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Abstract
Multi-party fair exchange (MFE) and fair secure multi-party computation (fair

SMPC) are under-studied fields of research, with practical importance. We examine
MFE scenarios where every participant has some item, and at the end of the proto-
col, either every participant receives every other participant’s item, or no participant
receives anything. This is a particularly hard scenario, even though it is directly ap-
plicable to protocols such as fair SMPC or multi-party contract signing. We further
generalize our protocol to work for any exchange topology. We analyze the case where
a trusted third party (TTP) is optimistically available, although we emphasize that
the trust put on the TTP is only regarding the fairness, and our protocols preserve
the privacy of the exchanged items even against a malicious TTP.

We construct an asymptotically optimal (for the complete topology) multi-party
fair exchange protocol that requires a constant number of rounds, in comparison to
linear, and O(n2) messages, in comparison to cubic, where n is the number of par-
ticipating parties. We enable the parties to efficiently exchange any item that can be
efficiently put into a verifiable escrow (e.g., signatures on a contract). We show how
to apply this protocol on top of any SMPC protocol to achieve a fairness guarantee
with very little overhead, especially if the SMPC protocol works with arithmetic cir-
cuits. Our protocol guarantees fairness in its strongest sense: even if all n − 1 other
participants are malicious and colluding, fairness will hold.

Keywords: multi-party fair exchange, fair computation, optimistic model, secure
multi-party computation, electronic payments

1 Introduction
An exchange protocol allows two or more parties to exchange items. It is fair when
the exchange guarantees that either all parties receive their desired items or none of them
receives any item. Examples of such exchanges include signing electronic contracts, certified
e-mail delivery, and fair purchase of electronic goods over the Internet. In addition, a fair
exchange protocol can be adopted by secure two- or multi-party computation protocols
[12, 29, 19, 9, 32, 47, 36] to achieve fairness [33].

Even in two-party fair exchange scenarios, preventing unfairness completely and effi-
ciently without a trusted third party (TTP) is shown to be impossible [23, 43]. The main
reason is that one of the parties will be sending the last message of the protocol, regard-
less of how the protocol looks like, and may choose not to send that message, potentially
∗handan.kilinc@epfl.ch
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causing unfairness. In an optimistic protocol, the TTP is involved in the protocol only
when there is a malicious behavior [3, 4]. However, it is important not to give a lot of work
to the TTP, since this can cause a bottleneck. Furthermore, the TTP is required only
for fairness, and should not learn more about the exchange than is required to provide
fairness. In particular, in our protocols, we show that the TTP does not learn the
items that are exchanged.

Fair exchange with two parties have been extensively studied and efficient solutions
[4, 11, 34] have been proposed, but the multi-party case does not have efficient and general
solutions. Multi-party fair exchange (MFE) can be described based on exchange topologies.
For example, a ring topology describes an MFE scenario where each party receives an item
from the previous party in the ring [7, 38, 30, 38]. A common scenario with the ring
topology is a customer who wants to buy an item offered by a provider: the provider gives
the item to the customer, the customer sends a payment authorization to her bank, the
customer’s bank sends the payment to the provider’s bank, and finally the provider’s bank
credits the provider’s account.

Ring topology cannot be used in scenarios like contract-signing and secure multi-party
computation (SMPC), since in such scenarios the parties want items from all other parties.
In particular, in such settings, we want that either every participant receives every
other participant’s item, or no participant receives anything. This corresponds
to the contract being signed only if everyone agrees, or the SMPC output to be revealed
only when every participant receives it. We call this kind of topology a complete topology.
We can think of the parties as nodes in a complete graph and the edges between parties
show the exchange links. The complete topology was researched mostly in the contract-
signing setting [28, 10, 27], with one exception [3]. Unfortunately, all these protocols are
inefficient compared to ours (see Table 1). Since there was no an efficient MFE protocol
that achieves the complete topology, the fairness problem in SMPC protocols still could
not be completely solved. Existing fair SMPC solutions either work with inefficient gradual
release [26], or require the use of bitcoins [13, 1].

Our Contributions: We suggest a new optimistic multi-party fair exchange protocol
that guarantees fairness in every topology, including the complete topology, efficiently.
• Our MFE requires only O(n2) messages and constant number of rounds for n par-

ties, being much more efficient than the previous works (see Table 1). These are
asymptotically optimal for a complete topology, since each party should send his
item to all the other parties, even in an unfair exchange. Furthermore, our MFE
does not necessitate a broadcast.
• Our MFE optimally guarantees fairness (for honest parties) even when n− 1 out of
n parties are malicious and colluding.
• Our MFE has an easy setup phase, which is employed only once for exchanging
multiple sets of items, thus improving efficiency even further for repeated exchanges
among the same set of participants.
• The TTP for fairness in our MFE is in the optimistic model [4]. The TTP has a

very low workload, since the parties only employ efficient discrete-logarithm-based
sigma proofs to show their honesty. More importantly, the TTP does not learn any
exchanged item, so privacy against the TTP is preserved.
• We show how to employ our MFE protocol for any exchange topology, with the

performance improving as the topology gets sparser.
• We formulate MFE as a secure multi-party computation protocol. We then prove

security and fairness via ideal-real world simulation [33]. To the best of our
knowledge, no multi-party fair exchange protocol was proven as an SMPC protocol
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Solution for Topology Round
Complexity

Number of
Messages Broadcast

[28] MPCS Complete O(n2) O(n3) Yes
[10] MPCS Complete O(tn) O(tn2) Yes
[42] MPCS Complete O(n) O(n3) Yes
[40] MPCS Complete O(n) O(n2)X Yes
[3] MFE X Any X O(1) X O(n3) Yes

Ours MFE X Any X O(1) X O(n2) X No X

Table 1: Efficiency comparison with previous works. n is the total number of parties, t is number of
dishonest parties, and MPCS means multi-party contract signing protocol.

before.
• Based on the definition in [33], we provide an ideal world definition for fair SMPC,

and prove via simulation that our MFE can be employed on top of any SMPC
protocol to obtain a fair SMPC protocol, with the fairness extension leaking nothing
about the inputs, and without necessitating a payment system.

2 Related Works
Two-party Fair Exchange: Most of the previous work in the fair exchange setting was
done on the two-party case. The interesting case is the optimistic case, where there exists
a trusted third party (TTP), but the TTP is not involved if both participants are honest
[4, 3, 7, 6, 41, 5, 34].

Multi-party Fair Exchange: Franklin and Tsudik [25] classified multi-party fair
exchange based on the number of items that a participant can exchange and the dispositions
of the participants. Asokan et al. [3] described a generic optimistic fair exchange with a
general topology. They define a description matrix to represent the topology, and proposed
a fair protocol. The parties are restricted to exchange exchangeable items, requiring the
TTP to be able to replace or revoke the items, greatly decreasing the applicability of
their protocol. In addition, broadcast is used to send the items, rendering their protocol
inefficient.

Number Messages All or None TTP-Party Dependency TTP Privacy
[8] O(n) No Yes Not Private
[30] O(n2) No Yes Not Private
[38] O(n) No Yes Not Private
Ours O(n2) Yes X No X Private X

Table 2: Efficiency comparison with previous works in the ring topology. n is number of parties. ‘All
or None’ represents our fairness definition, where either the whole topology is satisfied, or no exchange
occurs.

Ring Topologies: Bao et al. [8] proposed an optimistic multi-party fair exchange
protocol based on the ring topology. In their protocol, one of the participants is the
initiator, who starts the first and second phases of the protocol. The initiator is required
to contact the TTP to acknowledge the completion of the first phase of the protocol. Thus,
firstly, this is not a strictly optimistic protocol, secondly, there is a necessity of trusting
the initiator, and thirdly, there is a passive conspiracy problem [25], which means that a
dishonest party may conspire with an honest party without the latter’s consent.

Later, Gonzales-Deleito and Markowitch [30] solved the malicious initiator problem of
Bao et al. [8]. But, the problem in their protocol is in the recovery protocol: when one
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of the participants contacts the TTP, the TTP has to contact the previous participant in
the ring. This is not preferable because it is not guaranteed that previous participant will
be available. The protocol in [38] solves the passive conspiracy problem of Bao et al. [8],
however the problem in the recovery protocol still remains.

Markowitch and Kremer [39] proposed a non-repudiation protocol, where their fairness
definition is such that one of the parties sends some information to the other parties, and
neither the sender nor others can deny that they participated. However, it does not solve
the fairness problem in general.

Understanding Fairness: There is an important difference between our understand-
ing of fairness, and existing ring-topology protocols’ [8, 30, 38]. According to their def-
inition, in the end of the protocol there will be no party such that he does not receive
his desired item from the previous party but sends his item to the next party. It means
that there can be some parties who received their desired items and some other parties who
did not receive or send anything. Whereas, according to our definition, either the
whole topology is satisfied (all the necessary exchanges are complete), or no
exchange takes place. We believe this is a very important distinction, and is the right
way of framing multi-party fair exchange. We further observe that this all-or-none type of
fairness also requires a quadratic number of messages, which we achieve optimally. Table
2 summarizes comparison for the ring topology.

Complete Topologies: Multi-party contract signing indeed corresponds to a complete
topology. Garay and Mackenzie [27] proposed the first optimistic multi-party contract
signing protocol that requires O(n2) rounds and O(n3)messages. Because of its inefficiency,
Baum-Waidner and Waidner [10] suggested a more efficient protocol, whose complexity
depends on the number of dishonest parties, and if the number of dishonest parties is
n − 1, its efficiency is the same as [27]. Mukhamedov and Ryan [42] decreased the round
complexity to O(n). Lastly, Mauw et al. [40] gave the lower bound of O(n2) for the number
of messages to achieve fairness. Their protocol requires O(n2) messages, but the round
complexity is not constant. We achieve both lower bounds (O(n2) messages and
constant round) for the first time.

Fair Secure Multi-party Computation: Secure multi-party computation had an
important position in the last decades, but its fairness property did not receive a lot of
attention. One SMPC protocol that achieves fairness is designed by Garay et al. [31]. It
uses gradual release, which is the drawback of this protocol, because each party broadcasts
its output gradually in each round. At each round the number of messages is O(n3) and
there are a lot of rounds due to gradual release.

Another approach is using bitcoin to achieve fairness using a TTP in the optimistic
model [13, 1]. When one of the parties does not receive the output of the computation, he
receives a bitcoin instead. This fairness approach was used by Lindell [35] for the two-party
computation case, and by Küpçü and Lysyanskaya [34] and Belenkiy et al. [11] for peer-to-
peer systems. However, this approach is not appropriate for multi-party computation since
we do not necessarily know how valuable the output will be before evaluation.
Finally, reputation-based fairness solutions [2] talk about fairness probabilities, rather than
complete fairness.

3 Definitions and Preliminaries
3.1 Preliminaries
Threshold Public Key Encryption: In such schemes, encryption is done with a single
public key, generated jointly by n decrypters, but decryption requires at least k decrypters
to cooperate. It consists of the probabilistic polynomial time (PPT) protocols Key Gen-
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eration, Verification, Decryption and a PPT algorithm for Encryption [46]. We describe
these via the ElGamal (n, k = n) threshold encryption scheme we will employ, as follows:
• Key Generation: It generates a list of private keys SK = {x1, ..., xn}, where xi ∈ Zp,

public key PK = (g, h), where g is a generator of a large prime p-order sub-
group of Z∗q with q prime, together with h = g

∑
xi , and public verification key

V K = {vk1, ..., vkn} = {gx1 , ..., gxn}, where n ≥ 1. Note that this can be done in a
distributed manner [45].
• Encryption: It computes the ciphertext for plaintext m as E = (a, b) = (gr,mhr)

where r ∈ Zp.
• Verification: It is between a verifier and a prover. Verifier, using V K,E, and the

given decryption share of the prover di = grxi , outputs valid if prover shows that
logg vki is equal to loga di. Otherwise, it outputs invalid.
• Decryption: It takes as input n decryption shares {d1, ..., dn}, where di = grxi , V K,

and E. Then, it outputs a message m with the following computation (in Z∗q),

b∏
di

=
mhr

gr
∑
xi

=
mhr

hr
= m

or ⊥ if the decryption shares are invalid.
Verifiable Encryption: It is an encryption that enables the recipient to verify, using

a public key, that the plaintext satisfies some relation, without performing any decryption
[17, 16]. A public non-malleable label can be attached to a verifiable encryption [46].

Verifiable Escrow: An escrow is a ciphertext under the public key of the TTP. A
verifiable escrow [4, 17] is a verifiable encryption under the public key of the TTP. We
employ ElGamal verifiable encryption scheme [22, 15].

Notation. The n parties in the protocol are represented by Pi, where i ∈ {1, ..., n}.
Ph is to show the honest parties, and Pc is to show the corrupted parties controlled by the
adversary A.

V Ei and V Si is used to show the verifiable encryption and escrow prepared by
Pi, respectively. The descriptive notation for verifiable encryption and escrow is
V (E, pk; l){(v, ξ) ∈ R}. It denotes the verifiable encryption and escrow for the cipher-
text E whereby ξ –whose relation R with the public value v can be verified– is encrypted
under the public key pk, and labeled by l. For escrows, pk is the TTP’s public key.

PK(v){(v, ξ) ∈ R} denotes the zero-knowledge proof of knowledge of ξ that has a
relation R with the public value v. All relations R in our protocols have an honest-verifier
zero-knowledge three-move proof of knowledge [20], so can be implemented very efficiently.
The notation z shows the number z in the Figure 1.

3.2 Definitions
Optimistic Fair Secure Multi-Party Computation: A group of parties with their
private inputs wi desire to compute a function φ [10, 29]. This computation is secure when
the parties do not learn anything beyond what is revealed by the output of the computation.
It is fair if either all of the parties learn the output in the end of the computation, or none
of them learns the output. For an optimistic protocol, the TTP is involved only when
there is a dispute about fairness between parties. This is formalized by ideal-real world
simulations, defined below.

Ideal World: It consists of an adversary A that corrupts the set Pc of m parties where
m ∈ {1, ..., n−1}, the set of remaining honest party(s) Ph, and the universal trusted party
U (not the TTP). The ideal protocol is as follows:
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1. U receives inputs {wi}{i∈Pc} or the message abort from A, and {wj}{j∈Ph} from
the honest party(s). If the inputs are invalid or A sends the message abort, then U
sends ⊥ to all of the parties and halts.

2. Otherwise U computes φ(w1, ..., wn) = (φ1(w1, ..., wn), φ2(w1, ..., wn), ..., φn(w1, ..., wn)).
Let φi = φi(w1, ..., wn) be the ith output. Then he sends {φi}{i∈Pc} to A and
{φj}{j∈Ph} to the corresponding honest party(s).

The outputs of the parties in an ideal execution between the honest party(s) and
an adversary A controlling the corrupted parties where U computes φ is denoted
IDEALφ,A(aux)(w1, w2, ...wn, λ), where {wi}1≤i≤n are the respective private inputs of the
parties, aux is an auxiliary input of A, and λ is the security parameter.

Real World: There is no universally trusted party U for a real protocol π to compute
the functionality φ. There is an adversary A that controls the set Pc of corrupted parties
and there is a TTP who is involved in the protocol when there is unfair behavior. The
pair of outputs of the honest party(s) Ph and the adversary A in the real execution of
the protocol π, possibly employing the TTP, is denoted REALπ,TTP,A(aux)(w1, w2, ...wn, λ),
where w1, w2, ...wn, aux, and λ are like above.

Note that U and TTP are not related to each other. TTP is the part of the real protocol
to solve the fairness problem when it is necessary, but U is not real (just an ideal entity).
Definition 1 (Fair Secure Multi-Party Computation). Let π be a probabilistic poly-
nomial time (PPT) protocol and let φ be a PPT multi-party functionality. We say that
π computes φ fairly and securely if for every non-uniform PPT real world adversary
A attacking π, there exists a non-uniform PPT ideal world simulator S so that for every
w1, w2, ..., wn, the ideal and real world outputs are computationally indistinguishable:

{IDEALφ,S(aux)(w1, w2, ..., wn, λ)}λ∈N ≡c {REALπ,TTP,A(aux)(w1, w2, ..., wn, λ)}λ∈N
The standard secure multi-party ideal world definition [37] lets the adversary A to

abort after learning his output but before the honest party(s) learns her output. Thus,
proving protocols secure using the old definition would not meet the fairness requirements.
Therefore, we prove our protocols’ security and fairness under the modified definition above.
Canetti [18] gives general definitions for security for multi-party protocols with the same
intuition as the security and fairness definition above. Further realize that since the TTP
T does not exist in the ideal world, the simulator should also simulate its behavior.

Optimistic Multi-Party Fair Exchange: The participants are P1, P2, ..., Pn. Each
participant Pi has an item fi to exchange, and wants to exchange his own item fi with the
other parties’ items {fj}j 6=i, , where i, j ∈ {1, ..., n}. Thus, at the end, every participant
should obtain {fi}1≤i≤n in a complete topology, or some subset of it defined by some other
exchange topology.

Multi-Party fair exchange is also a multi-party computation where the functionality φ
is defined via its parts φi as below (we exemplify using a complete topology):

φi(f1, ..., fn) = (f1, f2, ..., fi−1, fi+1, ..., fn)

The actual φi would depend on the topology. For example, for the ring topology, it would
be defined as φi(f1, ..., fn) = fi−1 mod n if i 6= 1, φi(f1, ..., fn) = fn if i = 1. Therefore we
can use Definition 1 as the security definition of the multi-party fair exchange, using the
φi representing the desired topology.

Adversarial Model: When there is dispute between the parties, the TTP resolves
the conflict atomically. We assume that the adversary cannot prevent the honest party(s)
from reaching the TTP before the specified time interval. Secure channels are used to
exchange the decryption shares and when contacting the TTP. The adversary may control
up to n− 1 out of n parties in the exchange, and is probabilistic polynomial time (PPT).
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4 Description of the Protocol
Remember that our aim is to create efficient multi-party fair exchange protocols for every
topology. The most important challenges of these kind of protocols are the following:
• Even if there are n− 1 colluding parties, the protocol has to guarantee the fairness.

Consider a simple protocol for the complete topology: each party first sends the
verifiable escrow of the his/her item to the other parties, and after all the verifiable
escrows are received, each of them sends the (plaintext) items to each other. If
one of the parties comes to the TTP for resolution, the TTP decrypts the verifiable
escrow(s) and stores the contacting party’s item for the other parties.
Assume now that Pi and Pj are colluding, and Pi receives verifiable escrow of the
honest party Ph. Then Pi contacts the TTP, receives fh via the decryption of the
verifiable escrow of Ph, and gives his item fi to the TTP. At this moment, if Pi and
Pj leave the protocol before Pj sends his verifiable escrow to Ph, then fairness is
violated because Ph never gets the item of Pj , whereas, by colluding with Pi, Pj also
received fh.
Thus, it is important not to let a party learn some item before all the parties are
guaranteed that they will get all the items. We used this intuition while designing our
protocols. Therefore, we oblige parties to depend on some input from every
party in every phase of the protocol. Hence, even if there is only one honest
party, the dishonest ones have to contact and provide their correct values to the
honest party so that they can continue with the protocol.
• It is desirable and more applicable to use a semi-honest TTP. Therefore, privacy

against the TTP needs to be satisfied. For the example protocol above, privacy
against the TTP is violated as well since the TTP learns the items of the parties.
• The parties do not receive or send any item to some of the other parties in some

topologies (e.g., in the ring topology, P2 receives an item only from P1 and sends an
item to P3 only). Yet, a multi-party fair exchange protocol must ensure that either
the whole topology is satisfied, or no party obtains any item. Previous protocols fail
in this regard, and allow, for example P2 to receive the item of P1 as long as she sends
her item to P3, while it may be the case that P4 did not receive the item of P3. The
main issue here is that, if a multi-party fair exchange protocol lets the topology to
be partially satisfied, we might as well replace that protocol with multiple executions
of two-party fair exchange protocols. The main goal of MFE is to ensure that either
the whole topology is satisfied, or no exchange happens.

We succeed in overcoming the challenges above with our MFE protocol. We first
describe the protocol for the complete topology for the sake of simplicity. Then, we show
how we can use our MFE protocol for other topologies in Section 5. All zero-knowledge
proof of knowledge protocols are executed non-interactively in the random oracle model
[14].

4.1 Multi-Party Fair Exchange Protocol (MFE)
There is a trusted third party (TTP) that is involved in the protocol when a dispute
happens between the participants about fairness. His public key pk is known to every
participant.

Overview: The protocol has three phases. In the first phase, parties jointly generate
a public key for the threshold encryption scheme using their private shares. This phase
needs to be done only once among the same set of participants. In the second phase, they
send to each other the verifiable encryptions of the items that they want to exchange. If
anything goes wrong up till here, the protocol is aborted. In the final phase, they exchange
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Pi Pj
1i

Ci

1j
Cj

2i
hi

2j
hj

3i
V Ei = V ((gri , fih

ri ), h; ∅){(vi, fi) ∈ Ritem}

3j
V Ej = V ((g

rj , fjh
rj ), h; ∅){(vj , fj) ∈ Ritem}

4i
V Si = V (Ei, pk; t1, t2, id, Pi){(hi, {a

xi
k
}k∈N ) ∈ Rshare}

4j
V Sj = V (Ej , pk; t1, t2, id, Pj){(hj , {a

xj
k
}k∈N ) ∈ Rshare}

5i
{axi

k
}k∈N , PK(hi, {ak}k∈N ){(hi, {a

xi
k
}k∈N ) ∈ Rshare}

5j
{a

xj
k
}k∈N , PK(hj , {ak}k∈N ){(hj , {a

xj
k
}k∈N ) ∈ Rshare}

repeat for mul-
tiple exchanges

Figure 1: Our MFE Protocol. Each (i, j) message pair can be performed in any order or in parallel within
a step.

decryption shares for each item. If something goes wrong during the final phase, resolutions
with the TTP are performed. The details are below (see also Figure 1).

Phase 1 ( 1 and 2 in Figure 1): All participants agree on the prime p-order
subgroup of Z∗q , where q is a large prime, and a generator g of this subgroup. Then each
Pi does the following [45]:
• Pi randomly selects his share xi from Zp and computes the verification key hi = gxi .

Then he commits to hi and sends the commitment Ci to other parties [45].
• After receiving all commitments from the other parties, Pi opens Ci and obtains all

other parties’ hj .
Note that this must be done after exchanging all the commitments, since otherwise we
cannot claim independence of the shares, and then the threshold encryption scheme’s
security argument would fail. But with the two steps above, the security proof for
threshold encryption holds here.
• After receiving all hi values successfully, Pi computes the threshold encryption’s

public key
h =

∏
i

hi =
∏
i

gxi = g
∑

i xi = gx.

Phase 1 is executed only once. Afterward, the same set of parties can exchange as
many items as they want by performing only Phase 2 and Phase 3.

Phase 2 ( 3 in Figure 1): Firstly, parties agree on two time parameters t1 and t2,
and identification id of the protocol. (Time parameters can also be agreed in Phase 1.)
Each participant Pi does the following:
• Pi sends a verifiable encryption of his item fi as

V Ei = V ((gri , fih
ri), h; ∅){(v, fi) ∈ Ritem}

where ri is randomly selected from Zp. For the notation simplicity, we denote
(ai, bi) = (gri , fih

ri). V Ei includes the encryption of the item fi with public key
h and it can be verified that the encrypted item fi and the public value vi has the
relation Ritem. Shortly, Pi proves he encrypts desired item. (e.g., if fi is a signature
on a contract, then vi contains the signature verification key of Pi together with the
contract, and Ritem is the relation that fi is a valid signature with respect to vi.)
Note that without knowing n decryption shares, no party can decrypt any V Ej and
learn the items. Thus, if anything goes wrong up to this point, the parties can locally
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abort the protocol. After this point, they need a fair exchange protocol to obtain all
the decryption shares. This is done in the following phase.

Phase 3 ( 4 and 5 in Figure 1): No party begins this phase without completing
Phase 2 and receiving all verifiable encryptions V Ej correctly.
• Pi sends to other parties a verifiable escrow V Si that includes the decryption shares

for each verifiable encryption V Ej . V Si is computed as

V Si = V (Ei, pk; t1, t2, id, Pi){(hi, {axik }1≤k≤n) ∈ Rshare}

where Ei is the encryption of axi1 , a
xi
2 , ..., a

xi
n with the TTP’s public key pk. The

relation Rshare is:
logg hi = logak a

xi
k for each k. (1)

Simply, the verifiable escrow V Si includes the encryption of the decryption shares of
Pi that will be used to decrypt the encrypted items of all parties. It can be verified
that it has the correct decryption shares. In addition, only the TTP can open it.
The label t1, t2, id, Pi contains the public parameters of the protocol, and Pi is just
a name that the participant chooses. Here, we assume that each party knows the
other parties’ names.
Remark: The name Pi is necessary to show the V Si belongs him. It is not beneficial
to put a wrong name in a verifiable escrow’s label, since a corrupted party can
convince TTP to decrypt V Si by showing Pi is dishonest. The other labels id, t1, t2
are to show the protocol parameters to the TTP. Exchange identifier id is necessary
to prevent corrupted parties to induce TTP to decrypt V Sj for another exchange.
Consider that some exchange protocol ended unsuccessfully, which means nobody
received any item. The corrupted party can go to the TTP as if V Sj is the verifiable
escrow of the next protocol, and have it decrypted, if we were not using exchange
identifiers. We will see in our resolution protocols that cheating in the labels do
not provide any advantage to an adversary. Furthermore, the party names can
be random and distinct in each exchange, as long as the parties know each others’
names, and hence it does not violate the privacy of the parties.
• Pi waits for V Sj from each Pj . If anything is wrong with some V Sj (e.g., verification

fails or the label is not as expected), or Pi does not receive the verifiable escrow from
at least one participant, he executes Resolve 1 before t1. Otherwise, Pi continues
with the next step.
• Pi sends his decryption shares (axi1 , a

xi
2 , ..., a

xi
n ) to each Pj . In addition, he executes

the zero-knowledge proof of knowledge showing that these are the correct decryption
shares

PK(hi, {ak}k∈N ){(hi, {axik }1≤k≤n) ∈ Rshare}. (2)

• Pi waits for (a
xj
1 , a

xj
2 , ..., a

xj
n ) from each Pj , together with the same proof that he

does. If one of the values that he receives is not as expected or if he does not receive
them from some Pj , he performs the Resolve 2 protocol with the TTP, before t2
and after t1. Otherwise, Pi continues with the next step.
• After receiving all the necessary values, Pi can decrypt each V Ei and get all the

items. The decryption for item fj is as below:

bj/
∏
k

axkj = fjh
rj/grj

∑
k xk = fjh

rj/(g
∑

k xk)rj = fjh
rj/hrj = fj
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4.1.1 Resolve 1

The goal of Resolve 1 is to record the corrupted parties that did not send their verifiable
escrow in 4 . Resolve 1 needs to be done before t1. Parties do not learn any decryption
shares here. They can just complain about other parties to the TTP. The TTP creates a
fresh complaintList for the protocol with parameters id, t1, t2. The complaintList contains
the names of pairs of parties that have a dispute because of the missing verifiable escrow.
The complainant is the party that complains, whose name is saved as the first of the
pair, and the complainee is saved as the second of the pair. In addition, the TTP saves
complainee’s verification key given by the complainant; in the case that the complainee
contacts the TTP, he will be able to prove that he is the complainee. See Algorithm 1.

Algorithm 1 Resolve 1

1: Pi sends id, t1, t2, Pj , hj to the TTP where Pj is the
party that did not send V Sj to Pi. The TTP does
the following:

2: if currenttime > t1 then
3: send msg “Abort Resolve 1”
4: else
5: complaintList = GetComplaintList(id, t1, t2)
6: if complaintList == NULL then

7: complaintList = CreateEmptyList(id, t1, t2)
// initialize empty list

8: solvedList = CreateEmptyList(id, t1, t2) //
will be used in Resolve 2

9: end if
10: complaintList.add(Pi, (Pj , hj))
11: send msg “Come after t1 for Resolve 2”
12: end if

4.1.2 Resolve 2

Resolve 2 is the resolution protocol where the parties come to the TTP to ask him to
decrypt verifiable escrows and the TTP solves the complaint problems recorded in Resolve
1. The TTP does not decrypt any verifiable escrow until the complaintList is empty.

The party Pi, who comes for Resolve 2 between t1 and t2, gives all verifiable escrows
that he has already received from the other parties and his own verifiable escrow to the
TTP. The TTP uses these verifiable escrows to save the decryption shares required to solve
the complaints in the complaintList. If the complaintList is not empty in the end, Pi
comes after t2 for Resolve 3. Otherwise, Pi can perform Resolve 3 immediately and get all
the decryption shares that he requests.

Algorithm 2 Resolve 2

1: Pi gives M, which is the set of verifiable escrows
that Pi has. The TTP does the following:

2: complaintList = GetComplaintList (id, t1, t2)
3: for all V Sj inM do
4: if (∗, (Pj , hj)) ∈ complaintList AND

CheckCorrectness(V Sj , hj) is true then
5: sharesj = Decrypt(sk, V Sj)
6: solvedList.Save(Pj , sharesj)

7: complaintList.remove((∗, (Pj , hj)))
8: end if
9: end for

10: if complaintList is empty then
11: send msg “Do Resolve 3”
12: else
13: send msg “Come after t2 for Resolve 3”
14: end if

CheckCorrectness(V Sj , hj) returns true if the TTP can verify the relation in equation (1) using verifiable escrow

V Sj and hj . Otherwise it returns false.

4.1.3 Resolve 3

If the complaintList still has parties that have a conflict, even after t2, the TTP answers
each resolving party saying that the protocol is aborted, which means nobody is able to
learn any item. If the complaintList is empty, the TTP decrypts any verifiable escrow
that is given to him. Besides, if the complainants in the solvedList come, he gives the
stored decryption shares. See Algorithm 3.
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Algorithm 3 Resolve 3

1: Pi gives C, which is the set of parties that did not
perform step 4 or 5 with Pi, and V, which is
the set of verifiable escrows that belongs to parties
in C who performed step 4 . The TTP does the
following:

2: complaintList = GetComplaintList (id, t1, t2)
3: if complaintList.isEmpty() then
4: for all Pj in C do
5: if V Sj ∈ V then

6: send Decrypt(sk, V Sj)
7: else
8: send solvedList.GetShares(Pj)
9: end if

10: end for
11: else if currenttime > t2 then
12: send msg “Protocol is aborted”
13: else
14: send msg “Try after t2”
15: end if

4.2 Security
Theorem 1. The MFE protocol above is fair according to Definition 1, assuming that
ElGamal threshold encryption scheme is a secure threshold encryption scheme, the associ-
ated verifiable escrow scheme is secure, all commitments are hiding and binding, and the
discrete logarithm problem is hard (so that the proofs are sound and zero-knowledge).

Proof. Assume the worst-case that adversary A corrupts n − 1 parties. The simulator S
simulates the honest party in the real world and the corrupted parties in the ideal world.
S also acts as the TTP in the protocol if any resolution protocol occurs, so S publishes
a public key pk as the TTP, and knows the corresponding secret key. Without loss of
generality assume that the parties {Pi}2≤i≤n are the corrupted parties and S simulates the
behavior of the honest party P1. S does the following:

Phase 1: S behaves the same as in the real protocol.
Phase 2:
• Phase 2 is almost the same as in the protocol. Since S does not know the item f1, he

encrypts a random item f̃1 and sends verifiable encryption ˜V E1 to the other parties.
• S waits for the verifiable encryptions of the corrupted parties {V Ei}2≤i≤n. S does

not continue to the next step until he receives all V Es. When a party sends his
verifiable encryption, S behaves as the verifiable encryption extractor and learns the
party’s item.

In the end of this step, S learns all the items {fi}2≤i≤n of the corrupted parties. Note
that U will immediately let the ideal honest party obtain her output when S sends the
corrupted parties’ inputs. Since it is not guaranteed at this point that the real honest party
(that S is simulating) will receive the desired items, S does not contact U immediately,
even though he has enough knowledge to do so.

Phase 3: S behaves as in Phase 3. Additionally, he learns decryption shares
{axik }1≤k≤n of a party Pi when Pi sends V Si to S. One of the following situations must
have happened:

(i) All corrupted parties have already sent their V S to S.
(ii) Some of the corrupted parties did not send their V S to S (or sent incorrect V S).

We analyze these two cases.
(i) means it is guaranteed that the real honest party would obtain her desired items,

because S in the real world is now able to learn all the decryption shares from the corrupted
parties via resolutions. Therefore, S sends all items {fi}2≤i≤n he learned in Phase 2 to U .
Then, U sends f1 to S. At this point, S should send his decryption shares to the other
parties. However, S has sent encryption of a random item f̃1 and so he does not have
the real decryption share d1. Therefore, he calculates Equation 3 to find the appropriate
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decryption share d1 such that the other parties can get the item f1 from a1, b1 using d1.
The other decryption shares {di}2≤i≤n are calculated as ax1i as in the real protocol.

d1 =
b1

f1a
x2
1 ...a

xn
1

(3)

Here, d1 value represents ax11 in the real protocol. He can do this calculation because
he learned f1 from U , and {axj1 }2≤j≤n while the corrupted parties are sending their own
verifiable escrows.

S sends the di values to all of the parties and simulates the proof of knowledge showing
di is correct. S also waits decryption shares from the corrupted parties. If all of them send
their own decryption shares with a valid proof of knowledge showing that they sent the
correct decryption shares, then the simulation ends.

If some parties does not send their decryption shares to S before t2, S does Resolve
2 as in the real protocol and clears the complaintList because he has all the verifiable
escrows of the corrupted parties.

(ii) requires S to behave as the TTP and add the corrupted parties who did not send
their verifiable escrows to the complaintList, because in reality the honest party would
have complained about them before t1 in Resolve 1. In addition, if a corrupted party does
Resolve 1, S behaves like the TTP and adds him and his complainee to the complaintList.

Moreover, S does not send any of his decryption shares, as in the real protocol. If some
of the corrupted parties comes for Resolve 2, S behaves exactly as the TTP and clears
the parties from the complaintList according to the given verifiable escrows. Each time
he is clearing the complaintList, he learns the decryption shares of the complainee. He
himself can perform Resolve 2 and clear some parts of the complaintList where he already
received the corresponding verifiable escrows. In the end, if the complaintList is empty, it
means that he learned all the decryption shares of the corrupted parties. If so, S sends all
the items {fi}2≤i≤n of the corrupted parties to U . Then U sends f1 to S and S calculates
his shares d1 as in Equation (3). Therefore, when parties come for Resolve 3, S can give
every share that they want. The simulation ends.

If complaintList is not empty at time t2, S sends message abort to U and all Resolve
3 attempts will return an abort message.

Claim 1. The view of adversary A in his interaction with the simulator S is indistinguish-
able from the view in his interaction with a real honest party.

Proof: S behaves different from the real protocol while sending ˜V E1 and Ṽ S1. ˜V E1

is indistinguishable from the real one because of the security of the ElGamal encryption
scheme [22]. Similarly, Ṽ S1 is indistinguishable from the real one because of the security
of the verifiable escrow [17, 4]. Besides, S acts as the TTP without any difference, so the
interaction with the TTP is indistinguishable too. The outputs of the parties at the end
of the protocol are identical to the real protocol.

5 All Topologies for MFE
In this section, we adapt our MFE protocol to every topology. Our fairness definition
remains the same: either the whole topology is satisfied, or no party learns any item. As
an example, consider the ring topology as in Figure 3. Parties want an item from only
the previous party. For example, P2 only wants P1’s item f1. However, P2 should contact
all other parties because of our all-or-none fairness condition. Besides, we are not limited
with a topology that follows a specific pattern such as the number of parties and items
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being necessarily equal. For example, it is possible to provide fairness in the topology in
Figure 5 even though P2, P3, and P4 do not have exchange item with each other.

f1 f2 f3 f4
P1 �
P2 �
P3 �
P4 �

Figure 2: Desired items by each
parties in matrix form in the
ring topology.

P1

P4 P2

P3

f1

f2

f3

f4

Figure 3:
Graph repre-
sentation of the
ring topology.

f1 f2 f3 f4 f5
P1 � � � �
P2 �
P3 �
P4 �

Figure 4: Matrix representation
of a topology.

P1

P4 P2

P3

f1 f1

f1

f2

f3

f4, f5

Figure 5: Graph
representation of a
topology in Figure 4.

Consider some arbitrary topology described by the matrix in Figure 6. If a party desires
an item from another party, he should have all the shares of the item as shown in Figure 7.
In general, we can say that if a party Pi wants the item ft he should receive {axjt }{1≤j≤n}
from all the parties {Pj}{1≤j≤n}. Therefore, our MFE can be applied to any topology with
the same fairness condition, which is all parties will receive all their desired items
or none of them receives anything in the end of the protocol.

f1 f2 f3 f4 f5
P1 � �
P2 � � �
P3 � �
P4 � � � �

Figure 6: Desired items by each parties in ma-
trix form. Each party wants the marked items
that corresponds to his/her row. Pi has fi, ex-
cept P4 has both f4 and f5.

f1 f2 f3 f4 f5
P1 {axi2 } {axi3 } {axi5 }
P2 {axi1 } {axi4 } {axi5 }
P3 {axi1 } {axi3 }
P4 {axi1 } {axi2 } {axi3 } {axi5 }

Figure 7: Necessary shares for each party to get the
desired items that are shown in Figure 6. Sets are
over i ∈ {1, 2, ..., 5}

Our strong fairness condition requires that all parties have to depend each other. Even
though Pi does not want an item fj from Pj , getting his desired item has to also depend
on Pj . Therefore we cannot decrease number of messages even in a simpler (e.g., ring)
topology.

On the other hand, the size of the verifiable escrow, meaning that the number of shares
in the verifiable escrow, decreases in topologies other than the complete one. If we represent
the topology in a matrix form as in Figure 6, each party Pi has to add the number of �
many shares corresponding to the row of the party Pj to the verifiable escrow that is sent
to Pj . We can conclude that the total size of the verifiable escrows that a party sends is
O(#�) where � is as in Figure 6.

6 Efficient Fair Secure Multi-Party Computation
In this section, we show how to adapt the MFE protocol to any secure multi-party com-
putation (SMPC) protocol [12, 29, 19, 9, 48] to achieve fairness.

Assume n participants want to compute a function φ(w1, ..., wn) =
(φ1(w1, ..., wn), ..., φn(w1, ..., wn)), where wi is the input and φi = φi(w1, ..., wn) is
the output of party Pi.
• Pi randomly chooses a share xi ∈ Zp. Then Pi gives his share and wi to an SMPC

protocol that outputs the computation of the functionality ψ where ψi(z1, z2, ..., zn) =
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(Ei(φi(w1, ..., wn)), {gxj}1≤j≤n) is the output to, and zi = (wi, xi) is the input of Pi.
This corresponds to a circuit encrypting the outputs of the original function φ using
the shares provided as input, and also outputting the verification shares of all parties
to everyone. Encryption Ei is done with the key h = g

∑n
j=1 xj as follows:

Ei(φi(w1, ..., wn)) = (gri , φih
ri)

where ri ∈ Zp are random numbers chosen by the circuit (or they can also be inputs
to the circuit), similar to the original MFE protocol.
It is expected that everyone learns the output of ψ before a fair exchange occurs. If
some party did not receive his output at the end of the SMPC protocol, then they
do not proceed with the fair exchange, and hence no party will be able to decrypt
and learn their output.
• If everyone received their output from the SMPC protocol, then they execute the

Phase 3 of the MFE protocol above, using gxi values obtained from the output of
ψ as verification shares, and xi values as their secret shares. Furthermore, the ai, bi
values are obtained from Ei.
Note that each function output is encrypted with all the shares. But, for party Pi, she
need not provide her decryption share for fi to any other party. Furthermore, instead
of providing n decryption shares to each other party as in a complete topology, she
needs to provide only one decryption share, axij , to each Pj . Therefore, the Phase 3
of MFE here is a more efficient version. Indeed, the verifiable escrows, the decryption
shares, and their proofs each need to be only on a single value instead of n values.

Phases 1 and 2 of the fair exchange protocol have already been done during the modified
SMPC protocol, since the parties get the encryption of the output that is encrypted by
their shares. Since the SMPC protocol is secure, it is guaranteed to output the correct
ciphertexts, and we do not need further verification. We also do not need to first commit
to xi values, since the SMPC protocol ensures independence of inputs as well. So, the
parties only need to perform Phase 3.

In the end of the exchange, each party can decrypt only their own output, because they
do not give away their own output’s decryption share to anyone else. Indeed, if a symmetric
functionality is desired for SMPC, ψ(z1, z2, ..., zn) = ({Ei(φi(w1, ..., wn)), g

xi}1≤i≤n) may
be computed, and since Pi does not give the decryption share of fi to anyone else, each party
will still only be able to decrypt their own output. Therefore, a symmetric functionality
SMPC protocol may be employed to compute an asymmetric functionality fairly
using our modification . Note also that we view the SMPC protocol as black box.

Our overhead over performing unfair SMPC is minimal. Even though the input and
output sizes are extended additionally by O(n) values and the circuit is extended to perform
encryptions, these are minimal requirements, especially if the underlying SMPC protocol
works over arithmetic circuits (e.g., [9, 48]). In such a case, performing ElGamal and creat-
ing verification values gxi are very easy. Afterward, we only add two rounds of interaction
for the sake of fairness (i.e., Phase 3 of MFE, with smaller messages). Moreover, all the
benefits of our MFE protocol apply here as well.
Theorem 2. The SMPC protocol above is fair and secure according to Definition 1 for
the functionality φ, assuming that ElGamal threshold encryption scheme is a secure, the
discrete logarithm assumption holds, and the underlying SMPC protocol that computes
functionality ψ is secure.

Proof. Assume that adversary A corrupts n − 1 parties, which is the worst possible case.
The simulator S simulates the honest party in the real world and the corrupted parties
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Solutions Technique TTP Number of Rounds Proof Technique
[26] Gradual Release No O(λ) NFS
[13] Bitcoin Yes Constant X NFS
[1] Bitcoin Yes Constant X NFS

Ours MFE Yes Constant X FS X

Table 3: Comparison of our fair SMPC solution with previous works. NFS indicates simulation proof given
but not for fairness, FS indicates full simulation proof including fairness, and λ is the security parameter.

in the ideal world. Without loss of generality, assume that the parties {Pi}2≤i≤n are the
corrupted parties and S simulates the honest party P1. S does the following:

• Simulator S chooses a random input w̃1 and share x1. Then S acts as the simulator
of the underlying SMPC protocol; call that simulator S′. He learns the inputs of the
corrupted parties while he is acting as S′, and evaluates the circuit together with the
corrupted parties, using w̃1, x1 as its input.
We view S′ almost as a black box. The only different behavior we request from S′

is that, instead of providing the inputs of the corrupted parties he learned to the
universal trusted party U and learning their outputs immediately, we need S′ to
finish its simulation without contacting U and instead using its random input w̃1, x1.
The reason we call this change almost black box is that it will be indistinguishable to
the adversary due to the security of the ElGamal threshold encryption scheme. Even
though the simulator computed different outputs for the original functionality φ,
since the computed functionality ψ outputs encrypted values, these will be indistin-
guishable (otherwise a simple reduction breaks the security of ElGamal encryption).
During MFE, the simulator S will learn the real outputs, and fake its share such
that the decryptions of ψi outputs would result in actual φi outputs obtained from
U . The output verification shares are distributed identically, and there is no problem
there as well.
Remark: We need S′ not to contact U due to the fairness simulation requirement
of Definition 1. Note that the simulator S is allowed to learn the outputs from U
only once it is guaranteed that all parties will learn their outputs. Otherwise, the
real outputs would be distinguishable from the ideal.
• Once S′ is done, all parties learned some encrypted output together with the ver-

ification shares. At this point, these encryptions contain random values. Now S
continues simulating the Phase 3 of MFE. If during that simulation, it is guaranteed
that all parties will learn their outputs, then he contacts U , providing the inputs of
the corrupted parties S′ extracted, and obtains the outputs φi from U . Accordingly,
S calculates decryption shares di for each corrupted party using the Equation (4).
Then he sends (differently from the MFE proof) only di to Pi. Note that, S cannot
calculates {di}2≤i≤n as in the simulation of MFE protocol because the encryptions
ψis do not include correct output values φis since S uses a random input w̃1 as an
input of SMPC protocol.

di =
bi

φia
x2
i ...a

xn
i

(4)

The behavior of S is indistinguishable since he acts as a simulator of SMPC and MFE.
This completes the proof.
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7 Performance and Privacy Analysis of the Protocols
MFE: Each party Pi in MFE prepares one verifiable encryption and one verifiable escrow,
and sends them to n− 1 parties. The verification of them are efficient because the relation
they show can be proven using discrete-logarithm-based honest-verifier zero-knowledge
three-move proofs of knowledge [20]. In the end, Pi sends a message including decryption
shares to n − 1 parties, again with an efficient proof of knowledge. So, for each party Pi,
the number of messages that he sends is O(n). Since there are n parties, the total message
complexity is O(n2). Note that there is no requirement to have these messages broadcast;
just ensuring all previous step’s messages are received before moving further is enough for
security. Table 1 shows the comparison to the previous works, MFE is much more efficient,
obtaining optimal asymptotic efficiency.

When there is a malicious party or a party suffering from network failure, MFE protocol
ends at the latest, immediately after t2. In the worst case, n parties contact the TTP, so
it is important to reduce his workload. TTP’s duties include checking some list from his
records, verifying efficient zero-knowledge proofs of knowledge from some number of parties
(depending on the size of the complaintList), and decrypting verifiable escrows. These
actions are all efficient.

Moreover, the privacy against the TTP is preserved. He just learns some decryp-
tion shares, but he cannot decrypt the encryption of exchanged items, since he never gets
the encrypted items.

We used ElGamal threshold encryption for presentation simplicity. Instead, any thresh-
old encryption scheme such as the Pailler cryptosystem [44], Franklin and Haber’s cryp-
tosystem [24], or Damgard-Jurik cryptosystem [21] can be employed.

Finally, our MFE protocol achieves the intuitive fairness definition of ‘either the whole
topology is satisfied, or no item is exchanged’ for any topology. Such a strong fairness
definition necessitates that the exchanges depend on all parties, necessitating quadratic
number of messages.

Fair MPC: The overhead of our fairness solution on top of an existing unfair SMPC
protocol is increased input/output size, and additional computation of encryptions and
verification shares. If an arithmetic circuit is used in the underlying SMPC protocol [9, 48,
19], then there are only O(n) additional exponentiations required, which does not extend
circuit size a lot. If boolean circuits are used, the size of the circuit increases more than an
arithmetic circuit would have, but it is still tolerable, especially considering in comparison
to the related work.

As seen in Table 3, [26] uses gradual release for fairness. However, this brings many
extra rounds and messages to the protocol. Each round each party releases his item by
broadcasting it. Recent, bitcoin-based approaches [13, 1] also require broadcasting in the
bitcoin network, which increases message complexity. Our only overhead is a constant
number of rounds, and O(n2) messages. Remember again that these are asymptotically
optimal, since fair SMPC necessitates a complete topology.
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