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Abstract. In a cold boot attack a cryptosystem is compromised by analysing a noisy version of its
internal state. For instance, if a computer is rebooted the memory contents are rarely fully reset;
instead, after the reboot an adversary might recover a noisy image of the old memory contents
and use it as a stepping stone for reconstructing secret keys. While such attacks were known for
a long time, they recently experienced a revival in the academic literature. Here, typically either
RSA-based schemes or blockciphers are targeted.
We observe that essentially no work on cold boot attacks on schemes defined in the discrete log-
arithm setting (DL) and particularly for elliptic curve cryptography (ECC) has been conducted.
In this paper we hence consider cold boot attacks on selected wide-spread implementations of
DL-based cryptography. We first introduce a generic framework to analyse cold boot settings and
construct corresponding key-recovery algorithms. We then study common in-memory encodings of
secret keys (in particular those of the wNAF-based and comb-based ECC implementations used in
OpenSSL and PolarSSL, respectively), identify how redundancies can be exploited to make cold
boot attacks effective, and develop efficient dedicated key-recovery algorithms. We complete our
work by providing theoretical bounds for the success probability of our attacks.

1 Introduction

Cold boot attacks. Since they were reported in the literature by Halderman et al. in 2008 [4], cold boot
attacks have received a great deal of attention. The attacks rely on the fact that computer memory (in
particular when consisting of DRAM cells) typically retains information when going through a power-
down power-up cycle; this might allow an adversary to get access to confidential information such as
cryptographic keys after a system reboot. Unfortunately (for such an attacker), while the power is cut
the bits in memory will decay over time, which means that any information obtained is likely to be
‘noisy’. The focus of cold boot attacks resides in modelling quality and quantity of noise and applying
intelligent algorithms to extracted memory images in order to fully reconstruct keys.

The amount of time for which information is retained without power depends on the particular
memory type (modern technologies imply a quicker decay) and the environment temperature (information
degrades more quickly at higher temperatures). The experiments of [4] demonstrate that, at normal
operating temperatures, there is little corruption within the first few seconds, which is then followed by
rapid decay. The period of low corruption can be drastically prolonged by cooling the memory chips.
For instance, according to [4], in an experiment at −50 ◦C (−58 ◦F) (which can be achieved by spraying
compressed air onto the memory chips) less than 0.1% of bits decay within sixty seconds. At temperatures
of approximately −196 ◦C (−321 ◦F) (via the use of liquid nitrogen) less than 0.17% of bits decay within
one hour without power.

After power is switched off, the decay proceeds in a quite predictable pattern [3,21]. More precisely,
memory is partitioned into regions, and each region has a ‘ground state’ which is either 0 or 1. In a 0
ground state, the 1 bits will eventually decay to a 0. The probability of a 0 bit decaying to a 1 is very
small, but not vanishing (a typical probability is 0.001 [4]). When the ground state is 1, the opposite is
true.

Previous cold boot key-recovery algorithms. The general possibility of using cold boot attacks to recover
data from memory chips has been known since at least the 1970s. However, in the academic literature
it was not until 2008 that Halderman et al. became the first to focus on reconstructing cryptographic
private keys from information obtained via this type of attack. There is now an abundance of literature
concerning the recovery of private keys in this manner. RSA key-recovery algorithms are without doubt
the most popular [4,8,9,12,14,15,18,20], whilst symmetric-key cryptographic schemes have received a



little less attention [1,4,11,23]. One area that remains comparatively unexplored is the discrete logarithm
setting. As far as we are aware, this issue has only been discussed in [15].

Published cold boot analyses almost ubiquitously assume that attackers can obtain a (noisy) copy
of a private key that was stored with some form of redundancy. For instance, in the case of RSA, while
in principle it is only necessary for the private key to contain the prime factors p and q, the PKCS#1
standard [10] suggests storing several extra values (such as d, dp, dq, and q−1

p ) in order to increase the
efficiency of decryption and signing operations. It is this redundancy that was exploited by previous
authors to recover private keys even when they were subjected to very high noise levels. In contrast,
the discrete logarithm analysis of Lee et al. [15] assumes that an attacker only has access to the public
key X = gx and a decayed version of the private key x. Consequently, given that there is no further
redundancy, their proposed algorithm would be unable to efficiently recover keys that were affected by
high noise levels.

Limitations of previous work. There has previously only been one paper that considers key-recovery
in the discrete logarithm setting [15]. We believe that this paper delivers only a small advantage over
brute-force attacks. Furthermore, the analysis seems to be flawed: in an execution of a cold boot attack,
the authors assume that the number of key bits that flip is upper-bounded by the expected number of
bits that will flip. When the number of bit flips exceeds the expected amount, the algorithm will fail to
recover the private key, but this is not accounted for in the analysis. Furthermore, [15] does not explicitly
cover the case of asymmetric errors that appear in physical cold boot attacks, despite the fact that this
is the motivation for the paper. Instead, the focus is on an idealised setting in which only 1 or 0 bits flip,
but not both: however, in practice both 0 and 1 bits have the potential to flip, as described above.

Our contributions. Given the above discussion on the results of [15] it is natural to ask whether in
practical discrete logarithm-based software implementations there are any private key representations
that contain redundancy that can be used to improve cold boot key-recovery algorithms. It turns out that
such cases are indeed the rule, and they will form the basis of this paper. The scenarios we consider are
taken from two wide-spread ECC implementations found in TLS libraries: the windowed non-adjacent
form (wNAF) representation used in OpenSSL, and the PolarSSL comb-based approach. By exploiting
redundancies in the respective in-memory representations of private keys we are able to vastly improve
upon the results from [15].

Our techniques are based on a novel statistical test that allows a trade-off between success rate and
execution speed. We stress that this test is not only applicable to the discrete logarithm setting, but
is applicable to all types of key. In particular, it complements the framework of Paterson et al. [18] for
the RSA setting. We observe that the statistical test proposed in [18] has a bounded running-time, but
no lower bound on the success of the algorithm is provided in the scenario where keys are subjected
to asymmetric errors. In contrast, for our algorithm we succeed in lower-bounding the success rate.
Although we provide no bound on the running time of our primary algorithm, we note that various
modifications allow an attacker to seek her own compromise between a preferred success rate and a
desired running-time.

On a side note, we provide what we believe to be the first explanation in the academic literature of
the point multiplication routine deployed in PolarSSL.

2 Multinomial distributions and the multinomial test

The general strategy behind key-recovery procedures for cold boot attacks is to only consider small parts
of the targeted key at a time. For instance, RSA-based reconstruction procedures usually start with the
least significant bits (LSB) [8,9,13,14,15,18,20], but it is also possible to begin with the most significant
bits (MSB) [19]. It is typical to use an iterative process to guess a couple of bits of the key and assess the
plausibility of the guess on the basis of both a model of the decay process and the available redundancy in
the encoding. Previous cold boot papers have proposed various methods by which the plausibility of the
guess is ascertained. Examples are the Hamming distance approach of [8] and the maximum-likelihood
method of [18]. The theoretical success of the algorithm is usually based on assumptions that are typically
only true for a specific key being considered, and are possibly not easy to generalise. In this section we
propose a general statistical test that can be used in various scenarios. The test is based on multinomial
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distributions and works well for scenarios when the distribution of private key bits is known (such as
RSA), but can also be modified to work even when the attacker knows nothing of the distribution of the
private key.

We will now study the multinomial distribution and its associated test. Multinomial distributions
are a generalisation of the binomial distribution. The distribution has k mutually exclusive events with
probabilities p = (p1, . . . , pk), where

∑k
i=1 pi = 1 and for all i we have pi 6= 0. If there are n trials, we

let the random variables X1, . . . , Xk denote the amount of times the ith event occurs and say that X =
(X1, . . . , Xk) follows a multinomial distribution with parameters n and p. Given a set of observed values,
x = (x1, . . . , xk), we can use a multinomial test to see if these values are consistent with the probability
vector p (which is the null hypothesis, denoted H0). The alternative hypothesis (denoted H1) for the
probability vector is π = (x1/n, . . . , xk/n), where each component is the maximum-likelihood estimate
for each probability. The two hypotheses can be compared via the calculation −2

∑k
i=1 xi ln(pi/πi), which

is called the multinomial test statistic. When the null hypothesis is true, the distribution of this statistic
converges to the chi-squared distribution with k − 1 degrees of freedom as n→∞.

We will now see how the multinomial test statistic may be applied in cold boot key recovery al-
gorithms. Let si denote a (partial) candidate solution for the private key (including the redundant
representation) across a (partial) section of bits. When comparing a partial candidate solution si to the
noisy information r we define ni

01 to be the number of positions at which there is a 0 in the candidate
solution and a 1 in the corresponding position in the noisy information r. We define ni

00, ni
10, and ni

11
correspondingly, so n = n00 + n01 + n11 + n10. Crucially, this count only considers the newly-guessed
bits generated at the relevant phase of the algorithm, while all previous bits are ignored. It is clear that
these counts follow a multinomial distribution. Let α := P(0 → 1) denote the probability that a 0 bit
flips to a 1 in the execution of the cold boot attack, and let β := P(1 → 0) denote the probability that
a 1 flips to a 0. For the correct candidate solution, sc, the probability of observing each of the four
values (nc

00, n
c
01, n

c
11, n

c
10) is precisely H0 : p = (p0(1 − α), p0α, p1(1 − β), p1β), where pb, b ∈ {0, 1}, is

the probability of a b-bit appearing in the correct candidate solution. Notice that we require α, β 6= 0
since each component of the probability vector must be non-zero. The test may be modified to cover the
case when α or β is zero, but we defer this discussion to the appendix. For each candidate solution we
could use the previous set of probabilities as the null hypothesis of the multinomial test. We would like
to test whether our guessed candidate solution is consistent with this probability vector. The alternative
hypothesis is that the set of probabilities for the four bit-pairs is equal to the maximum-likelihood esti-
mates for each category. That is, H1 : p = (ni

00/n, n
i
01/n, n

i
11/n, n

i
10/n) for each candidate i. We define

our first statistical test, which we call Correlate′, to be

Correlate′(si, r) := −2ni
00 ln

(
np0(1− α)

ni
00

)
− 2ni

01 ln
(
np0α

ni
01

)
−2ni

11 ln
(
np1(1− β)

ni
11

)
− 2ni

10 ln
(
np1β

ni
10

)
, (1)

where the values in brackets are the null hypothesis values divided by the alternative hypothesis values.
Correlate′ outputs a numerical value (≥ 0) for each candidate. We now need to discuss when we consider
this test to pass or fail. It is well known that when the null hypothesis is correct the distribution of the
right-hand side of the equation (1) converges to a chi-squared distribution with k− 1 degrees of freedom
as n→∞. In our analysis we have k = 4, hence the test statistic converges to a chi-squared distribution
with three degrees of freedom. We can therefore set a threshold C such that any candidate whose test
statistic is less than C is retained, otherwise the candidate is discarded. We therefore define

CorrelateC(si, r) = pass ⇔ Correlate′(si, r) < C ,

where C would be an additional (user-chosen) input to the algorithm. The chi-squared distribution can
tell us how to set the threshold C to achieve any desired success rate. If we set the threshold C such that∫ C

0 χ2
3(x)dx = γ, we know that, asymptotically, the probability that the correct candidate’s correlation

value Correlate′(si, r) is less than C is equal to γ. Recall that the Correlate′ test only considers the newly
generated bits at each stage of the algorithm, and all previous bits are ignored. This eases the success
analysis of the algorithm since the probability of passing each Correlate test is independent in this case.
Therefore, if the private key has been parsed into m distinct parts, and the attacker applies a Correlate
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test to each of the m parts, the probability that the correct private key is recovered is γm, assuming the
same threshold C was used for each Correlate test.

The only issue yet to be addressed is specifying the values that p0 and p1 should take. If the distri-
bution of the private key is known, then it is easy to assign values to these parameters. For example,
in the RSA setting, the analyses of [9,18] assume that the entire private key would have approximately
an equal number of zeros and ones. Therefore, if we were to use the Correlate′ test (equation (1)) in
the RSA setting we would set p0 = p1 = 1/2. Notice that this immediately gives us a threshold-based
approach for recovering noisy RSA private keys that have been degraded according to an asymmetric
binary channel (i.e., α 6= β), and such an approach is currently lacking in the literature.

In other settings it may not be possible to accurately assign values to these parameters. The approach
we use to overcome this issue is to conduct two separate multinomial tests: one for the 0 bits and another
for the 1s. The advantage of using two separate tests is that we do not need to estimate the values of p0
and p1, and hence our algorithm’s success will not be harmed by a poor estimation of these parameters.
For the correct solution, each 0 can flip to a 1 with probability α or it can remain a 0 with probability 1−α.
Hence, if there are n0 zeros in the correct solution, then (n01, n00) follows a multinomial distribution
with parameters n0 and p = (α, 1 − α). Similarly, if there are n1 ones in the correct solution, then
(n10, n11) follows a multinomial distribution with parameters n1 and p = (β, 1−β). We may now use the
multinomial test to examine each candidate solution without having to estimate p0 and p1. Specifically,
we define

Correlate0(si, r) := −2ni
00 ln

(
n0(1− α)

ni
00

)
− 2ni

01 ln
(
n0α

ni
01

)
(2)

and
Correlate1(si, r) := −2ni

11 ln
(
n1(1− β)

ni
11

)
− 2ni

10 ln
(
n1β

ni
10

)
. (3)

Then we define

CorrelateC(si, r) := pass ⇔ Correlate0(si, r) < C ∧ Correlate1(si, r) < C . (4)

Notice that Correlate0 and Correlate1 are functions with one degree of freedom. Therefore the probability
that Correlate0 < C is γ =

∫ C

0 χ2
1(x)dx. The same holds for the probability that Correlate1 < C.

2.1 Convergence of the multinomial test

One issue with the approach proposed in the previous section is that the Correlate function will only
consider a small number of bits at a time, but the convergence of the test to the chi-squared distribution
is an asymptotic result. Hence, given the small sample sizes, there will be some discrepancy between what
we observe in practice and what is predicted by the chi-squared statistic. However, for small sample sizes
it is known that the multinomial test converges to the chi-squared distribution from above. Therefore, in
practice the success rate will be greater than that predicted by the chi-squared distribution. As a result,
the chi-squared test essentially gives us a lower bound for success. There are various modifications that
can be made to the multinomial test in order to force a better agreement with the chi-squared test [22,24],
but we will not explore these avenues in this paper.

3 Exponentiation algorithms

As all discrete log keys considered in this paper are defined over elliptic curves we use the additive
notation Q = aP to denote a public key Q, where P is the base point and scalar a is the private key. We
write O for the point at infinity, i.e., the neutral element in that group.

A core part of any DLP-based cryptosystem realised in the elliptic curve setting is a point multipli-
cation routine. Here, a curve point P , also refered to as base point, is multiplied with a scalar a ∈ N
to obtain another curve point Q = aP . The overall performance of this operation depends on various
factors, including the representation of field elements (e.g., ‘pseudo-Mersenne’ vs. ‘Montgomery-friendly’
moduli for prime fields), the availability of optimised formulas for basic group operations like point ad-
dition and doubling (e.g., ‘Weierstrass’ vs. ‘Edwards’ curves), the representation of curve points (e.g.,
‘affine’ vs. ‘projective’), and the scheduler that specifies how the basic group operations are combined to
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achieve a full point multiplication algorithm (see [2] for a recent survey on available options and tradeoffs
in all these categories). In the context of cold boot attacks particularly the scheduler seems to be an
interesting target to analyse: in ECC-based cryptosystems, secret keys typically correspond with scalars,
i.e., with precisely the information the scheduler works with. In the following we give a brief overview
over the most relevant such algorithms [5]. We analyse the resilience of specific instances against cold
book attacks in later sections of this paper.

3.1 (Windowed) Double-and-Add

The textbook method for performing point multiplication is the double-and-add algorithm3. Given scalar
a ∈ N and an appropriate length parameter ` ∈ N, it requires that a is represented by its binary expansion
[a]1 = (a`, . . . , a0), where a =

∑`
i=0 ai2i and a`, . . . , a0 ∈ {0, 1}. Given [a]1, and denoting ‘right-shifting’

a by k positions with a� k, we observe

aP =
(∑̀

i=0
ai2i

)
P = 2

(
`−1∑
i=0

ai+12i

)
P + a0P = 2(a� 1)P + a0P .

This recursion can be unrolled to

aP = 2(2(2(. . .+ a3P ) + a2P ) + a1P ) + a0P . (5)

The double-and-add algorithm for computing Q = aP is now immediate: it initializes Q with O and
iteratively updates Q ← 2Q + aiP , where the ai are considered ‘left-to-right’ (i.e., i counts backwards
from ` down to 0). The whole procedure takes approximately `/2 additions and ` doublings per point
multiplication, if uniform exponents are assumed.

A common approach to improve the efficiency of this algorithm is to decrease the number of required
additions by applying a windowing technique. More precisely, for fixed window size w, we define the
notion of windowed binary expansion as above, but this time relaxing the requirement on the ai to
a`, . . . , a0 ∈ [0 .. 2w − 1] and using notation [a]w = (a`, . . . , a0). While such an encoding is in general not
unique, it can be shown to uniquely exist if additionally either ai = 0 for all i 6≡ 0 (mod w) is required
(fixed window), or it is required that all non-zero ai be odd and all w-length subsequences of [a]w contain
at most one such element (sliding window).

Observe that, if we assume the fixed-window case and that points P, 2P, . . . , (2w − 1)P are precom-
puted, then w − 1 out of w additions vanish from equation (5). Even more additions potentially vanish
in the sliding-window case; further, as here all non-zero coefficients ai are odd, fewer points have to be
precomputed.

Example 1. For a = 30 and ` = 6 we have [a]1 = (0, 0, 1, 1, 1, 1, 0). Windowed binary expansions for
w = 2 are (0, 0, 1, 0, 3, 0, 2) (fixed window) and (0, 0, 0, 3, 0, 3, 0) (sliding window).

3.2 (Windowed) Signed-digit representations

Many different ways to represent elliptic curve points have been proposed [5,2]; a common property of
all these encodings is that group negation is a cheap operation. For instance, for curves in Weierstrass
form that are defined over prime fields, e.g., the five ‘prime curves’ standardized by NIST, the negative
of a point (x, y) is simply (x,−y). A general consequence of this is that point subtraction performs as
efficient as point addition. This is exploited in point multiplication algorithms that are based on the
signed-digit representation of scalars.

Formally, for fixed window size w we denote with [a]±w = (a`, . . . , a0) any decomposition of a ∈ N such
that a =

∑`
i=0 ai2i and ai ∈ [−2w−1 .. 2w−1 − 1]. As equation (5) still holds if some of the coefficients ai

are negative, a ‘double-and-add-or-subtract’ algorithm that operates on such signed-digit representations
is readily derived. The key idea is that the extra freedom obtained by allowing coefficients to be negative
will make it possible to find particularly sparse scalar representations, i.e., representations for which only
a minimum number of group additions/subtractions is required.
3 This is known as the square-and-multiply algorithm if the group is written multiplicatively.
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We describe three common signed-digit normal forms for representing scalars a ∈ N. The first one,
non-adjacent form (NAF), limits the digit set to {0,±1} and requires that no two consecutive coefficients
are non-zero. The second and third are defined in respect to a window size w. Specifically, while the
fixed-window NAF is an encoding of the form [a]±w that requires ai = 0 for all i 6≡ 0 (mod w), the
sliding-window NAF (wNAF) ensures that all non-zero ai are odd and all w-length subsequences of
[a]±w contain at most one such element. All three types of encoding are unique. Note that in the w = 1
case the notions of NAF and wNAF coincide. Observe also that storing a NAF or wNAF might require
one extra digit over the plain binary expansion. For an example of the latter consider that the binary
expansion of the decimal number 15 is the sequence (1, 1, 1, 1), while its NAF is (1, 0, 0, 0, 1̄), where we
write 1̄ for −1.

Example 2. The NAF of a = 30 is (0, 1, 0, 0, 0, 1̄, 0). For window size w = 2 the fixed-window NAF is
(1, 0, 2̄, 0, 0, 0, 2̄) and the wNAF is (0, 1, 0, 0, 0, 1̄, 0).

Algorithm 1 gives instructions on how to derive the wNAF of a scalar a ∈ N. Observe that the
computation is conducted in a greedy right-to-left fashion, with a (w − 1)-look-ahead. As the latter
property will become relevant in our later analyses, we state it formally.

Fact 1 (Suffix property of wNAF) Fix a scalar a ∈ N and a window size w. Denote a’s binary
expansion with (a`, . . . , a0) and its wNAF with (b`, . . . , b0), for an appropriate length parameter `. Then
for all 0 ≤ t ≤ `− w + 1 it holds that (bt, . . . , b0) is fully determined by (at+w−1, . . . , a0).

Algorithm 1 Textbook wNAF encoding
Input: scalar a, length parameter `, window size w
Output: wNAF (b`, . . . , b0)
1: for i← 0 to ` do
2: if a is odd then
3: bi ← a smod 2w

4: else
5: bi ← 0
6: a← (a− bi)� 1
7: return (b`, . . . , b0)

Algorithm 2 Textbook comb encoding
Input: scalar a, parameters w, d
Output: coefficients Kd−1, . . . ,K0

1: for i← 0 to d− 1 do
2: Ki ← (ai+(w−1)d, . . . , ai+d, ai)
3: return Kd−1, . . . ,K0

Fig. 1: In Algorithm 1, operator ‘smod’ computes signed remainders of integer divisions by powers of
two. Precisely, for integers a, b we have b = a smod 2w iff ∃k : a = k2w + b ∧ b ∈ [−2w−1 .. 2w−1 − 1].

3.3 Point multiplication in OpenSSL

We give details about the elliptic curve point multiplication routine used in OpenSSL. Specifically, we
studied the code from file crypto/ec/ec_mult.c of OpenSSL version 1.0.1h from March 2012, which
is the latest stable release. Relevant for this work is particularly the function compute_wNAF defined
in line 193, which computes a so-called modified wNAF. In brief, while a regular wNAF requires every
w-length subsequence of digits to contain at most one non-zero element, in modified wNAFs [17] this
requirement is relaxed for the most significant non-zero position, in order to potentially allow saving a
final doubling operation. For instance, in case w = 2 this relaxation allows to encode decimal number 11
as (1, 1, 0, 1̄), while the corresponding (strict) wNAF would be (1, 0, 1̄, 0, 1̄). OpenSSL’s compute_wNAF
function computes the modified wNAF following Algorithm 3, with default window size w = 4 (see
line 816). The resulting coefficients bi ∈ [−2w−1 .. 2w−1 − 1] are encoded into an array of octets (data
type ‘signed char’), using a standard two-complement in-memory representation. For instance, we have

−3 7→ 11111101 −1 7→ 11111111 0 7→ 00000000 +1 7→ 00000001 +3 7→ 00000011 .
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We confirmed that the OpenSSL forks LibreSSL4 (version 2.0.3 from July 2014) and BoringSSL5

(version from July 2014) use precisely the same exponent encoding as described above.

Algorithm 3 OpenSSL’s wNAF encoding
Input: scalar a, length parameter `, window size w
Output: modified wNAF (b`, . . . , b0)
1: compute b = (b`, . . . , b0) using Algorithm 1
2: if b has prefix 0∗10w−1β with β < 0 then
3: β̄ ← 2w−1 + β
4: in b, replace substring 10w−1β by 010w−2β̄

5: return b

Algorithm 4 PolarSSL’s comb encoding
Input: odd scalar a, parameters w, d
Output: coefficients Kd, (σd−1,Kd−1), . . . , (σ0,K0)
1: compute (K̄d−1, . . . , K̄0) using Algorithm 2
2: K0 ← K̄0

3: c← (0, . . . , 0)
4: for i← 1 to d− 1 do
5: if K̄i

0 = 0 then
6: (c,Ki)← K̄i �Ki−1 � c
7: σi−1 ← −1
8: else
9: (c,Ki)← K̄i � c
10: σi−1 ← +1
11: return c, (+1,Kd−1), . . . , (σ0,K0)

Fig. 2: In Algorithm 4, for same-size bit-vectors α, β, γ, δ, ε we write (α, β) = γ � δ iff 2αi + βi = γi + δi

for all i. Correspondingly we write (α, β) = γ � δ � ε iff 2αi + βi = γi + δi + εi. That is, the addition is
bit-wise and the sum is stored in βi, with αi taking the carry.

3.4 Comb-based methods

The various methods for point multiplication that we studied in the preceding sections aimed at requir-
ing less point additions than the basic double-and-add technique; the number of doubling operations,
however, remained invariant (or was even increased). In contrast, comb-based methods [16] get along
with significantly fewer doublings—at the expense of some precomputation dependent on the base point.
In the following we give a rudimentary introduction to comb-based multiplication techniques. See [5] for
further details.

Fix a base point P and parameters w, d ∈ N. For any scalar a ∈ N with 0 ≤ a < 2wd let [a]1 =
(awd−1, . . . , a0) denote its binary expansion. For all i ∈ [0 .. d − 1] let Ki = (Ki

w−1, . . . ,K
i
0) where

Ki
j = ai+jd, as formalized by Algorithm 2 and illustrated in Figure 3. That is, as values Ki

j ∈ {0, 1} are
assigned such that

a =
wd−1∑
i=0

2iai =
d−1∑
i=0

w−1∑
j=0

2i+jdKi
j =

d−1∑
i=0

2i
w−1∑
j=0

2jdKi
j ,

we have that

aP =
d−1∑
i=0

2iT (Ki
w−1, . . . ,K

i
0) where T : (kw−1, . . . , k0) 7→

w−1∑
j=0

2jdkjP .

The fundamental idea behind comb-based point multiplication is to precompute table T ; as we have
seen, the remaining part of the operation can then be conducted with not more than d additions and
doublings.

As first observed by Hedabou et al. [6], implementations of the described point multiplication method
might offer only limited resilience against side-channel attacks based on simple power analysis (SPA).
This comes from the fact that any vector Ki = (Ki

w−1, . . . ,K
i
0) is equal to (0, . . . , 0) with probabil-

ity about 2−w and that, in the multiplication process, this condition implies adding neutral element
4 http://www.libressl.org/, see file crypto/ec/ec_mult.c
5 https://boringssl.googlesource.com/, see file crypto/ec/wnaf.c
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Kd−1
w−1 Kd−1

1 K0
1 K0

0

awd−1 a2d−1 ad a0

Fig. 3: Visualization of the comb method, for parameters (w, d) = (4, 10). The cells represent the bits of
the scalar, the bold rectangles mark the prongs of a comb positioned at offset i = 2.

T (0, . . . , 0) = O to the current accumulator—an event that is likely recognizable by analysing power
traces.

To mitigate the threat, [6] proposes a comb-based scheduler where situation Ki = (0, . . . , 0) does not
occur. In a nutshell, it (a) considers only odd scalars (this guarantees K0 6= (0, . . . , 0)), (b) introduces for
each i ∈ [0 .. d−1] a flag σi ∈ {±1} that defaults to σi = +1 and indicates whether the corresponding Ki

should be considered ‘positive’ or ‘negative’, and (c) examines vectors K1, . . . ,Kd−1 (in that order) and
for each particular Ki that is equal to (0, . . . , 0) it updates Ki ← Ki−1 and σi−1 ← −1. Observe that
restriction (a) does not impose a real limitation in groups of prime order q because aP = −(−aP ) =
−(q − a)P and either a or q − a is odd. Observe also that the steps introduced in (c) do not affect the
overall outcome of the point multiplication as for all integers x we have x = 2 · x+ (−1) · x.

In [7], the same authors improve on their proposal by first encoding (odd) scalars a =
∑
ai2i using

only signed binary digits ai ∈ {±1}, and then computing vectors Ki from these coefficients. This not
only avoids the Ki = (0, . . . , 0) situation but also reduces the size of the precomputed table by a factor
of two.

3.5 Point multiplication in PolarSSL

We analysed the source code of the point multiplication routine deployed in PolarSSL6 version 1.3.8,
published on July 11 2014. The scheduler (function ecp_comb_fixed in file library/ecp.c) is comb-
based, and comments in the code give explicit credit to the results of [6]. However, as a matter of fact the
actually implemented algorithm significantly improves on the referred-to work, as we detail below. We
believe that this is the first description of this point multiplication method in the academic literature.

PolarSSL borrows from [6] both the restriction to handle only odd scalars and the introduction of
flags σi ∈ {±1} that indicate whether corresponding Ki are considered ‘positive’ or ‘negative’. Novel is
that the iteration over K1, . . . ,Kd−1 that before was solely concerned about fixing the Ki = (0, . . . , 0)
condition is now replaced by an iteration over the same values where action is taken roughly every
second time, namely whenever Ki

0 = 0. Concretely, in this case the algorithm sets σi−1 ← −1 (similarly
to [6]) and replaces Ki by Ki � Ki−1, where addition ‘�’ is understood position-wise, carrying over
into Ki+1. This method ensures that all Ki have Ki

0 = 1 (as is easily shown by an inductive argument),
and effectively makes precomputed table T half-size. On the downside, for recording the carries of the
final ‘�’ step, vector Kd−1, . . . ,K0 has to be extended by an auxiliary component Kd. The details on
the procedure are given in Algorithm 4.

We conclude by describing how resulting sequence Kd, (σd−1,Kd−1), . . . , (σ0,K0) is encoded in com-
puter memory. PolarSSL imposes the requirement w ∈ [2 .. 7] (in practice w ∈ {4, 5} is used, see line 1382
of ecp.c) and can hence store each Ki in a separate octet (data type ‘unsigned char’). The remaining
eighth bit is used to store the corresponding sign indicator; precisely, σi = +1 and σi = −1 are en-
coded as 0 and 1, respectively. For example, if w = 3 and σi = −1 and Ki = (1, 0, 1), the in-memory
representation is 10000101.

Similarly to Fact 1 we can state a suffix property for this encoding.

Fact 2 (Suffix property of PolarSSL’s comb encoding) Fix a scalar a ∈ N and parameters w, d.
Denote a’s binary expansion with (awd−1, . . . , a0), its (textbook) comb encoding with (K̄d−1, . . . , K̄0)
where K̄i

j = ai+jd, and its PolarSSL comb encoding with (Kd, σd−1,Kd−1, . . . , σ0,K0). Then it holds for
all 1 ≤ t ≤ d that (Kt−1, σt−2,Kt−2, . . . , σ0,K0) is fully determined by (K̄t−1, . . . , K̄0).
6 Available at https://polarssl.org.
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4 General procedures for recovering noisy keys

We present next our algorithms that recover the private keys of DL-based cryptosystems from noisy
memory images. Separate algorithms are proposed for OpenSSL and PolarSSL and, thus, each will have
its own analysis of success probability. We start with specifying the attack model.

4.1 Attack model

Both in OpenSSL and PolarSSL, discrete log secret keys and their NAF or comb encodings reside in
computer memory simultaneously, at least for a short period of time. Our cold boot attack model hence
assumes that the adversary can obtain noisy versions of the original private key and its encoding, and
aims at recovering the private key. We assume that a 0 bit will flip with probability α = P(0→ 1) and a
1 bit will flip with probability β = P(1→ 0). Furthermore, we assume that the attacker knows the values
of α and β. Such an assumption is possible because an adversary can easily estimate using an analysis
similar to [8]. We refer the reader to that paper for the details.

4.2 NAF encodings

Algorithm 5 attempts to recover a key that has been encoded with either the textbook wNAF or the
modified NAF of OpenSSL (from Algorithms 1 and 3, respectively). It takes several inputs: the public
key, Q = aP ; the noisy memory image, M∗; the length of the private key, `; the window size, w; a
variable parameter, t; a constant k.

Algorithm 5 Generic key-recovery algorithm for textbook
and OpenSSL wNAF.
Input: noisy memory imageM∗, reference public key Q = aP ,

parameters `, w, t, k; use k = 0 for textbook wNAF recovery,
and k > 0 otherwise.

Output: secret key a or ⊥
1: CandSet← ∅
2: for all x ∈ {0, 1}t+w−1 do
3: calculate partial representationMx of x
4: if Correlate(Mx,M∗) = pass then
5: add x to CandSet
6: for i← 2 to b(`− k + 1− w)/tc do
7: CandSet′ ← ∅
8: for all x ∈ {0, 1}t × CandSet do
9: calculate partial representationMx of x
10: if Correlate(Mx,M∗) = pass then
11: add x to CandSet′
12: CandSet← CandSet′
13: for all x ∈ {0, 1}k+(`−k−w+1 mod t) × CandSet do
14: a←

∑`−1
i=0 2ixi

15: if Q = aP then
16: return a
17: return ⊥

We first discuss the textbook NAF, for which k = 0. The algorithm will output either a (the private
key) or ⊥, which represents failure. The recovery procedure begins by initialising a set CandSet to be
empty. The set CandSet will store (partial) candidate solutions for the private key a. At each stage
of the algorithm we wish to compute t new wNAF digits for each candidate solution. To be certain of
outputting the first t signed digits of the wNAF, the algorithm requires knowledge of the least t+w− 1
bits of the binary representation (cf. Fact 1). Hence, the first stage of the algorithm (cf. lines 1–5) takes
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all bit strings of length t + w − 1 (giving us the ability to calculate the least t signed digits of the
wNAF), converts them to integers, then calculates their corresponding wNAFs for positions bt−1, . . . , b0
(prepending zeros if necessary, and ignoring any bj for j ≥ t if they exist). The algorithm then compares
each bit string and its corresponding wNAF againstM∗ via the Correlate function (see Section 2). If the
candidate passes the Correlate test, then the candidate solution is added to the set CandSet, otherwise it
is discarded. Once all bit strings of length t+w−1 have been checked, we move on to the second stage of
the algorithm (cf. lines 6–12). We first initialise a set CandSet′ to be empty. For each string x in CandSet,
we prepend all bit strings of length t to x (giving us the ability to compute the next t signed digits of the
wNAF). We then calculate the wNAFs of (the integer conversions of) all the strings. Again, we prepend
zeros to the wNAF if necessary, and we ignore any bj for j ≥ 2t. Then the algorithm compares each
bit string and its corresponding wNAF againstM∗ via the Correlate function. If the candidate solution
passes the test it is added to CandSet′. When all appropriate strings have been checked, we overwrite
CandSet← CandSet′. If we let `′ denote the length of the partial candidates, then we repeat the previous
stage of the algorithm until `′ > `− t (because, at this point, prepending t bits to the candidate solutions
would result in them having a greater length than the private key a). At this juncture the algorithm will
prepend all bit-strings of length `− `′ to all the strings in CandSet (cf. lines 13–16). Each of these new
strings x is then compared against the public key Q = aP , via the calculation xP . If there is a match
with Q = aP , then the algorithm outputs x, otherwise the algorithm outputs ⊥.

We will now discuss the modifications that we make for the OpenSSL implementation of the wNAF
encoding. From Algorithm 3 it is clear that the OpenSSL wNAF only modifies the textbook wNAF in
(at most) the most significant w+ 1 digits (excluding leading zeros). Algorithm 5 relies on the fact that
textbook wNAFs can be built up in a bit-by-bit fashion from the least significant bit (cf. Fact 1), but
this is no longer possible with the modified wNAF. Therefore, when dealing with the OpenSSL NAF, we
include an extra parameter k > 0 in Algorithm 5, where k ∈ N>0. The only difference is that instead of
entering the final stage of the algorithm when `′ > `− t, we now enter the final stage when `′ > `− t−k.
That is, we stop k bits earlier than with k = 0, and then the final stage appends `− `′ bits to each string
in CandSet and checks whether any of these new strings matches the private key, a. The reasoning behind
this is that if the bit representation of an integer has a leading 1 in position i, then the standard wNAF
will only be affected in positions i+ 1 to i− w + 1. In Algorithm 5, at most we compute `− k − w + 1
signed digits for each candidate solution. For a uniformly random private key a, the higher we set k, the
more likely it is that the textbook wNAF and modified wNAF of a agree in the positions our algorithm
computes (since a uniformly random key is more likely to have a leading 1 in bit positions ` − 1 to
` − k − 1, meaning the first ` − k − w + 1 signed digits remain unaffected). This will be discussed in
more detail in Section 4.4. However, there is a trade-off between running-time and success. A higher k
results in a higher success, but the last stage of Algorithm 5 appends bit-strings of at least length k to all
surviving candidates. Hence, the greater k is, the longer the running-time of this final phase. A typical
value for k would be below 10.

4.3 Comb encodings

In this section we consider key-recovery for comb-based methods. The textbook comb encoding together
with the original key represents merely a repetition code, and there are standard techniques to recover
the key for such a code. Hence, we shall proceed straight to the discussion of PolarSSL combs. To
prevent side-channel attacks (cf. Section 3.4), the PolarSSL comb uses a lookahead algorithm, so we
will need a more sophisticated algorithm than the standard techniques used for repetition codes. The
pseudocode for our algorithm can be found in Algorithm 6. The inputs are: the noisy memory image,M∗;
the public key, Q = aP ; the length of the comb (i.e., the number of prongs), w; the number of comb
positions, d; and a variable parameter t. To calculate component K0 of the comb requires knowledge of
bits a(w−1)d, ad, . . . , a0 (and only these bits). If we want to calculate K1 and σ0, we additionally need bits
a1+(w−1)d, a1+d, . . . , a1, and so on (cf. Fact 2). Our algorithm considers t-many comb components at each
stage. During the first stage (cf. lines 1–9) we wish to compute Kt−1, (σt−2,Kt−2), . . . , (σ0,K0) for each
candidate solution. To calculate these components only requires knowledge of tw bits (in the appropriate
positions of the key). Since PolarSSL only handles odd scalars, there are 2tw−1 candidate solutions across
these tw bits. For each of these candidate strings, we compare the bits of the string x and its comb with
the noisy versions via the Correlate function. If the candidate passes the Correlate test, the string is added
to CandSet (which we initialize to empty), otherwise it is discarded. We then (cf. lines 10–20) repeat the
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procedure by combining each surviving candidate with all possible bit combinations in the tw positions
that will allow us to compute the next t comb components, which are K2t−1, (σ2t−2,K2t−2), . . . , (σt,Kt).
If `′ denotes the length of the current candidates, the algorithm exits this particular For loop when
dw − `′ ≤ tw (i.e., when adding t more K̄j would result in there being more K̄j than exist for the
private key). At this point, the algorithm fills in all the missing bits with all possible combinations (cf.
lines 21–26). Then the algorithm checks whether any of the strings is a match for the private key (by
using the public information Q = aP ). If there is a match, the algorithm outputs the string, otherwise
it outputs ⊥.

Algorithm 6 Generic key-recovery algorithm for PolarSSL
comb method.
Input: noisy memory imageM∗, reference public key Q = aP ,

parameters d,w, t
Output: secret key a or ⊥
1: CandSet← ∅
2: for all x ∈ {0, 1}tw−1 × {1} do
3: for j ← 0 to t− 1 do
4: K̄j ← (x(j+1)w−1, . . . , xjw)
5: compute Kt−1, (σt−2,Kt−2), . . . , (σ0,K0)
6: using lines 2–10 of Algorithm 4
7: calculate partial representationMx

8: if Correlate(Mx,M∗) = pass then
9: add x to CandSet
10: for i← 2 to dd/te − 1 do
11: CandSet′ ← ∅
12: for all x ∈ {0, 1}tw × CandSet do
13: for j ← 0 to it− 1 do
14: K̄j ← (x(j+1)w−1, . . . , xjw)
15: compute Kit−1, (σit−2,Kit−2), . . . , (σ0,K0)
16: using lines 2–10 of Algorithm 4
17: calculate partial representationMx

18: if Correlate(Mx,M∗) = pass then
19: add x to CandSet′
20: CandSet← CandSet′
21: for all x ∈ {0, 1}wd−(dd/te−1)tw × CandSet do
22: for j ← 0 to d− 1 do
23: K̄j ← (x(j+1)w−1, . . . , xjw)
24: a←

∑d−1
j=0

∑w−1
i=0 2j+idK̄j

i

25: if Q = aP then
26: return a
27: return ⊥

Remark 1. We note that in some cases there is a simple way to slightly increase the efficiency of Algo-
rithm 6. If ` is the length of the private key, but ` 6= wd, then the private key will have to be prepended
with wd − ` zero bits. Algorithm 6 can be improved by utilising this information and only considering
candidate solutions with zeros in these particular positions. However, as in practice w = 4 or w = 5
is used and we consider ` = 160 in our simulations, there will be no need for prepended zeros and our
algorithm will run exactly as presented in Algorithm 6.

Remark 2 (Optimality of Algorithms 5 and 6). We do not claim that Algorithms 5 or 6 are the optimal
procedures for recovering keys in their respective scenarios. However, these algorithms are appealing
because we are able to provide a theoretical analysis of the success rate (cf. Section 2). Furthermore, the
experimental results we obtain from these algorithms are good in practice, as we shall see in the coming
sections.
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4.4 Success analysis of OpenSSL implementation

We now analyse the success probability of Algorithm 5 when combined with the Correlate test from
Section 2. The success probability is relatively straightforward to calculate if the input is an image of a
textbook wNAF: the correct candidate will pass the Correlate test (equation (4)) with probability γ2,
where γ =

∫ C

0 χ2
1(x)dx. Hence, the probability of recovering the correct key would be γ2·b(`+1−w)/tc

because there are b(`+ 1−w)/tc-many Correlate tests to pass and the probability of passing each test is
independent (because Correlate considers only the newly computed bits at each stage). However, since a
modified NAF is used in OpenSSL, the corresponding analysis of success will differ slightly. Fortunately,
the difference between textbook NAF and modified NAF is only in the most significant w + 1 bits (and
sometimes there is no difference at all): If the leading 1 bit of the discrete logarithm key is in position i
then, at most, only signed digits i − w + 1 to i + 1 of the standard wNAF will be affected by the
transformation to the modified wNAF. Therefore the standard and modified wNAFs will agree up to
position i−w. Algorithm 5 only computes the least significant j = `− k−w+ 1− (`− k−w+ 1 mod t)
digits of the wNAF, i.e., bj−1, . . . , b0. Therefore, we must now bound the probability that a randomly
chosen private key’s standard wNAF is equal to its modified NAF up to digit bj−1. If the private key has
a 1 bit anywhere between positions j +w − 1 and `− 1 then the computed NAF digits will be identical
to the modified wNAF digits up to position j − 1, and then the multinomial test will behave exactly as
expected (having probability γ of passing each test). The probability of a 1 bit appearing in any of these
positions is precisely

1− 2−k−(`−k−w+1 mod t) .

If we let M-NAF denote the modified wNAF, and wNAFj−1 (resp. M-NAFj−1) denote digits 0 to j − 1
of wNAF (resp. M-NAF), then it follows that

P(success) = P(success|w-NAFj−1 = M-NAFj−1) · P(w-NAFj−1 = M-NAFj−1)
+ P(success|w-NAFj−1 6= M-NAFj−1) · P(w-NAFj−1 6= M-NAFj−1)

≥
(

1− 2−k−(`−k−w+1 mod t)
)
· γ2·b(`−k+1−w)/tc .

Thus, by setting the thresholds k and C (and, hence, γ) appropriately, we can achieve any desired success
rate (potentially at the expense of a long running time).

If either α = 0 or β = 0 our algorithm has a slightly different analysis. Since neither α nor β will be
zero in practice, we have relegated this analysis to Appendix A.

4.5 Success analysis of PolarSSL implementation

Given the previous discussion regarding the success of recovering keys of the NAF algorithms, it is
now very easy to analyse the success of Algorithm 6. It is clear from the algorithm that there are
dd/te − 1 Correlate tests to pass. The correlate function is in equation (4), and the correct candidate
has probability γ2 of passing the test, where γ =

∫ C

0 χ2
1(x)dx. Since each Correlate test only considers

the newly calculated bits, the probability of passing each Correlate test is independent, so we have
P(success) = γ2·(dd/te−1).

5 Implemented simulations of key recovery

We present the results of some simulations of Algorithms 5 and 6 using the Correlate test from equa-
tion (4). Unless otherwise stated, we ran 100 tests for each set of parameters. The results for OpenSSL
can be seen in Table 1a and those for PolarSSL in Table 1b. The values displayed in these tables are
merely to support the validity of our theoretical analysis, and they do not represent the practical limits
of our algorithms. However, it is clear that any algorithm attempting key recovery in the PolarSSL and
OpenSSL settings will not be able to match the performance of the RSA algorithms. We discuss the
reasons why in Appendix D. For each set of parameters, the table shows the predicted theoretical success
of the algorithms and the success rate we achieved with our 100 simulations. Note that as the noise rate
increases the success rate will slowly decline. However, for OpenSSL, the success rate for β = 0.15 was
higher than for β = 0.10, despite all other parameters being the same. This is merely an outlier, which
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key length w α β t C k χ2 est. prac. suc.
160 2 0.001 0.01 7 6 3 0.51 0.92
160 2 0.001 0.05 10 3.5 3 0.15 0.45
160 2 0.001 0.10 10 3.5 3 0.15 0.17
160 2 0.001 0.15 10 3.5 3 0.15 0.20
160 2 0.001 0.20 14 2 3 0.02 0.07
160 2 0.001 0.25 12 2 3 0.01 0.06
160 2 0.001 0.30 12 2 3 0.01 0.04
160 2 0.001 0.35 14 0.75 3 0 0.02

(a) OpenSSL

key length w d α β t C χ2 est. prac. suc.
160 4 40 0.001 0.01 2 7 0.73 0.81
160 4 40 0.001 0.02 2 5 0.38 0.65
160 4 40 0.001 0.03 2 4 0.17 0.60
160 4 40 0.001 0.05 2 3.5 0.09 0.58
160 4 40 0.001 0.06 2 3 0.04 0.55
160 4 40 0.001 0.07 2 3 0.04 0.52
160 4 40 0.001 0.08 2 2.5 0.01 0.37
160 4 40 0.001 0.10 2 2.5 0.01 0.08

(b) PolarSSL

Table 1: Results of simulations of cold boot attacks against the point multipliers of OpenSSL and
PolarSSL. The theoretically estimated success probabilities, based on the convergence to the chi-squared
distribution, are in the columns labelled ‘χ2 est’. Note that the effective success rates of our implemented
attacks, in columns ‘prac. suc.’, are generally much larger.

is a result of the limited number of simulations we ran. If we were to perform a much larger number
of simulations, we expect this outlier to disappear. All values we have used for α and β are practical,
but higher values of β are much rarer in practice. For small values of β (which are most common) our
algorithms have a good success rate. For example, for OpenSSL we have a success rate of 45% when
β = 0.05. Furthermore, for small values such as this we could significantly improve the success by in-
creasing threshold C. For such small values of β this would not greatly affect the running time. Note
that the majority of the experiments were conducted in a 1→ 0 region (where α� β). This choice will
not affect the theoretical success of the algorithm, but is likely to have an impact on the running-time.
In the PolarSSL setting, the difference between a 1→ 0 and 0→ 1 region will be very small, due to the
approximately equal distribution of 1 and 0 bits in the private key. However, for OpenSSL there will be
a noticeable discrepancy, which is explored further in Appendix C.

6 Conclusions

We propose key-recovery algorithms for various discrete logarithm cryptosystems, with particular em-
phasis on the widely deployed PolarSSL and OpenSSL implementawtions. These algorithms represent a
large improvement over previous key-recovery algorithms for discrete-log cold boot attacks. We provide
a theoretical analysis that lower-bounds the success of our algorithms. Furthermore, the statistical test
we use in our framework provides an avenue to obtain arbitrary success rates in the RSA setting when
the errors are asymmetric. Such results were only previously available in the symmetric setting. We
provide results of several key-recovery simulations, both for PolarSSL and OpenSSL, that fully support
our theoretical analyses and show that our attacks are practical.
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A Analysis of success when α or β is zero

Throughout this paper we have assumed that both α := P(0 → 1) and β := P(1 → 0) are non-zero (as
they are likely to be in practice), and the analyses of Sections 4.4 and 4.5 were dependent on this fact.
Here we briefly discuss how to handle the case when either α or β is zero (if both are zero, then no bits
will flip, hence the noisy key will be identical to the original key). We will first discuss the OpenSSL
case (cf. Section 4.2). We assume that α = 0 (the case β = 0 is corresponding), so there will be no
0 to 1 bit flips from the original key to the noisy key. We cannot perform a multinomial test on the 0s of
the candidate solutions (because this requires non-zero α), so instead we merely discard any candidate
solution in which a 0 must have flipped to a 1. Notice that it is impossible to reject the correct solution
via this test (because P(n01 = 0) = 1 for the correct candidate). The Correlate test is then

CorrelateC(si, r) = pass ⇔ Correlate1(si, r) < C ∧ ni
01 = 0 . (6)

The theoretical success rate of Algorithm 5 with k = 0 is γb(`+1−w)/tc, and its success rate is at least(
1− 2−k−(`−k−w+1 mod t)) · γb(`−k+1−w)/tc if k > 0, where γ is the probability of passing a single multi-
nomial test. If instead we have β = 0, then

CorrelateC(si, r) = pass ⇔ Correlate0(si, r) < C ∧ ni
10 = 0 . (7)

The success of the PolarSSL algorithm (cf. Section 4.3) now follows easily. The Correlate functions
are those in equations (6) and (7) (for α = 0 and β = 0 respectively) and the success rate is estimated
with γdd/te−1.

B Running-time analysis

So far we have provided a theoretical analysis for the success of our key-recovery procedures from Sec-
tion 4. To complete the picture, we would also like an analysis of the running-time of the algorithms.
Unfortunately, such an analysis appears very difficult to obtain in our setting. If we were able to bound
the probability of a ‘Type II error’ (not rejecting an incorrect solution) in the multinomial test, this
would allow us to bound the running-time. In the RSA setting, a typical assumption is that incorrect
candidate solutions are uniformly random and independent of all previous key bits7. In the two sce-
narios we consider, such assumptions clearly do not hold. The bits of a particular candidate wNAF or
comb solution are entirely dependent on all the previous key bits. Given that we cannot employ any
independence assumptions, we are unable to provide a theoretical analysis of the running-time of our
algorithms.

Notice, however, that the Correlate function can be modified to produce a test that has a bounded
running-time. We have previously suggested setting a threshold and discarding any solutions that do
not pass it. This meant that the algorithm would output lists of a variable size. Instead, we can modify
the Correlate function to output shorter (or even fixed-sized) lists, thereby allowing the running-time to
be easily bounded. The Correlate test could be modified so that it computes Correlate0 and Correlate1

(equations (2) and (3) respectively), and then sums these two values. Then the algorithm would output
the L-many candidates with the lowest values of Correlate0 + Correlate1, where L is a parameter chosen
by the attacker. This algorithm clearly has a bounded running-time, but a theoretical analysis of success
rate is lacking for this particular approach.

C Comparison of ground states

In this section we study the impact of the ground states on our cold boot recovery algorithms. Recall
that there are two ground states: 0 and 1. In a 0 region, 1 bits have a reasonably high chance of flipping
to a 0, but 0 bits will have a very low probability (typically 0.001) of flipping to a 1. In a 1 region
the opposite is true. In the RSA cold boot analyses of [8,9,18] it was assumed that secret keys consist
of approximately an equal number of 0 and 1 bits. Evidently then, the recovery algorithms would run
equally well in both types of region. In contrast, in an OpenSSL wNAF there are significantly more
7 The analyses of [8,9] used such an assumption, whereas [18] made use of a slightly weaker assumption.
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α β C suc. min. LQ med. UQ max.
0.001 0.01 4 0.338 1 2 2 4 120
0.01 0.001 4 0.524 1 48 144 483 82944
0.01 0.001 2.5 0.195 2 16 48 144 2880

Table 2: Quartile data for the number of candidate solutions that passed the final Correlate test of
Algorithm 5 (i.e., the size of CandSet at line 13). For each set of parameters we ran 1000 tests with
160-bit keys, and we set t = 7.

0 bits than 1 bits. As a result our algorithm may have different performance results depending on the
decay region. The theoretical success is obviously unaffected, but the running-time varies significantly, as
Table 2 shows. Note that results were implemented with the textbook NAF (i.e., k = 0 in Algorithm 5),
rather than the modified version.

For all tests we set the key size to be 160 bits and we conducted 1000 tests for each set of parameters.
We chose to run 1000 tests in order to eradicate any statistical anomalies that might arise from using
small sample sizes. For the first two sets of parameters we set w to be 2, the threshold C was 4, and
t was 7. For the first set of parameters, we set α = P(0 → 1) = 0.001 and β = P(1 → 0) = 0.01, to
represent a 1-to-0 region. For the second set, we reversed these values, so α = P(0 → 1) = 0.01 and
β = P(1→ 0) = 0.001, which represents a 0-to-1 region. For each test in which we successfully recovered
the private key we kept a record of the number of solutions that passed the final Correlate function test.
Table 2 displays the quartiles of this data (the minimum, lower quartile, median, upper quartile and
maximum). It is clear to see from the table that the algorithm had to consider many more solutions
in the 0-to-1 region, which results in a much greater running time. However, this could be partially
explained by the much higher success rate in the 0-to-1 region. In the 1-to-0 region, the success rate was
0.338, compared to 0.524 in the 0-to-1 region. This elevated success rate will obviously result in more
candidates being checked, but this is not the only reason. The convergence of the multinomial test to
the chi-squared distribution is dependent on the expected values of n00 and n01 (the higher they are, the
better the convergence), where we recall that nij is the number of i bits in the candidate solution that
map to j bits in the noisy information. By changing the values of α and β, we change the expected values
of nij , which results in varying success probabilities, despite having the same threshold. To counteract
this problem, we ran another set of experiments. For α = 0.01 and β = 0.001 we re-ran the simulations,
but with the threshold now set to C = 2.5. The success probability for this new set of tests was 0.195,
which is much lower than the success for the 1-to-0 region. Despite this, however, the quartiles were
still much higher for the 0-to-1 region. The explanation for this phenomenon appears to be simple. In
a wNAF, the 1 bits are sparse. In a 1-to-0 region, if we observe a 1 bit in the noisy information then,
with high probability, the private key has a 1 bit in that particular position. Since 1 bits are infrequent,
there will be very few candidate solutions that have a 1 bits in the necessary positions. Conversely, in a
0-to-1 region, if we observe a 0 bit in the noisy information then, with high probability, the private key
has a 0 bit in the corresponding position. Unfortunately, since 0 bits are abundant in a wNAF, there are
typically many candidates that have 0 bits in these positions. Hence, whilst the success is unaffected by
the ground state, the running-time will be much greater in a 0-to-1 region because there will be many
more incorrect candidates that pass the Correlate test.

For the PolarSSL comb the distribution of bits is not uniform (since some bits are always set to be 1),
which will result in slightly different performances in the two regions. We do not expect the running-time
to vary considerably, but for particularly small values of α and β we might see a slight difference in the
success rates of simulations.

D Comparison with the RSA setting

At first glance our experimental results for both OpenSSL’s wNAF and PolarSSL’s comb multiplier
(Tables 1a and 1b) appear to be inferior to corresponding results in the RSA setting. Whilst this is
true, it should not come as a surprise. Analyses in the RSA setting (such as those of [8,9,18]) enjoyed
several benefits. The major advantage they had was the relationship between key bits via equations such
as N = pq, where N is the public exponent, and p and q are the private primes. There are four such
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equations relating the five components of the RSA private key. Heninger et al. [9] showed that if there
is a partial solution for the private RSA key and an adversary wishes to discover the next bit of each
of the five private key components, then the RSA equations give only two possible solutions for the
string of five bits, rather than the 32 solutions that would need to be checked in a brute-force search.
Hence, when the RSA algorithms calculate possible solutions across a new set of 5t bits, if there are M
surviving candidates from the previous pruning phase, there will be M · 2t possible solutions to check at
the next stage. These solutions may then be tested to discard unlikely candidates. In the NAF and comb
settings, such strong structure in the private key does not exist. Hence, when we consider solutions in
a string of 5t bits, if M candidates pass the previous pruning phase, then we have to consider M · 25t

solutions, and then discard unlikely candidates. Furthermore, when the RSA algorithms calculate the
two possible solutions for a particular set of five bits, the two solutions have a Hamming distance of four.
Consequently, if the correct key has high likelihood of coming from the noisy information (as expected),
then the second possible solution will have a low likelihood. This allows the RSA algorithms to easily
discard incorrect candidates with high probability. Unfortunately, in our settings we will have to consider
many solutions that have Hamming distance less than four from the correct solution. The solutions with
low Hamming distance from the correct key will have a high probability of passing the threshold test.
With these facts in mind, it is quite clear that any algorithm in the NAF or comb settings will not be
able to compete with the RSA algorithms in terms of the cross-over probabilities that can be handled
for the asymmetric channel.
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