT on
the complex numbers. Moreover, one realizes with view to the above representation of Rq that the number
of invertible elements in Rq is given by (q − 1)n = qn(1 − 1/q)n or simply by the ratio (1 − 1/q)n, which
is non-negligible for large enough values of q. In fact, when choosing q = 8383489 and n = 512 this ratio
is approximately 1. This fact helps us to choose better parameters for generating trapdoor. Beyond that,
we propose a fast technique to generate ring elements and the corresponding inverses required for tagging
the public key in order to ensure CCA security. This method is mainly possible due to the existence of the
NTT. In addition, we present in Section 3.7 an LWE inversion algorithm for arbitrarily composed moduli
q including prime numbers, since the algorithm given in [MP12] can only be successfully applied if q is a
power of two.

3.4 Trapdoors

In this paragraph we shortly introduce the trapdoor generation algorithm [MP12, EB14], which is used in
order to construct a public key that is indistinguishable from uniform and allows to invert LWE instances.
We will restrict to the ring variant following [EB14] with polynomials in Rq. Thus, let k = dlog qe and
m̄ > 0 be an integer.
TrapGen(1n) :

– Statistical instantiation. Sample m̄ polynomials â = [a1, . . . ,am̄] ∈ Rm̄q uniformly at random. By

hâ(x̂) =
m̄∑
i=1

aixi we define a generalized compact knapsack parametrized by the elements in â. Sample



k vectors of polynomials r̂i = [ri,1, . . . , ri,m̄] ∈ Rm̄ according to some distribution D and define am̄+i =
hâ(r̂i) for 1 ≤ i ≤ k. The public key is then given by pk = A with

A = [a1, . . . ,am̄,g1 − am̄+1, . . . ,gk − am̄+k] ,

where gi denotes the constant polynomial consisting only of zero coefficients except for the constant
term 2i−1. The trapdoor polynomials define the secret key sk = [r̂1, . . . , r̂m̄]. If a tag tu is taken into
account, we have

Au = [a1, . . . ,am̄, tu · g1 − am̄+1, . . . , tu · gk − am̄+k] .

– Computational instantiation. Sample a single polynomial a1 ∈ Rq uniformly at random (m̄ = 1).
Let fa1(x,y) = a1 · x + y ∈ Rq be a function. Sample 2k random polynomials ri,j according to DZn,αq
viewing polynomials as coefficient vectors with parameter αq (e.g. αq ≥ 2

√
n) for 1 ≤ i ≤ k and

j ∈ {1, 2}. The public key is then computed as follows

A = [a1,g1 − fa1(r1,1, r1,2), . . . ,gk − fa1(rk,1, rk,2)] .

Analogously, if a tag tu is used, we obtain Au by multiplication of tu with gi for 1 ≤ i ≤ k.

There exist many choices of how to select the parameter m̄ and the distribution D such that the
polynomials am̄+i are statistically close to uniform over Rq. In general, there exists an inherent relationship,
where a large number m̄ of random polynomials allows to select the entries of the trapdoor polynomials
ri,j to be of small size. Conversely, a small number of random polynomials leads to larger values. In fact,
one can apply the regularity bound from [SSTX09, Lemma 6], which essentially states that the statistical
distance of am̄+i = hâ(r̂i) from the uniform distribution over Rq is upper bounded by

ε ≤ 1

2

√(
1 +

q

Bm̄

)n
− 1,

where D corresponds to the uniform distribution over a set [−b, . . . , b] with B = 2b+ 1. For instance, if one
reconsiders the parameters q = 8383489 and n = 512 from above, it is possible to set m̄ = 46 and b = 24

in order to ensure a statistical distance of about 2−100. This bound is impractical for a low value for m̄. In
this case, however, a better regularity bound is given by [SS11, Lemma 3.1] resp. [LPR13, Corollary 7.5].
For inverting LWE instances it is also important that the parameters are chosen to be small enough in
order to efficiently recover the secret. The computational instantiation requires only one single polynomial
a1 sampled uniformly at random. The other polynomials are sampled from the LWE distribution using a1.
This approach, however, requires the secret when encrypting a message to be distributed from the discrete
Gaussian distribution in order to correctly recover the secret.

3.5 CCA secure Encryption Scheme from A-LWE

By use of our improved message embedding technique, we provide a description of the modified CCA1 secure
encryption scheme from [EDB15] adapted to the ring setting. The above observation that techniques for
larger message throughput from Section 3.2 have no impact on the distributions, CCA security directly
follows from [EDB15]. Thus, let Rq = Zq[X]/ 〈Xn + 1〉 for n a power of two and αq ≥ p · ω(

√
log n)

according to Section 3.2. Set k = dlog qe and denote by TDF = (KeyGen, g, g−1) a trapdoor function with
gA(x, ŷ) := Ax + ŷ ∈ Rtq for t = l +m.

KGen(1n): Generate public key pk := A = [A′ | A′′] ∈ Rl+mq , where A′′ ∈ Rmq is instantiated statistically
or computationally according to Section 3.4 with trapdoor sk := r̂.

• Without high data load encryption l = 0.
• With high data load encryption following [EDB15], then l > 0.



Enc(pk,msg ∈ {0, 1}c, for c = (m + l)n log p): Sample a tag tu ∈ R×q uniformly at random and generate
A′′u following Section 3.4. Then, sample s←R Znq (resp. s← DZn,αq) and compute v̂ = (v1, . . . ,vm+l) =

encode(H(s)⊕msg) ∈ Rm+l
q , where H : {0, 1}∗ → {0, 1}c is a cryptographic hash function modeled as

random oracle. Finally, sample ei ←R DΛ⊥vi (p·I),αq = DpZn+vi,αq for 1 ≤ i ≤ m + l, where vi is viewed
as a vector from Zn rather than a polynomial when added to pZn. The ciphertext is then given by
ĉ = gA(s, ê).

Dec(sk, c) : Compute g−1
A (r̂, c) = (s, e) for Au = [A′ | A′′u] ∈ Rl+mq ,as follows:

1. Statistical instantiation Let c′ = (cl+1, . . . , cl+m̄). Then compute c̃l+m̄+i = cl+m̄+i − hc′(r̂i)
for 1 ≤ i ≤ k and m = m̄ + k. Now, invoke the LWE inversion algorithm from Section 3.7 on
c̃l+m̄+1, . . . c̃l+m̄+k in order to recover s̃ = tu · s. Subsequently, compute ê = ĉ−Aus for s = t−1

u s̃.

2. Computational instantiation Compute c̃l+i+1 = cl+i+1−cl+1 ·ri,1 for 1 ≤ i ≤ k. The remaining
steps are identical to the statistical instantiation.

Return msg = (ê mod p)⊕H(s).

We note here, that the secret vector s can also be exploited for additional messages and together with
the one-time-pad approach from [MP12] it allows to embed further 2nk − n bits (e.g. s = (H ′(µ), µ) ∈ Znq
with µ containing enough bits). The mode for high data load encryption (i.e. l > 0) allows to encrypt huge
amounts of data at a minimal increase of the running time. The corresponding polynomials (resp. matrix
part) A′ can efficiently be generated from a random seed. And also the security of the scheme does not
change. This is particularly interesting for secure backups or traffic over the internet. In the following, we
recall an adapted security statement of the CCA1-secure encryption scheme from [EDB15].

Theorem 2. (Adapted [EDB15, Theorem 4]) Let p be an integer such that αq = p · ω(
√

log n). Then,
the encryption scheme above is CCA1-secure assuming the hardness of decision A-LWEn,0,m,αq.

The proof directly follows from [EDB15].

3.6 Fast Tag Generation and Inversion

Ensuring CCA resp. RCCA security requires to apply the tagging approach as realized in [MP12]. It is
needed to generate a tag from a large set U . We propose a technique which allows to generate tags and
its corresponding inverses much faster than with polynomial division in combination with the extended
Euclidean algorithm. Furthermore, it allows to efficiently check whether an element belongs to the ring
of invertible elements R×q . Conceptually, it is based on the NTT transform that acts as an isomorphism
mapping polynomials f from Rq to f̃ from Zq[X]/ 〈g1(X)〉 × . . .× Zq[X]/ 〈gn(X)〉 via f̃ = A · T (f) mod q,

i.e. f̃i =
n−1∑
k=0

fkψ
kξik, for A = (ξij)1≤i,j≤n and an element ξ ∈ Zq of order n [Win96]. Multiplication of two

polynomials is performed componentwise after applying the NTT transform on each polynomial.

Theorem 3. Let q be a prime and n be a power of two with q ≡ 1 mod 2n. Moreover, letRq = Zq[X]/ 〈Xn + 1〉
and f̃ = A · T (f) mod q for f ∈ R×q and T (f) = (f0, ψf1, . . . , ψ

n−1fn−1) and NTT transformation matrix
A = (ξij)1≤i,j≤n, where f0, . . . , fn−1 denote the coefficients of the polynomial f (coefficient embedding). The
inverse of f is given by f−1 = g for

T (g) = n−1A−1g̃

and g̃i · f̃i = 1 mod q with 1 ≤ i ≤ n. Moreover, an element f possesses an inverse if only if f̃i 6= 0 mod q ∀i.

Proof. One can easily check that the polynomial c with constant 1 and zero coefficients elsewhere has NTT
transform c̃ = (1, . . . , 1). Hence, two elements f and g are inverses of each other in case g̃i · f̃i = 1 mod q for



1 ≤ i ≤ n due to componentwise multiplication T (c) = NTT−1
ξ (NTTξ(T (f)) ◦ NTTξ(T (g))) = NTT−1

ξ (c̃).
This can be attributed to the fact that the NTT maps polynomials to the ring Zq[X]/ 〈g1(X)〉 × . . . ×
Zq[X]/ 〈gn(X)〉, where inversion is performed componentwise over Zq\{0}. As a result, one can easily
check that an element is invertible whenever all f̃i 6= 0 mod q ∀i. ut

From Theorem 3 it follows that the set R×q contains (q − 1)n elements such that for two random
polynomials g, f ∈ R×q the difference g − f lies in R×q with probability (1 − 1/(q − 1))n. More precisely,
the difference g − f is invertible, if all components of A · T (f − g) mod q are non-zero. For large enough
q the unit difference property, used only in the security proof, holds with overwhelming property. For
practice, however, it suffices to set q = 8383489. Since multiplication always involves the NTT transform
and tagging requires to multiply the tag or its inverse, we generate from a seed the components of f̃
rather than coefficients of f . This approach has two major advantages over the standard way, since one
NTT transformation is saved and it is, furthermore, very easy to generate invertible elements as it is only
required to generate n random elements from Zq\{0}. This does apparently not hold in case one desires
to generate an invertible element directly from Rq. Following this, inversion of f̃ is also performed in the
NTT state by generating the corresponding g̃ according to Theorem 3. Such a strategy allows to compute
inverses over Zq\{0} rather than R×q , which is much more efficient.

3.7 LWE Inversion For Arbitrary Modulus

In [MP12] an efficient LWE inversion algorithm has been proposed that works only for moduli q being a
power of two. The second part of the LWE inversion algorithm fails whenever the modulus is of different
type. Roughly speaking, the algorithm recovers the components of the secret s bitwise starting from the
last bit. Shifting s to the left deletes the most significant bits modq. However, if the modulus is not of this
form, the secret is wrapped around and this approach does not work any more. In the following we give
a description of our approach. The first part remains essentially the same. For the sake of simplicity, let
l = 0 such that A = A′′ and ĉ = [c1, . . . , cm̄+k] = As + [e1, . . . , em̄+k] be a ciphertext.

– Step 1: Set c̃m̄+i = cm̄+i −
m̄∑
j=1

cjrij = gis + (ei +
m̄∑
j=1

ejrij) = gis + pi.

– Step 2: Let ‖p‖∞ ≤ b with overwhelming probability. When implementing the scheme, one can decrease
the bound b, since the length of rij needs not to be upper bounded due to direct access to the secret
key. The algorithm is independently applied on each entry of s = (s1, . . . , sn). Therefore, we start by

recovering the bits of s1 =
k−1∑
i=0

ai2
i. One proceeds successively and recovers the most significant bits at

the beginning as opposed to the least significant bits following [MP12].
1. For i = 0, i ≤ k: Let t = gis+pi and c = t1−2i(ak−12k−1 + . . .+al2

l) mod q, where ak−1, . . . , al ∈
{0, 1} represent all bits recovered up to the i-th iteration.

2. Check the first bits of c− b and c+ b in terms of equality, since 2is1 ∈ [t1 − b, t1 + b]. For instance,
if the bit representation of c− b resp. c+ b is 10100 . . . resp. 10110 . . ., then s1 (for i = 0) must have
most significant bits 101 with ak−1ak−2ak−3 = 101.

Case a: If the number of recovered bits in 2. is non-zero, then jump to 1. with i = i + 1 and
proceed with c = t1 − 2i(ak−12k−1 + . . .+ al2

l) mod q, where ak−1, . . . , al ∈ {0, 1} represent all
bits recovered up to the i-th iteration.

Case b: If in Step 2 no bits could be recovered due to differing bit representations, then c ± b
has bit representations 10000 . . . resp. 01111. Theoretically, both representations are possible
due to the perturbation vector, which is upper bounded by b (e.g. log q − log b ≥ 6). Therefore,
one creates two instances each for a different representation and continues the algorithm with
al+1al+2al+3al+4al+5 = 10000 resp. al+1al+2al+3al+4al+5 = 01111 .



If the second case occurs at least once, the correct secret s is attained by checking whether the
polynomials e′i = ci−gis mod q lie in [−4.7 ·αq, 4.7 ·αq]n for all 1 ≤ i ≤ k after normalization of the
entries of e′i to the range [−q/2, q/2]n, because otherwise there exists an i such that the normalized
e′i are not all contained in [−4.7 ·αq, 4.7 ·αq]n due to injectivity of gA(·, ·) for the chosen parameters.

The choice of a parameter for the error term can be derived with the help of the following lemma.

Lemma 5. Suppose that the secret key is sampled according to the discrete Gaussian distribution or uni-
formly at random with parameter rsec. In order to correctly invert the LWE instance ĉ, parameters for the
error term are given by

αq ≤ q

4(1 + rsec
√
m̄n)

1√
n
.

Proof. Since pi = (ei +
m̄∑
j=1

ejrij), we have ‖pi‖ ≤ ‖ei‖ +
√
m̄ ‖ej‖ ‖rij‖ ≤ q/4 . For instance, if rij is

chosen from a discrete Gaussian distribution with parameter rsec ( or alternatively components uniformly
at random from [−rsec, rsec] ∩ Z). Then, it follows ‖rij‖ ≤ rsec

√
n and subsequently ‖ej‖ ≤ q

4(1+rsec
√
m̄n)

by rearrangement of the terms. This, however, implies that the parameter αq of the error term is bounded
by q

4(1+rsec
√
m̄n)

1√
n
, since ‖ej‖ ≤ αq

√
n. ut

In order to estimate the bound b, which affects the running time, we can compute ‖rij‖ practically, since
we have direct access to the key material. In any case, b is upper bounded by b ≤ ‖pi‖∞ = 4.7 ·αq ‖r̂i‖2 ≤
4.7 · αq · rsec

√
m̄n. This mainly follows from Lemma [Ban95, Lemma 2.4] with r̂i = (ri,1, . . . , ri,m̄) viewed

as a vector of Znm̄q rather than an element of Rm̄q .

4 Security Analysis

In order to estimate the security of the scheme, we mainly adopt the embedding approach, which is more
appropriate for a bounded number of samples as observed in [BG14]. The distinguishing attack, however,
provides better results if the number of available LWE samples is large. In principal, the embedding ap-
proach proceeds by reducing the LWE problem to the unique shortest vector problem (u-SVP). One mainly
differentiates the standard embedding approach [AFG13] with the variant that has recently been shown to
be more efficient especially for a small number of samples [BG14]. In the following, we give a description
of the main ingredients of the embedding approach for the matrix variant.

4.1 Embedding Approach

Let (A>,b) be an LWE sample with b = A>s + e mod q, where e← DZm,s follows the discrete Gaussian
distribution. The idea of this attack is to turn the problem of finding a closest lattice point (CVP) to the
target vector b into a unique-SVP problem. Therefore, the authours start with a carefully crafted matrix

Ae =

[
A> b
0 1

]
and the corresponding q-ary embedding lattice

Λq(Ae) = {u ∈ Zn | ∃x s.th. Aex ≡ 0 mod q} .

A short lattice point is given by u =

(
e
1

)
= Ae

(
−s
1

)
. Its length is upper bounded s

√
m. In [GN08] it was

conjectured that a lattice basis reduction algorithm will find a shortest vector with high probability if

λ2(Λ)/λ1(Λ) ≥ δn(Λ) · τ (1)

is satisfied for an algorithm characteristical Hermite-factor δ and a lattice resp. algorithm specific constant
τ ≈ 0.4. One observes by this relationship that the gap between the first and second successive minimum



of the lattice Λ play an important role for the success probability of the underlying algorithm. In order to
estimate the successive minima we need the determinant of the lattice, which is given by det(Λq(Ae)) =
qm−n with overwhelming probability for a random lattice. Subsequently, by use of the Gaussian heuristic
one can deduce estimations for the lengths of the successive minima

λi(Λ) ≈ Γ (1 + n(Λ)/2)1/n(Λ)

√
π

det(Λ)1/n(Λ). (2)

Substitution of λ1 and λ2 in equation (1) by equation (2) and rearrangement of the terms provides

δ ≈

(
Γ (1 + m+1

2 )1/(m+1)

√
π ·m · τ · s

q
m+1−n
m+1

)1/(m+1)

,

for the required Hermite factor in order to break LWE samples by means of the embedding approach, where
dim(Λq(Ae)) = m+ 1. Now, it is possible to estimate the time required to successfully mount an attack on
LWE and subsequently derive the bit security of the underlying LWE instances. In particular, it is needed
to preprocess the lattice basis by a strong basis reduction algorithm such as BKZ or the more advanced
BKZ 2.0 in order to achieve the required Hermite factor. For instance, the authours of [LP11] proposed a
model that is deduced by a limited set of experiments and subsequent extrapolations

log2(T (δ)) = 1.8/ log2(δ)− 110 . (3)

These experiments were performed on a computer allowing for 2.3 · 109 operations per second.
The standard embedding approach from above is not so efficient in case one is given only a few LWE

samples. As a result, the optimal attack dimension is never reached. To circumvent this situation, one
changes the embedding lattice as follows

Λ⊥q (Ao) = {v ∈ Zm+n+1 | Ao · v = 0 mod q}

and hence allowing for a finer analysis, where Ao =
[
A> | I | b

]
. Following this approach, one increases

the dimension fromm+1 tom+n+1. By a trivial computation one verifies that u =
(
s, e,−1

)T ∈ Λ⊥q (Ao).

The length of this vector is bounded by s
√
m+ n+ 1. Using the framework from above with det(Λ⊥q (Ao)) =

qm one obtains the estimated security level. The ring variant requires to multiply the number of polynomials
by n, i.e. m = t · n for A ∈ Rtq

4.2 Analysis of Key Recovery Attacks

Instead of breaking the encryption scheme by attacking the ciphertext, it is possible to recover the key.
Therefore, we have to differentiate between the statistical and computational instantiation of the public
key.

• Statistical Instantiation: In order to recover the key we have to solve the ring-SIS problem for
k instances am̄+i = hâ(r̂i) with 1 ≤ i ≤ k. In this case, we have to find preimages x̂i such that

am̄+i = hâ(x̂i) for 1 ≤ i ≤ k and ‖pi‖ =

∥∥∥∥∥ei +
m̄∑
j=1

ejxij

∥∥∥∥∥ ≤ ‖ei‖ + ‖ej‖ ‖xij‖
√
m̄ ≤ q/4 from

Section 3.7. Suppose that the entries of ‖x̂i‖2 ≤ b for 1 ≤ j ≤ m̄ and 1 ≤ i ≤ k. Then, the Hermite
factor required to solve the problem can be estimated by δ = (b/qn/m)1/m. This follows from [MR09],
where the length of a shortest vector is estimated by qn/mδm for m = (m̄ + 1) · n and Λ⊥(ĉi) = {x̂ ∈

Rm̄+1
q |

m̄+1∑
i=1

cixi ≡ 0 mod q}, where ĉi = [â, hâ(x̂i)]. By means of equation (3) one derives the bit

security.



• Computational Instantiation: Here, the public key is composed by k LWE instances and a uniform
random polynomial a1 used to generate the LWE samples. For each LWE sample in the public key a new
secret and error has been generated. Therefore, we are required to consider each sample independently
within the security analysis. To this end, we can use the embedding approach from above in order to
estimate its security.

5 Software Implementation and Performance Analysis

At the inplementation front we considered several optimizations. As for the polynomial representation and
optimizations with respect to the NTT we refer to the work [GOPS13], which provides a description of
an optimized implementation exploiting the single-instruction multiple-data (SIMD) instructions of the
AVX instruction-set extension in modern Chipsets. We present a description of the main ingredients of
our optimizations in Section 5.1 and continue in the following section with our performance analysis resp.
implementation results.

5.1 Software Implementation and Optimization

Polynomial Representation The polynomial representation mainly follows the work [GOPS13], which
is optimized for n = 512. In particular, polynomials are stored in an array of 512 double-precision floating
point values. Using the single instruction multiple-data (SIMD) instructions of AVX allows to operate
on vectors of 4 double precision floating points in the 256-bit ymm registers such that 4 double-precision
multiplications and 4 additions of polynomial coefficients are performed each cycle via the instructions
vmultpd resp. vaddpd. In fact, only 64 polynomial coefficients fit into the available 16 ymm registers.

Polynomial Multiplication and NTT For polynomial multiplication we use the NTT transformation,
which exists due to the choice of q ≡ 1 mod 2n for n = 512 as already discussed in Section 3.3. The NTT
benefits from the fact, that the root of unity is an element of Zq and hence avoids to operate with complex
roots needed for the standard FFT. We also adopt the optimizations from [GOPS13] made to the NTT.

Tag Generation As for generating the tag, we use a seed in order to generate the coefficients of the NTT
transformation of the tag NTTξ(T (u)) as described in Section 3.6. As a consequence, the corresponding
polynomial will never be transformed back to u, hence, saving one transformation. Inverting of NTTξ(T (u))
in the decryption step is performed componentwise over Zq, allowing to be much faster than over Rq.
Furthermore, the polynomials gi are polynomials with constant term 2i and zero coefficients elsewhere.
Hence, multiplication of u with gi requires only to multiply the components of NTTξ(T (u)) with 2i rather
than transforming gi to its NTT representation.

Storing in the NTT representation Due to the existence of the NTT with ξ ∈ Zq, we can store the
whole public key A in its NTT representation without increasing the storage requirements. This even leads
to a faster encryption and decryption engine, since application of the NTT on the public key prior to
polynomial multiplication is not needed. This saves one transformation in each step. The way of generating
tags as already shown above is perfectly adapted to this case.

Sampling Discrete Gaussians The error term and potentially also the secret of A-LWE resp. LWE
instances are sampled according to the discrete Gaussian distribution. In our implementation we use the
Knuth-Yao algorithm, which efficiently generates discrete Gaussian samples as already observed in several
works. However, we are required to initialize the Knuth-Yao sampler for DpZ+c for all c ∈ Zp.



High Data Load Encryption In order to allow for high data load encryption, the number of polynomials
l > 0 in A′ ∈ Rlq must be non-zero. These polynomials are completely random and can hence be generated
from a random seed. Therefore, it suffices to only storeA′′ ∈ Rmq and a seed forA′ in its NTT representation
allowing for faster operations while saving storage using a seed. Also with respect to security, one observes
that increasing l does not decrease the bit security, since the optimal dimension has already been exceeded
by A′′.

Generation of Random Polynomials Seeds are produced by means of the Linux kernel random-
generator /dev/urandom. We instantiate the random oracle H(·), when encrypting messages, by a pseudo-
random generator using Salsa20 stream cipher in order to increase the number of output bits. This allows
to produce as many random bits as required.

5.2 Performance Anaysis and Implementation Results

Parameter Description Used for

n Dimension n = 512
q Modulus q ≡ 1 mod 2n
Rq Cyclotomic ring Rq = Zq[X]/ 〈Xn + 1〉
p Message range p = 2x, x bits/coeff.
αq Parameter of the error distribution (e.g. DZn,αq) αq = 4.7 · p
m Number of polynomials in A′′ A′′ ∈ Rmq
l High data load encryption mode: l > 0 A′ ∈ Rlq
µ Seed to generate A′ ∈ Rlq
rsec Parameter of the secret key distribution DZn,rsec or U([−rsec, rsec]n)
m̄ Number of random polynomials generating A′′ ∈ Rmq m = m̄+ k

Message size (m+ l)n log2(p)
Ciphertext size (m+ l)n log2(q)
Public key size µ+mn log2(q)
Secret key size m̄nk log2(rsec)

Table 2. Parameters

We implemented both our scheme and the CPA-secure one from Lindner and Peikert LP11 on a machine
that is specified by an

– Intel Core i7-4500U processor operating at 1.8GHz and 4GB of RAM. We used a gcc-4.8.2 compiler
with compilation flags Ofast, mavx2, msse2avx, march=corei7-avx and march=core-avx-2.

The most time critical operations are polynom multiplications, which take about 14922 cycles including
three NTT transformations, which require the major block of the running time.
Our performance results are given in Table 3 and Table 4, each for a different instantiation of the public key
A according to Section 3.4. In particular, Table 3 contains the implementation results for the computational
instantiation of A, whereas Table 4 provides the corresponding data for a statistically instantiated public
key. We provide timings, bit security, message sizes and message expansion factors (ciphertext size/message
size ratio) depending on different parameters defined in Table 2 (see Appendix 5.2).

At the first glance, one observes that the ciphertext size of LP11 is larger than in our setting by a factor
of 2 · log p for the same message size. More specifically, LP11 generates ciphertexts of size 2n log q bits for n
message bits, meaning that in average a half bit is encrypted per entry, whereas in our case we can encrypt
log p = log(αq/4.7) bits per entry. This leads to message expansion factors of 5.75 resp. 2.9 (see Table 3 and
Table 4) in case we encrypt 4 resp. 8 bits per entry (of size 23 bits) as compared to a factor of 46 for LP11.
As an immediate consequence, our encryption engine must be much faster than LP11, since encryptions



represent A-LWE instances resembling ordinary LWE samples in its purest form. In fact, when comparing
the timings of both schemes, we observe that our scheme outperforms LP11 by factors between 10 and
approximately 24 for the same message size and conservatively chosen parameters in our setting. That is
the timings of LP11 would be even worse in case we choose the same discrete Gaussian parameter. Huge
improvement factors are achieved in the high data load encryption mode for l > 0, because we can extend
the public key by random polynomials and encrypt messages using the same secret. The overhead is solely
restricted to generating new error polynomials and multiplying the secret with the random polynomials
from A′, which can in turn be generated from a random seed.

In our implementations, we let all error polynomials be identically distributed. In fact, one could get much
better improvement factors, if l is increased and the error polynomials corresponding to A′ are sampled
from a wider discrete Gaussian distribution and hence encrypt more bits per entry while being still secure
due to large αq. For decryption no length conditions are imposed on A′. From a security point of view, our
scheme has a bounded number of samples exceeding the optimal dimension with respect to the embedding
approaches from [AFG13] and [BG14]. As a result, the bit security of the scheme lies independently from the
number of samples l +m between 279 and 395 for computationally instantiated public key and about 202
for a statistical instantiation, in case the ciphertext is attacked. This is much higher than compared to LP11
for the selected parameters. Due to the bound from Lemma 5, there exists a relationship among the lengths
resp. parameters of the error polynomials corresponding to A′′ and the secret keys, which should not exceed
a certain bound. Therefore, one is recommended to select a proper tradeoff between these parameters. A
lower parameter rsec of the secret key allows to select a higher error parameter αq corresponding A′′, since
A′ is not affected. However, the decryption routine in LP11 is faster (factors between 1.5 and 4) than ours
in case l = 0. This is mainly due to the trapdoor resp. LWE inversion algorithm from Section 3.7, whose
efficiency depends on the bound b, where a high bound allows only to recover a few bits per step. But for
increasing l, the decryption engine of our scheme gets much faster. Once having recoverd s the ciphertext
part ĉ′ corresponding to A′ is decrypted by ê′ = ĉ′−A′ mod q, which is similar to c1 · r2 +c2 from LP11 in
terms of operations, except that we can decrypt more bits per entry in our scheme as compared to LP11.
As a consequence, for large enough l decryption is performed faster than LP11. For instance, in Table 3
our decryption routine outperforms LP11 by a factor of approximately 3.3 for a message of size 1081344
bits and l = 10 and a factor of 1.7 for a message of size 258048 bits and l = 2.



Parameters Sizes (bits) Timings (cycles) Security (bits)

rsec αq Message Message Exp. Encrypt Decrypt [AFG13] [BG14] Key Recov.

This Work
l = 0

46 300 73728 3.8 2419200 6487200 279 355 272
20 601 86016 3.3 2538000 6499800 331 436 207
8 1203 98304 2.9 2460600 4190400 395 554 158

l = 2
46 300 221184 3.8 5481000 7227000 279 355 272
20 601 258048 3.3 5425200 7363800 331 436 207
8 1203 294912 2.9 5603400 5029200 395 554 158

l = 10
46 300 811008 3.8 17762400 11253600 279 355 272
20 601 946176 3.3 17492400 11712600 331 436 207
8 1203 1081344 2.9 18199800 9163800 395 554 158

LP11 [LP11]
- 300 73728 46 34326000 2070000 279 355 272
- 75 86016 46 38664000 2592000 202 250 272
- 75 98304 46 40986000 2844000 202 250 272
- 75 258048 46 102024000 7218000 202 250 272
- 75 294912 46 129042000 8766000 202 250 272
- 75 946176 46 406800000 27756000 202 250 272
- 75 1081344 46 433800000 30546000 202 250 272

Openssl− RSA 1024
(80 bit security) - - 73728 1 159030000 247752000 - - -

- - 86016 1 184680000 287712000 - - -
- - 98304 1 210330000 327672000 - - -
- - 258048 1 552330000 860472000 - - -
- - 294912 1 630990000 983016000 - - -
- - 946176 1 2022930000 3151512000 - - -
- - 1081344 1 2311920000 3601728000 - - -

Table 3. Comparison of encryption schemes from LP [LP11] with Section 3.5 for A ≈c U(Rtq)

Parameters Sizes (bits) Timings (cycles) Security (bits)

rsec m̄ αq Message Message Exp. Encrypt Decrypt [AFG13] [BG14] Key Recov.

l = 0
16 46 75 141312 5.75 4698000 18005400 202 250 >> 250
16 23 75 94208 5.75 3484800 11293200 202 250 >> 250
8 46 75 141312 5.75 4743000 16788600 202 250 >> 250
8 23 75 94208 5.75 3506400 10297800 202 250 >> 250

l = 2
16 46 75 423936 5.75 12855600 20799000 202 250 >> 250
16 23 75 282624 5.75 8931600 13102200 202 250 >> 250
8 46 75 423936 5.75 12904200 19582200 202 250 >> 250
8 23 75 282624 5.75 9073800 12193200 202 250 >> 250

l = 10
16 46 75 1554432 5.75 45410400 32056200 202 250 >> 250
16 23 75 1036288 5.75 30578400 20835000 202 250 >> 250
8 46 75 1554432 5.75 45349200 30643200 202 250 >> 250
8 23 75 1036288 5.75 30402000 19650600 202 250 >> 250

LP11 [LP11]
- - 75 141312 46 56934000 4068000 202 250 272
- - 75 94208 46 37656000 2718000 202 250 272
- - 75 423936 46 172296000 12024000 202 250 272
- - 75 282624 46 113922000 7974000 202 250 272
- - 75 1554432 46 660600000 45324000 202 250 272
- - 75 1036288 46 451800000 30798000 202 250 272

Openssl− RSA 1024
(80 bit security) - - - 141312 1 302670000 471528000 - - -

- - - 94208 1 201780000 314352000 - - -
- - - 423936 1 906300000 1411920000 - - -
- - - 282624 1 605340000 943056000 - - -
- - - 1554432 1 3324240000 5178816000 - - -
- - - 1036288 1 2216160000 3452544000 - - -

Table 4. Comparison of encryption schemes from LP [LP11] with Section 3.5 for A ≈s U(Rtq)
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