
A preliminary version of this paper appears in the proceedings of Pubic-Key Cryptography 2015. This
is the full version.

Interactive message-locked encryption and

secure deduplication

Mihir Bellare1 Sriram Keelveedhi2

January 21, 2015

Abstract

This paper considers the problem of secure storage of outsourced data in a way that permits
deduplication. We are for the first time able to provide privacy for messages that are both correlated
and dependent on the public system parameters. The new ingredient that makes this possible is
interaction. We extend the message-locked encryption (MLE) primitive of prior work to interactive
message-locked encryption (iMLE) where upload and download are protocols. Our scheme, provid-
ing security for messages that are not only correlated but allowed to depend on the public system
parameters, is in the standard model. We explain that interaction is not an extra assumption in
practice because full, existing deduplication systems are already interactive.

Keywords: deduplication, cloud storage, message-locked encryption.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in part by
NSF grants CNS-1228890 and CNS-1116800.

2 Work done while author was at UCSD, supported in part by NSF grants CNS-1228890 and CNS-1116800. Email:
sriramkr@cs.ucsd.edu. URL: http://www.cs.ucsd.edu/users/skeelvee/.

1

Contents

1 Introduction 3

2 Preliminaries 6

3 Interactive message-locked encryption 7

4 The FCHECK scheme 10

5 Incremental updates 13

6 References 17

A Interactive protocols 20

B Deterministic MLE schemes cannot support incremental updates 20

C Incremental updates: Proofs and extensions 21
C.1 Proof of Theorem 5.1 . 21
C.2 Proof of Theorem 5.2 . 23

D The IRCE2 scheme 26

E Parameter-dependent security: Proofs and extensions 30
E.1 Proof of Theorem 4.2 . 31

F MLEWC: Proofs and extensions 31
F.1 Proof of Theorem 4.3 . 31
F.2 PRV$-CDA secure MLE from UCE . 33

2

1 Introduction

The secure deduplication problem. Cloud storage providers such as Google, Dropbox and
NetApp [31, 41, 51] derive significant cost savings from what is called deduplication. This means that
if Alice and Bob upload the same data m, the service provider stores only one copy that is returned
to Alice and Bob upon download.

Enter security, namely the desire of clients to keep their data private from the server. Certainly,
Alice and Bob can conventionally encrypt their data under their passwords and upload the ciphertext
rather than the plaintext. But then, even if they start from the same data m, they will end up with
different ciphertexts CA, CB, foiling deduplication. The corresponding cost increase for the server
would ultimately be passed to the clients in higher storage fees. It is thus in the interest of the parties
to cooperate towards storage that is secure but deduplicatable.

Douceur et al. [30] provided the first solution, called convergent encryption (CE). The client en-
crypts its plaintext m with a deterministic symmetric encryption scheme under a k that is itself derived
as a deterministic hash of the plaintext m. If Alice and Bob start with the same m, they will arrive at
the same ciphertext, and thus deduplication is possible. Despite lacking an analysis until recently [11],
CE has long been used in research and commercial systems [2, 4, 5, 17, 25, 26, 28, 35, 39, 46, 47, 52, 54],
an indication of practitioners’ interest in secure deduplication.

MLE. Bellare, Keelveedhi and Ristenpart (BKR) [11] initiated a theoretical treatment of secure dedu-
plication aimed in particular at answering questions like, what security does CE provide and what
can one prove about it? To this end they defined a primitive they called message-locked encryption
(MLE). An MLE scheme specifies algorithms K,E,D,T. To encrypt m, let k←$ K(p,m), where p is a
system-wide public parameter, and return ciphertext c←$ E(k,m). Decryption m← D(k′, c) recovers
m as long as k′←$ K(p,m) is any key derived from m. Tags, produced via t← T(c), are a way to test
whether the plaintexts underlying two ciphertexts are the same or not, all encryptions of m having
the same tag but it being hard to find differing plaintexts with matching tags.

Any MLE scheme enables deduplication. Alice, havingmA, computes and retains a key kA←$ K(p,mA)
and uploads cA←$ E(k,mA). The server stores cA. Now Bob, having mB, computes and retains a key
kB ←$ K(p,mB) and uploads cB ←$ E(k,mB). If the tags of cA and cB match, which means mA = mB,
then the server deduplicates, storing only cA and returning it to both Alice and Bob upon a download
request. Both can decrypt to recover the common plaintext. CE is a particular MLE scheme in which
key generation is done by hashing the plaintext.

MLE security. BKR [11] noted that MLE can only provide security for unpredictable data. (In
particular, it cannot provide semantic security.) Within this range, two data dimensions emerge:

1. Correlation: Security holds even when messages being encrypted, although individually unpre-
dictable, are related to each other.

2. Parameter-dependence: Security holds for messages that depend on the public parameters.

These dimensions are orthogonal, and the best would be security for correlated, parameter-dependent
messages. This has not been achieved. What we have is schemes for correlated but parameter-
independent messages [10, 11] and for non-correlated but parameter-dependent messages [1]. This
past work is summarized in Figure 1 and we now discuss it in a little more detail.

Prior schemes. The definition of BKR [11], following [6], was security for correlated but parameter-
independent messages. For this notion they proved security of CE in the ROM, gave new, secure ROM
schemes, and made partial progress towards the challenging task of security without ROs. An efficient
scheme in the standard model, also for correlated but parameter-independent messages, was provided
in [10] assuming UCE-secure hash functions. (Specifically, against statistically unpredictable sources.)

Abadi, Boneh, Mironov, Raghunathan and Segev (ABMRS) [1] initiated treatment of security
for parameter dependent messages, which they termed lock-dependent security. Achieving this is

3

Scheme(s) Type
Messages

STD/ROM
Correlated Parameter-dependent

CE, HCE1, HCE2, RCE [11] MLE Yes No ROM
XtDPKE, XtESPKE, ... [11] MLE Yes No STD

BHK [10] MLE Yes No STD
ABMRS [1] MLE No Yes RO

FCHECK iMLE Yes Yes STD

Figure 1: Features of prior schemes (first four rows) and our scheme (last row). We achieve
security for the first time for messages that are both correlated and parameter dependent. Our scheme
is in the standard model. The advance is made possible by exploiting interaction.

challenging. They gave a ROM solution that uses NIZK proofs to provide proofs of consistency.
But to achieve security for parameter-dependent messages they were forced to sacrifice security for
correlated messages. Their result assumes messages being encrypted are independently distributed.

Questions and goals. The question we pose and address in this paper is, is it possible to achieve the
best of both worlds, meaning security for messages that are both correlated and parameter dependent?
This is important in practice. As indicated above, schemes for secure deduplication are currently
deployed and in use in many systems [2, 4, 5, 17, 25, 26, 28, 35, 39, 46, 47, 52, 54]. In usage, messages
are very likely to be correlated. For example, suppose Alice has uploaded a ciphertext c encrypting
a paper m she is writing. She edits m to m′, and uploads the new version. The two plaintexts
m,m′ could be closely related, differing only in a few places. Also, even if messages of honest users
are unlikely to depend on system parameters, attackers are not so constrained. Lack of security for
parameter-dependent messages could lead to breaches. This is reflected for example in the BEAST
attack on CBC in SSL/TLS [32]. We note that the question of achieving security for messages that
are both correlated and parameter dependent is open both in the ROM and in the standard model.

Contributions in brief. We answer the above questions by providing a deduplication scheme secure
for messages that are both correlated and parameter dependent. Additionally, our scheme is standard-
model, not ROM. The key new ingredient is interaction. In our solutions, upload and download are
interactive protocols between the client and server. To specify and analyze these protocols, we define a
new primitive, interactive MLE or iMLE. We provide a syntax and definitions of security, then specify
and prove correct our protocols.

iMLE turns out to be interesting in its own right and yields some other benefits. We are able
to provide the first secure deduplication scheme that permits incremental updates. This means that
if a client’s message changes only a little, for example due to an edit to a file, then, rather than
create and upload an entirely new ciphertext, she can update the existing one with communication
cost proportional only to the distance between the new and old plaintexts. This is beneficial because
communication is a significant fraction of the operating expenditure in outsourced storage services.
For example, transferring one gigabyte to the server costs as much storing one gigabyte for a month
or longer in popular storage services [3, 40, 49]. In particular, backup systems, an important use case
for deduplication, are likely to benefit, as the operations here are incremental by nature. Incremental
cryptography was introduced in [8, 9] and further studied in [13,21,34,50].

Interaction? One might question the introduction of interaction. Isn’t a non-interactive solution
preferable? Our answer is that we don’t “introduce” interaction. It is already present. Upload and
download in real systems is inherently and currently interactive, even in the absence of security. MLE
is a cryptographic core, not a full deduplication system. If MLE is used for secure deduplication, the
uploads and downloads will be interactive, even though MLE is not, due to extra flows that the full
system requires. Interaction being already present, it is natural to exploit it for security. In doing so,

4

we are taking advantage of an existing resource rather than introducing an entirely new one.

MLE considered a single client. But in a full deduplication system, there are multiple clients
concurrently executing uploads and downloads. Our iMLE model captures this. iMLE is thus going
further towards providing security of the full system rather than just a cryptographic core. We know
from experience that systems can fail in practice even when a “proven-secure” scheme is used if the
security model does not encompass the full range of attacker capabilities or security goals of the
implementation. Modeling that penetrates deeper into the system, as with iMLE, increases assurance
in practice.

We view iMLE as a natural extension of MLE. The latter abstracted out an elegant primitive at
the heart of the secure deduplication problem that could be studied in isolation. We study the full
deduplication system, leveraging MLE towards full solutions with added security features.

Duplicate faking. In a duplicate faking attack, the adversary concocts and uploads a perverse
ciphertext c∗ with the following property. When honest Alice uploads an encryption c of her message
m, the server’s test (wrongly) indicates that the plaintexts underling c∗, c are the same, so it discards
c, returning c∗ to Alice upon a download request. But when Alice decrypts c∗, she does not get back
her original plaintext.

Beyond privacy, BKR [11] defined an integrity requirement for MLE called tag consistency whose
presence provides security against duplicate faking attacks. The important tag consistency property
is possessed by the prior MLE schemes of Figure 1 and also by our new iMLE schemes.

Deterministic schemes provide tag consistency quite easily and naturally. But ABMRS [1] indicate
that security for parameter-dependent messages requires randomization. Tag consistency now becomes
challenging to achieve. Indeed, providing it accounts for the use of NIZKs and the corresponding cost
and complexity of the ABMRS scheme [1].

In the interactive setting, we capture the requirement underlying tag consistency by a recovery
condition that is part of our soundness definition and requirement. Soundness in particular precludes
duplicate faking attacks in the interactive setting. Our scheme provides soundness, in addition to
privacy for messages that are both correlated and parameter dependent. Our FCHECK solution uses
composable point function obfuscation [16] and FHE [18–20,27,36,38,55].

Closer look. We look in a little more detail at the main definitional and scheme contributions of
our work.

Public parameters for an iMLE scheme are created by an Init algorithm. Subsequently, a client
can register (Reg), upload (Put) and download (Get). Incremental schemes have an additional update
(Upd). All these are interactive protocols between client and server. For soundness, we ask that
deduplication happens as expected and that clients can recover their uploaded files even in the presence
of an attacker which knows all the files being uploaded and also read the server’s storage at any moment.
The latter condition protects against duplicate-faking attacks. Our security condition is modeled on
that of BKR [11] and requires privacy for correlated but individually unpredictable messages that may
depend on the public parameters.

Our FCHECK construction, described and analyzed in Section 4, achieves soundness as well as
privacy for messages that are both correlated and parameter dependent, all in the standard model,
meaning without recourse to random oracles. The construction builds on a new primitive we call
MLE-Without-Comparison (MLEWC). As the name indicates, MLEWC schemes are similar to MLE
schemes in syntax and functionality, except that they do not support comparison between ciphertexts.
We show that MLEWC can be realized in the standard model, starting from point function obfuscation
[16] or, alternatively, UCE-secure hash function families [10]. However, comparison is essential to
enable deduplication. To enable comparison, FCHECK employs an interactive protocol using a fully
homomorphic encryption (FHE) scheme [18–20,27,36,38,55], transforming the MLEWC scheme into
an iMLE scheme.

We then move on to the problem of incremental updates. Supporting incremental updates over

5

Run(1λ,P, inp)

n← 1; i← 1; M← ε

a[1, 1]← inp[1]; a[2, 1]← inp[2]

While T[n] = False

(a[n, i+ 1], M, T[n])←$ P[n, i](1λ,a[n, i], M)

If n = 2 then n← 1; i← i+ 1 Else n← 2

Ret last(a[1]), last(a[2])

Msgs(1λ,P, inp, r)

n← 1; i← 1; j ← 1; a[1, 1]← inp[1]

a[2, 1]← inp[2]; M← ε

While T[n] = False

(a[n, i+ 1], M, T[n])←$ P[n, i](1λ,a[n, i], M; r[n, i])

If n = 2 then n← 1; i← i+ 1 Else n← 2

M[j]← M; j ← j + 1

Ret M

Figure 2: Left: Running a two player protocol P. Right: The Msgs procedure returns the messages
exchanged during the protocol when invoked with specified inputs and coins.

MLE schemes turns out to be challenging: deterministic MLE schemes cannot support incremental
updates, as we show in Appendix B, while randomized MLE schemes seem to need complex machinery
such as NIZK proofs of consistency [1] to support incremental updates while retaining the same level
of security as deterministic schemes, which makes them unfit for practical usage. We show how
interaction can be exploited to solve this problem. We describe an efficient ROM scheme IRCE that
supports incremental updates. The scheme, in its simplest form, works like the randomized convergent
encryption (RCE) scheme [11], where the message is encrypted with a random key using a blockcipher
in counter (CTR) mode, and the random key is encrypted with a key derived by hashing the message.
We show that this indirection enables incremental updates. However, RCE does not support strong tag
consistency and hence cannot offer strong security against duplicate faking attacks. We overcome this
in IRCE by including a simple response from the server as part of the upload process. We remark that
IRCE is based off a core MLE (non-interactive) scheme permitting incremental updates, interaction
being used only for tag consistency.

2 Preliminaries

We let λ ∈ N and 1λ denote the security parameter and its unary representation. The empty string is
denoted by ε. We let |S| denote the size of a finite set S and let s←$ S denote sampling an element
from S at random and assigning it to s. If a, b ∈ N and a < b, then [a] denotes the set {1, . . . , a}
and [a, b] denotes the set {a, . . . , b}. For a tuple x, we let |x| denote the number of components
in x, and x[i] denote the i-th component, and last(x) = x[|x|], and x[i, j] = x[i] . . .x[j] for 1 ≤
i ≤ j ≤ |x|. A binary string s is identified with a tuple over {0, 1}. The guessing probability of a
random variable X, denoted by GP(X), is defined as GP(X) = maxx Pr[X = x]. The conditional
guessing probability GP(X |Y) of a random variable X given a random variable Y are defined via
GP(X |Y) =

∑
y Pr[Y = y] ·maxx Pr[X = x|Y = y].

The Hamming distance between s1, s2 ∈ {0, 1}` is given by HAMM(s1, s2) =
∑`

i=1(s1[i] ⊕ s2[i]).
We let diffHAMM(s1, s2) = {i : s1[i] 6= s2[i]} and patchHAMM(s1, δ) be the string s such that s[i] = s1[i]
if i 6∈ δ and s[i] = ¬s1[i] if i ∈ δ.

Algorithms are randomized and run in polynomial time (denoted by PT) unless otherwise indicated.
We let y ← A(a1, . . . ; r) denote running algorithm A on a1, . . . with coins r and assigning the output
to y, and let y←$A(a1, . . .) denote the same operation with random coins. We let [A(a1, . . .)] denote
the set of all y that have non-zero probability of being output by A on inputs a1, Adversaries
are either algorithms or tuples of algorithms. A negligible function f approaches zero faster than the
polynomial reciprocal; for every polynomial p, there exists np ∈ N such that f(n) ≤ 1/p(n) for all
n ≥ np.

We use the code-based game playing framework of [15] along with extensions of [53] and [11] when
specifying security notions and proofs.

6

A two player q-round protocol P is represented through a 2×q-tuple (P[i, j])i∈[2],j∈[q] of algorithms
where P[i, j] represents the action of the i-th player invoked for the j-th time. We let P[1] denote the
player who initiates the protocol, and P[2] denote the other player. Each algorithm is invoked with 1λ,
an input a, and a message M ∈ {0, 1}∗, and returns a 3-tuple consisting of an output a′, an outgoing
message M′ ∈ {0, 1}∗, and a boolean T to indicate termination. The Run algorithm (Figure 2) captures
the execution of P, and Msgs (Figure 2) returns the messages exchanged in an instance of P, when
invoked with specified inputs and coins.

Adversarial model. A secure deduplication system (built from an iMLE scheme) will operate
in a setting with a server and several clients. Some clients will be controlled by an attacker, while
others will be legitimate, belonging to honest users and following the protocol specifications. A
resourceful attacker, apart from controlling clients, could gain access to server storage, and interfere
with communications. Our adversarial model captures an iMLE scheme running in the presence of an
attacker with such capabilities.

We now walk through an abstract game G, and explain how this is achieved. The games in the
rest of the paper, for soundness, security, and other properties of iMLE largely follow this structure.
The game G sets up and controls a server instance. The adversary A is invoked with access to a set
of procedures. Usually, the objective of the game involves A violating some property guaranteed to
legitimate clients like L, such as ability to recover stored files, or privacy of data.

The Msg procedure can send arbitrary messages to the server and can be used to create multiple
clients, and run multiple instances of protocols, which could deviate from specifications.

The Init and Step procedures control a single legitimate client L. The Init procedure starts
protocol instances on behalf of L, using inputs of A’s choice. The Step procedure advances a protocol
instance by running the next algorithm. Together, these procedures let A run several legitimate and
corrupted protocol instances concurrently.

The State procedure returns the server’s state, which includes stored ciphertexts, public param-
eters, etc.. In some games, it also returns the state and parameters of L. State provides only read
access to the server’s storage. This restriction is necessary. If A is allowed to modify the storage of
the server, then it can always tamper with the data stored by the clients, making secure deduplication
impossible.

We assume that A can read, delay and drop messages between the server and legitimate clients.
However, A cannot tamper with message contents, reorder messages within a protocol, or redirect
messages from one protocol instance to another. This assumption helps us simplify the protocol
descriptions and proofs. Standard, efficient techniques can be used to transform the protocols from
this setting to be secure in the presence of an attacker that can tamper and reorder messages [7].

3 Interactive message-locked encryption

Definition. An interactive message-locked encryption scheme iMLE consists of an initialization algo-
rithm Init and three protocols Reg,Put,Get. Initialization Init sets up server-side state: σS ←$ Init(1λ).
Each protocol P consists of two players - a client P[1] (meaning that the client always initiates), and
a server P[2]. All server-side algorithms P[2, ·] take server-side state σS as input, and produce an
updated state σ′S as output. The Reg protocol registers new users; here, Reg[1] takes no input and
returns client parameters σC ∈ {0, 1}∗. The Put protocol stores files on the server; here, Put[1] takes
plaintext m ∈ {0, 1}∗ and σC as inputs, and outputs an identifier f ∈ {0, 1}∗. The Get protocol
retrieves files from the server; here, Get[1] takes identifier f and σC as inputs, and outputs plaintext
m ∈ {0, 1}∗.

Soundness. We require two conditions. First is deduplication, meaning that if a client puts a
ciphertext of a file already on the server, then the storage should not grow by the size of the file.

7

Main(1λ) // RecAiMLE(1
λ)

win← False; σS ←$ Init(1λ)

AReg,Init,Step,Msg,State(1λ); Ret win

Reg // Set up the legitimate client L.

(σC , σS)←$ Run(Reg, ε, σS)

Init(P, inp) // Start a protocol with L.

If P 6∈ {Put,Get} then ret ⊥
p← p + 1; j ← p; PS[j] = P

a[j, 1]← inp; N[j]← 1; M[j]← ε; Ret j

Msg(P, i, M) // Send a message to the server.

If P 6∈ {Reg,Put,Get,Upd} then ret ⊥
(σS , M, N, T)←$ P[2, i](1λ, σS , M); Ret M

Step(j) // Advance an instance by one step.

P← PS[j]; n← N[j]; i← rd[j]

If T[j, n] then return ⊥
If n = 2 then inp← σS else inp← a[j, i]

(outp, M[j], T[j, n])←$ P[n, i](1λ, inp, M[j])

If n = 2 then

σS ← outp; N[j]← 1; rd[j]← rd[j] + 1

Else a[j, i+ 1]← outp; N[j]← 2

If T[j, 1] ∧ T[j, 2] then WinCheck(j)

Ret M[j]

WinCheck(j) // Check if A has won.

If PS[j] = Put then

(σC ,m)← a[j, 1]; f ← last(a[j]); T [f]← m

If PS[j] = Get then

(σC , f)← a[j, 1]; m′ ← last(a[j])

win← win ∨ (m′ 6= T [f])

Figure 3: The Rec game. The State procedure returns σS , σC .

A small increase towards book-keeping information, that is independent of the size of the file, is
permissible. More precisely, there exists a bound ` : N → N such that for all server-side states
σS ∈ {0, 1}∗, for all valid client parameters (derived through Reg with fresh coins) σC , σ

′
C , for all

m ∈ {0, 1}∗, the expected increase in size of σ′′S over σ′S when (f ′, σ′S)←$ Run(Put, (σC ,m), σS) and
(f ′, σ′′S)←$ Run(Put, (σ′C ,m), σ′S) is bounded by `(λ).

The second condition is correct recovery of files: if a legitimate client puts a file on the server, it
should be able to get the file later. We formalize this requirement by the Rec game of Figure 3, played
with an adversary A, which gets access to procedures Reg, Init,Step,Msg,State. We provide an
overview of these procedures here.

The Reg procedure sets up a legitimate client L by running Run(1λ,Reg, (ε, σS)) . The Init
procedure lets A run protocols on behalf of L. It takes input inp and P, where P has to be one of
Put,Get, and inp should be the a valid input for P[1, 1]. A new instance of P is set up, and A is
returned j ∈ N, an index to the instance. The Step procedure takes input j, advances the instance
by one algorithm unless the current instance has terminated. The outgoing message is returned to
A. The inputs and outputs of the protocol steps are all stored in an array a. The State procedure
returns σS , σC .

If an instance j has terminated, then Step runs WinCheck, which maintains a table T . If j is an
instance of Put, then m and identifier f are recovered from a[j] and T [f] gets m. If j is an instance of
Get, then WinCheck obtains f and the recovered plaintext m′, and checks if T [f] = m′. If this fails,
either because T [f] is some value different from m′, or is undefined, then WinCheck sets the win flag,
which is the condition for A to win the game. We associate advantage AdvreciMLE,A(λ) = Pr[RecA

iMLE(1λ)]
with iMLE and A. For recovery correctness, we require that the advantage should be negligible for all
PT A.

Security. The primary security requirement for iMLE schemes is privacy of unpredictable data.
Unpredictability (plaintexts drawn from a distribution with negligible guessing probability) is a pre-
requisite for privacy in MLE schemes [11], as without unpredictability, a simple brute-force attack
can recover the contents of a ciphertext by generating keys from all candidate plaintexts and checking
if decrypting the ciphertext with the key leads back to the candidate plaintext. A similar argument
extends unpredictability as a requirement to secure deduplication schemes as well. We formalize

8

Main(1λ) // PrivS,A(1λ)

b←$ {0, 1}; p← 0; σS ←$ Init(1λ); m0,m1←$ S(1λ, ε)

b′←$ APut,Upd,Step,Msg,Reg,State(1λ); Ret (b = b′)

Reg

(σC , σS)←$ Run(Reg, ε, σS)

Put(i) // Start a Put instance

p← p + 1; PS[p] = Put; a[p, 1]← ~mb[i]

N[p]← 1; M[p]← ε; Ret p

State

If cheat = False then done← True; ret σS else ret ⊥

Main(1λ) // PDPrivS,A(1λ)

b←$ {0, 1}; p← 0; σS ←$ Init(1λ)

b′←$ APtxt,Put,Upd,Step,Msg,Reg,State(1λ)

Ret (b = b′)

Ptxt(d)

~m0, ~m1←$ S(1λ, d)

Msg(P′, M) // Send a message to the server

If P′ 6∈ {Reg,Put,Get,Upd} then ret ⊥
(σS , M, T)←$ P′[2](1λ, σS , M); Ret (σS , M, N, T)

Step(j) // Advance an instance by one step.

P← PS[j]; n← N[j]; i← rd[j]

If T[j, n] or done then return ⊥
If n = 2 then inp← σS else inp← a[j, i]

(outp, M[j], T[j, n])←$ P[n, i](1λ, inp, M[j])

If n = 2 then σS ← outp; N[j]← 1; rd[j]← rd[j] + 1

Else a[j, i+ 1]← outp; N[j]← 2

If n = 1 and T[j, n] then Tf [a[j, 1]]← last(a[j])

Figure 4: The Priv and PDPriv security games. Apart from Main, the games share the same code
for all procedures. The PDPriv game has an additional Ptxt procedure.

unpredictability as follows.

A source S is an algorithm that on input 1λ and a string d ∈ {0, 1}∗ returns a pair of tuples
(m0,m1). There exist m : N → N and ` : N × N → N such that |m0| = |m1| = m(λ), and
|m0[i]| = |m1[i]| = `(λ, i) for all i ∈ [m(λ)]. All components of m0 and m1 are unique. The guessing
probability GPS(λ) of S is defined as maxi,b,d(GP(mb[i])) when (m0,m1)←$ S(1λ, d). We say that S
is unpredictable if GPS(·) is negligible. We say that S is a single source if it only outputs one tuple,
but satisfies the other conditions. We say that S is an auxiliary source if it outputs a string z ∈ {0, 1}∗
along with m0,m1 and if it holds that guessing probability conditioned on z is negligible.

The Priv game of Figure 4, associated with iMLE, a source S and an adversary A, captures privacy
for unpredictable messages independent of the public parameters of the system. As with Rec, the
game starts by running σS ←$ Init(1λ) to set up the server-side state. The game then runs S to get
(m0,m1), picks a random bit b, and uses mb as messages to be put on the server. Then, A is invoked
with access to Reg,Put, Step,Msg and State. The Reg,State, and Msg oracles behave in the
same way as in Rec. The Step oracle here is similar to that of Rec, except that it does not invoke
WinCheck. Adversary A can initialize an instance of Put with a plaintext mb[i] by calling Put(i).

We associate advantage AdvpriviMLE,S,A(λ) = 2 Pr[PrivS,A
iMLE(1λ)] − 1 with a iMLE a source S and an

adversary A. We require that the advantage should be negligible for all PT A for all unpredictable PT
S.

The PDPriv game of Figure 4 extends Priv-security to messages depending on the public pa-
rameters of the system, a notion termed lock-dependent security in [1]. Here, we term this parameter-
dependent security. In this game, the adversary A gets access to a Ptxt procedure, which runs
S(1λ, σS) to get m0,m1. The other procedures follow Priv. A simpler approach is to run S with σS
when the game starts (i.e. in main) as in Priv. However, this leads to trivial constructions where Init
is a dummy procedure, and the system parameters are generated when the first client registers. This is
avoided in PDPriv by letting A decide, through Ptxt, when S is to be run. We associate advantage
AdvldpriviMLE,S,A(λ) = 2 Pr[PDPrivS,A

iMLE(1λ)] − 1 with a scheme iMLE a source S and an adversary A. We

9

Put[1]((pk, sk),m) Put[2](σS , ε)

cf ←$ Epk(m) pk, cf
−−−−−−−−−−−→ cr←$ Ef(1

λ, pk, 0κ(λ)); ci←$ Ef(1
λ, pk, 0)

cn ← ci
For (p, c) ∈ fil do

cp←$ Ef(1
λ, pk, p); cc←$ Ef(1

λ, pk, c)

c′←$ Evf(1
λ, pk, cmp, cf , cp, cc, cr, cn, ci)

cr, cn, ci ← c′cr, cn
←−−−−−−−−−−−p← Df(1

λ, sk, cr); n← Df(1
λ, sk, cn)

n
−−−−−−−−−−−→ (p, c)← fil[n]

p, c
←−−−−−−−−−−−If n 6= 0 then c1 ← ε; k ← K(1λ, p,m)

If D(1λ, k, c) 6= m then ret ⊥
Else

p←$ P(1λ); k ← K(1λ, p,m)

c1←$ E(1λ, k,m)

c2 ← Epk(k) c1, c2, p, u, n
−−−−−−−−−−−→ If c1 6= ε then

nf ← nf + 1; i← nf ; fil[i]← (p, c1)

c2 ← SiffE(own, (u, i), c2)i
←−−−−−−−−−−−If n 6= 0 and i 6= n then ret ⊥ else ret i

Reg[1](ε) Reg[2](σS)

(pk, sk)←$ Kf ε
−−−−→ u←$ {0, 1}λ \

U

U← U ∪ {u}u
←−−−−Ret (pk, sk, u)

Get[1]((pk, u, sk), f) Get[2](σS , ε)

u, f
−−−−−→ c2 ← own[u, i]

(p, c1)← fil[i]

If c2 = ⊥ then c1 ← ⊥c1, c2
←−−−−−If c1 = ⊥ then

ret ⊥
k ← Df(1

λ, sk, c2)

Ret D(1λ, k, c1)

Figure 5: The FCHECK iMLE scheme over FHE = (Kf ,Ef ,Df ,Evf) and MLEWC = (P,E,K,D).

require that advantage should be negligible for all PT A for all unpredictable PT S.

4 The FCHECK scheme

In this section, we describe the the FCHECK construction, which achieves soundness as well as security
for messages that are both correlated and parameter-dependent, all in the standard model. As we
noted in the introduction, prior to our work, achieving parameter-dependent correlated input security
was open even in the random oracle model. We are able to exploit interactivity as a new ingredient
to design a scheme that achieves security for parameter-dependent correlated messages.

Our approach starts by going after a new, seemingly weak primitive, one we call MLE-Without-
Comparison (MLEWC). As the name indicates, MLEWC schemes are similar to MLE schemes in
syntax and functionality, except that they do not support comparison between ciphertexts. We show
that MLEWC can be realized in the standard model, starting from point function obfuscation [16]
or, alternatively, UCE-secure hash function families [10]. However, comparison is essential to enable
deduplication. To enable comparison, FCHECK employs an interactive protocol using a fully homo-
morphic encryption (FHE) scheme [18–20, 27, 36, 38, 55], transforming the MLEWC scheme into an
iMLE scheme. We view FCHECK as a theoretical construction, and not an immediately practical
iMLE scheme.

MLE Without Comparison (MLEWC). A scheme MLEWC = (P,E,K,D) consists of four algo-
rithms. Parameters are generated via p←$ P(1λ). Keys are generated via k←$ K(1λ, p,m), where

10

m ∈ {0, 1}µ(λ) is the plaintext. Encryption E takes p, k,m and returns a ciphertext c←$ E(1λ, k,m).
Decryption D takes input k, c and returnsm← D(1λ, k, c), or⊥. Correctness requires that D(1λ, k, c) =
m for all k ∈ [K(1λ, p,m)], for all c ∈ [E(1λ, k,m)], for all p ∈ [P(1λ)], for all m ∈ {0, 1}κ(λ) for all
λ ∈ N.

The WPRIV game with MLEWC, an auxiliary source S and an adversary A is described in Fig-
ure 17. The game runs S to get two vectors m0,m1, and forms c by encrypting one of the two vectors,
using a fresh parameter for each component, or by picking random strings. A should guess which
the case is. We associate advantage AdvwprivMLEWC,S,A(λ) = 2 Pr[WPRIVA,S

MLEWC(1λ)]− 1. For MLEWC to
be WPRIV-secure, advantage should be negligible for all PT adversaries A for all unpredictable PT
auxiliary sources S. Note that unlike PRIV, here, a fresh parameter is picked for each encryption,
and although we will end up using WPRIV-secure schemes to build parameter-dependent iMLE, in
the WPRIV game, the source S is not provided the parameters.

Fully homomorphic encryption (FHE) [36]. An FHE scheme FHE = (Kf ,Ef ,Df ,Evf) is a 4-tuple
of algorithms. Key generation returns (pk, sk)←$ Kf(1

λ), encryption takes pk, plaintext m ∈ M(λ),
and returns ciphertext c←$ Ef(1

λ, pk,m), and decryption returns m′ ← Df(1
λ, sk, c) on input sk and

ciphertext c, where m = ⊥ indicates an error. The set of valid ciphertexts is denoted by C(λ) = {c :
Df(1

λ, sk, c) 6= ⊥, (pk, sk) ∈ [Kf(1
λ)]}. Decryption correctness requires that Df(1

λ, sk,Ef(1
λ, pk,m)) =

m for all (pk, sk) ∈ [Kf(1
λ)], for all m ∈M(λ) for all λ ∈ N.

Let 〈.〉 denote an encoding which maps boolean circuits f to strings denoted by 〈f〉 such that
there exists PT Eval which satisfies Eval(〈f〉, x) = f(x) for every valid input x ∈ {0, 1}n, where n is
the input length of f . Evaluation Evf takes input a public key pk, a circuit encoding 〈f〉 and a tuple
of ciphertexts c such that |c| is the input length of f and returns c′←$ Evf(1

λ, pk, 〈f〉, c). Evaluation
correctness requires that for random keys, on all functions and all inputs, Evf must compute the correct
output when run on random coins, except with negligible error. More precisely, for all boolean circuits
f , when (pk, sk)←$ Kf(1

λ) and c′←$ [Evf(1
λ, pk, 〈f〉, c)], if |c| is the input length of f , then it holds

that the probability that Eval(f,x) 6= y where y ← Df(1
λ, sk, c′) and x[i]← Df(1

λ, sk, c[i]) is negligible
for all c[1], . . . , c[|c|] ∈ C(λ)|c|.

The FCHECK scheme. Let FHE = (Kf ,Ef ,Df ,Evf) be an FHE scheme, and let MLEWC = (P,E,K,D)
be a MLEWC scheme where K is deterministic. The FCHECK[FHE,MLEWC] iMLE scheme is described
in Figure 5. The Init algorithm is omitted: it lets U← ∅, and lets fil and own be empty tables.

In FCHECK, clients encrypt their plaintexts with MLEWC to be stored on the server, but pick
a fresh parameter each time. The server’s storage consists of a list of ciphertext-parameter pairs
c[i],p[i]. When a client wants to put m, for each such c[i],p[i], the server should generate a key
k[i]← K(1λ,p[i],m) and check if D(1λ,k[i], c[i]) = m.

A match means that a duplicate ciphertext already exists on the server, while no match means that
m is a fresh plaintext. The search for a match should be carried without the server learning m and
is hence done over FHE ciphertexts of the components. The client sends pk and cf ←$ Ef(1

λ, pk,m)
and the server encrypts each c[i],p[i] to get cc and cp and runs Evf on the cmp circuit described below
with these values.

cmp(m, p, c, r, n, i)

If D(1λ,K(1λ, p,m), c) = m and r = 0κ(λ) then return p, i+ 1, i+ 1
Else return r, n, i+ 1

The client is provided the encryptions of r and n in the end. If n = 0, no match was found, and the
client picks p←$ P(1λ), computes c← E(1λ,K(1λ, p,m),m), and sends p, c to be stored on the server.
Otherwise, n refers to the index of the match, and serves as the tag, and r refers to the parameter
in the match. Now the client computes k ← K(1λ, r,m), encrypts it under its private key, and stores
the result on the server. The Reg and Get protocols proceed in a simple manner, and are described
in Figure 5. It can be checked that FCHECK performs deduplication as expected, and we show this
formally in Proposition E.1 of Appendix E.

11

E(1λ, kH, k,m)

c0←$ Obf(1λ, k, 0))

For i ∈ [|m|] do

ci←$ Obf(1λ, k‖〈i, `〉‖m[i], 0)

Ret c0, . . . c|m|

D(1λ, kH, k, c0, . . . cn)

If Eval(1λ, c0, k) = ⊥ then ret ⊥
For i ∈ [n] do

If Eval(1λ, ci, k‖〈i, `〉‖0) = 1 then

mi ← 0

else mi ← 1

Ret m1‖ . . . ‖mn

Figure 6: The HtO MLEWC scheme, with a CR hash HF and a point obfuscation scheme OS. Here,
parameters are generated via P(1λ) which runs Kh(1λ) and returns the output, while message-derived
keys are generated by letting K(1λ, kH,m) return k ← H(1λ, kH,m).

Theorem 4.1. If MLEWC is a correct MLEWC scheme then FCHECK[MLEWC,FHE] is Rec-secure.

Proof sketch. Observe that that whenever a client puts m, and a match is found in Put[2, 1], the
client asks for the p, c pair corresponding to the index with the match, and checks by itself that this
pair is a valid ciphertext for m. This, combined with the immutability of fil and own leads to perfect
recovery correctness.

Theorem 4.2. If MLEWC is WPRIV-secure and FHE is CPA-secure, then FCHECK[MLEWC,FHE]
is PDPriv-secure.

Proof sketch. We replace the c2 components with encryptions of random strings, and use the CPA
security of FHE to justify this. Now, only the p, c pairs of the plaintexts reside on the server, and
hence we can hope to show that if there exists an adversary A that can guess the challenge bit from
only the p, c values, then such an A can be used to build another adversary B which breaks WPRIV
security of MLEWC.

But this cannot be accomplished right away. When A asks the game to run Put with some mb[i],
then B cannot simulate Put[2, 1] which looks through p, c for a match for mb[i] without knowing mb[i].
The proof first gets rid of the search step in Put[2, 1] and then builds B. We argue that the search step
can be avoided. The adversary A, with no knowledge of the messages that the unpredictable source
S produced, would have been able to use Msg to put a ciphertext for a mb[i] only with negligible
probability.

Constructing MLEWC schemes. To get an iMLE scheme via FCHECK, we still need to construct
a MLEWC scheme. The lack of comparison means that MLEWC schemes should be easier to construct
compared to MLE schemes, but constructions must still overcome two technical challenges: encrypting
messages with keys derived from the messages themselves, and dealing with correlated messages.
We explore two approaches to overcoming these two challenges. The first utilizes a special kind
of point-function obfuscation scheme, and the second uses a UCE-secure [10] hash function. This
construction, which we relegate to Appendix F, is straightforward. We start with a hash function
family, HF = (Kh,H). Parameter generation picks a hash key kH. Given m, the key is generated as
k ← H(1λ, kH,m, 1

λ), and ciphertext as c← H(1λ, kH, k, 1
|m|)⊕m. Decryption, on input k, c removes

the mask to recover m.
We now elaborate on the first approach, which builds a MLEWC scheme from a composable distri-

butional indistinguishable point-function obfuscation scheme (CDIPFO) [16]. To give a high level idea
for why CDIPFOs are useful, we note that point-function obfuscation is connected to encryption secure
when keys and messages are related [24]. Moreover, CDIPFOs, due to their composability, remain
secure even when obfuscations of several correlated points are provided and thus enable overcoming
the two challenges described above.

Let α, β ∈ {0, 1}∗. We let φα,β : {0, 1}∗ → {β,⊥} denote the function that on input γ ∈ {0, 1}∗
returns β if γ = α, and ⊥ otherwise. We call α the special input, and β the special output. A point

12

function obfuscator OS = (Obf,Eval) is a pair of algorithms. Obfuscation takes (α, β) and outputs
F←$ Obf(1λ, (α, β)), while Eval takes F, and a point γ and returns y←$ Eval(1λ,F, γ). Correctness
requires that Eval(1λ,Obf(1λ, α, β), α) = β for all α, β ∈ {0, 1}∗, for all λ ∈ N.

A PF source S outputs a tuple of point pairs p, along with auxiliary information z. There exist
m : N → N and ` : N × N → N such that |p| = m(λ), and |p[i, 0]| = `(λ, 0) and |p[i, 1]| = `(λ, 1) for
all i ∈ [m(λ)]. Guessing probability GPS(λ) is defined as maxi(GP(p[i, 0]|z)) when (p, z)←$ S(1λ).
We say that S is unpredictable if GPS(·) is negligible.

Distributional indistinguishability for point function obfuscators is captured by the CDIPFO
game (Figure 17) associated with OS, an PF source S, and an adversary A. At a high level, the
game either provides OS-obfuscations of point functions from S, or from a uniform distribution, and
to win, the adversary A should guess which the case is. We associate advantage AdvcdipfoOS,S,A(λ) =

2 Pr[CDIPFOA,S
OS (1λ)] − 1 with OS,S and A and say that OS is CDIPFO-secure if advantage is

negligible for all PT A for all unpredictable PT S. Bitansky and Canetti show that CDIPFOs can be
built in the standard model, from the t-Strong Vector Decision Diffie Hellman assumption [16].

Let HF = (Kh,H) denote a family of CR hash functions. The Hash-then-Obfuscate transform
HtO[HF,OS] = (P,E,K,D) associates an MLEWC scheme with HF and OS as in Figure 6, restricting
the message space to `-bit strings. At a high level, a key is generated by hashing the plaintext m
with HF, and m is obfuscated bit-by-bit, with the hash as the special input. Decryption, given the
hash, can recover m from the obfuscations. Correctness follows from the correctness of OS, and the
following theorem shows WPRIV-security.

Theorem 4.3. If HF is CR-secure, and OS is CDIPFO-secure, then HtO[HF,OS] is WPRIV-secure.

The proof of the theorem and some remarks on HtO are provided in Appendix F.

5 Incremental updates

In this section, we define iMLE with incremental updates, and provide a construction which achieves
this goal. Building MLE schemes which can support incremental updates turns out to be challenging.
On the one hand, it is easy to show that deterministic MLE schemes cannot support incremental
updates. We elaborate on this in Appendix B. . On the other hand, randomized MLE schemes seem
to need complex machinery such as NIZK proofs of consistency [1] to support incremental updates
while retaining the same level of security as deterministic schemes, which makes them unfit for practical
usage. We show how interaction can be exploited to achieve incremental updates in a practical manner,
by building an efficient ROM iMLE scheme IRCE that supports incremental updates. We fix Hamming
distance as the metric. In Appendix C, we define incremental updates w.r.t edit distance, and extend
IRCE to work in this setting.

An interactive message-locked encryption scheme iMLE with updates supports an additional proto-
col Upd along with the usual three protocols Reg,Put, and Get. The Upd protocol updates a ciphertext
of a file m1 stored on the server to a ciphertext of an updated file m2. Here, Upd[1] (i.e. the client-side
algorithm) takes inputs f , σC , and two plaintexts m1,m2, and outputs a new identifier f2 ∈ {0, 1}∗.

Now, the Rec game (Figure 3) which asks for correct recovery of files also imposes conditions on
update, namely that if a legitimate client puts a file on the server, it should be able to get the file
later along with updates made to the file. This is captured by letting the adversary pick Upd as the
protocol in the Init procedure. The WinCheck procedure, which checks if the adversary has won, is
now invoked at successful runs of Upd additionally. It infers the value of f used in the update protocol
as well as the updated plaintext m2 and sets T [f]← m2, thus letting the adversary to win if a get at
f does not return m2.

We say that a scheme iMLE has incremental updates if the communication cost of updating a
ciphertext for m1 stored on the server to a ciphertext for m2 is a linear function of HAMM(m1,m2)

13

Init(1λ)

p←$ {0, 1}κ(λ); U← ∅; fil← ∅; own← ∅
Ret σS = (p,U,fil,own)

Reg[1](ε) Reg[2](σS)

k←$ {0, 1}κ(λ) ε
−−−−→ u←$ {0, 1}λ \U

U← U ∪ {u}u, p
←−−−−Ret (k, u, p)

Get[1]((k, u, p), t) Get[2](σS)

u, t
−−−−−−→ (c1, c2)← fil[t]

c3 ← own[u, t]

If c3 = ⊥ then

(c′1, c
′
2)← (⊥,⊥)c1, c2, c3

←−−−−−−If c1 = ⊥ then ret ⊥
k2 ← D(1λ, k, c3)

Ret D(1λ, k2 ⊕ c2, c1)

Figure 7: The Init algorithm, and Reg and Get protocols of the IRCE iMLE scheme.

and log |m2|. More formally, there exists a linear function u : N × N → N such that for all client pa-
rameters σC , for all server-side states σS ∈ {0, 1}∗, for all plaintexts m1,m2 ∈ {0, 1}∗ such that |m1| =
|m2|, for all coins r1, r2, for all f ∈ {0, 1}∗, if (m1, σ

′
S) ← Run(Get, (σC , f), σS ; r1), and (f ′, σ′′S) ←

Run(Upd, (σC ,m1,m2), σS ; r2), and f ′ 6= ⊥, then
|Msgs(Upd, (σC ,m1,m2), σS ; r2)| ≤ HAMM(m1,m2)u(log |m1|, λ).

Preliminaries. A deterministic symmetric encryption (D-SE) scheme SE = (E,D) is a pair of algo-
rithms, where encryption returns c← E(1λ, k,m) on input plaintext m ∈ {0, 1}∗ and key k ∈ {0, 1}κ(λ),
and decryption returns m ← D(1λ, k, c). Correctness requires D(1λ, k,E(1λ, k,m)) = m for all plain-
texts m ∈ {0, 1}∗ for all keys k ∈ {0, 1}κ(λ) for all λ ∈ N. We say that SE supports incremental updates
w.r.t Hamming distance if there exists an algorithm U such that U(1λ,E(1λ, k,m1), diff(m1,m2)) =
E(1λ, k,m2) for all plaintexts m1,m2 ∈ {0, 1}∗ for all keys k ∈ {0, 1}κ(λ) for all λ ∈ N.

Key-recovery security is defined through game KRA
SE(1λ) which lets adversary A query an oracle

Enc with a plaintext m then picks k←$ {0, 1}κ(λ) and returns E(1λ, k,m); A wins if it can guess k.

The CPA security game CPAA
SE(1λ), picks b←$ {0, 1} and k←$ κ(λ), runs A with access to Enc,

and responds to queries m by returning c ← E(k,m) if b = 1 and returning a random |c|-bit string if
b = 0. To win, the adversary should guess b. We define advantages AdvkrSE,A(λ) = Pr[KRA

SE(1λ)] and

AdvcpaSE,A(λ) = 2 · Pr[CPAA
SE(1λ)] − 1 and say that SE is KR-secure (resp. CPA-secure) if AdvkrSE,A(·)

(resp. AdvcpaSE,A(·)) is negligible for all PT A. The CTR mode of operation over a blockcipher, with a
fixed IV is an example of a D-SE scheme with incremental updates, and KR and CPA security.

A hash function H with κ(λ)-bit keys is a PT algorithm that takes p ∈ {0, 1}κ(λ) and a plaintext
m returns hash h ← H(p,m). Collision resistance is defined through game CRA

H(1λ), which picks
p←$ {0, 1}κ(λ), runs adversary A(1λ, p) to get m0,m1, and returns True if m0 6= m1 and H(p,m1) =
H(p,m2). We say that H is collision resistant if AdvcrH,A(λ) = Pr[CRA

H(1λ)] is negligible for all PT A.

A table T is immutable if each entry T [t] can be assigned only one value after initialization.
Immutable tables supports the Set-iff-empty, or SiffE operation, which takes inputs a table T , an
index f , and a value m. If T [f] = ⊥ then T [f]← m and m is returned; otherwise T [f] is returned.

The IRCE scheme. Let H denote a hash function with κ(λ)-bit keys and κ(λ)-bit outputs, and
let SE = (E,D) denote a D-SE scheme with κ(λ)-bit keys, where ciphertexts have same lengths
as plaintexts and incremental updates are supported through an algorithm U. The IMLE scheme
IRCE[SE,H] is described in figures 7 and 8. We call the construction IRCE, expanding to interactive
randomized convergent encryption. since it resembles the randomized convergent encryption (RCE)
scheme of [11].

To describe how IRCE works, let us consider a IMLE scheme built around RCE. In RCE, to put
m on the server, the client encrypts m with a random key ` to get c1, and then encrypts ` with
km = H(p,m) to get c2, where p is a system-wide public parameter. Then, km is hashed once more to
get the tag t = H(p, km). The client sends t, c1, c2 and the server stores c1, c2 in a table fil at index t.
If another client starts with m, it will end up with the same t, although it will derive a different c′1, c

′
2,

14

as ` is picked at random. However, when this client sends t, c′1, c
′
2, the server knows that fil[t] is not

empty, meaning a duplicate exists, and hence will drop c′1, c
′
2, thereby achieving deduplication. The

second client should be able to recover m by sending t to the server, receiving c1, c2, recovering ` from
c2 and decrypting c1. However, the problem with RCE is that, when the first client sends t, c1, c2, the
server has no way of checking whether c1, c2 is a proper ciphertext of m, or a corrupted one. Thus,
the second client, in spite of storing a ciphertext of m on the server might not be able to recover m
— this violates our soundness requirement. We will now fix this issue with interaction.

The Put protocol in IRCE differs in that, if the server finds that fil[t] 6= ⊥ then it responds with h, c′2,
where (c′1, c

′
2) ← fil[t] and h ← H(p, c′1). Now, the client can check that H(p,E(1λ, c′2 ⊕ km,m)) = h

which means that whenever deduplication happens, the client can check the validity of the duplicate
ciphertext, which in turn guarantees soundness. The Put protocol is specified in Figure 8, and is a bit
more involved than our sketch here. Specifically, the clients are assigned unique identifiers which are
provided during Put. The message-derived key km is also encrypted to get c3 (under per-client keys)
and stored on the server, in a separate table own, which enables checking that a client starting a get
protocol with an identifier did put the file earlier. If the client is the first to put a ciphertext with tag
t, then the server still returns H(p, c1), c2, c3 so that external adversaries cannot learn if deduplication
occurred. We note that in Figure 8, the fil and own tables are immutable, and this will help in arguing
soundness of the scheme.

The Init algorithm (Figure 7) sets up the fil and own tables, and additional server-side state, and
picks a key p for H, which becomes the public-parameter of the system. The Reg protocol (Figure 8)
sets up a new client by creating a unique client identifier u, and providing the client p. The client
also picks a secret key k without the involvement of the server. The Get protocol (Figure 8) recovers
a plaintext from the identifier, which in the case of IRCE is the tag.

IRCE supports incremental updates, as described in Figure 8. If the client wants to update m to
m2, it does not have to resend all of c1, c2, c3. Instead, it can use the same key ` and incrementally
update c1, and compute new values for c2 and c3, along with the new tag t2. If the server finds that
fil[t2] is not empty, the same check as in Put is performed.

Propositions C.1 and C.2 of Appendix C show that IRCE performs deduplication, and supports
incremental updates, and their proofs proceed in a straightforward manner. The following theorem,
with proof in Appendix C shows that IRCE is Rec-secure (which, along with deduplication, establishes
soundness).

Theorem 5.1. If H is collision resistant and SE is a correct D-SE scheme, then IRCE[H,SE] is Rec-
secure.

Proof sketch. To win the Rec game, the adversary A must put a plaintext m on the server, possibly
update it to some m′, complete a Get instance with the identifier for m or m′ and show that the result
is incorrect.

The proof uses the immutability of fil and own to argue that the ciphertext stored in the
server could not have changed between the failed Get instance and the last time the plaintext was
put/updated. However, Put and Upd both ensure that the hash of the ciphertext stored on the server
matches with the hash of a correctly formed ciphertext for the plaintext being put/updated. Conse-
quently, whenever A breaks Rec-security, it is in effect finding a pair of colliding inputs, namely the
hash inputs involved in the comparison. A CR adversary B can be built which has the same advantage
as the Rec-advantage of A.

The following theorem (with proof in Appendix C) shows that IRCE is Priv-secure in the ROM,
assuming that SE is secure. Let IRCERO denote the ROM analogue of IRCE, formed by modelling H
as a random oracle.

Theorem 5.2. If SE is CPA-secure and KR-secure, then IRCERO[SE] is Priv-secure.

Proof sketch. In Priv, the source S outputs m0,m1, the game picks b←$ {0, 1} and adversary A can

15

Put[1]((k, u, p),m) Put[2](σS)

`←$ {0, 1}κ(λ); c1 ← E(1λ, `,m)

km ← H(p,m); c2 ← km⊕`; c3 ← E(1λ, k, km)

t← H(p, km) u, c1, c2, c3, t
−−−−−−−−−−−→ (c1, c2)← SiffE(fil, t, c1, c2); h← H(p, c1)

c3 ← SiffE(own, (u, t), c3)h, c′2, c
′
3

←−−−−−−−−−−−If c3 6= c′3 then ret ⊥
`′ ← c′2⊕km ; c′′1 ← E(1λ, `′,m); h′ ← H(p, c′′1)

If h = h′ then ret t Else ret ⊥
Upd[1]((k, u, p), t,m1,m2) Upd[2](σS)

k1 ← H(p,m1); k2 ← H(p,m2); δ ← diff(m1,m2)

t2 ← H(p, k2); cd ← k1 ⊕ k2; t1 ← H(p, k1)

c3 ← E(1λ, k, k2) u, t1, t2, c3, cd, δ
−−−−−−−−−−−→ If own[u, t1] 6= ⊥ then

c3 ← SiffE(own, (u, t), c3)

c1, c2 ← fil[t1]

c′1 ← patch(c1, δ); c
′
2 ← c2 ⊕ cd

(c′1, c
′
2)← SiffE(fil, t2, c

′
1, c

′
2)

Else (c′1, c
′
2)← (⊥,⊥)

h← H(p, c′1)h, c′2, c
′
3

←−−−−−−−−−−−If c3 6= c′3 then ret ⊥
c′′1 ← E(1λ, c′2 ⊕ k2,m2); h′ ← H(p, c′′1)

If h = h′ then ret t2; Else ret ⊥

Figure 8: The Put and Upd protocols of the IRCE iMLE scheme. The fil and own tables are immutable,
and support the set-iff-empty operation (SiffE) explained in text.

put and update components of mb, and finally gets to learn the server-side state. To win, A should
guess b.

First, the c3 components are changed to encrypt random strings instead of message-derived keys
km[i]; CPA security of SE makes this change indistinguishable by A. The proof then moves to a game
where RO responses are no longer consistent with the keys and tags being generated. For instance, if
S or A queries the RO at p‖mb[i], it gets a response different from km[i]. The remainder of the proof
involves two steps. First, we show that once we stop maintaining RO consistency, the adversary gets
no information about the ` values used to encrypt the messages, and hence guessing b means breaking
either the CPA security or key recovery security of SE. Second, we argue that neither S nor A can
detect that RO responses are inconsistent. This is because S does not know p, a prefix to the key and
tag generation queries. An A that detects the inconsistency will break the CPA security of SE.

16

6 References

[1] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev. Message-locked encryption for lock-
dependent messages. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of
LNCS, pages 374–391. Springer, Aug. 2013. (Cited on page 3, 4, 5, 6, 9, 13.)

[2] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur, J. Howell, J. Lorch, M. Theimer, and
R. Wattenhofer. Farsite: Federated, available, and reliable storage for an incompletely trusted environment.
ACM SIGOPS Operating Systems Review, 36(SI):1–14, 2002. (Cited on page 3, 4.)

[3] Amazon. S3. http://aws.amazon.com/s3/pricing/. (Cited on page 4.)

[4] P. Anderson and L. Zhang. Fast and secure laptop backups with encrypted de-duplication. In Proc. of
USENIX LISA, 2010. (Cited on page 3, 4.)

[5] C. Batten, K. Barr, A. Saraf, and S. Trepetin. pStore: A secure peer-to-peer backup system. Unpublished
report, MIT Laboratory for Computer Science, 2001. (Cited on page 3, 4.)

[6] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In
A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–552. Springer, Aug. 2007. (Cited on
page 3.)

[7] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis of authentication
and key exchange protocols (extended abstract). In 30th ACM STOC, pages 419–428. ACM Press, May
1998. (Cited on page 7.)

[8] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: The case of hashing and signing.
In Y. Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 216–233. Springer, Aug. 1994. (Cited on
page 4, 13.)

[9] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography and application to virus protection.
In 27th ACM STOC, pages 45–56. ACM Press, May / June 1995. (Cited on page 4, 13.)

[10] M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via uces. Cryptology ePrint
Archive, Report 2013/424, 2013. Preliminary version in Crypto 2013. (Cited on page 3, 4, 5, 10, 12, 34.)

[11] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and secure deduplication. In
T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 296–312.
Springer, May 2013. (Cited on page 3, 4, 5, 6, 8, 14, 20.)

[12] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and
applications. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer,
May 2003. (Cited on page 10.)

[13] M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incrementality at reduced cost.
In W. Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 163–192. Springer, May 1997. (Cited
on page 4, 13.)

[14] M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Aug. 1993. (Cited on page 7.)

[15] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer,
May / June 2006. (Cited on page 6, 31.)

[16] N. Bitansky and R. Canetti. On strong simulation and composable point obfuscation. In T. Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 520–537. Springer, Aug. 2010. (Cited on page 5, 10, 12, 13,
33.)

[17] Bitcasa. Bitcasa inifinite storage. http://blog.bitcasa.com/tag/patented-de-duplication/. (Cited
on page 3, 4.)

[18] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In
R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer,
Aug. 2012. (Cited on page 5, 10.)

17

http://aws.amazon.com/s3/pricing/
http://blog.bitcasa.com/tag/patented-de-duplication/

[19] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In
R. Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Computer Society Press, Oct. 2011. (Cited on
page 5, 10.)

[20] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for
key dependent messages. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 505–524.
Springer, Aug. 2011. (Cited on page 5, 10.)

[21] E. Buonanno, J. Katz, and M. Yung. Incremental unforgeable encryption. In M. Matsui, editor, FSE 2001,
volume 2355 of LNCS, pages 109–124. Springer, Apr. 2001. (Cited on page 4.)

[22] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, Oct. 2001. (Cited on page 7.)

[23] R. Canetti and R. R. Dakdouk. Obfuscating point functions with multibit output. In N. P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 489–508. Springer, Apr. 2008. (Cited on page 10.)

[24] R. Canetti, Y. T. Kalai, M. Varia, and D. Wichs. On symmetric encryption and point obfuscation. In
D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 52–71. Springer, Feb. 2010. (Cited on
page 10, 12.)

[25] Ciphertite. Ciphertite data backup. https://www.cyphertite.com/faq.php. (Cited on page 3, 4.)

[26] J. Cooley, C. Taylor, and A. Peacock. ABS: the apportioned backup system. MIT Laboratory for Computer
Science, 2004. (Cited on page 3, 4.)

[27] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully homomorphic encryption over the integers
with shorter public keys. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 487–504.
Springer, Aug. 2011. (Cited on page 5, 10.)

[28] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: making backup cheap and easy. SIGOPS Oper. Syst.
Rev., 36:285–298, Dec. 2002. (Cited on page 3, 4.)

[29] Y. Dodis, T. Ristenpart, and S. P. Vadhan. Randomness condensers for efficiently samplable, seed-
dependent sources. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 618–635. Springer,
Mar. 2012. (Cited on page 33.)

[30] J. Douceur, A. Adya, W. Bolosky, D. Simon, and M. Theimer. Reclaiming space from duplicate files in a
serverless distributed file system. In Distributed Computing Systems, 2002. Proceedings. 22nd International
Conference on, pages 617–624. IEEE, 2002. (Cited on page 3.)

[31] Dropbox. Deduplication in Dropbox. https://forums.dropbox.com/topic.php?id=36365. (Cited on
page 3.)

[32] T. Duong and J. Rizzo. Here come the ninjas. Unpublished manuscript, 2011. (Cited on page 4.)

[33] M. Dutch. Understanding data deduplication ratios. In SNIA Data Management Forum, 2008. (Cited on
page 7.)

[34] M. Fischlin. Incremental cryptography and memory checkers. In W. Fumy, editor, EUROCRYPT’97,
volume 1233 of LNCS, pages 293–408. Springer, May 1997. (Cited on page 4.)

[35] Flud. The Flud backup system. http://flud.org/wiki/Architecture. (Cited on page 3, 4.)

[36] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, 41st ACM
STOC, pages 169–178. ACM Press, May / June 2009. (Cited on page 5, 10, 11.)

[37] C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption scheme. In K. G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 129–148. Springer, May 2011. (Cited on page 10.)

[38] C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 465–482.
Springer, Apr. 2012. (Cited on page 5, 10.)

[39] GNUnet. GNUnet, a framework for secure peer-to-peer networking. https://gnunet.org/. (Cited on
page 3, 4.)

18

https://www.cyphertite.com/faq.php
https://forums.dropbox.com/topic.php?id=36365
http://flud.org/wiki/Architecture
https://gnunet.org/

[40] Google. Blob store. https://developers.google.com/appengine/docs/pricing. (Cited on page 4.)

[41] Google. Google Drive. http://drive.google.com. (Cited on page 3.)

[42] V. Goyal, A. O’Neill, and V. Rao. Correlated-input secure hash functions. In Y. Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 182–200. Springer, Mar. 2011. (Cited on page 10.)

[43] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of ownership in remote storage systems. In
Proceedings of the 18th ACM conference on Computer and communications security, pages 491–500. ACM,
2011. (Cited on page 7.)

[44] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud services: Deduplication in cloud
storage. Security & Privacy, IEEE, 8(6):40–47, 2010. (Cited on page 7.)

[45] J. Katz and V. Vaikuntanathan. Round-optimal password-based authenticated key exchange. In Y. Ishai,
editor, TCC 2011, volume 6597 of LNCS, pages 293–310. Springer, Mar. 2011. (Cited on page 7.)

[46] M. Killijian, L. Courtès, D. Powell, et al. A survey of cooperative backup mechanisms, 2006. (Cited on
page 3, 4.)

[47] L. Marques and C. Costa. Secure deduplication on mobile devices. In Proceedings of the 2011 Workshop
on Open Source and Design of Communication, pages 19–26. ACM, 2011. (Cited on page 3, 4.)

[48] D. Meister and A. Brinkmann. Multi-level comparison of data deduplication in a backup scenario. In
Proceedings of SYSTOR 2009: The Israeli Experimental Systems Conference, page 8. ACM, 2009. (Cited
on page 7.)

[49] Microsoft. Windows Azure. http://www.windowsazure.com/en-us/pricing/details/storage/. (Cited
on page 4.)

[50] I. Mironov, O. Pandey, O. Reingold, and G. Segev. Incremental deterministic public-key encryption. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 628–644.
Springer, Apr. 2012. (Cited on page 4, 13, 21.)

[51] NetApp. NetApp. http://www.netapp.com/us/products/platform-os/dedupe.aspx. (Cited on page 3.)

[52] A. Rahumed, H. Chen, Y. Tang, P. Lee, and J. Lui. A secure cloud backup system with assured deletion
and version control. In Parallel Processing Workshops (ICPPW), 2011 40th International Conference on,
pages 160–167. IEEE, 2011. (Cited on page 3, 4.)

[53] T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limitations of the indifferentia-
bility framework. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506.
Springer, May 2011. (Cited on page 6.)

[54] M. Storer, K. Greenan, D. Long, and E. Miller. Secure data deduplication. In Proceedings of the 4th ACM
international workshop on Storage security and survivability, pages 1–10. ACM, 2008. (Cited on page 3,
4.)

[55] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers.
In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 24–43. Springer, May 2010. (Cited
on page 5, 10.)

19

https://developers.google.com/appengine/docs/pricing
http://drive.google.com
http://www.windowsazure.com/en-us/pricing/details/storage/
http://www.netapp.com/us/products/platform-os/dedupe.aspx

Run(1λ,P, inp)

T ← ∅; n← 1; M← ε

For i = 1 to n do a[i, 1]← inp[i]; rd[i]← 1

While T 6= [n] do

If n ∈ T then return ⊥
i← rd[n]

(a[n, i+ 1], M, N, T)←$ P[n, i](1λ,a[n, i], M)

If T = True then T ← T ∪ {n}
rd[n]← rd[n] + 1; n← N

For i = 1 to n do outp[i]← last(a[i])

Ret outp

Msgs(1λ,P,a, r)

T ← ∅; n← 1; M← ε; j ← 1

For i = 1 to n do a[i, 1]← inp[i]; rd[i]← 1

While T 6= [n] do

If n ∈ T then return ⊥
i← rd[n]

(a[n, i+ 1], M, N, T)←$ P[n, i](1λ,a[n, i], M; r[n, i])

If T = True then T ← T ∪ {n}
rd[n]← rd[n] + 1; n← N; M[j]← M; j ← j + 1

Ret M

Figure 9: Left: Running a protocol P. Right: The Msgs procedure returns the messages exchanged
during the protocol when invoked with specified inputs and coins.

A Interactive protocols

Consider a protocol P with n-players, where each player is invoked for a maximum of q-times. We
represent such a protocol as a n×q-tuple (P[i, j])i∈[n],j∈[q] of algorithms. The algorithm P[i, j] represents
the action of the i-th player, when invoked for the j-th time. Each algorithm is invoked with the
security parameter 1λ, an input a, and a message M ∈ {0, 1}∗, and returns a 4-tuple consisting of an
output a′, an outgoing message M′ ∈ {0, 1}∗, the index N ∈ N of the next algorithm to run, and a
boolean T to indicate termination. When all algorithms of a protocol have terminated, the protocol is
said to have terminated. We denote the n-players of the protocol by P[1], . . . ,P[n]. The execution of
a protocol P is captured by the Run algorithm, which takes inputs inp and returns outp, both tuples
of n-elements, is described in Figure 9. We say that P is run on inp, or that P[i] is invoked with inp[i]
for i ∈ [n] to mean that the input to P[i, 1] is set to inp[i] for i ∈ [n]. We say that P returns outp or
that P[i] gets output outp[i] for i ∈ [n] to mean that Run(1λ,P, inp) returns outp. The Msgs procedure
of Figure 9 returns the protocol messages when invoked with specified inputs and coins.

B Deterministic MLE schemes cannot support incremental updates

An updatable MLE scheme MLE = (Pg,K,E,D,T,U1,U2) is a seven-tuple of PT algorithms. The
first five algorithms work as in regular MLE schemes. The two update algorithms U1 and U2 work
as follows. On input parameters p and two messages m1,m2 where m2 is the newer version of m1,
the U1 algorithm outputs a string cu ∈ {0, 1}∗. On input parameters p, update string cu, and original
ciphertext c, the U2 algorithm produces updated ciphertext c′. We say that MLE is deterministic if
K,E,U1 and U2 are deterministic.

We say that MLE is incremental if there exist functions a : N → N and b : N → N such that for
for all p ∈ [P(1λ)], for all m1,m2 ∈ {0, 1}∗, it holds that |cu| ≤ a(λ) log(|m1| + |m2|)δ + b(λ) for all
cu ∈ [U1(1

λ, p,m1,m2)], where δ = HAMM(m1,m2).
We now show that if a deterministic MLE scheme supports incremental updates, then it cannot

even satisfy PRV-CDA security, the weakest among the security notions of [11]. Note that the attacker
does not have the ability to update ciphertexts. Informally, the result is achieved using the fact that
highly correlated plaintexts will produce similar ciphertexts, while independently chosen plaintexts
will produce different-looking ciphertexts, and this can be used to guess the bit in the PRV-CDA
game.

Theorem B.1. Let MLE denote a deterministic MLE scheme which supports incremental updates
with bound u : N→ N. Then MLE is not PRV-CDA secure.

20

Proof. Consider A = (A1,A2) where A1 picks m1,m3,m4 at random from {0, 1}µ(λ) and picks m2

such that dist(m1,m2) = 1. Now, A1 outputs (m1,m2), (m3,m4) as its output tuples. Informally,
the two components of m0 are distance 1-apart and hence their ciphertexts should be close. On the
other hand the two components of m1 are unlikely to be close, as they are picked independently at
random, and A2 uses this difference to infer the bit of the game. Specifically, A2(1

λ, p, c) returns 0 if
HAMM(c[0], c[1]) ≤ u(1), and 1 otherwise. Clearly, if A2 outputs 0 whenever b = 0 in the game. The
probability that the ciphertexts of m3 and m4 are less than u(1) units apart isis negligible. Moreover,
GPA1 = 21−µ(λ), making it an unpredictable source. Thus, A is a valid PRV-CDA adversary with
advantage negligibly away from 1, meaning that MLE is not PRV-CDA secure.

We remark that a similar result applies for deterministic PKE schemes, with regards to PRIV
security. Mironov, Pandey, Reingold, and Segev [50] model incremental deterministic PKE schemes,
but they restrict to attention to PRIV1 security, which does not consider correlated messages.

C Incremental updates: Proofs and extensions

Proposition C.1. Let H denote a deterministic hash function and SE = (E,D) denote a deterministic
symmetric encryption scheme. Then IRCE[H, SE] supports deduplication.

Proof. When a client with id u and parameters σC puts a plaintext m on the server, then, in fil,
an entry c1, c2, is added at index t = H(p,H(p,m)) where c1 ← E(1λ, `,m), and km ← H(p,m), and
c2 ← km ⊕ `. Now, if another client with id u′ and parameters σ′C tries to put m, and sends across
a c′1, c

′
2, t (we need H to be deterministic, to ensure that the same tag is generated both times) to

the server, the server detects a duplicate at fil[t] and drops c′1, c
′
2. A fresh copy of c3 is still stored at

own[u′, t], but the size of c3 is bounded by κ(λ), and the increase in σS is bounded by |u′|+ |t|+ |κ(λ)|,
which is independent of |m|.

Proposition C.2. Let H denote a cryptographic hash function and SE = (E,D) denote a deterministic
symmetric encryption scheme, which supports incremental updates w.r.t Hamming distance. Then
IRCE[H,SE] also supports incremental updates w.r.t Hamming distance.

Proof. By inspecting the Upd protocol when invoked on plaintexts m1,m2, we can check that the
total length of the transmitted messages is λ+ 6κ(λ) + |δ|, where δ = diff(m1,m2). Letting κ(λ) = λ,
and noting that δ is the list of positions where m1 and m2 differ. Since log |m1| bits are needed to
represent one position, the total size of δ can be bounded by HAMM(m1,m2) log |m1|. The total length
of messages is bounded by HAMM(m1,m2)(log |m1|) + 7λ, proving the proposition.

C.1 Proof of Theorem 5.1

Proof. Consider games G1 and G2 of Figure 10. Here G1 is essentially the Rec game with IRCE, except
that G1 maintains tables Cv, Cs, and Cr. When the adversary completes a instantiation of Put(m)
through calls to Init and Step, the ciphertexts c′′1, c

′
2, c3 are stored in Cv[m]. Note that c′′1, c

′
2, c3 is

always valid encryption of m, and hence we store the tuple in Cv, the set of valid ciphertexts. The
tuple (c′1, c

′
2, c
′
3), all values returned by the server through Put[2, 1] are stored in Cs[m], the table of

server ciphertexts. The same steps are also performed during Upd, except that here the index into
Cv and Cs is the updated ciphertext. During Get[1, 2], the c1, c2, c3 tuple returned by the server are
added to Cr[m], the table of recovered ciphertexts, where m is the recovered plaintext value.

Note that, in G1, the Put[2, 1] and Upd[2, 1] algorithms return the ciphertexts c′1 along with the
hashes. This change does not affect the outcome of the game as these values are ignored by the Put[1, 2]

21

Main(1λ) // GA
1 (1

λ), GA
2 (1

λ)

σS ←$ Init(1λ); (σC , σS)←$ Run(Reg, ε, σS)

AInit,Step,Msg,State(1λ, σC); Ret win

Get[1, 2](a)

(c1, c2, c3)← M; If c1 = ⊥ then ret ⊥; k2 ← D(1λ, k, c3)

m′ ← D(1λ, k2 ⊕ c2, c1); Cr[m
′]← (c1, c2, c3)

Ret m′, ε,True

Upd[1, 1](a = (t,m1,m2), M)

k1 ← H(p,m1); k2 ← H(p,m2); t2 ← H(p, k2)

δ ← diff(m1,m2); c3 ← E(1λ, k, k2)

c′ ← (k1 ⊕ k2, c3, δ); M← (u, t1, t2, c
′)

a← (m1,m2, k1, k2, t1, t2, c1, c2, c3); Ret (a, M,False)

Upd[2, 1](σS , M)

(u, t1, t2, cd, c3, δ)← M; (p,U,fil,own)← σS

If own[u, t1] = ⊥ then (c′1, c
′
2)← (⊥,⊥)

Else

If fil[t2] = ⊥ then

(c1, c2)← fil[t1]; c′1 ← patch(c1, δ)

c′2 ← c2 ⊕ cd; fil[t2]← (c′1, c
′
2)

Else (c′1, c
′
2)← fil[t2]

If own[t2, u] = ⊥ then own[t2, u] = c3

Else c3 ← own[t2, u]

h← H(p, c′1); M← (c′1, h, c
′
2, c3)

Ret (p,U,fil,own), M,True

Upd[1, 2](a, M)

(m1,m2, k1, k2, t1, t2, c1, c2, c3)← a; (h, c′1, c
′
2, c

′
3)← M

If c3 6= c′3 then a← ⊥
Else c′′1 ← E(1λ, c′2 ⊕ k2,m2); h′ ← H(p, c′′1)

If h = h′ then

Cv[m]← (c′′1 , c
′
2, c3); Cs[m]← (c′1, c

′
2, c

′
3); a← t2

Else a← ⊥; Ret (a, ε,True)

Get[2, 1](t)

(p,U,fil,own)← σS ; (c1, c2)← fil[t]; c3 ← own[t, u]

If c3 = ⊥ then (c′1, c
′
2)← (⊥,⊥)

M← (c1, c2, c3); σS ← (p,U,fil,own); Ret σS , M,True

Put[1, 1](m, M)

`←$ {0, 1}κ(λ); c1 ← E(1λ, `,m); km ← H(p,m)

t← H(p, km); c2 ← km ⊕ `; c3 ← E(1λ, k, km)

c← (c1, c2, c3); M← (u, c, t)

a← (m, `, c1, c2, c3, t); Ret a, M,False

Put[2, 1](σS , M)

(p,U,fil,own)← σS ; (u, c, t)← M; (c1, c2, c3)← c

If fil[t] = ⊥ then fil[t] = (c1, c2) Else

(c1, c2)← fil[t]

h← H(p, p‖c1)

If own[t, u] = ⊥ then own[t, u] = c3

Else c3 ← own[t, u]

M← (h, c2, c3)

σS ← (p,U,fil,own)

Ret M, σS ,True

Put[1, 2](a, M)

(m, `, c1, c2, c3, t)← a; (h, c′1, c
′
2, c

′
3)← M

`′ ← c′2 ⊕ km ; c′′1 ← E(1λ, `′,m)

h′ ← H(p, c′′1); a← ⊥
If h = h′ then

Cv[m]← (c′′1 , c
′
2, c3); Cs[m]← (c′1, c

′
2, c

′
3)

a← t

Ret (a, ε,True)

WinCheck(j) // G2

If PS[j] = Put then

(σC ,m)← first(a[j, 1]); f ← last(a[j, 1])

T [f]← m

If PS[j] = Upd then

(σC , f,m1,m2)← first(a[j, 1])

f ← last(a[j, 1])

T [f]← m2

If PS[j] = Get then

(σC , f)← first(a[j, 1]); m′ ← last(a[j, 1])

m← T [f]

If m′ 6= m then

If Cr[m
′] = Cs[m] = Cv[m] then win1 ← True

Else If Cr[m
′] 6= Cs[m] then win2 ← True else

win3 ← True

win← win1 ∨ win2 ∨ win3

Figure 10: Games G1 and G2 of Theorem 5.1. The Init, Step, State and Msg procedures for G1

and G2, and WinCheck for G1 are the same as Rec and hence omitted. Also omitted is the trivial
Get[1, 1] procedure, which simply sets its outgoing message to its input f .

and Upd[1, 2], except for updating Cv, Cs, and Cr. However, maintaining Cv, Cs, and Cr itself has no
effect on setting win and hence on the outcome of G1. Thus, we have Pr[RecA

IRCE(1λ)] = Pr[GA
1 (1λ)].

22

Game G2 differs from G1 only on how WinCheck works. In G1, as in Rec, the game maintains
a table T through WinCheck. When the adversary runs a put or an update protocol to completion
through Step, the games set T [m] = f , where m is the put/updated plaintext and f is the returned
identifier. When the adversary runs Get(f) to completion, the games check if the recovered plaintext
m′ matches m = T [f], and if not, set win to true. However, in G2, when such a mismatch happens,
the game goes through a series of steps before setting win. If Cv[m] = Cs[m] = Cr[m

′], the game
sets win1. If Cs[m] 6= Cr[m

′], the game sets win2. Otherwise, win3 is set. It can be observed that
if m 6= m′, one of win1,win2,win3 will get set, and since the winning condition in G2 is ∨i=3

i=1wini, it
follows that Pr[GA

1 (1λ)] = Pr[GA
2 (1λ)].

Now, we show that the probabilities of setting win1 and win2 are zero, leaving win3 as the only way
for A to break soundness. If (cr1, c

r
2, c

r
3) = (cv1, c

v
2, c

v
3), then, m′ has to be m, by the correctness of SE,

since the latter is a valid ciphertext for m. Hence, if m′ 6= m, the three ciphertext triples cannot be
equal, meaning that Pr[GA

2 (1λ) sets win1] = 0.

If Cs[m] 6= Cr[m
′], the game sets win2, but note that both these triples are fil[f] and own[u, f],

the difference being that Cs[m] was derived during Put[2, 1], or Upd[2, 1] while Cr[m
′] was derived

during a run of Get[2, 1]. However, given that fil and own are both immutable arrays, it follows that
the two values have to be equal, meaning that Pr[GA

2 (1λ) sets win2] = 0.

In the setting of win3, we have Cs[m] = Cr[m
′], and Cs[m] 6= Cv[m]. Let (cs1, c

s
2, c

s
3)← Cs[m] and

(cv1, c
v
2, c

v
3) ← Cv[m]. We know that cv3 = cs3 because Put[1, 2] and Upd[1, 2] check for this condition,

returning error on failure. Moreover, cv2 = cs2 by construction, which means that cv1 6= cs1. But we
know that H(p, cv1) = H(p, cs1) because Put[1, 2] and Upd[1, 2] check for this condition as well, once
again returning error on failure. This of course means that a collision has been found in HF. It is
straightforward to describe an adversary B such that AdvcrHF,B = Pr[GA

2 (1λ) sets win3]. Adding the
above equations, we have AdvrecIRCE,A(λ) = AdvcrHF,B(λ).

C.2 Proof of Theorem 5.2

Proof. Let S be an unpredictable PT source which outputs m(λ) plaintexts with length `(λ, ·). and
A be a PT adversary. Let n : N → N denote a bound on the total number of messages stored by the
adversary (including both Put and Upd), and let qS(λ) : N → N denote a bound on the number of
RO1 queries made by the source.

Consider games G1, G2, G3 and G4 of Figure 11. Game G1 is identical to the PrivS,A
IRCE game.

In G1, when the adversary imitates a Put protocol, and runs the first step through Step, the game
derives the ciphertext c1, c2, c3. Here, the key should be derived as km ← RO(m), and the tag should
be derived as t ← RO(m). Instead, G1 picks km and t as random κ(λ)-bit strings. However, if p‖km
or p‖m have already been queried at the RO by S or A, then G1 ensures consistency by using the
existing values. This event sets the bad flag in G1. When the adversary initiates an Update protocol,
G1 follows a similar procedure with k2 and t2.

Moreover, G1 ensures that subsequent queries to RO at p‖m or p‖km are replied with km or t
respectively. Such events also set the bad flag in G1. Although Put[1, 1] and Upd[1, 1] are implemented
differently in G1, this does not affect the outcome of the game. Game G2 does away with maintaining
consistency in the RO replies, but remains identical-until-bad to G1. We have

Pr[PrivS,A
IRCE(1λ)] = Pr[GS,A

1 (1λ)] ≤ Pr[GS,A
2 (1λ)] + Pr[GS,A

2 (1λ) sets bad]. (1)

Game G3 is identical to G2, and G4 differs from G3 in that the c3 components of ciphertexts are
encryptions of random strings, instead of encryptions of km and k2 during Put[1, 1] and Upd[1, 1].
Here, parts of the Put[1, 1] procedures of G3 (Left) and G4 (Right) are provided for comparison. The
Upd[1, 1] procedures are similarly related. There exists a CPA adversary B1, and a KR adversary B2

23

Main(1λ) // GS,A
1 (1λ), GS,A

3 (1λ) , GS,A
2 (1λ), GS,A

4 (1λ)

σS ←$ Init(1λ); b←$ {0, 1}; ~m0, ~m1←$ SRO(1λ, ε)

b′←$ AReg,Put,Upd,Step,Msg,State,RO(1λ); Ret (b = b′)

Put[1, 1](m, M)

n← n + 1; km←$ {0, 1}κ(λ); t←$ {0, 1}κ(λ)

If p‖m ∈ T then bad← True ; km ← T [p‖m]

If p‖km ∈ T then bad← True ; t← T [p‖km]

k[n]← km; m[n]← m; t[n]← t

`←$ {0, 1}κ(λ); c1 ← E(1λ, `,m)

c2 ← km ⊕ `; c3 ← E(1λ, k, km); c← (c1, c2, c3)

M← (u, c, t); a← (m, `, c1, c2, c3, t); Ret a, M, 2,False

Put[2, 1](σS , M)

(p,U,fil,own)← σS ; (u, c, t)← M; (c1, c2, c3)← c

If fil[t] = ⊥ then fil[t] = (c1, c2) Else (c1, c2)← fil[t]

If own[t, u] = ⊥ then own[t, u] = c3 else c3 ← own[t, u]

h← H(p, p‖c1); M← (h, c2, c3); σS ← (p,U,fil,own)

Ret M, σS , 1,True

Put[1, 2](a, M)

(m, `, c1, c2, c3, t)← a; (h, c′1, c
′
2, c

′
3)← M

`′ ← c′2 ⊕ km ; c′′1 ← E(1λ, `′,m); h′ ← H(p, c′′1)

If h = h′ then

Cv[m]← (c′′1 , c
′
2, c3); Cs[m]← (c′1, c

′
2, c

′
3); a← t

Else a← ⊥
Ret (a, ε, 2,True)

RO(x)

For i = 1 to n do

If x = k[i] then bad← True ; Ret t[i]

If x = m[i] then bad← True ; Ret k[i]

If x 6∈ T then T [x]←$ {0, 1}κ(λ)

Ret T [x]

Put[1, 1](m, M) // GS,A
3 (1λ) , GS,A

4 (1λ)

t←$ {0, 1}κ(λ); k[n]← km; `←$ {0, 1}κ(λ)

c1 ← E(1λ, `,m)

km←$ {0, 1}κ(λ); c2←$ `⊕ km; k′←$ {0, 1}κ(λ)

c3 ← E(1λ, k, k′); c3 ← E(1λ, k, km) ; c← (c1, c2, c3)

M← (u, c, t); a← (m, `, c1, c2, c3, t); Ret a, M, 2,False

Upd[1, 1](a = (t,m1,m2), M)

n← n + 1; k2←$ {0, 1}κ(λ); t2←$ {0, 1}κ(λ)

k[n]← k2; m[n]← m2

t[n]← t2; δ ← diff(m1,m2)

If p‖m2 ∈ T then bad← True ; k2 ← T [p‖m2]

If p‖k2 ∈ T then bad← True ; t2 ← T [p‖k2]

c3 ← E(1λ, k, k2); c′ ← (k1 ⊕ k2, c3, δ)
M← (u, t1, t2, c

′)

a← (m1,m2, k1, k2, t1, t2, c1, c2, c3)

Ret (a, M, 2,False)

Upd[2, 1](σS , M)

(u, t1, t2, cd, c3, δ)← M; (p,U,fil,own)← σS

If own[u, t1] = ⊥ then (c′1, c
′
2)← (⊥,⊥)

Else

If fil[t2] = ⊥ then

(c1, c2)← fil[t1]; c′1 ← patch(c1, δ)

c′2 ← c2 ⊕ cd; fil[t2]← (c′1, c
′
2)

Else (c′1, c
′
2)← fil[t2]

If own[t2, u] = ⊥ then own[t2, u] = c3

Else c3 ← own[t2, u]

h← H(p, c′1); M← (c′1, h, c
′
2, c3)

σS ← (p,U,fil,own); Ret σS , M, 1,True

Upd[1, 2](a, M)

(m1,m2, k1, k2, t1, t2, c1, c2, c3)← a

(h, c′1, c
′
2, c

′
3)← M

If c3 6= c′3 then a← ⊥
Else

c′′1 ← E(1λ, c′2 ⊕ k2,m2); h′ ← H(p, c′′1)

If h = h′ then Cv[m]← (c′′1 , c
′
2, c3)

Cs[m]← (c′1, c
′
2, c

′
3); a← t2

Else a← ⊥
Ret (a, ε, 2,True)

Upd[1, 1](a = (t,m1,m2), M) // GS,A
3 (1λ) ,

GS,A
4 (1λ)

k2←$ {0, 1}κ(λ); t2←$ {0, 1}κ(λ)

δ ← diff(m1,m2)

k′←$ {0, 1}κ(λ); c3 ← E(1λ, k, k′)

c3 ← E(1λ, k, km)

c′ ← (k1 ⊕ k2, c3, δ); M← (u, t1, t2, c
′)

a← (m1,m2, k1, k2, t1, t2, c1, c2, c3)

Ret (a, M, 2,False)

Figure 11: Games G1, G2, G3 and G4. The boxed code is part of G1 and G3.

24

Main(1λ) // HS,A
1 (1λ) , HS,A

2 (1λ) , HS,A
3 (1λ)

σS ←$ Init(1λ); b←$ {0, 1}; ~m0, ~m1←$ SRO1(1λ, ε)

b′←$ AReg,Put,Upd,Step,Msg,State,RO2(1λ)

Ret bad

Put[1, 1](m, M)

n← n + 1; km←$ {0, 1}κ(λ); t←$ {0, 1}κ(λ)

k[n]← km; m[n]← m; t[n]← t

If p‖m ∈ T1 or p‖km ∈ T1 then bad← True

If p‖m ∈ T2 or p‖km ∈ T2 then bad← True

`←$ {0, 1}κ(λ); c1 ← E(1λ, `,m)

c2 ← km ⊕ `; c3 ← E(1λ, k, km)

c← (c1, c2, c3)

M← (u, c, t); a← (m, `, c1, c2, c3, t)

Ret a, M, 2,False

Upd[1, 1](a = (t,m1,m2), M)

n← n + 1; k2←$ {0, 1}κ(λ); t2←$ {0, 1}κ(λ)

k[n]← k2; m[n]← m2

t[n]← t2; δ ← diff(m1,m2)

If p‖m2 ∈ T1 or p‖k2 ∈ T1 then bad← True

If p‖m2 ∈ T2 or p‖k2 ∈ T2 then bad← True

c3 ← E(1λ, k, k2); c′ ← (k1 ⊕ k2, c3, δ)
M← (u, t1, t2, c

′)

a← (m1,m2, k1, k2, t1, t2, c1, c2, c3)

Ret (a, M, 2,False)

RO1(x)

If x 6∈ T then T [x]←$ {0, 1}κ(λ)

T1[x]← T [x]; Ret T [x]

RO2(x)

If x ∈ k ∪m then bad← True

If x 6∈ T then T [x]←$ {0, 1}κ(λ)

T2[x]← T [x]; Ret T [x]

Figure 12: Games H1, H2 and H3.

such that

AdvcpaSE,B1
(λ) = Pr[GS,A

4 (1λ)]− Pr[GS,A
3 (1λ)] , Pr[GS,A

4 (1λ)] ≤ m(λ)AdvcpaSE,B2
(λ) +m(λ)AdvkrSE,B3

(λ) ,
(2)

where m is the bound on the size of S output along with the total number of procedure calls made
by A.

Consider games H1, H2 and H3 of Figure 12, where, H1 is G2, except that setting bad wins H1. Both
the source S and the adversary A can set bad. Given that the source is not provided p, the probability
that S sets bad in H1 is bounded by qS(λ)n(λ)/2κ(λ). In H2, the source cannot set bad, as the RO1

query points of S are not taken into account while testing for bad. We have

Pr[HS,A
2 (1λ) sets bad]− Pr[HS,A

1 (1λ) sets bad] ≤ qS(λ)(λ)n(λ)

2κ(λ)
. (3)

Consider an adversary A′ which runs A, keeps track of all the RO queries of A and when A finishes,
repeats all the queries. By running A′, testing for bad can be localized to RO2 and dropped in Put[1, 1]
and Upd[1, 1]. This change is implemented in H3. We have

Pr[HS,A
2 (1λ) sets bad] ≤ Pr[HS,A′

3 (1λ) sets bad] . (4)

In H4, as in G4, the c3 components of the ciphertexts are replaced by encryptions of random strings.
In H5, the ciphertexts c1 are derived as encryptions of random strings, and not as encryptions of
messages output by S. There exist adversaries B3,B4 and B5 such that

|Pr[HS,A′

5 (1λ) sets bad]−Pr[HS,A′

3 (1λ) sets bad]| ≤ AdvcpaSE,B4
(λ)+n(λ)(AdvcpaSE,B4

(λ)+AdvkrSE,B5
(λ)). (5)

Finally, in H5, the adversary receives no information about the messages output by S, and it follows
that

Pr[HS,A
5 (1λ) sets bad] ≤ qA(λ)n(λ)

2κ(λ)
+ ≤ qS(λ)n(λ)GPS(λ) . (6)

where qA(λ) : N → N is a bound on the number of RO2 queries made by A. Adding the above, we

25

diste(s1, s2)

For i = 1 to |s1| do D[i, 0]← i

For j = 1 to |s2| do D[0, j]← j

For i = 1 to |s1| do

For j = 1 to |s2| do

If s1[i] = s2[j] then D[i, j]← D[i− 1, j − 1]

Else

D[i, j]← min(D[i− 1, j] + 1,

D[i, j − 1] + 1, D[i− 1, j − 1] + 1)

Ret D[|s1|, |s2|]

patche(S, s1)

For (α, β, γ) ∈ S
If α = r then s1[β]← γ

If α = i then s1 ← s1[1, β] + γ + s1[β + 1, |s1|]
If α = d then s1 ← s1[1, β − 1] + s1[β + 1, |s1|]

Ret s1

diffe(D, s1, s2)

i← |s1|; j ← |s2|; S ← ε

While i > 0 and j > 0

d← D[i− 1, j − 1]; t← D[i− 1, j]

l← D[i, j − 1]

If d < t and d < l then

If d < D[i, j] then S ← S ∪ {(r, i, s2[j])}
i← i− 1; j ← j − 1; continue

If l < t then and l ≤ D[i, j]

S ← S ∪ {(i, i, s2[j])}; j ← j − 1; continue

S ← S ∪ {(d, i)}; i← i− 1

Ret S

Figure 13: The diste, diffe, and patche algorithms for edit distance.

have

AdvprivIRCE[SE],S,A(λ) ≤ 2(n(λ) + 1)AdvcpaSE,C1
(λ) + 2n(λ)AdvkrSE,C2

(λ) +
(qS(λ) + qA(λ))n(λ)

2κ(λ)
+ qA(λ)n(λ)GPS(λ) .

where C1 and C2 are the ones among the CPA and KR adversaries with highest advantage.

D The IRCE2 scheme

Edit distance. The edit distance between two strings s1 and s2 over Σ is the minimum number of
single character modifications, including insertion, deletion, and substitution that need to be performed
to convert s1 to s2. We define edit distance diste and associated algorithms diffe and patche in
Figure 13.

IVT. Let E be a blockcipher with blocksize w(λ) and κ(λ)-bit keys. The IVT[E] = (EIVT,DIVT) SE
scheme is described in Figure 14. We assume that plaintext lengths are exact multiples of w(λ), a
restriction that can be circumvented via an appropriate padding.

At a high level, IVT is like CTR mode of operation with E, but instead of having a single starting
point for the counter, it contains a table accompanying the ciphertext that says what counter value to
use for each block of data. This table can be compressed down when the counter values are increasing
incrementally, and encryption the scheme works just like CTR. But having this table enables inserting,
deleting and changing blocks. For example, given a ciphertext of `-blocks, if a block has to be inserted
in the middle, it is XORed with the output of E on counter ` + 1. The table is modified to indicate
this aberration in the middle, but can still be compressed efficiently.

The diff IVT algorithm (Figure 14), given two plaintexts m1,m2 computes the information S that
needs to applied to a ciphertext c1 of m1 under k to change it to a ciphertext of m2. The patchIVT

algorithm (Figure 14) takes S and c1 and returns c2, a ciphertext of m2. Here, c1 does not have to an
output of EIVT; it could be a result of previous patching efforts and hence contain a modified IV table.

We state the following proposition, which is easy to verify from the pseudocode of IVT.

Proposition D.1. For all c = (c1, c2, ivl), for all k ∈ {0, 1}κ(λ), if DIVT(1λ, k, c) = m then for all
m2 ∈ {0, 1}∗, it holds that DIVT(1λ, k, patchIVT(1λ, c, diff IVT(1λ, k,m1,m2))) = m2.

26

EIVT(1λ, k,m)

For i = 1 to |m|/w(λ) do iv[i] = i

c1 ← CTR[E](k,m); c2 ← compressIVT(iv)

ivl ← i; Ret (c1, c2, ivl)

compressIVT(iv)

While i < |iv|
s← iv[i]; j ← 0; While iv[i+ j] = s+ j; j ← j + 1

ivc ← ivc ∪ {s, j}
Ret ivc

patchIVT(1λ, c, (δ, ivl)

(c1, c2, ivl)← c; iv← expandIVT(c2)

For (α, β, γ) ∈ δ
If α = r then c1[β]← c1[β]⊕ γ
If α = i then

c1 ← c1[1, β]‖γ[1]‖c1[β + 1, |c1|]
iv← iv[1, β]‖γ[2]‖iv[β + 1, |iv|]

If α = d then

c1 ← c1[1, β−1]‖c1[β+1, |c1|]; iv← iv[1, β]‖iv[β+1, |iv|]
c2 ← compressIVT(iv); Ret (c1, c2, ivl)

DIVT(1λ, k, c)

(c1, c2, ivl)← c; iv← expandIVT(c2)

For i = 1 to |c1|/w(λ) dom[i]← E(1λ, k, iv[i])⊕
c1[i]

Ret m

expandIVT(ivc)

k ← 1

For (a, b) in ivc do

For i = 1 to b do iv[k]← a+ i; k ← k + 1

Ret iv

diff IVT(1λ, k,m1,m2, ivl)

D ← diste(m1,m2); δ ← diffe(D,m1,m2)

n← |m1|/w(λ)

For (α, β, γ) ∈ δ
If α = r then α′ ← r; β′ ← β; γ′ ← m1[β] ⊕

m2[β]

If α = d then α′ ← d; β′ ← β

If α = i then

α′ ← i; β′ ← β; ivl ← ivl + 1

γ′[1]← E(1λ, k, ivl)⊕ γ; γ′[2]← ivl

S ← S ∪ {(α′, β′, γ′)}
Ret S, ivl

Figure 14: Bottom: The IVT SE scheme with a blockcipher E of blocksize w(λ).

We do not explicitly prove or require incremental encryption security of IVT, but we will reason
about its security as part of the IRCE2 construction. However, we do observe that the SE scheme
IVT[E] = (EIVT,DIVT) is deterministic CPA secure, as encryption here simply runs the CTR mode with
E and adds a few other elements which can be generated knowing only the length of the ciphertext.

The IRCE2 scheme. Let H denote a hash function H with κ(λ)-bit keys and κ(λ)-bit outputs. Let E
be a blockcipher with blocksize E and κ(λ)-bit keys. The IRCE2[H,E] = (Init,Reg,Put,Get,Upd) iMLE
scheme resembles IRCE, but uses IVT[E] = (EIVT,DIVT) as the SE scheme. The Reg protocol and the
Init algorithm are the same as in IRCE (Figure 7). The Put,Get and Upd protocols are described in
Figure 15.

Proposition C.1 can be extended in a simple manner to argue that IRCE2 supports deduplication,
as the Put protocols in the two schemes are essentially the same. The difference in the Upd protocols
does not play any role.

In Section 5, we define incremental updates w.r.t Hamming distance. That definition can be
modified for edit distance by simply replacing the u(HAMM(m1,m2)) bound with u(diste(m1,m2)).
Specifically, we consider edit distance with alphabet Σ = {0, 1}w(λ).

Proposition D.2. Then IRCE2[H,E] supports incremental updates w.r.t edit distance.

Proof. It is easy to observe that the IVT SE scheme supports incremental updates w.r.t edit distance:
the diff IVT algorithm (Figure 14), given two plaintexts m1,m2 and a key k produces S such that
|S| ≤ 2|δ|, where δ in turn consists of diste(m1,m2) elements, each element no more in size than
log(|m1| + |m2|). The patchIVT algorithm, given such an S, can convert a ciphertext for m1 (under
k) to a ciphertext for m2. Now, by inspecting the Upd protocol, it can be checked that the total

27

Put[1]((k, u, p),m) Put[2](σS)

`←$ {0, 1}κ(λ); c1 ← EIVT(1λ, `,m)

km ← H(p,m); c2 ← km ⊕ `; c3 ←
EIVT(1λ, k, km)

t← H(p, km) u, c1, c2, c3, t
−−−−−−−−−−−→ (c1, c2)← SiffE(fil, t, c1, c2); h← H(p, c1)

c3 ← SiffE(own, (t, u), c3)

SiffE(upd, (u, t), (c2, ε))h, c′2, c
′
3

←−−−−−−−−−−−If c3 6= c′3 then ret ⊥
`′ ← c′2 ⊕ km ; c′′1 ← EIVT(1λ, `′,m)

h′ ← H(p, c′′1)

If h = h′ then ret t Else ret ⊥
Upd[1]((k, u, p), t,m1,m2) Upd[2](σS)

k1 ← H(p,m1); t1 ← H(p, k1) u, t1
−−−−−−−−−−−→ (c1, c2)← upd[u, t1]; (c′1, c

′
2, ivl)← c1

c2, ivl
←−−−−−−−−−−−`← k1 ⊕ c2; k2 ← H(p,m2); c3 ← E(1λ, k, k2)

δ ← diff IVT(`,m1,m2, ivl); cδ ← k1 ⊕ k2
t2 ← H(p, k2) u, t1, t2, δ, c3, cδ

−−−−−−−−−−−→ (c1, c2)← upd[u, t1]; c′1 ← patchIVT(c1, δ)

c′2 ← c2 ⊕ cδ; SiffE(upd, (u, t2), (c′1, c
′
2))

c3 ← SiffE(own, (u, t2), c3)

Figure 15: The Put and Upd protocols of IRCE2. The fil and own tables are immutable, and support
the set-iff-empty operation (SiffE) explained in text.

length of the transmitted messages is 2λ + 6κ(λ) + |S|, where S = diff IVT(m1,m2) as above. Letting
κ(λ) = λ, this in turn is bounded by a log(|m1|+ |m2|) + bλ for small constants a and b, proving the
proposition.

The proofs closely follow those from IRCE, so we reuse parts where applicable, and highlight the
differences.

Theorem D.3. If H is collision resistant, then IRCE2[H,E] is Rec-secure.

Proof. As with IRCE, the adversary A cannot hope to get a non-error output by furnishing a new t
for Get, as the server checks that the tag was previously handled by the client. Now, if t was returned
during a previous Put instance, then the same argument we used with IRCE carries over, as Upd does
not play a role. Specifically, using the immutability of fil and own, we argue that the ciphertext
stored in the server cannot change between the failed Get request and the last time the file was put.
However, Put ensures that the hash of the ciphertext stored on the server matches with the hash of a
correctly formed ciphertext of the plaintext. Consequently, if t does correspond to a Put instance, then
A is in effect finding a pair of colliding inputs, namely the hash inputs involved in the comparison. We
can argue that a CR adversary B can be built which has the same advantage as A in this case. The
other case is when t is due to a ciphertext formed from an update. Consider such an Upd instance,
and let m1, c1, t1,m2, c2, t2 denote the original and updated plaintext-ciphertext-tags. If c2 is a valid
ciphertext for m2, then by immutability and correctness of decryption, Get with t2 will return m2.
If c2 is not a valid ciphertext for m2, then either c1 is not a valid ciphertext for m1, or the update
process must have introduced an error. The latter is ruled out by Proposition D.1. Now, if c1 was
placed on the server via a Put instance, we fall back to the first case (meaning we have an invalid
ciphertext from a Put instance), and can build a CR adversary with matching advantage. If c1 was
placed via Upd, then the same argument can be applied recursively, until we reach a ciphertext from
a Put instance.

28

Priv security with edit distance. The following theorem shows Priv-security. We consider a
variant of the Priv game of Figure 4, where the δ supplied to Upd is interpreted in terms of edit dis-
tance. Here, supporting delete is tricky, as the adversary could potentially start with an unpredictable
plaintext, but then delete a sufficient number of characters to make the result predictable, and then
break security. To prevent this, we require that the messages formed as result of the updates should
also be unpredictable. We enforce this condition by making the source S output a list of allowed
diffe-outputs along with two tuples of messages. The adversary can only pick updates from this list.
An edit source S is an algorithm that on input 1λ returns (m0,m1,d). Here d is a list of diffe-values.
Consider source S′ defined as below, where ‖ denotes adding an element to a tuple.

S′(1λ)

(m0,m1,d)←$ S(1λ)
For b ∈ {0, 1} and m ∈ |mb| and δ ∈ d do mb ←mb‖patche(1

λ,m, δ)
Ret (m0,m1)

We require that S′ should satisfy the formatting restrictions of regular sources, including length and
equality. We say that S is unpredictable if S′ is unpredictable. We now sketch the Priv game for edit
distances, with an edit source. Only the main, and Upd procedures differ. In main, the source S is
executed to get m0,m1, δ. In Upd(i, δ), before running the operations in Figure 4, a check that δ ∈ d
is performed.

PRF security. Let E be a blockcipher with blocksize w(λ) and κ(λ)-bit keys. The PRF game with
E and adversary A starts by picking b←$ {0, 1} and k←$ {0, 1}κ(λ) and runs A with access to a Fn
procedure, which A can query at points x. Upon such a query, if b = 1, the game returns E(1λ, k, x);
otherwise, it returns a random but consistent value. Finally A exits with output b′ and wins the game
if b = b′. We define advantage AdvPRFE,A (λ) = 2 Pr[PRFA

E(1λ)] − 1 and say that E is PRF-secure if no
PT A has non-negligible advantage.

Theorem D.4. If E is PRF-secure, then IRCERO[E] is Priv-secure.

Proof. Let G1 denote the PrivIRCE game included with an unpredictable edit source S. Let A denote
a PT adversary. Without loss of generality, assume that A makes only permitted Upd queries. Let
n denote a bound on the number of plaintexts put on the server by A and qS(λ) : N → N denote a
bound on the number of RO queries made by S. Let G2 denote the game similar to G1, where the c3,
instead of being encryptions of the message-derived keys km, are replaced with encryptions of random
strings. All the c3 encryptions are performed under the legitimate client’s secret key, which is never
revealed to the server. There exists B such that

AdvcpaIVT[E],B(λ) = Pr[GA
1 (1λ)]− Pr[GA

2 (1λ)].

It follows that there exists another adversary B′ such that AdvcpaIVT[E],B(λ) = AdvPRFE,B′(λ). Let G3 denote

the game where in Put[1, 1], the key and tag, which should be derived as km ← RO(m), and t← RO(m)
are picked instead as random κ(λ)-bit strings, but if p‖km or p‖m have already been queried at the RO
by S or A, then G3 ensures consistency by using the existing values, but sets bad. When the adversary
initiates an Update protocol, G3 follows a similar procedure with k2 and t2. Subsequent queries to RO
at p‖m or p‖km are replied with km or t respectively, but sets bad. In G4, all the consistency measures
are done away with, and the km and t values have no relations with the RO outputs on the associated
m points. We have Pr[GA

3 (1λ)] ≤ Pr[GA
4 (1λ)] + Pr[GA

4 (1λ) sets bad].
Consider the PRF-game with n keys PRF[n]. We build a PRF[n]-adversary C which runs A on

G4. The n-keys of the game form the n-keys of A’s plaintexts. Adversary C starts by running S to
get m0,m1,d. Then it picks a random bit b and use mb in the rest of the simulation. When A calls
Put(i), adversary C prepares a ciphertext for mb[i]. Here, c2 is a random string, and c1, supposed to
be the output of EIVT, is formed by C making queries to its Fn oracle. When A makes a (permitted)
update query, then C forms the update plaintext m2 and runs diff IVT, with m,m2, and ivl which it

29

can find from the server state it maintains using its Fn oracle in lieu of the key. When C’s Fn oracle
is implemented by E, it simulates A on G4,

Consider G5, where E is replaced with a different random function for each key. If A makes no Upd
queries, only the c1 components depend on b, But these are CTR mode encryptions with a random
function. No queries to the random function are repeated, and hence the c1 values can be picked as
random strings, independent of b. When A does make update queries, deleting blocks and modifying
blocks does not help towards finding b; inserting blocks could help, but in the IVT construction, in
each ciphertext, a value ivl is maintained, which keeps track of the last value of the counter used.
When a new block is to be inserted, patchIVT increments IVT and uses a fresh counter value each time,
meaning that these Fn outputs can also be picked at random, independent of b and A cannot tell the
difference. Overall, A learns no information about b in G5, and hence, Pr[GA

5 (1λ)] = 1/2. From a
simple hybridization argument on PRF[n], we have Pr[GA

4 (1λ)]− Pr[GA
5 (1λ)] = n(λ) · AdvPRFE,C (λ).

Consider games H1, H2 and H3 described as follows. Game H1 is the same as G4, except that the
winning condition in H1 is setting bad. In game H1, both the source S and the adversary A can set
bad, by querying the random oracle at a m[i] or k[i] point. The probability it sets bad is bounded by
qS(λ)n(λ)/2κ(λ). Game H2 changes from H1 only A query points are taken into account when testing
for bad. In H3, the ciphertexts c1 are derived as encryptions of random strings. There exist adversaries
C′ and D such that

Pr[HA
3 (1λ) sets bad]− Pr[HA

2 (1λ) sets bad]| ≤ n(λ)AdvPRFE,C (λ) + n(λ)AdvkrE,D(λ) .

Here, C′ works like C, except that it keeps track of bad queries, and D checks if any of the RO queries
are keys in its KR game. Finally, in H3, the adversary learns nothing about the messages output by
S, and we have

Pr[HS,A
3 (1λ) sets bad] ≤ qS(λ)q(λ)2−κ(λ) + qA(λ)q(λ)GPS(λ) .

where q(λ)A : N → N is a bound on the number of RO queries made by A. Adding the equations so
far, we have

AdvprivIRCE2[E],S,A(λ) ≤ 2(n(λ) + 1)AdvPRFSE,C1
(λ) + 2n(λ)AdvkrE,C2

(λ) + (qS(λ) + qA(λ))n(λ)2−κ(λ)

+ qA(λ)n(λ)GPS(λ),

where C1 and C2 are the ones among the PRF and KR adversaries with highest advantage.

E Parameter-dependent security: Proofs and extensions

Proposition E.1. If FHE has evaluation correctness, then FCHECK[FHE,MLEWC] scheme supports
deduplication.

Proof. We need to show that there exists a bound ` : N → N such that for all server-side states
σS ∈ {0, 1}∗, for all valid client parameters (derived through Reg with fresh coins) σC , σ

′
C , for all

m ∈ {0, 1}∗, the expected increase in size of σ′′S over σ′S when (f ′, σ′S)←$ Run(Put, (σC ,m), σS) and
(f ′, σ′′S)←$ Run(Put, (σ′C ,m), σ′S) is bounded by `(λ). In FCHECK, if a client with params σC runs Put
with m, then, at the end, a parameter-ciphertext pair p, c (where c = E(1λ,K(1λ, p,m),m)) is stored
on fil. Now, when the second client with parameters σ′C tries to put m, the search in Put[2, 1] should
find p, c. If the search happened over plaintexts, it is easy to see that the match will be detected, and
as a result the client will only store an encryption of K(1λ, p,m),m), which by assumption on MLEWC
is independent of the size of m. But the search happens over FHE ciphertexts. We invoke evaluation
correctness: as that the coins involved in Kf to generate the pk, sk in σ′C , the coins in Ef to encrypt m,
and the coins in Evf are all picked uniformly at random, except with negligible probability, the match
is detected and the client decrypts to p, which leads the client to download p, c and hence stops the
client from putting another ciphertext for m.

30

E.1 Proof of Theorem 4.2

We now that for all PT A, for all unpredictable PT sources S, there exists a PT unpredictable source
S′ and adversaries B and C such that

AdvldprivFCHECK[FHE,MLEWC],S,A(λ) ≤ AdvwprivMLEWC,S′,C(λ) + AdvcpaFHE,B(λ) + 2m(λ)q(λ)GPS(λ) · (7)

where q;N→ N is a bound on the total number of procedure queries made by A. Then, the theorem
follows from the assumed CPA security of FHE, and from the WPRIV security of MLEWC. Consider
games G1 through G4 of Figure 16. Without loss of generality, we assume that A does not repeat Put
queries. Here G1 is the PDPriv game with the code of S and FCHECK[FHE,MLEWC]. We have

Pr[GA
1 (1λ)] = Pr[PDPrivS,A(1λ)].

Game G2, as in the proof of Theorem 4.1, performs the search not over ciphertexts, but instead over
plaintexts. However, following the argument from the proof of Theorem 4.1, the correctness of FHE
ensures that this does not affect the outcome of the game. We have Pr[GS,A

1 (1λ)] = Pr[GS,A
2 (1λ)].

In game G2, the c2 components stored on the server correspond to the FHE encryptions of the
MLEWC keys of the messages. These are replaced with random strings in G3. Moreover, in Put[2, 1],
when searching for a match for the put m, if a match is found, and the p, c pair for the match came
as a result of a Msg instance (i.e. not from Put), then the game sets bad. However, setting bad has
not effect on the outcome of the game. Finally, in G3, the algorithms in the Put protocol do not send
the plaintext m in messages, but instead use the index of the plaintext in mb. This change does not
affect the outcome of the game either, and only serves to simplify the code. There exists an adversary
B such that

Pr[GS,A
2 (1λ)]− Pr[GS,A

3 (1λ)] ≤ 1

2
AdvcpaFHE,B(λ).

The description of B is straightforward, and we omit it here. Game G4 is identical-until-bad to G3.
From the fundamental lemma of game-playing [15], we have

|Pr[GS,A
3 (1λ)]− Pr[GS,A

4 (1λ)]| ≤ Pr[GS,A
4 (1λ) sets bad].

To set bad in G4, adversary A must produce a p, c pair that is a valid encryption of some mb[i], put
it on the server with Msg, and subsequently run Put(i) followed by Step to make the search at
Put[2, 1] find a match at p, c. However, A receives no information about the output of S, not even the
ciphertexts. To see the ciphertexts, A must query State, but it can no longer query Step after doing
so. Thus, setting bad in G4 can be bounded by m(λ)q(λ)GPS(λ).

Consider source S′ and adversary C which work as follows. S′ picks coins r at random and starts
running GA

4 (except for picking the random bit b) with r as the only source of randomness up until
the point when A makes a Ptxt query with input d. At this point, S′ runs S(1λ, d) with fresh coins
to get m0,m1 and exits with output m0,m1, r. Adversary C, when invoked with p, c, r runs GA

4 with
r, and when a Ptxt(d) query is made, it lets p, c play the role of the corresponding variables in G4.
When A finishes with output b′, then C also exits with output b′. Together, S′ and C simulate A in G4,

and hence it follows that Pr[WPRIVS′,C
MLEWC(1λ)] = Pr[GS,A

4 (1λ)]. Moreover, since S′ runs S on fresh
coins, which are not provided to C, it follows that S′ is unpredictable if S is unpredictable. Adding up
the above equations leads to Equation (7), completing the proof.

F MLEWC: Proofs and extensions

F.1 Proof of Theorem 4.3

Proof. Let S be an unpredictable auxiliary source and A be an adversary. Let m : N → N denote a
bound on the length of message tuples output by S. Consider the constructions of PF source S′ and
B described in Figure 18. It can be checked that AdvwprivHtO[HF,os],S,A(λ) ≤ AdvcdipfoOS,S′,B(λ).

31

Main(1λ) // GA
1 (1

λ)−GA
4 (1

λ)

b←$ {0, 1}; σS ←$ Init(1λ)

b′←$ APut,Step,Ptxt,Msg,Reg,State(1λ); Ret (b = b′)

Put[1, 2](m, M)

p, i← Df(1
λ, sk, cr)

If p = 0κ(λ) then

p←$ P(1λ); k←$ K(1λ, p,m); c1 ← E(1λ,m)

Else k←$ K(1λ, p,m)

c2 ← Epk(k) Ret m, (c1, c2, p, u, i), 2,False

Put[2, 2](σS , M)

(nc,U,fil,own)← σS ; (u, p, c1, c2, i)← M

If c1 6= ε then nf ← nf + 1; i← nf ; fil[i]← (p, c1)

own[u, i]← c2; σS ← (p,U,fil,own)

M← i; Ret σS , M, 1,True

Ptxt(d) // GA
3 (1λ), GA

4 (1λ)

~m0, ~m1←$ S(1λ, d)

For i = 1 to |mb|
p[i]←$ P(1λ); k[i]← K(1λ,p[i],mb[i])

c[i]← E(1λ,k[i],mb[i])

Put[1, 2](i, M) // GA
3 (1λ), GA

4 (1λ)

p, i← Df(1
λ, sk, cr)

If p = 0κ(λ) then p← p[i]; k←$ k[i]; c1 ← c[i]

Else

k ← K(1λ, p,m)

k′←$ {0, 1}|k|; c2 ← Epk(k′)

Ret m, (c1, c2, p, u, i),False

Put[1, 1](m, M) // GA
2 (1λ)

Ret m,m,False

Put[1, 1](m, M) // GA
1 (1λ)

cf ←$ Epk(m); Ret m, cf ,False

Put[2, 1](σS , M) // GA
1 (1λ)

(nc,U,fil,own)← σS

cr←$ Ef(1
λ, pk, 0κ(λ)); ci←$ Ef(1

λ, pk, 0); cn ← ci

For (p, c) ∈ fil do

cp←$ Ef(1
λ, pk, p); cc←$ Ef(1

λ, pk, c)

cr, cn, ci←$ Evf(1
λ, pk, cmp, cf , cp, cc, cr, cn, ci)

σS ← (nc,U,fil,own); M← cr, cn; Ret σS , M,False

Put[2, 1](σS ,m) // GA
2 (1λ)

(nc,U,fil,own)← σS ; r ← 0κ(λ); i← 0; n← 0

For (k, c) ∈ fil do (r, n, i)← Eval(cmp,m, p, c, r, n, i)

M← (Ef(1
λ, pk, r),Ef(1

λ, pk, n)); Ret σS , M,False

Put(i) // GA
3 (1λ), GA

4 (1λ)

p← p + 1; PS[p] = Put; a[p, 1]← i

N[p]← 1; M[p]← ε; Ret p

Put[1, 1](i, M) // GA
3 (1λ), GA

4 (1λ)

Ret i, i,False

Put[2, 1](σS , j) // GA
3 (1λ), GA

4 (1λ)

m←mb[j]; (nc,U,fil,own)← σS ; r ← 0κ(λ)

i← 0; n← 0

For (p, c) ∈ fil do

k ← K(1λ, p,m); c′ ← E(1λ, k,m); i← i+ 1

If c = c′ and p 6= p[j] then bad ← True

; if ← i; pf ← p

M← (Ef(1
λ, pk, pf),Ef(1

λ, pk, if)); Ret σS , M,False

Figure 16: Games G1 through G4 of Theorem 4.2. Procedures with code unchanged from PDPriv
are omitted.

Main(1λ) // WPRIVS,A(1λ)

(m0,m1, z)←$ S(1λ, ε); b←$ {0, 1}
For i ∈ [|mb|] do

p[i]←$ P(1λ); k[i]←$ K(1λ,p[i],mb[i])

c[i]←$ E(1λ,k[i],mb[i])

b′←$ A2(1λ,p, c, z); Ret (b = b′)

Main(1λ) // CDIPFOS,A
OS (1λ)

(p, z)←$ S(1λ); b←$ {0, 1}
For i ∈ [|p|] do

If b = 1 then (α, β)← p[i]; F[i]←$ Obf(1λ, (α, β))

Else

(α′, β′)← p[i] ; α←$ {0, 1}|α′|; β←$ {0, 1}|β′|

F[i]←$ Obf(1λ, (α, β))

b′←$ A(1λ,F[i], z); Ret (b = b′)

Figure 17: The WPRIV game on the left, and the and CDIPFO game on the right.

It remains to show that S′ is unpredictable. Consider source S2 works by running S to get
(m0,m1, z), then picks keys kH[i]←$ Kh(1λ) and a bit b, and for i ∈ [|mb|], computes kH[i]←$ Kh(1λ)

32

S′(1λ)

b←$ {0, 1}; (m0,m1, z)←$ S(1λ)

For i ∈ [|mb|] do

kH[i]←$ Kh(1λ); k[i]← H(1λ,kH[i],mb[i])

For j ∈ [|mb[i]|] do

m′[i`(λ) + j]← k[i]‖〈`, i〉‖mb[i, j]

Ret m′, (b,kH, z)

B(1λ,F, (b,kH, z))

For i ∈ [m(λ)] do

c[i]← (F[(i− 1)`(λ) + 1], . . . ,F[i`(λ)])

b′←$ A(1λ,kH, c, z)

If b′ = b return 1 else return 0

Figure 18: Source S′ and adversary B of Theorem 4.3.

Main(1λ) // mUCES,D
HF (1λ)

(1n, t)←$ S(1λ, ε); For i = 1 to n do kH[i]←$ K(1λ)(1λ)

b←$ {0, 1}; L←$ SHash(1n, t); b′←$ D(1λ,kH, L)

Return (b′ = b)

Hash(x, 1`, i)

If T [x, `, i] = ⊥ then

If b = 1 then T [x, `, i]← H(1λ,kH[i], x, 1`)

Else T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

Main(1λ) // mPREDP
S (1

λ)

(1n, t)←$ S(1λ, ε); done← False

P← ∅; L←$ SHash(1n, t)

done← True; P′←$ PHash(1λ, 1n, L)

Return (P ∩P′ 6= ∅)

Hash(x, 1`, i)

If done = False then P← P ∪ {x}
If T [x, `, i] = ⊥ then T [x, `, i]←$ {0, 1}`

Return T [x, `, i]

Figure 19: The mUCE and mPRED games.

and k[i]← H(1λ,kH[i],mb[i]). Then it outputs k, (kH, b, z). Clearly, unpredictability of S′ follows from
that of S2. Further, consider S2[i] which operates as above, but only outputs k[i], (kH[i], b, z). Once
again, if S2[i] is unpredictable for all i ∈ [m(λ)], then S2 is also unpredictable. Note that S2[i] runs S,
an unpredictable source, picks one of its outputs mb[i], generates kH←$ Kh(1λ) and outputs kH and
the hash H(1λ, kH,mb[i]). Knowing that CR hash functions are randomness condensers [29], it is easy
to show that S2[i] is unpredictable for i ∈ [m(λ)]. We omit the details.

Remarks on HtO. The HtO construction can be made more efficient by using a CDIPFO where
the special output can depend on the special input, so that the plaintext can be obfuscated in one
shot, instead of bit-by-bit. However, such obfuscators in the standard model come only from UCEs.
The HtO construction can be modified so that ciphertext length is only additive, by changing E to
encrypt m under an SE scheme with a fresh random key, and encrypting the key as above. Now OS
should be secure against CDIPFO-secure against computationally unpredictable sources and this can
be achieved from the construction in [16], by extending the t-Strong Vector Decision Diffie Hellman
assumption to computationally unpredictable distributions.

F.2 PRV$-CDA secure MLE from UCE

A family of functions HF = (Kh,H) is a pair of deterministic algorithms. Key generation K(1λ) returns
a key k ∈ {0, 1}κ(λ) on input 1λ, and evaluation H takes 1λ, a key k, an input m ∈ {0, 1}∗, and a unary
encoding 1` of an output length to return an output H(1λ, k, x, 1`) ∈ {0, 1}`.

We now recall the definition of statistical multi-key security UCE for hash functions. Consider
the game mUCE of Figure 19. A source is an algorithm which begins by keys indicating n the
number of instances, along with state t. The game creates n independent keys. The source gets
a procedure Hash which is either implemented by HF with n-independent keys, or via n random
functions depending on the bit b chosen in the game. Then S returns with output leakage L ∈ {0, 1}∗

33

and the distinguisher D on input L and all keys should guess b to win. We associate advantage
Advm-uce

HF,S,D(λ) = 2 Pr[mUCES,D
HF (λ)]− 1.

A statistical predictor P is an algorithm (not necessarily PT) if there exist polynomials q, s such
that for all λ ∈ N, in the mPRED game predictor P makes at most q(λ) oracle queries and outputs
a set P′ of size at most s(λ). A source S is multi-key statistically unpredictable if for all statistical

predictors P, it holds that AdvpredS,P (λ) = Pr[mPREDP
S(λ)] is negligible. We say that HF is statistical

multi-key UCE secure (UCE[Ssup-m]-secure), if it holds that for all Advm-uce
HF,S,D(λ) is negligible for all PT

statistical unpredictable S, for all PT D.
Consider the MLE scheme CE[HF] = (P,K,E,D,T) described below, where T(1λ, p, c) = c.

P(1λ)

kH←$ Kh(1λ)
Return kH

K(1λ, kH,m)

k ← H(1λ, kH,m, 1
λ)

Return k

E(1λ, kH, k,m)

c← m⊕ H(1λ, kH, k, 1
|m|)

Return c

D(1λ, kH, k, c)

m← c⊕ H(1λ, kH, k, 1
|c|)

Return m

Correctness of the scheme is easy to check. The following theorem shows that CE[HF] is WPRIV-
secure if HF is statistical mUCE secure.

Theorem F.1. If HF is UCE[Ssup-m]-secure, then CE[HF] is WPRIV-secure.

Proof. Let A be a PT unpredictable WPRIV adversary with functions m, `. Consider S,D described
below.

SHash(1λ)

b←$ {0, 1}; m0,m1, z←$ A1(1
λ)

For i = 1 to |mb| do
k[i]← Hash(m[i], 1λ, i)

c[i]←m[i]⊕Hash(k[i], 1|m[i]|, i)
L← c, b, z; Return L

D(1λ,kH, L)

c, b, z ← L
b′ ← A2(1

λ,kH, c, z)
If b = b′ then return 1 else return 0

It can be seen that AdvwprivCE[HF],A(λ) = 2Advm-uce
HF,S,D(λ). It remains to show that S is simple statistically

unpredictable by Lemma 4.7 of [10]. If P is a simple predictor, it follows that Advm-spred
P,S (λ) ≤

m · (GPA(λ) + 2−λ). Simple statistical unpredictability of S follows from unpredictability of A.

34

	Introduction
	Preliminaries
	Interactive message-locked encryption
	The FCHECK scheme
	Incremental updates
	References
	Interactive protocols
	Deterministic MLE schemes cannot support incremental updates
	Incremental updates: Proofs and extensions
	Proof of Theorem 5.1
	Proof of Theorem 5.2

	The IRCE2 scheme
	Parameter-dependent security: Proofs and extensions
	Proof of Theorem 4.2

	MLEWC: Proofs and extensions
	Proof of Theorem 4.3
	PRV$-CDA secure MLE from UCE

