
On Obfuscation with Random Oracles

Ran Canetti∗ Yael Tauman Kalai† Omer Paneth‡

January 20, 2015

Abstract

Assuming trapdoor permutations, we show that there exist function families that cannot be VBB-
obfuscated even if both the obfuscator and the obfuscated program have access to a random oracle.
Specifically, these families are the robust unobfuscatable families of [Bitansky-Paneth, STOC 13].

Our result stands in contrast to the general VBB obfuscation algorithms in more structured ideal-
ized models where the oracle preserves certain algebraic homomorphisms [Canetti-Vaikuntanathan,
ePrint 13; Brakerski-Rothblum, TCC 14; Barak et al., Eurocrypt 14].

∗Boston University and Tel Aviv University. Email: canetti@bu.edu. Supported by the Check Point Institute for
Information Security, an ISF grant 20006317, an NSF EAGER grant, and an NSF Algorithmic foundations grant 1218461.
†Microsoft Research
‡Boston University. Email: omer@bu.edu. Supported by the Simons award for graduate students in theoretical computer

science and an NSF Algorithmic foundations grant 1218461.

1

1 Introduction

Program obfuscators, namely efficient compilers that transform an arbitrary program into one that has
the same functionality but is otherwise “impenetrable”, are an intriguing concept. The widely applicable
interpretation of “impenetrable,” called virtual black-box (VBB) [BGI+01], requires that the obfuscated
version of a program helps learn any predicate of the program no more than does oracle access to the
program’s input-output functionality.

While a number of program families of interest are known to be VBB obfuscatable (under some
strong hardness assumptions), e.g. [Can97, Wee05, BCKP14], no general-purpose VBB-obfuscators of
all programs can exist. Indeed [BGI+01] show that, assuming one way functions, there exist unobfus-
catable functions. These are functions that have a succinct description that cannot be effectively learned
when having only oracle access to the function. At the same time, however, this succinct description can
be extracted from any program that computes the function. Clearly, no program that computes such a
function can possibly be VBB-obfuscated.

The construction of [BGI+01] makes crucial use of the fact that programs can be represented as
strings and in particular can be executed with their own specification as input. In contrast, in some
abstract models where programs do not necessarily have succinct representations as strings VBB obfus-
cation is in fact obtainable. One example is “hardware assisted” obfuscation, where some part of the
computation is modeled as a black-box representing impenetrable secure hardware [GIS+10, BCG+11].

Another example is motivated by the recent candidate construction of obfuscation for all circuits of
Garg et. al. [GGH+13b], that is based on an algebraic primitive called graded encodings [GGH13a].
The works of [BR14, BGK+14] prove that close variants of the proposed candidate are VBB secure
in a model where the graded encodings are implemented by an ideal oracle. [CV13] study a different
construction based on ideal pseudofree groups. Here, idealized models serve as an intermediate steps
on the way to full-fledged obfuscation, namely as a model for developing potentially viable obfuscation
algorithms and for understanding their security properties, as well as the computational assumptions on
which their security might be based.

This raises natural questions: What are the simplest and minimally-structured abstract models that
allow for general-purpose VBB obfuscation? For instance, do general-purpose VBB obfuscators exist
in the random-oracle model? Do they exist in the generic group model [Sho97, BS84]? In fact, is there
any non-trivial abstract model of computation where general-purpose VBB obfuscation is impossible?

Answers to the above question may shed light on what algebraic structure (if any) is inherent for
secure obfuscation — even in the plain model, and even when attempting to obtain only weaker notions
of obfuscation such as indistinguishability obfuscation.

We note that Barak et al. show that their impossiblity holds even when all entities, namely the
program to be obfuscated, the obfuscator and the obfuscated program have access to a random oracle.
1 Goldwaser and Rothblum [GR14] extend this to show that even the considerably weaker notion of
indistinguishability obfuscation is unobtainable in general in this setting. However, these results do not
answer the above questions. Specifically, they leave open the possibility of obfuscating fully speci-
fied programs that do not access the random oracle. Indeed, Lynn et al. ask whether general purpose
obfuscation is possible in that setting [LPS04].

1.1 This Work

We consider obfuscation in the setting of Lynn et al. [LPS04], where both the obfuscator and the
obfuscated program have access to a random oracle, and where the obfuscator is only required to operate
on fully specified programs that do not have access to the random oracle. Furthermore, we give the
adversary access to the same oracle. Here we show:

1In fact, [BGI+01] prove that their negative result holds in the more general settings of bounded relativization.

2

Theorem 1.1 (Main Theorem, informal). Assume trapdoor permutations exist. Then there exist func-
tion families that cannot be VBB obfuscated, even in a model where the obfuscator and the obfuscated
function have access to a random oracle.

Our impossibility extends to the case where the obfuscator and obfuscated program have access to
an invertible random permutation rather than a random function. That is, the oracle represents a random
permutation, and can be asked both to evaluate the function and to invert it. It also extends to the case
of approximate obfuscation, where the obfuscated program is only required to agree with the original
program on a significant fraction of the inputs.

1.2 Techniques.

The starting point of our proof is the existence of robust unobfuscatable functions (RUFs) which are a
strengthening of the unobfuscatable functions of [BGI+01]. Essentially, RUFs have a succinct descrip-
tion that cannot be effectively learned having only oracle access to the function. At the same time, this
description can be extracted from any program that approximates the function, namely agrees with the
function on some large fraction of the inputs, say 90%. Bitansky and Paneth [BP13] construct RUFs
from any trapdoor permutation.

Our proof now proceeds by transforming any obfuscator in the RO model into an obfuscator in the
plain model, namely one where the RO is not used. The transformation loses in correctness: the resulting
plain-model obfuscator generates a program that computes the function correctly only on some fraction
of the inputs. Still, impossibility is demonstrated by applying the transformation to an obfuscator for a
family of RUFs.

We describe in more detail the transformation from obfuscation in the RO model to obfuscation
in the plain model. Let OR be an obfuscator in the RO model. Our goal is to transform OR into an
obfuscator O in the plain model. We start by describing a simple warm-up. Let O be the following
plain-model obfuscator: given a description of a program C, the obfuscator O emulates an execution of
the RO obfuscator OR(C), answering every oracle query of OR randomly and independently (repeated
queries are answered consistently), and obtains a RO obfuscation C̃R of C. Let RC be the set of RO
query-answer pairs that occurred during the emulation of OR(C). The obfuscator O then outputs an
obfuscated program C̃ that has hard-coded to it the description of the RO obfuscation C̃R and the set
RC . Given an input x, the obfuscation C̃ emulates the RO obfuscation C̃R(x). C̃ answers any RO
query made by C̃R as follows: if the query appears in the set RC it is answered consistently with RC ,
otherwise, a random answer is given.2

The correctness of O follows directly from the correctness of OR in the RO model since, when C̃
emulates the program C̃R, all the RO queries made by C̃R are answered randomly and consistently with
the answers given to the obfuscatorOR(C) that generated C̃R. However, even ifOR is a VBB obfuscator
in the RO model, the obfuscatorO may be completely insecure, since the obfuscation C̃ includes the set
RC in the clear. This may reveal information about the program C.

In our actual transformation, the obfuscation C̃ will include a different set of RO query-answer pairs
RX that on the one hand, will give no information about the program C, but on the other hand, will
result in a obfuscation that is only approximately correct.

The actual plain-model obfuscator O starts by emulating the random oracle obfuscator OR(C) and
obtains the RO obfuscation C̃R and the set RC as before. Next, O “tests” the RO obfuscation C̃R to
learn which oracle queries are often made by C̃R when executed on a random input. Specifically, O
samples random inputs x1, . . . , x` used to test the program C̃R. The setRX is initially empty. For every
i ∈ [`], O emulates the RO obfuscation C̃R(xi) and answers any RO query made by C̃R as follows: if

2This results in a randomized obfuscated program. In the full construction we make the obfuscated program deterministic
by including in the description of the obfuscated program a list of random oracle answers that are reused in every evaluation.

3

the query appears in the setRC or in the setRX it is answered consistently, otherwise, a random answer
is given. In both cases, the query-answer pair is added to the set RX . Note that the final set RX may
not contain all the queries inRC and it may also contain queries outsideRC .

Finally, the obfuscator O outputs an obfuscated program C̃ that has hard-coded to it the description
of the RO obfuscation C̃R and the setRX . As before, the obfuscation C̃ on an input x emulates the RO
obfuscation C̃R(x) and answers any RO query made by C̃R as follows: if the query appears in the set
RX it is answered consistently withRX , otherwise, a random answer is given.

We argue that the new set RX gives no information about the program C: Consider the following
alternative way to sample the set RX . Let R be a random function that is consistent with the query-
answer pairs inRC . Now execute the RO obfuscation C̃R on random inputs x1, . . . , x` and given oracle
access to R. The set RX simply contains all the query-answer pairs that occur in these executions.
Intuitively, since RX can be sampled given the RO obfuscation C̃R and oracle access to R, it follows
from the VBB security of the RO obfuscator OR thatRX reveals no information about the program C.

To argue that C̃ is approximately correct, consider an evaluation of C̃ on a random input x. C̃ emu-
lates the RO obfuscation C̃R(x) and answers any RO query made by C̃R randomly and consistently with
the set RX . As discussed in the warm-up, if all of the queries made by C̃R were answered consistently
with the set RC , perfect correctness would have followed from the correctness of OR in the RO model.
However, the emulation of C̃R(x) may make a query that is in the set RC but not in the set RX . Such
a query will be answered randomly in a way that may not be consistent with the answer in RC and
correctness may be lost. We can therefore bound the probability that C̃(x) disagrees with C(x) by the
probability that C̃R(x) makes a query q ∈ RC \ RX . Such a query q must not have been asked by any
of the test executions of C̃R on the random inputs x1, . . . , x`, otherwise it would have been added to the
set RX . The probability that a query in RC is asked by C̃(x) but is not asked by C̃(xi) for any i ∈ [`]
is inversely proportional to `. Therefore, by making ` large enough, we can make the correctness error
sufficiently small (recall that any constant correctness error that is bounded away from 1 is sufficient for
the negative result of [BP13] to hold).

Connection to [IR89]. Our proof follows the same outline as the proof of Impagliazzo and Rudich
[IR89] separating key-agreement protocols from one-way functions (as well as many subsequent works).
In essence, Impagliazzo and Rudich rule out existence of key-agreement protocols secure gainst un-
bounded adversaries in the RO model. They do so in two steps: first they transform any key-agreement
protocol in the RO model into a key-agreement protocol in the plain model. Next they rely on the im-
possibility for information-theoretically secure key-agreement. We follow the same two steps: first we
transform any general (possibly approximate) obfuscator in the RO model to a general approximate ob-
fuscator in the plain model. Next we rely on the impossibility of the latter. Note that in our case the
impossibility in the plain model is stronger in the sense that it rules out existence of a primitive that
provides only computational security.

2 Impossibility of Obfuscation in the RO Model

In this section we prove an impossibility result for general purpose obfuscation in the RO model. We
start by defining approximate obfuscation and state the known impossibility result for obfuscation with
approximate correctness.

2.1 Approximate Obfuscation.

We define approximate obfuscation, both in the RO model and in the plain model.
Let F = {Fk}k∈{0,1}∗ be a family of functions such that Fk has a domain D|k|.

4

Definition 2.1 (Approximate Obfuscation). For a function ε : N → [0, 1], a PPT algorithm O is a
secure ε-approximate obfuscator for F if it satisfies the following requirements:

• Approximate Functionality: for all n ∈ N, k ∈ {0, 1}n:

Pr
x←Dn

[O(k)(x) 6= Fk(x)] ≤ ε(n) ,

where the probability is also over the coins of the obfuscator O.

• Virtual Black-Box: for every poly-size adversary A there exists a poly-size simulator S and a
negligible function µ such that for every k ∈ {0, 1}∗:∣∣∣Pr[A(O(k)) = 1]− Pr[SFk(1|k|) = 1]

∣∣∣ ≤ µ(|k|) ,
where the probabilities are over the coins of the obfuscator O, the adversary A and the simula-
tor S.

Definition 2.2 (Approximate Obfuscation in the RO model). For a function ε : N → [0, 1], a PPT
algorithm O is a secure ε-approximate obfuscator for F in the RO model if it satisfies the following
requirements:

• Approximate Functionality: for all n ∈ N, k ∈ {0, 1}n:

Pr
x←Dn

[OR(k)(x) 6= Fk(x)] ≤ ε(n) ,

where R : {0, 1}∗ → {0, 1}∗ is a random function, and the probability is also over R and the
coins of the obfuscator O.

• Virtual Black-Box: for every poly-size adversary A there exist a poly-size simulator S and a
negligible function µ such that for every k ∈ {0, 1}∗ :∣∣∣Pr[AR(OR(k)) = 1]− Pr[SFk(1|k|) = 1]

∣∣∣ ≤ µ(|k|) ,
where the probabilities are over R, the coins of the obfuscator O, the adversary A, and the
simulator S.

Next we formally state the known impossibility results for approximate obfuscation in the plain
model. The following is a direct corollary of [BP13, Theorem 3.1, Theorem 4.1, Lemma 4.1].

Corollary 2.1 ([BP13]). Assuming trapdoor permutations, there exists a family of functions F such that
an
(
1
2 − ε

)
-approximate obfuscator for F does not exist for every noticeable function ε.

Remark 2.1 (More on the impossibility of approximate obfuscation). The work of [BP13] constructs a
family of error-robust unobfuscatable functions. These are families {Fk}k∈{0,1}∗ such that given oracle
access to Fk for a random key k, the key remains completely hidden. However, given the code of any
function that agrees with Fk on 1

2 + ε of the inputs, it is possible to fully recover the key k. This implies
the following strong impossibility for approximate obfuscation: For any

(
1
2 − ε

)
-approximate obfus-

cator for {Fk}, with probability at least ε
2 over the coins the the obfuscation, the obfuscated function

agrees with the original function with probability at least 1+ε
2 . Therefore, with noticeable probability

over the coins the the obfuscation, it is always possible to reconstruct the entire key from the obfuscated
program.

5

2.2 The Impossibility

We start by describing a transformation from any (possibly approximate) obfuscation in the RO model
to an approximate obfuscation in the plain model. The approximation error of the resulting obfuscation
will be slightly larger then that of the original obfuscation.

Theorem 2.1. If a family of functions F has a secure ε-approximate obfuscator in the RO model then it
has a secure (ε+ δ)-approximate obfuscator in the plain model for every noticeable function δ.

Then, we combine the transformation in Theorem 2.1 with the known impossibility result for ap-
proximate obfuscation (Corollary 2.1) to derive the following impossibility for obfuscation in the RO
model:

Corollary 2.2. Assuming trapdoor permutations, there exists a family of functions F such that an(
1
2 − ε

)
-approximate obfuscator for F in the RO model does not exist for every noticeable function ε.

Next we prove Theorem 2.1. See Section 1.2 for a high-level overview of the proof.

Proof. Let O be a secure ε-approximate obfuscator for F in the RO model, making at most ` = `(|k|)
queries to the oracle. We construct a secure (ε+ δ)-approximate obfuscatorO′ for F in the plain model.

The obfuscator O′:

1. On input k, emulateO(k) as follows. RunO on input k, answer every oracle query made byO(k)
randomly (assume w.l.o.g that O never makes the same query twice), and obtain an obfuscated
oracle circuit C. SetRk to be all the queries made by O(k) and their answers.

2. SetRC to be the empty set.

3. For i = 1 to
⌈
|C|·`
δ

⌉
:

(a) Sample xi ← D|k|.

(b) Execute C(xi). For every oracle query made by C(xi), if it is in RC ∪ Rk then answer
consistently, otherwise answer randomly (assume w.l.o.g that C never makes the same query
twice). Add all new pairs of queries made by C(xi) and their answers toRC .

4. Sample |C| random oracle answers r1, . . . , r|C|.

5. Output the description of a circuit C ′ as follows:

(a) The circuit C ′ has the description of C, the setRC and the answers {ri} hardcoded into it.

(b) On input x, C ′ emulates C(x). Let qi be the i-th oracle query made by C(x). If qi is inRC ,
C ′ answers consistently, otherwise, C ′ answers with ri.

(c) C ′ outputs the same as C(x).

Next we show thatO′ is a secure (ε+δ)-approximate obfuscator. That is,O′ satisfies the approximate
functionality and the virtual black-box requirements.

Approximate functionality. Fix a key k ∈ {0, 1}n, let ε = ε(n), δ = δ(n), and let x be a random input
sampled from Dn. By the approximate functionality of O, the circuit C produced by O(k) satisfies:

Pr
x
[CR(x) 6= Fk(x)] ≤ ε . (1)

Let C ′ be the obfuscated circuit generated by the plain-model obfuscator O′(k). Recall that C ′(x)
emulates the execution of C(x) and the answers the oracle queries made by C. Queries that are in

6

RC are answered consistently with R, and queries outside RC are answered from the set of random
answers {ri}. Since every distinct query made by C(x) is answered randomly and independently, we
can consider an identical experiment where C ′ answers all of C’s queries using a random oracle R′
which agrees withR on all the queries inRC . Additionally, all the answers ofR andR′ outside the set
Rk ∪ RC are random independent of C. Let G(x) be the event that the execution of CR

′
(x) does not

query R′ on any query in the set Rk \ RC . We have that conditioned on G(x), the output of CR
′
(x)

and of CR(x) are identically distributed, and specifically:

Pr
x
[(CR

′
(x) 6= Fk(x)) ∧G(x)] = Pr

x
[(CR(x) 6= Fk(x)) ∧G(x)] ≤ ε .

Therefore, we can bound the probability of error on x by bounding the probability of the event ¬G(x)
as follows:

Pr
x
[CR

′
(x) 6= Fk(x)] ≤ Pr

x
[(CR

′
(x) 6= Fk(x)) ∧G(x)] + Pr

x
[¬G(x)] ≤ ε+ Pr

x
[¬G(x)] .

Thus, to prove approximate functionality it suffices to prove the following claim, bounding the proba-
bility of the event ¬G(x).

Claim 2.1.

Pr
x
[¬G(x)] ≤ δ.

Proof of Claim 2.1. We start by giving a high-level overview of the proof. For a random input x, the
execution of C(x) makes at most |C| oracle queries. To bound the probability of the event ¬G(x) we
bound the probability that the i’th query of CR

′
(x) is the first query to fall in the setRk \RC , for every

i ∈ |C|. To this end, we argue that the for every query q ∈ Rk, the probability that the i’th query of
CR

′
(x) is indeed q, but q was never queried during the “testing phase” of O′ (Step 3) is small. (if q is

queried queried during testing phase then q ∈ RC .)
Recall that in the testing phase of O′ we execute CR on many random inputs. Since we are only

bounding the probability that the i’th query of CR
′
(x) is the first query to fall outside the setRk \ RC ,

we can condition on the event that all previous queries do not fall in the set Rk \ RC . Conditioned on
this event, by the definition of the oracles R and R′, the i-th query of CR

′
and of CR are identically

distributed. Therefore, the probability that the i’th query of CR
′
(x) is q, but q was never queried in any

of the test executions is bounded by the inverse of the number of test executions. Since the number of
different queries q ∈ Rk is bounded by ` we get the required bound on probability that the i’th query of
CR

′
(x) falls in the setRk \ RC , and therefore also on the probability of the event ¬G(x).
We continue with the formal proof of the claim. Let:

I =

⌈
|C| · `
δ

⌉
,

be the number if iterations of the loop in Step 3 of O′. Let qj be the j-th query C(x) makes. Let qi,j
be the j-th query made by the emulation of C on the random input xi in the i-th iteration of the loop in
Step 3. For every j ∈ [`], let Gj(x) the event that qj /∈ Rk \ {qi,j}i∈[I]. Note that

Gj(x)⇒ qj /∈ Rk \ RC ,

and therefore,
∀jGj(x)⇒ G(x) .

7

Thus we can bound the probability of the event ¬G(x) as follows:

Pr
x
[¬G(x)] ≤ Pr

x
[¬G1(x) ∨ · · · ∨ ¬G|C|(x)]

=
∑
j∈|C|

Pr
x
[G1(x) ∧ · · · ∧Gj−1(x) ∧ ¬Gj(x)] .

It is therefore sufficient to show that for every j ∈ [|C|],

Pr
x
[G1(x) ∧ · · · ∧Gj−1(x) ∧ ¬Gj(x)] ≤

δ

|C|
.

To this end, fix j ∈ [|C|] and fix the oraclesR andR′. Let G̃j−1(x) denote the event:

G1(x) ∧ · · · ∧Gj−1(x) .

Note that:
Pr
x
[G̃j−1(x) ∧ ¬Gj(x)] ≤ Pr

x
[¬Gj(x)|G̃j−1(x)]

and therefore, it suffices to prove that:

Pr
x
[¬Gj(x)|G̃j−1(x)] ≤

δ

|C|
.

For every query q denote by
pq , Pr

x
[qj = q|G̃j−1(x)] .

Since for every i ∈ [I], x and xi are both uniform in Dn and since the oracles R and R′ only differ on
queries in the setRk ∩RC we have that conditioned on G̃j−1(x) the view of the two executions:

CR
′
(x) and CR(xi)

up until the j-th query, are identically distributed. Therefore, for every i ∈ [I]:

pq = Pr
x
[qj = q|G̃j−1(x)] = Pr

x
[qi,j = q|G̃j−1(x)] .

Thus, as desired,

Pr
x
[¬Gj(x)|G̃j−1(x)] ≤∑

q∈Rk

Pr
x
[(qj = q) ∧ (∀i, qi,j 6= q) |G̃j−1(x)] ≤

∑
q∈Rk

pq(1− pq)
|C|·`
δ ≤ (2)

∑
q∈Rk

δ

|C| · `
≤ δ

|C|
,

where (2) follows from the fact that the expression pq(1 − pq)
e is maximized by pq = 1

e+1 . This
completes the proof of Claim 2.1.

Virtual Black-Box. Fix a key k ∈ {0, 1}n and letA′ be an adversary that tries to learn some information
from the obfuscation O′(k). We show how to use the code of A′ to construct an adversary A that learns

8

the same information from the obfuscation O(k) where both A and O have access to the same random
oracle. That is, we will show that:

Pr[AR(OR(k)) = 1] = Pr[A′(O′(k)) = 1] , (3)

where the probabilities are overR, the coins of the obfuscatorsO andO′, and the coins of the adversaries
A and A′. By the security of O, there exist a simulator S and a negligible function µ such that:∣∣Pr[AR(OR(k)) = 1]− Pr[SFk(1n) = 1]

∣∣ ≤ µ(n) . (4)

It follows from Equations (3) and (4) that S is a good simulator for A′ as well. It is left to show how to
construct an adversary A that satisfies Equation (3). Loosely speaking, given an obfuscation O(k), A
will use the same strategy of the obfuscator O′ to transform the obfuscation O(k) into an obfuscation
O′(k) and then execute A′ on O′(k). A will use its random oracle to answer queries made by O(k).
Formally, A is defined as follows:

1. Given an obfuscated input circuit C and given access to oracle R, repeat the following for i = 1

to
⌈
|C|·`
δ

⌉
:

(a) Sample xi ← Dn.

(b) Execute C(xi) and forward its oracle queries toR.

2. Sample |C| random oracle answers r1, . . . , r|C|.

3. Set RC to be the set of queries made by C in Step 1 and their answers. Construct a circuit C ′

from C,RC and {ri} as in Step 5 of the obfuscator O′.

4. Output the same as A′(C ′).

By construction, the circuit C ′ used by A in Step 4 is distributed identically to the output of O′(k) and
therefore Equation (3) holds.

References

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and Guy N.
Rothblum. Program obfuscation with leaky hardware. In ASIACRYPT, pages 722–739,
2011.

[BCKP14] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On virtual grey box
obfuscation for general circuits. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part
II, pages 108–125, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages
1–18, 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. In Advances in Cryptology - EUROCRYPT 2014 -
33rd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 221–238, 2014.

9

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and
applications to resettable cryptography. In STOC, pages 241–250, 2013.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Theory of Cryptography - 11th Theory of Cryptography
Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, pages
1–25, 2014.

[BS84] László Babai and Endre Szemerédi. On the complexity of matrix group problems I. In
25th Annual Symposium on Foundations of Computer Science, West Palm Beach, Florida,
USA, 24-26 October 1984, pages 229–240, 1984.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial infor-
mation. In CRYPTO, pages 455–469, 1997.

[CV13] Ran Canetti and Vinod Vaikuntanathan. Obfuscating branching programs using black-box
pseudo-free groups. IACR Cryptology ePrint Archive, 2013:500, 2013.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, pages 1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
FOCS, 2013.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In TCC, pages 308–326, 2010.

[GR14] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. J. Cryptology,
27(3):480–505, 2014.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 44–61, 1989.

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for obfus-
cation. In Advances in Cryptology - EUROCRYPT 2004, International Conference on the
Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6,
2004, Proceedings, pages 20–39, 2004.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Advances in
Cryptology - EUROCRYPT ’97, International Conference on the Theory and Application
of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, pages
256–266, 1997.

[Wee05] Hoeteck Wee. On obfuscating point functions. IACR Cryptology ePrint Archive, 2005:1,
2005.

10

	Introduction
	This Work
	Techniques.

	Impossibility of Obfuscation in the RO Model
	Approximate Obfuscation.
	The Impossibility

