
Non-black-box Simulation in the Fully Concurrent Setting,
Revisited

Susumu Kiyoshima

NTT Secure Platform Laboratories, Japan.
susumu@kiyoshima.info

March 14, 2019

Abstract

We give a new proof of the existence of O(nϵ)-round public-coin concurrent zero-knowledge
arguments for NP, where ϵ > 0 is an arbitrary constant. The security is proven in the plain
model under the assumption that collision-resistant hash functions exist. (The existence of such
concurrent zero-knowledge arguments was previously proven by Goyal (STOC’13) in the plain
model under the same assumption.) In the proof, we use a new variant of the non-black-box
simulation technique of Barak (FOCS’01). An important property of our simulation technique is
that the simulator runs in a “straight-line” manner in the fully concurrent setting. Compared with
the simulation technique of Goyal, which also has such a property, the analysis of our simulation
technique is (arguably) simpler.

This article is based on an earlier article: An Alternative Approach to Non-black-box Simulation in Fully Concurrent
Setting, in Proceedings of TCC 2015, c⃝IACR 2015, DOI: 10.1007/978-3-662-46494-6 13.

1 Introduction

Zero-knowledge (ZK) proofs and arguments [GMR89] are interactive proof/argument systems with
which the prover can convince the verifier of the correctness of a mathematical statement while pro-
viding zero additional knowledge. In the definition of ZK protocols,1 this “zero additional knowl-
edge” property is formalized thorough the simulation paradigm: An interactive proof/argument is
said to be zero-knowledge if for any adversarial verifier there exists a simulator that can output a sim-
ulated view of the adversary. ZK protocols have been used as building blocks in many cryptographic
protocols, and techniques developed for them have been used in many fields of cryptography.

Traditionally, the security of ZK protocols was proven via black-box simulation. That is, the zero-
knowledge property was proven by showing a simulator that uses the adversary only as an oracle.
Since black-box simulators use the adversaries as oracles, the only advantage they have is the ability
to rewind the adversaries. Still, black-box simulation is quite powerful, and it can be used to obtain
ZK protocols with a variety of additional properties, security, and efficiency.

However, black-box simulation has inherent limitations. For example, let us consider public-coin
ZK protocols and concurrent ZK protocols, where the former is the ZK protocols such that the verifier
sends only the outcome of its coin-tossing during the protocols, and the latter is the ZK protocols such
that their zero-knowledge property holds even when they are concurrently executed many times. It
is known that both of them can be constructed by using black-box simulation techniques [GMW91,
RK99, KP01, PRS02]. However, it is also known that neither of them can be constructed by black-
box simulation techniques if we additionally require round efficiency. Specifically, it was shown
that constant-round public-coin ZK protocols and o(log n/ log log n)-round concurrent ZK protocols
cannot be proven secure via black-box simulation [GK96, CKPR02]. Furthermore, it was also shown
that no public-coin concurrent ZK protocol can be proven secure via black-box simulation irrespective
to its round complexity [PTW09].

A natural question to ask is whether the ZK property can be proven by using non-black-box
simulation techniques. In particular, whether the above impossibility results can be overcome by
using non-black-box simulation techniques is a highly motivated question. Non-black-box simulation
techniques are, however, significantly hard to develop. Specifically, non-black-box simulation seems
to inherently involve “reverse engineering” of the adversaries, and such reverse engineering seems
very difficult.

Barak [Bar01] made a breakthrough about non-black-box stimulation by proposing the first non-
black-box simulation technique under a standard assumption, and showing that a black-box impos-
sibility result can be overcome by using it. Specifically, Barak used his non-black-box simulation
technique to obtain a constant-round public-coin ZK protocol under the assumption that a family of
collision-resistant hash functions exists. (Recall that, as noted above, constant-round public-coin ZK
protocols cannot be proven secure via black-box simulation.) The simulation technique of Barak is
completely different from previous ones. Specifically, in his simulation technique, the simulator runs
in a “straight-line” manner (that is, it does not “rewind” the adversary) and simulates the adversary’s
view by using the code of the adversary.2

Non-black-box simulation in the concurrent setting. Since Barak’s non-black-box simulation
technique allows us to overcome a black-box impossibility result, it is natural to ask whether we can
overcome other black-box impossibility results as well by using Barak’s technique. In particular,
since Barak’s simulation technique works in a straight-line manner and therefore completely removes
the issue of recursive rewinding [DNS04] that arises in the setting of concurrent ZK, it is natural to

1We use “ZK protocols” to denote ZK proofs and arguments.
2The notion of “straight-line simulation” is, unfortunately, hard to formalize. I this paper, we use it only informally.

1

expect that Barak’s simulation technique can be used to overcome the black-box impossibility results
of o(log n/ log log n)-round concurrent ZK protocols and public-coin concurrent ZK protocols.

However, it turned out that Barak’s non-black-box simulation technique is hard to use in the con-
current setting. In fact, although Barak’s technique can be extended so that it can handle bounded-
concurrent execution [Bar01] (i.e., concurrent execution where the protocol is concurrently executed
a bounded number of times) and parallel execution [PRT13], it had been open for years to extend
it so that it can handle fully concurrent execution. An important step toward obtaining non-black-
box simulation in the fully concurrent setting was made by Deng, Goyal, and Sahai [DGS09], who
used Barak’s technique in the fully concurrent setting by combining it with a black-box simulation
technique (specifically, with the recursive rewinding technique of Richardson and Kilian [RK99]).
Another important step was made by Bitansky and Paneth [BP12, BP13, BP15], who developed a
new non-black-box simulation technique (which is not based on that of Barak) that can handle fully
concurrent execution when being combined with a black-box simulation technique (again, the re-
cursive rewinding technique of [RK99]). The simulation techniques of these works are powerful
enough to allow us to overcome another black-box impossibility result (the impossibility of simulta-
neously resettable ZK protocols [CGGM00, BGGL01]). However, they are not strict improvement
over Barak’s non-black-box simulation technique since they do not have some of the useful properties
that Barak’s technique do have, such as the public-coin property and the straight-line simulation prop-
erty. As a result, they do not immediately allow us to overcome the black-box impossibility results of
o(log n/ log log n)-round concurrent ZK protocols and public-coin concurrent ZK protocols.

Recently, several works showed that with a trusted setup or non-standard assumptions, Barak’s
simulation technique can be extended so that it can handle fully concurrent execution (without losing
its public-coin property and straight-line simulation property). Furthermore, they showed that with
their versions of Barak’s technique, it is possible to overcome the black-box impossibility results
of o(log n/ log log n)-round concurrent ZK protocols and public-coin concurrent ZK protocols. For
example, Canetti et al. [CLP13a] constructed a public-coin concurrent ZK protocol in the global hash
function (GHF) model, where a single hash function is used in all concurrent sessions. Also, Chung
et al. [CLP13b] constructed a constant-round concurrent ZK protocol by assuming the existence
of P-certificates (i.e., “succinct” non-interactive proofs/arguments for P), Pandey et al. [PPS15]
constructed a constant-round concurrent ZK protocols by assuming the existence of differing-input
indistinguishability obfuscators, and Chung et al. [CLP15] constructed a constant-round concurrent
ZK protocols by assuming the existence of indistinguishability obfuscators.

Very recently, Goyal [Goy13] showed that Barak’s non-black-box simulation technique can be
extended so that it can handle fully concurrent execution even in the plain model under standard as-
sumptions. Goyal then used his version of Barak’s technique to obtain the first public-coin concurrent
ZK protocol in the plain model under a standard assumption (the existence of a family of collision-
resistant hash functions), where its round complexity is O(nϵ) for an arbitrary constant ϵ > 0. Like the
original simulation technique of Barak (and many of its variants), the simulation technique of Goyal
has a straight-line simulator; hence, Goyal’s simulator performs straight-line concurrent simulation.
Because of this straight-line concurrent simulation property, the simulation technique of Goyal has
huge potential. In fact, it was shown subsequently that Goyal’s technique can be used to obtain new
results on concurrently secure multi-party computation and concurrent blind signatures [GGS15].

In summary, we currently have several positive results on non-black-box simulation in the con-
current setting, and in particular we have a one that has a straight-line concurrent simulator in the
plain model under a standard assumption [Goy13]. However, the state-of-the-art is still not satis-
factory and there are still many open problems to be addressed. For example, the simulation tech-
nique of Goyal [Goy13] requires the protocol to have O(nϵ) rounds, so the problem of constructing
o(log n/ log log n)-round concurrent ZK protocols in the plain model under standard assumptions is

2

still open. Thus, studying more on non-black-box simulation and developing new non-black-box
simulation techniques in the concurrent setting is still an important research direction.

1.1 Our Result

In this paper, we propose a new variant of Barak’s non-black-box simulation technique, and use it to
give a new proof of the following theorem, which was originally proven by Goyal [Goy13].

Theorem. Assume the existence of a family of collision resistant hash functions. Then, for any con-
stant ϵ > 0, there exists an O(nϵ)-round public-coin concurrent zero-knowledge argument of knowl-
edge.

Like the simulation technique of Goyal, our simulation technique can handle fully concurrent execu-
tion in the plain model under a standard assumption, and it has a simulator that runs in a straight-line
manner in the fully concurrent setting. We emphasize that our simulation technique requires the same
hardness assumption and the same round complexity as that of Goyal; hence, it does not immediately
lead to improvement over the result of Goyal. Nevertheless, we believe that our simulation technique
is interesting because it is different from that of Goyal and its analysis is (in our opinion) simpler
than the analysis of Goyal’s technique. (A comparison between our simulation technique and that of
Goyal is given in Section 2.3.) We hope that our technique leads to further study on non-black-box
simulation in the concurrent setting.

Brief overview of our technique. Our public-coin concurrent ZK protocol is based on the public-
coin concurrent ZK protocol of Canetti, Lin, and Paneth (CLP) [CLP13a], which is secure in the
global hash function model. Below, we give a brief overview of our technique under the assumptions
that the readers are familiar with Barak’s non-black-box simulation technique and CLP’s techniques.
In Section 2, we give a more detailed overview of our technique, including the explanation of the
techniques of Barak and CLP.

The protocol of CLP is similar to the ZK protocol of Barak except that it has multiple “slots” (i.e.,
pairs of a prover’s commitment and a receiver’s random-string message). A key observation by CLP
is that given multiple slots, one can avoid the blow-up of the simulator’s running time, which is the
main obstacle to use Barak’s simulation technique in the concurrent setting. More precisely, CLP’s
observation is that given multiple slots, the simulator can use any of these slots when generating the
PCP proof in the universal argument (UA) of Barak’s protocol, and therefore it can avoid the blow-
up of its running time by using a good “proving strategy” that determines which slots to use in the
generation of the PCP proofs in concurrent sessions. The proving strategy that CLP use is similar in
spirit to the oblivious rewinding strategy [KP01, PRS02] of black-box concurrent ZK protocols. In
particular, in the proving strategy of CLP, the simulator recursively divides the simulated transcript
between honest provers and the cheating verifier into “blocks,” and generates the PCP proofs only at
the end of the blocks.

A problem that CLP encountered is that the simulator has only one opportunity to give the UA
proof in each session, and thus it need to remember all previously generated PCP proofs if the adver-
sary delays the execution of the UA proofs in all sessions. Because of this problem, the length of the
PCP proofs can be rapidly blowing up in the concurrent setting, and the size of the simulator cannot
be bounded by a polynomial. In [CLP13a], CLP solved this problem in the global hash function
model by cleverly using the global hash function in UA.

To solve this problem in the plain model, we modify the protocol of CLP so that the simulator
has multiple opportunities to give the UA proof in each session. We then show that by using a good
proving strategy that also determines which opportunity the simulator takes to give the UA proof in

3

each session, the simulator can avoid the blow-up of its size as well as that of its running time. Our
proving strategy guarantees that a PCP proof generated at the end of a block is used only in its “parent
block”; because of this guarantee, the simulator need to remember each PCP proof only for a limited
time and therefore the length of the PCP proofs does not blow up. This proving strategy is the core of
our simulation technique and the main deference between the simulation technique of ours and that
of Goyal [Goy13]. (The simulator of Goyal also has multiple opportunities to give the UA proof in
each session, but it determines which opportunity to take by using a proving strategy that is different
from ours.) Interestingly, the strategy that we use is deterministic (whereas the strategy that Goyal
uses is probabilistic). Because of the use of this deterministic strategy, we can analyze our simulator
in a relatively simple way. In particular, when showing that every session is always successfully
simulated, we need to use only a simple counting argument.

2 Overview of Our Technique

As mentioned in Section 1.1, our protocol is based on the protocol of Canetti et al. [CLP13a], which
in turn is based on Barak’s non-black-box zero-knowledge protocol [Bar01]. Below, we first recall
the protocols of [Bar01, CLP13a] and then give an overview of our protocol.

2.1 Known Techniques

Barak’s protocol. Roughly speaking, Barak’s non-black-box zero-knowledge argument BarakZK
proceeds as follows.

Protocol BarakZK

1. The verifier V chooses a hash function h ∈ Hn and sends it to the prover P.

2. P sends c ← Com(0n) to V , where Com is a statistically binding commitment scheme. (For
simplicity, in this overview we assume that Com is non-interactive.) Then, V sends a random
string r ∈ {0, 1}n to P. In the following, the pair (c, r) is called a slot.

3. P proves the following statement by using a witness-indistinguishable argument.

• x ∈ L, or
• (h, c, r) ∈ Λ, where Λ is a language such that (h, c, r) ∈ Λ holds if and only if there exists

a machine Π such that (i) c is a commitment to h(Π) and (ii) Π outputs r within nlog log n

steps.3

Since polynomial-time algorithms cannot check whether or not Π outputs r within nlog log n steps,
the statement proven in Step 3 is not in NP. Thus, P proves this statement by using a witness-
indistinguishable universal argument (WIUA), which is, roughly speaking, a witness-indistinguishable
argument for NEXP such that a language whose witness relation is checkable in T steps can be
proven in poly(T) steps.

Roughly speaking, the security of BarakZK is proven as follows. The soundness is proven by
observing that even when a cheating prover P∗ commits to h(Π) for a machine Π, we have Π(c) , r
with overwhelming probability because r is chosen after P∗ commits to h(Π). The zero-knowledge
property is proven by using a simulator that commits to a machine Π that emulates the cheating
verifier V∗; since Π(c) = V∗(c) = r from the definition, the simulator can give a valid proof in WIUA.
Such a simulator runs in polynomial time since, from the property of WIUA, the running time of the
simulator during WIUA is bounded by poly(t), where t is the running time of Π(c).

3Here, nlog log n can be replaced with any super-polynomial function. We use nlog log n for concreteness.

4

Barak’s protocol in the concurrent setting. A limitation of BarakZK is that we do not know
how to prove its zero-knowledge property in the concurrent setting. Recall that in the concurrent
setting, a protocol is executed many times concurrently; hence, to prove the zero-knowledge property
of a protocol in the concurrent setting, we need to design a simulator against cheating verifiers that
participate in many sessions of the protocol with honest provers. The above simulator for BarakZK,
however, does not work against such verifiers since V∗(c) = r does not hold when a verifier V∗

participates in other sessions during a slot of a session (i.e., V∗(c) , r holds when V∗ first receives c
in a session, next receives messages in other sessions, and then sends r in the first session).

A potential approach to proving the concurrent zero-knowledge property of BarakZK is to use
a simulator S that commits to a machine that emulates S itself. The key observation behind this
approach is the following: When V∗ participates in other sessions during a slot of a session, all the
messages that V∗ receives in the other sessions are actually generated by S; hence, if the committed
machine Π can emulate S, it can emulate all the messages between c and r for V∗, so Π(c) can output
r even when V∗ receives many messages during a slot.4

This approach however causes a problem in the simulator’s running time. For example, let us
consider the following “nested concurrent sessions” schedule (see Figure 1).

• The (i + 1)-th session is executed in such a way that it is completely contained in the slot of
the i-th session. That is, V∗ starts the (i + 1)-th session after receiving c in the i-th session, and
sends r in the i-th session after completing the (i + 1)-th session.

Let m be the number of sessions, and let t be the running time of S during the simulation of the
m-th session. Then, to simulate the (m − 1)-th session, S need to run at least 2t steps—t steps for
simulating the slot (which contains the m-th session) and t steps for simulating WIUA. Then, to
simulate the (m − 2)-th session, S need to run at least 4t steps—2t steps for simulating the slot and 2t
steps for simulating WIUA. In general, to simulate the i-th session, S need to run at least 2m−it steps.
Thus, the running time of S becomes super-polynomial when m = ω(log n).

Protocol of Canetti et al. [CLP13a]. To avoid the blow-up of the simulator’s running time, Canetti,
Lin, and Paneth (CLP) [CLP13a] used the “multiple slots” approach, which was originally used in
previous black-box concurrent zero-knowledge protocols [RK99, KP01, PRS02]. The idea is that if
BarakZK has multiple sequential slots, S can choose any of them as a witness in WIUA, and therefore
S can avoid the nested computations in WIUA by using a good proving strategy that determines which
slot to use as a witness in each session. To implement this approach, CLP first observed that the four-
round public-coin UA of Barak and Goldreich [BG09], from which WIUA can be constructed, can be
divided into the offline phase and the online phase such that all heavy computations are done in the
offline phase. Concretely, CLP divided the UA of [BG09] as follows. Let x ∈ L be the statement to be
proven in UA and w be a witness for x ∈ L.

Offline/online UA

• Offline Phase:

1. V sends a random hash function h ∈ Hn to P.

2. P generates a PCP proof π of statement x ∈ L by using w as a witness, and then computes
UA2 := h(π). In the following, (h, π,UA2) is called the offline proof.

4The circularity about the simulator committing to a machine that emulates the simulator itself can be avoided by
separating it to the main simulator S and an auxiliary simulator aux-S. Roughly speaking, aux-S takes a code of a machine
Π as input and does simulation by committing to Π; then, S invokes aux-S with input Π = aux-S.

5

WIUA

WIUA

WIUA

WIUA

1st 2nd 3rd m-th

P V

Figure 1: The “nested concurrent sessions” schedule.

• Online Phase:

1. P sends UA2 to V .

2. V chooses randomness ρ for the PCP-verifier and sends UA3 := ρ to P.

3. P computes a PCP-query Q by executing the PCP-verifier with statement x ∈ L and ran-
domness ρ, and then sends {πi}i∈Q to V (i.e., partially reveals π according to the locations
that are specified by Q) while proving that {πi}i∈Q is correctly computed w.r.t. the string it
hashed in UA2. (Such a proof can be generated efficiently if P computes UA2 = h(π) by
tree hashing.)

4. V first verifies the correctness of the revealed bits {πi}i∈Q, and next verifies the PCP proof
by executing the PCP-verifier on {πi}i∈Q.

Note that the only heavy computations—the generation of π and the computation of h(π)—are per-
formed in the offline phase; the other computations can be performed in a fixed polynomial time. (For
simplicity, here we assume that P has random access to π.5) Thus, in the online phase, the running
time of P can be bounded by a fixed polynomial in n. In the offline phase, the running time of P is
bounded by a fixed polynomial in t, where t is the time needed for verifying x ∈ L with witness w.
The length of the offline proof is also bounded by a polynomial in t.

CLP then considered the following protocol (which is an over-simplified version of their final
protocol). Let Nslot be a parameter that is determined later.

Protocol BasicCLP

Stage 1. V chooses a hash function h ∈ Hn and sends it to P.

Stage 2. For each i ∈ [Nslot] in sequence, P and V do the following.

• P sends Ci ← Com(0n) to V . Then, V sends a random string ri ∈ {0, 1}n to P.
5This assumption is used only in this overview.

6

Stage 3. P and V execute the special-purpose WIUA of Pass and Rosen [PR05] with the UA system
of Barak and Goldreich [BG09] being used as the underlying UA system. Concretely, P and V
do the following.

1. P sends DUA ← Com(0n) to V .

2. V sends a third-round UA message UA3 to P (i.e., V sends a random string of appropriate
length).

3. P proves the following statement by using a witness-indistinguishable proof of knowledge
(WIPOK).

• x ∈ L, or
• there exist i ∈ [Nslot] and a second- and a fourth-round UA message UA2,UA4 such

that DUA is a commitment to UA2 and (h,UA2,UA3,UA4) is an accepting proof for
the statement (h,Ci, ri) ∈ Λ.

Recall that the idea of the multiple-slot approach is that S avoids nested computations in WIUA by
using a good proving strategy that determines which slots to use as witnesses. Based on this idea, CLP
designed a proving strategy as well as a simulator. First, their simulator works roughly as follows: S
commits to a machine in each slots, where the committed machines emulate S as mentioned above;
S then computes an offline proof (including a PCP proof) w.r.t. a slot that is chosen according to the
proving strategy; S then commits to the second-round UA message (i.e., the hash of the PCP proof)
in Stage 3-1 and gives a WIPOK proof in Stage 3-3 using the offline proof as a witness. Second,
their proving strategy works roughly as follows. As in the oblivious rewinding strategy of black-box
concurrent zero-knowledge protocols [KP01, PRS02], the proving strategy of CLP recursively divides
the entire transcript between honest provers and the cheating verifier into “blocks.” Let M be the total
number of messages and q be a parameter called the splitting factor. Assume for simplicity that M is
a power of q, i.e., M = qd for d ∈ N.

• The level-d block is the entire transcript. Thus, the level-d block contains M = qd messages.

• Then, the level-d block is divided into q sequential blocks, where each of them contains qd−1

messages. These blocks are called the level-(d − 1) blocks.

• Similarly, each level-(d − 1) block is divided into q sequential blocks, where each of them
contains qd−2 messages. These blocks are called the level-(d − 2) blocks.

• In this way, each block is continued to be divided into q blocks until the level-0 blocks are
obtained. A level-0 block contains only a single message.

Then, the proving strategy of CLP specifies that at the end of each block in each level, S computes
offline proofs w.r.t. each slot that is contained in that block. Note that the offline proofs are computed
only at the end of the blocks, and the maximum level of the blocks (i.e., d) is constant when q = nϵ

for a constant ϵ. We therefore have at most constant levels of nesting in the executions of WIUA.
Furthermore, it was shown by CLP that when Nslot = ω(q) = ω(nϵ), the simulator does not “get
stuck,” i.e., in every session, the simulator obtains an offline proof before Stage 3 starts.

The protocol BasicCLP is, however, not concurrent zero-knowledge in the plain model. Roughly
speaking, this is because the size of S’s state can become super-polynomial. Recall that S generates
an offline proof in Stage 2 and uses it in Stage 3 in each session. Then, since V∗ can choose any
concurrent schedule (and in particular can delay the execution of Stage 3 arbitrarily), in general, S
need to remember every previously generated offline proof during its execution. This means that
each committed machine also need to contain every previously generated offline proof (otherwise

7

they cannot emulate the simulator), and therefore an offline proof (which is generated by using a
committed machine as a witness) is as long as the total length of all the offline proofs that are generated
previously. Thus, the length of the offline proofs can be rapidly blowing up and the size of S’s state
cannot be bounded by a polynomial.

A key observation by CLP is that this problem can be solved in the global hash model, in which
a global hash function is shared by all sessions. Roughly speaking, CLP avoided the blow-up of
the simulator’s size by considering machines that contain only the hash values of the offline proofs;
then, to guarantee that the simulation works with such machines, they modified BasicCLP in such
a way that P proves in WIUA that x ∈ L or the committed machine outputs r given access to the
hash-inversion oracle; in the simulation, S commits to a machine that emulates S by recovering
offline proofs from their hash values using the hash-inversion oracle. In this modified protocol, the
soundness is proven by using the fact that the same hash function is used across all the sessions.

In this way, CLP obtained a public-coin concurrent zero-knowledge protocol in the global hash
model. Since q = nϵ and Nslot = ω(q), the round complexity is O(nϵ

′
) for a constant ϵ′. (Since ϵ is

an arbitrary constant, ϵ′ can be an arbitrary small constant.) CLP also showed that by modifying the
protocol further, the round complexity can be reduced to O(log1+ϵ n).

2.2 Our Techniques

We obtain our O(nϵ)-round protocol by modifying BasicCLP of Canetti et al. [CLP13a] so that its
concurrent zero-knowledge property can be proven without using global hash functions. Recall that a
global hash function is used in [CLP13a] to avoid the blow-up of the simulator’s state size. In partic-
ular, a global hash function is used so that the simulation works even when the committed machines
do not contain any previously computed offline proof. Below, we first introduce the machines that
our simulator commits to in the slots. They do not contain any previously generated offline proof
and therefore their sizes are bounded by a fixed polynomial. We then explain our protocol and sim-
ulator, which are designed so that the simulation works even when the committed machines do not
contain any previously computed offline proof. In the following, we set q := nϵ , Nslot := ω(q), and
Ncol := ω(1).

The machines to be committed. Our first observation is that if the committed machines emulate a
larger part of the simulation, they generate more offline proofs by itself, and they are more likely to be
able to output r even when they contain no offline proof. For example, let us consider an extreme case
that the committed machines emulate the simulator from the beginning of the simulation (rather than
from the beginning of the slots in which they are committed to). In this case, the committed machines
generate every offline proof by themselves, so they can output r even when they contain no offline
proof. A problem of this case is that the running time of each committed machine is too long and the
running time of the simulator becomes super-polynomial. We therefore need to design machines that
emulate a large, but not too large, part of the simulation.

Based on this observation, we consider machines that emulate the simulator from the beginning
of the “current blocks,” i.e., machines that emulate the simulator from the beginning of the blacks that
contain the commitments in which they are committed to. More precisely, we first modify BasicCLP
so that P gives Ncol parallel commitments in each slot. Then, our simulator commits to machines in
each slot as follows. Below, the i-th column (i ∈ [Ncol]) of a slot is the i-th commitment of the slot,
and the current level-ℓ block (ℓ ∈ [d]) at a point during the interaction with V∗ is the level-ℓ block that
will contain the next-scheduled message (see Figure 2).

• In the i-th column (i ∈ [d]) of a slot, our simulator commits to a machine Πi that emulates the
simulator from the beginning of the current level-i block, where Πi does not contain any offline

8

Figure 2: An illustration of the current blocks. When the next scheduled message is located on the
place specified by the triangle, the current blocks are the ones described with the thick lines.

proofs, and it terminates with output fail if the emulation fails due to the lack of the offline
proofs.

Now, we observe that the simulator’s running time does not blow-up when the simulator commits
to machines as above. Assume that, as in the proving strategy of CLP, the simulator computes the
offline proofs only at the end of the blocks. Specifically, assume that the simulator compute the offline
proofs at the end of the blocks as follows.

• At the end of a level-ℓ block b (ℓ ∈ [d]), the simulator finds all the slots that are contained in
block b, and generates offline proofs w.r.t. those slots by using the machine that are committed
to in their ℓ-th columns. Note that those committed machines emulate the simulator from the
beginning of block b, so the simulator can indeed use them as witness when generating the
offline proofs.

Let ti be the maximum time needed for simulating a level-i block (i ∈ {0, . . . , d}). Recall that a level-i
block consists of q level-(i − 1) blocks, and at most m := poly(n) offline proofs are generated at the
end of each level-(i − 1) block. Then, since each offline proof at the end of a level-(i − 1) block can
be computed in poly(ti−1) steps, we have

ti ≤ q · (ti−1 + m · poly(ti−1)) ≤ poly(ti−1) .

Recall that we have t0 = poly(n) (this is because a level-0 block contains only a single message), and
the maximum level d = logq M is constant. We therefore have td = poly(n), so the running time of
the simulator is bounded by a polynomial in n.

We note that although the above machines do not contain any previously generated offline proof,
they do contain every previously generated WIPOK witness (i.e., UA2 and UA4).6 As explained below,
allowing the committed machines to contain every previously generated WIPOK witness is crucial to
obtain our protocol and simulator.

Our protocol and simulator. When the simulator commits to the above machines, the simulation
does not work if the committed machines output fail. In particular, the simulation fails if there exists
a block in which the simulator uses an offline proof that are generated before the beginning of that
block. (If such a block exists, the machines that are committed in this block output fail since they
cannot emulate the simulator due to the lack of the offline proof.) Thus, to guarantee successful
simulation, we need to make sure that in each block, the simulator uses only the offline proofs that are
generated in that block. Of course, we also need to make sure that the simulator does not “get stuck,”
i.e., we need to guarantee that in each session, the simulator obtains a valid witness before WIPOK
starts.

6Since the length of the WIPOK witnesses is bounded by a fixed polynomial, the sizes of the committed machines do
not blow up even when they contain every previously generated WIPOK witness.

9

To avoid the simulation failure, we first modify BasicCLP as follows. As noted in the previous
paragraph, we need to construct a simulator such that in each block, it uses only the offline proofs that
are generated in that block. In BasicCLP, it is hard to construct such a simulator since offline proofs
may be used long after they are generated. (Recall that during the simulation, the offline proofs are
generated in Stage 2 and they are used in Stage 3 to compute WIPOK witnesses, and V∗ can delay the
execution of Stage 3 arbitrarily.) Thus, we modify BasicCLP so that the simulator can use the offline
proofs soon after generating them; in particular, we modify BasicCLP so that Stage 3 can be executed
“in the middle of” Stage 2. Concretely, after each slot in Stage 2, we add another slot, a UA-slot, that
can be used for executing Stage 3-1 and Stage 3-2. That is, we consider the following protocol. (As
stated before, we also modify BasicCLP so that P gives Ncol parallel commitments in each slot.)

Protocol OurZK

Stage 1. V chooses a hash function h ∈ Hn and sends it to P.

Stage 2. For each i ∈ [Nslot] in sequence, P and V do the following.

Π-slot: P sends Ci,1 ← Com(0n), . . . ,Ci,Ncol ← Com(0n) to V . Then, V sends a random string
ri ∈ {0, 1}n

2
to P.

UA-slot: P sends Di,1 ← Com(0n), . . . ,Di,Ncol ← Com(0n) to V . Then, V sends a random
string ωi to P.

Stage 3. P proves the following statement with WIPOK.

• x ∈ L, or

• there exist i1, i2 ∈ [Nslot], j ∈ [Ncol], and a second- and a fourth-round UA message UA2
and UA4 such that Di2, j is a commitment to UA2 and (h,UA2, ωi2 ,UA4) is an accepting
proof of the statement (h,Ci1, j, ri1) ∈ Λ.

We then consider the following simulator. Recall that, as explained above, our simulator commits
to machines that emulate the simulation from the beginning of the current blocks, and its running
time can be bounded by a polynomial if the offline proofs are computed only at the end of the blocks.
Recall also that we need to make sure that (i) in each block the simulator uses only the offline proofs
that are generated in that block (so that each committed machine does not output fail due to the lack
of the offline proofs), and (ii) the simulator does not get stuck.

Roughly speaking, our simulator does the following in each block (see Figure 3). Consider any
level-(i + 1) block b (i ∈ [d − 1]), and recall that b consists of q level-i blocks. The goal of our sim-
ulator in block b is to compute offline proofs by using the machines that emulate the simulation from
the beginning of those level-i blocks, and find opportunities to use them before block b completes.
Therefore, for each session s, our simulator first tries to find a level-i block that contains a Π-slot of
session s. If it finds such a level-i block and a Π-slot, it computes an offline proof at the end of that
level-i block by using the machine that is committed to in the i-th column of that Π-slot, and commits
to this offline proof in the i-th column of the UA-slots of session s in the subsequent level-i blocks.
If a subsequent level-i block contains a UA-slot of session s, it computes a WIPOK witness from this
offline proof (i.e., by using the third-round UA message in that UA-slot, it computes a fourth-round
UA message from that offline proof).

More precisely, we consider the following simulator. In what follows, for each i ∈ {0, . . . , d − 1},
we say that two level-i blocks are sibling if they are contained by the same level-(i + 1) block.

• In the i-th column (i ∈ [d]) of a Π-slot of a session s, our simulator commits to a machine that
emulates the simulator from the beginning of the current level-i block.

10

commit to offline proof

compute offline proof compute WIPOK witness
from and

Figure 3: Our simulator’s strategy.

Case 1 Case 2

Figure 4: If a block contains two slots of a session, it contains both a Π-slot and a UA-slot.

• In the i-th column (i ∈ [d]) of a UA-slot of a session s, our simulator commits to 0n if no prior
sibling of the current level-i block contains a Π-slot of session s; if a prior sibling contains a
Π-slot of session s, an offline proof w.r.t. such a Π-slot was computed at the end of that prior
sibling (see below), so our simulator commits to that offline proof instead of 0n.

• When WIPOK starts, our simulator does the following. If it already obtained a valid witness
(see below), it gives a proof by using this witness. If it does not have a valid witness, it aborts
with output stuck.

• At the end of a level-i block b (i ∈ [d − 1]), our simulator does the following. For each Π-slot
that is contained in block b, it computes an offline proof by using the machine that is committed
to in the i-th column of that Π-slot. Also, for each UA-slot that is contained in block b, if an
offline proof is committed to in the i-th column of that UA-slot, it computes a WIPOK witness
by using that offline proof.

In the simulation by our simulator, the committed machines never fail due to the lack of the offline
proofs. This is because in each block, our simulator uses only the offline proofs that are generated in
that block.

Thus, it remains to show that our simulator does not get stuck, i.e., in each session our simulator
has a valid witness when WIPOK starts. Below, we use the following terminologies.

• For any session s, a block is good w.r.t. s if it contains at least two slots of session s and does
not contain the first prover message of WIPOK of session s. Here, we use “slots” to refer to
both Π-slots and UA-slots. Hence, if a block is good w.r.t. session s, it contains both a Π-slot
and a UA-slot of session s (see Figure 4).

• For each i ∈ [d], we say that a level-(i − 1) block is a child of a level-i block if the former is
contained by the latter. (Thus, each block has q children.)

11

From the construction, our simulator does not get stuck if for any session s that reaches WIPOK, there
exists a block such that at least two of its children are good w.r.t. session s. (If such a block exists,
an offline proof is computed at the end of the first good child, and a WIPOK witness is computed at
the end of the second good child, so the simulator obtains a WIPOK witness before WIPOK starts in
session s.) Thus, we show that if a session s reaches WIPOK, there exists a block such that at least
two of its children are good w.r.t. session s. To prove this, it suffices to show that if a session s reaches
WIPOK, there exists a block such that at least three of its children contain two or more slots of session
s. (This is because at most one child contains the first message of WIPOK of session s.) Assume for
contradiction that there exists a session s∗ such that s∗ reaches WIPOK but every block has at most
two children that contain two or more slots of s∗. Let Γ(i) be the maximum number of the slots that
belong to s∗ and are contained by a level-i block. Then, since in each block b,

• at most two children of b contain two or more slots of s∗, and the other children contain at most
a single slot of s∗, and

• s∗ has at most q−1 slots that are contained by block b but are not contained by its children (see
Figure 5),

we have

Γ(i) ≤ 2 · Γ(i − 1) + (q − 2) · 1 + q − 1 = 2Γ(i − 1) + 2q − 3 .

Then, since Γ(0) = 0 (this is because a level-0 block contains only a single message), and the maxi-
mum level d is constant, we have

Γ(d) ≤ 2dΓ(0) +
d−1∑
i=0

2i(2q − 3) = O(q) .

This means that there are at most O(q) slots of s∗ in the entire transcript. This is a contradiction since
we have Nslot = ω(q) and assume that s∗ reaches WIPOK. Thus, if a session reaches WIPOK, there
exists a block such that at least two of its children are good w.r.t. that session. Thus, the simulator
does not get stuck.

Figure 5: An example that a session has q−1 slots that are contained by a block but are not contained
by its children. (For simplicity, only Π-slots are illustrated.)

Since q = O(nϵ) and Nslot = ω(q), the round complexity of our protocol is O(nϵ
′
) for a constant

ϵ′ > ϵ. Since ϵ is an arbitrary constant, ϵ′ can be an arbitrary small constant.

12

Toward the final protocol. To obtain a formal proof of security, we need to add a slight modifica-
tion to the above protocol. In particular, as pointed out in previous work [Goy13, CLP13a, CLP13b,
PPS15], when the code of the simulator is committed in the simulation, we have to take special care
to the randomness of the simulator.7 Fortunately, the techniques used in the previous work can also be
used here to overcome this problem. In this work, we use the technique of [CLP13a, CLP13b], which
uses forward-secure pseudorandom generators (which can be obtained from one-way functions).

2.3 Comparison with the Simulation Technique of Goyal [Goy13]

In this section, we compare the simulation technique of ours with that of Goyal [Goy13], which is the
only known simulation technique that realizes straight-line concurrent simulation in the plain model
under standard assumptions.

First of all, our protocol is almost identical with that of Goyal. The only difference is that the
prover givesω(1) commitments in each slot in our protocol whereas it gives only a single commitment
in each slot in Goyal’s protocol.

Our simulation technique is also very similar to Goyal’s simulation technique. For example, in
both simulation techniques, the simulator commits to machines that emulate itself, and it has multiple
opportunities to give UA proof and determines which opportunities to take by using the blocks.

However, there are also differences between the two simulation techniques. A notable difference
is how the simulator determines which opportunities to take to give UA proofs. Recall that, in the
simulation technique of ours, the strategy that the simulator uses to determine whether it embeds
a UA message in a slot is deterministic (the simulator checks whether a prior sibling of the current
block contains aΠ-slot; see Figure 3 in Section 2.2). In contrast, in the simulation technique of Goyal,
the strategy that the simulator uses is probabilistic (the simulator uses a probabilistic procedure that
performs the “marking” of the blocks and the UA messages). Since in the simulation technique of
ours the simulator uses a deterministic strategy, the analysis of our simulator is simple: We use only
a simple counting argument (and no probabilistic argument) to show that the simulator will not get
stuck.

3 Preliminary

We assume familiarity to the definition of basic cryptographic primitives and protocols, such as
collision-resistant hash functions and commitment schemes.

3.1 Notations

We use n to denote the security parameter, and ppt as an abbreviation of “probabilistic polynomial
time.” For any k ∈ N, let [k] def

= {1, . . . , k}. For any randomized algorithm Algo, we use Algo(x; r) to
denote the execution of Algo with input x and randomness r, and Algo(x) to denote the execution of
Algo with input x and uniformly chosen randomness. For any two interactive Turing machines A, B
and three strings x, y, z ∈ {0, 1}∗, we use ⟨A(y), B(z)⟩(x) to denote the output of B in the interaction
between A(x, y) and B(x, z).

7When the code of the simulator is committed, the randomness used for generating this commitment is also committed;
thus, if a protocol is designed naively, we need a commitment scheme such that the committed value is hidden even when
it contains the randomness used for the commitment.

13

3.2 Tree Hashing

In this paper, we use a family of collision-resistant hash functions H = {hα}α∈{0,1}∗ that satisfies the
following properties.

• For any h ∈ Hn
def
= {hα ∈ H : α ∈ {0, 1}n}, the domain of h is {0, 1}∗ and the range of h is {0, 1}n.

• For any h ∈ Hn, x ∈ {0, 1}≤nlog log n
, and i ∈ {1, . . . , |x|}, one can compute a short certificate

authi(x) ∈ {0, 1}n2
such that given h(x), xi, and authi(x), anyone can verify that the i-th bit of x

is indeed xi.

Such a collision-resistant hash function family can be obtained from any (standard) length-halving
collision-resistant hash function family by using Merkle’s tree-hashing technique. We notice that
whenH is obtained in this way,H satisfies an additional property that we can find a collision of the
underlying hash function from two pairs (xi, authi(x)) and (x′i , authi(x′)) such that xi , x′i ; further-
more, finding such a collision takes only time polynomial in the size of the hash value (i.e., |h(x)| = n).

3.3 Naor’s Commitment Scheme

In our protocol, we use Naor’s two-round statistically binding commitment scheme Com, which can
be constructed from one-way functions [Nao91, HILL99]. A nice property of Com is that its security
holds even when the same first-round message τ ∈ {0, 1}3n is used in multiple commitments. For any
τ ∈ {0, 1}3n, we use Comτ(·) to denote an algorithm that, on input m ∈ {0, 1}∗, computes a commitment
to m by using τ as the first-round message.

3.4 Interactive Proofs and Arguments

We recall the definitions of interactive proofs and interactive arguments, and the definitions of their
witness indistinguishability and proof-of-knowledge property [GMR89, BCC88, FS90, BG92].

Definition 1 (Interactive Proof System). For an NP language L with witness relation RL, a pair of
interactive Turing machines ⟨P,V⟩ is an interactive proof for L if it satisfies the following properties.

• Completeness: For every x ∈ L and w ∈ RL(x),

Pr [⟨P(w),V⟩(x) = 1] = 1 .

• Soundness: For every computationally unbounded Turing machine P∗, there exists a negligible
function negl(·) such that for every x < L and z ∈ {0, 1}∗,

Pr
[⟨P∗(z),V⟩(x) = 1

]
< negl(|x|) .

If the soundness condition holds only against every ppt Turing machine, the pair ⟨P,V⟩ is an interac-
tive argument. ^

Definition 2 (Witness Indistinguishability). An interactive proof (or argument) system ⟨P,V⟩ for an
NP language L with witness relation RL is said to be witness indistinguishable if for every ppt Turing
machine V∗ and for every two sequences {w1

x}x∈L and {w2
x}x∈L such that w1

x,w
2
x ∈ RL(x) for every

x ∈ L, the following ensembles are computationally indistinguishable.

•
{
⟨P(w1

x),V∗(z)⟩(x)
}

x∈L,z∈{0,1}∗

14

•
{
⟨P(w2

x),V∗(z)⟩(x)
}

x∈L,z∈{0,1}∗ ^

Definition 3 (Proof of Knowledge). An interactive proof system ⟨P,V⟩ for an NP language L with
witness relation RL is said to be proof of knowledge if there exists an expected ppt oracle machine
E (call the extractor) such that the following holds: For every computationally unbounded Turing
machine P∗, there exists a negligible function negl(·) such that for every x ∈ {0, 1}∗ and z ∈ {0, 1}∗,

Pr
[
∃w ∈ RL(x) s.t. EP∗(x,z)(x) = w

]
> Pr

[⟨P∗(z),V⟩(x) = 1
] − negl(|x|) .

If the above condition holds only against every ppt Turing machine P∗, the pair ⟨P,V⟩ is said to be
argument of knowledge. ^

A four-round witness-indistinguishable proof of knowledge system WIPOK can be obtained from
one-way functions by executing Blum’s Hamiltonian-cycle protocol in parallel [Blu86].

3.5 Concurrent Zero-Knowledge Proofs/Arguments

We recall the definition of the concurrent zero-knowledge property of interactive proofs and argu-
ments [RK99]. For any polynomial m(·), m-session concurrent cheating verifier is a ppt Turing ma-
chine V∗ such that on input (x, z), V∗ concurrently interacts with m(|x|) independent copies of P. The
interaction between V∗ and each copy of P is called session. There is no restriction on how V∗ sched-
ules messages among sessions, and V∗ can abort some sessions. Let viewV∗⟨P(w),V∗(z)⟩(x) be the
view of V∗ in the above concurrent execution, where x ∈ L is the common input, w ∈ RL(x) is the
private input to P, and z is the non-uniform input to V∗.

Definition 4 (Concurrent Zero-Knowledge). An interactive proof (or argument) ⟨P,V⟩ for an NP
language L is concurrent zero-knowledge if for every polynomial m(·) and every m-session concurrent
cheating verifier V∗, there exists a ppt simulator S such that for any sequence {wx}x∈L such that
wx ∈ RL(x), the following ensembles are computationally indistinguishable.

• {viewV∗⟨P(wx),V∗(z)⟩(x)}x∈L,z∈{0,1}∗

• {S(x, z)}x∈L,z∈{0,1}∗ ^

Remark 1. As in previous work (e.g., [RK99, KP01, PRS02]), we consider the setting where the same
statement x is proven in all the sessions. We comment that our protocol and its security proof work
even in a slightly generalized setting where predetermined statements x1, . . . , xm are proven in the
sessions. (However, they do not work if the statements are chosen adaptively by the cheating verifier.)

3.6 PCP and Universal Argument

We recall the definitions of probabilistically checkable proof (PCP) systems and universal argument
systems [AS98, BG09].

3.6.1 Universal Language LU .

For simplicity, we show the definitions of PCPs and universal arguments only w.r.t. the membership
of a single “universal” language LU . For triplet y = (M, x, t), we have y ∈ LU if non-deterministic
machine M accepts x within t steps. (Here, all components of y, including t, are encoded in binary.)
Let RU be the witness relation of LU , i.e., RU is a polynomial-time decidable relation such that for
any y = (M, x, t), we have y ∈ LU if and only if there exists w ∈ {0, 1}≤t such that (y,w) ∈ RU . Note
that every language L ∈ NP is linear-time reducible to LU . Thus, a proof system for LU allows us to
handle all NP statements.8

8In fact, every language in NEXP is polynomial-time reducible to LU .

15

3.6.2 PCP System.

Roughly speaking, a PCP system is a ppt verifier that can decide the correctness of a statement y ∈ LU
given access to an oracle π that represents a proof in a redundant form. Typically, the verifier reads
only few bits of π in the verification.

Definition 5 (PCP system—basic definition). A probabilistically checkable proof (PCP) system (with
a negligible soundness error) is a ppt oracle machine V (called a verifier) that satisfies the following.

• Completeness: For every y ∈ LU , there exists an oracle π such that

Pr
[
Vπ(y) = 1

]
= 1 .

• Soundness: For every y < LU and every oracle π, there exists a negligible function negl(·) such
that

Pr
[
Vπ(y) = 1

]
< negl(|y|) .

^

In this paper, PCP systems are used as a building block in the universal argument UA of Barak
and Goldreich [BG09]. To be used in UA, PCP systems need to satisfy four auxiliary properties:
relatively efficient oracle construction, non-adaptive verifier, efficient reverse sampling, and proof of
knowledge. The definitions of the first two properties are required to understand this paper; for the
definitions of the other properties, see [BG09].

Definition 6 (PCP system—auxiliary properties). Let V be a PCP-verifier.

• Relatively efficient oracle construction: There exists an algorithm P (called a prover) such
that, given any (y,w) ∈ RU , algorithm P outputs an oracle πy that makes V always accept (i.e.,
as in the completeness condition). Furthermore, there exists a polynomial p(·) such that on
input (y,w), the running time of P is p(|y| + |w|).

• Non-adaptive verifier: The verifier’s queries are determined based only on the input and its
internal coin tosses, independently of the answers given to previous queries. That is, V can be
decomposed into a pair of algorithms Q and D such that on input y and random tape r, the
verifier makes the query sequence Q(y, r, 1),Q(y, r, 2), . . . ,Q(y, r, p(|y|)), obtains the answers
b1, . . . , bp(|y|), and decides according to D(y, r, b1 · · · bp(|y|)), where p is some fixed polynomial.

^

3.6.3 Universal Argument.

Universal arguments [BG09], which are closely related to the notion of CS poofs [Mic00], are “effi-
cient” arguments of knowledge for proving the membership in LU . For any y = (M, x, t) ∈ LU , let
TM(x,w) be the running time of M on input x with witness w, and let RU(y) def

= {w : (y,w) ∈ RU}.

Definition 7 (Universal argument). A pair of interactive Turing machines ⟨P,V⟩ is a universal argu-
ment system if it satisfies the following properties.

• Efficient verification: There exists a polynomial p such that for any y = (M, x, t), the total time
spent by (probabilistic) verifier strategy V on inputs y is at most p(|y|).

16

• Completeness by a relatively efficient prover: For every y = (M, x, t) ∈ LU and w ∈ RU(y),

Pr
[⟨P(w),V⟩(y) = 1

]
= 1 .

Furthermore, there exists a polynomial q such that the total time spent by P, on input (y,w), is
at most q(|y| + TM(x,w)) ≤ q(|y| + t).

• Computational Soundness: For every ppt Turing machine P∗, there exists a negligible function
negl(·) such that for every y = (M, x, t) < LU and z ∈ {0, 1}∗,

Pr
[⟨P∗(z),V⟩(y) = 1

]
< negl(|y|) .

• Weak Proof of Knowledge: For every polynomial p(·) there exists a polynomial p′(·) and a
ppt oracle machine E such that the following holds: For every ppt Turing machine P∗, every
sufficiently long y = (M, x, t) ∈ {0, 1}∗, and every z ∈ {0, 1}∗, if Pr

[⟨P∗(z),V⟩(y) = 1
]
> 1/p(|y|),

then

Pr
r

[
∃w = w1 · · ·wt ∈ RU(y) s.t. ∀i ∈ [t], EP∗(y,z)

r (y, i) = wi
]
>

1
p′(|y|) ,

where EP∗(y,z)
r (·, ·) denotes the function defined by fixing the randomness of E to r, and providing

the resulting Er with oracle access to P∗(y, z). ^

The weak proof-of-knowledge property of universal arguments only guarantees that each individ-
ual bit wi of a witness w can be extracted in probabilistic polynomial time. However, for any
y = (M, x, t) ∈ LU , since the witness w ∈ RU(y) is of length at most t, there exists an extractor
(called the global extractor) that extracts the whole witness in time polynomial in poly(|y|) · t; we call
this property the global proof-of-knowledge property of a universal argument.

In this paper, we use the public-coin four-round universal argument system UA of Barak and
Goldreich [BG09] (Figure 6). As in [CLP13a], the construction of UA below is separated into an
offline stage and an online stage. In the offline stage, the running time of the prover is bounded by a
fixed polynomial in n + TM(x,w).

3.7 Forward-secure PRG

We recall the definition of forward-secure pseudorandom generators (PRGs) [BY03]. Roughly
speaking, a forward-secure PRG is a pseudorandom generator such that

• It periodically updates the seed. Hence, we have a sequence of seeds (σ1, σ2, . . .) that generates
a sequence of pseudorandomness (ρ1, ρ2, . . .).

• Even if the seed σt is exposed (and thus the “later” pseudorandom sequence ρt+1, ρt+2, . . . is
also exposed), the “earlier” sequence ρ1, . . . , ρt still remains pseudorandom.

In this paper, we use a simple variant of the definition by [CLP13b]. We notice that in the following
definition, the indices of the seeds and pseudorandomness are written in the reverse order because we
use them in the reverse order in the analysis of our concurrent zero-knowledge protocol.

Definition 8 (Forward-secure PRG). We say that a polynomial-time computable function f-PRG is a
forward-secure pseudorandom generator if on input a string σ and an integer ℓ ∈ N, it outputs two
sequences (σℓ, . . . , σ1) and (ρℓ, . . . , ρ1) that satisfy the following properties.

17

• Input: The common input is y = (M, x, t) ∈ LU , and the private input to P is w ∈ RU(y).

Let n def
= |y|.

• Offline Phase:

1. V sends a random hash function h ∈ Hn to P.

2. P generates a PCP proof π of statement y ∈ LU by using w as a witness. Then P
computes UA2 := h(π). The tuple (h, π,UA2) is called the offline proof.

• Online Phase:

1. P sends UA2 to V .

2. V chooses randomness ω ∈ {0, 1}n2
for the PCP-verifier and sends UA3 := ω to P.

3. P computes queries Q by executing the PCP-verifier with statement y ∈ LU and
randomness ω. Then, P sends UA4 := {(i, πi, authi(π))}i∈Q to V , where πi is the i-th
bit of π and authi(π) is a certificate that the i-th bit of π is indeed πi.

4. V verifies the correctness of all the certificates and checks whether the PCP-verifier
accepts on input (y, {(i, πi)}i∈Q) with randomness ω.

Figure 6: Online/offline UA system of [BG09, CLP13a].

• Consistency: For every n, ℓ ∈ N and σ ∈ {0, 1}n, if f-PRG(σ, ℓ) = (σℓ, . . . , σ1, ρℓ, . . . , ρ1), then
it holds f-PRG(σℓ, ℓ − 1) = (σℓ−1, . . . , σ1, ρℓ−1, . . . , ρ1).

• Forward Security: For every polynomial ℓ(·), the following ensembles are computationally
indistinguishable.

–
{
σ← Un; (σℓ(n), . . . , σ1, ρℓ(n), . . . , ρ1) := f-PRG(σ, ℓ(n)) : (σℓ(n), ρℓ(n))

}
n∈N

– {σ← Un; ρ← Un : (σ, ρ)}n∈N
Here, Un is the uniform distribution over {0, 1}n. ^

Any (traditional) PRG implies the existence of a forward-secure PRG. Thus from the result of [HILL99],
the existence of forward-secure PRGs are implied by the existence of one-way functions.

4 Our Public-Coin Concurrent Zero-Knowledge Argument

In this section, we prove our main theorem.

Theorem 1. Assume the existence of a family of collision resistant hash functions. Then, for any
constant ϵ > 0, there exists an O(nϵ)-round public-coin concurrent zero-knowledge argument of
knowledge system.

Proof . Our O(nϵ)-round public-coin concurrent zero-knowledge argument of knowledge, cZKAOK,
is shown in Figure 7. In cZKAOK, we use the following building blocks.

• Naor’s two-round statistically binding commitment scheme Com, which can be constructed
from one-way functions (see Section 3.3).

• A four-round public-coin witness-indistinguishable proof of knowledge system WIPOK, which
can be constructed from one-way functions (see Section 3.4).

18

• Four-round public-coin universal argument UA of Barak and Goldreich [BG09], which can be
constructed from collision-resistant hash functions (see Section 3.6.3).

Clearly, cZKAOK is public-coin and its round complexity is 4Nslot + 5 = O(nϵ). Thus, Theorem 1
follows from the following lemmas.

Lemma 1. cZKAOK is concurrent zero-knowledge.

Lemma 2. cZKAOK is argument of knowledge.

Lemma 1 is proven in Section 4.1, and Lemma 2 is proven in Section 4.2. □

Input: The input to the prover P is (x,w), where x ∈ L and w ∈ RL(x). The input to the verifier
V is x. Let n def

= |x|.

Parameter: Integers Nslot = O(nϵ) and Ncol = ω(1), where ϵ is an arbitrary constant.

Stage 1: V chooses a random hash function h ∈ Hn and sends it to P. Additionally, V sends a
first-round message τ ∈ {0, 1}3n of Com to P.

Stage 2: For each i ∈ [Nslot] in sequence, P and V do the following.
Π-slot:

1. P computes Ci, j ← Comτ(0n) for each j ∈ [Ncol]. Then, P sends Ci :=
(Ci,1, . . . ,Ci,Ncol) to V .

2. V sends random ri ∈ {0, 1}n
2

to P.

UA-slot:

3. P computes Di, j ← Comτ(0n) for each j ∈ [Ncol]. Then, P sends Di :=
(Di,1, . . . ,Di,Ncol) to V .

4. V computes a third-round message of UA. (Recall that a third-round message of UA
is just a random string with appropriate length.) Then, V sends this UA message, ωi,
to P.

Stage 3: P proves the following statement by using WIPOK.

• x ∈ L, or

• (h, τ,C1, r1,D1, ω1, . . . ,CNslot , rNslot ,DNslot , ωNslot) ∈ Λ1, where the language Λ1 is de-
fined in Figure 8.

Figure 7: Public-coin concurrent zero-knowledge argument cZKAOK.

Remark 2. The languages Λ2 in Figure 8 is slightly over-simplified and will make cZKAOK work
only whenH is collision resistant against poly(nlog log n)-time adversaries. We can make it work under
standard collision resistance by using a trick by Barak and Goldreich [BG09], which uses a “good”
error-correcting code ECC (i.e., with constant relative distance and with polynomial-time encoding
and decoding). More details are given in Section 4.2.

19

Language Λ1: (Statement for WIPOK)

(h, τ,C1, r1,D1, ω1, . . . ,CNslot , rNslot ,DNslot , ωNslot) ∈ Λ1 if and only if there exist

• i1, i2 ∈ [Nslot] and j ∈ [Ncol] such that i1 ≤ i2

• a second- and a fourth-round UA message UA2 ∈ {0, 1}n and UA4 ∈ {0, 1}poly(n)

• randomness R ∈ {0, 1}poly(n) for Com

such that

• Di2, j = Comτ(UA2; R), and

• (h,UA2, ωi2 ,UA4) is an accepting proof for (h, τ,Ci1, j, ri1) ∈ Λ2.

Language Λ2: (Statement for UA)

(h, τ,C, r) ∈ Λ2 if and only if there exist

• a machine Π (with some of the inputs being hardwired) such that |Π| ≤ nlog log n

• randomness R ∈ {0, 1}poly(n) for Com

• a string y such that |y| = n

such that

• C = Comτ(h(Π); R), and

• Π(y) outputs a string that has r as a substring, and Π(y) outputs it within nlog log n steps.

Figure 8: Languages used in cZKAOK.

4.1 Concurrent Zero-knowledge Property

Proof of Lemma 1. Let V∗ be any cheating verifier. Since V∗ takes an arbitrary non-uniform input
z, we assume without loss of generality that V∗ is deterministic. Let m(·) be a polynomial such that
V∗ invokes m(n) concurrent sessions during its execution. (Recall that n def

= |x|.) Let q def
= nϵ/2. We

assume without loss of generality that in the interaction between V∗ and provers, the total number of
messages across all the sessions is always the power of q (i.e., it is qd for an integer d). Since the total
number of messages is at most M def

= (4Nslot + 5) · m, we have d = logq M = logq(poly(n)) = O(1).

4.1.1 Simulator S

In this section, we describe our simulator. We first give an informal description; a formal description
is given after the informal one. We recommend the readers to browse the overview of our techniques
in Section 2.2 before reading this section. In the informal description, we use some terminologies that
we introduced in Section 2.2.

20

Informal Description of S

Our simulator, S, simulates the view of V∗ by using an auxiliary simulator algorithm aux-S, which
simulates the transcript between V∗ and honest provers by recursively executing itself. The input to
aux-S is the recursion level ℓ and the transcript trans that is simulated so far. aux-S is also given
oracle access to tables TΠ,TUA,TW (which aux-S can freely read and update), where TΠ contains the
hash values of the machines that should be committed to in the Π-slots, and TUA and TW contain the
second-round UA messages and the WIPOK witnesses that are computed so far. The goal of aux-S,
on input (ℓ, trans) and access to TΠ,TUA,TW, is to add the next qℓ messages to trans while updating
the tables TΠ,TUA,TW. More details about aux-S are described below.

On level 0 (i.e., when ℓ = 0), aux-S adds a single message to the simulated transcript as follows.
If the next message is a verifier message, aux-S simulates it by simply receiving it from V∗. If the
next message is a prover message (C1, . . . ,CNcol) in a Π-slot, aux-S finds the values to be committed
from TΠ and generates commitments to them by using Com. Similarly, if the next message is a prover
message (D1, . . . ,DNcol) in a UA-slot, aux-S finds appropriate second-round UA messages from TUA

and generates commitments to them by using Com. (If appropriate UA messages cannot be found,
aux-S generates commitments to 0n.) If the next message is a prover message of WIPOK, aux-S
computes it honestly by using a witness that is stored in TW. (If the stored witness is not a valid
witness, aux-S aborts.)

On level ℓ > 0, aux-S simulates the next qℓ messages by recursively executing itself q times
in sequence, where each recursive execution simulates qℓ−1 messages. More precisely, aux-S first
updates TΠ by storing the hash values of its own code (with the inputs and the entries of the tables
being hardwired), where the hash functions of all the existing sessions are used for computing these
hash values, and each hash value is stored as the value to be committed in the ℓ-th commitment in
Π-slots. (By requiring aux-S to store its own code in TΠ in this way, we make sure that when aux-S
simulates a Π-slot, it commits to its own code in the Π-slot.) Then, aux-S recursively executes itself
q times in sequence with level ℓ − 1; at the same time, aux-S updates TUA,TW at the end of each
recursive execution in the following way.

• If a Π-slot (both the prover message and the verifier message) of a session is simulated by the
recursive execution that has just been completed, aux-S computes a second-round UA message
about such a Π-slot and stores it in TUA.

(A machine that emulates this recursive execution must be committed in the (ℓ − 1)-th commit-
ment of such a Π-slot (this is because the recursively executed aux-S must have stored its own
code in TΠ at the beginning of its execution), and this machine can be used as a witness for
generating a UA proof about this Π-slot.)

• If a UA-slot of a session is simulated by the recursive execution that has just been completed,
and a second-round UA message for this session was stored in TUA before this recursive execu-
tion, aux-S computes a WIPOK witness for this session and stores it in TW.

(If such a UA-slot and a second-round UA message exist, that second-round UA message must
be committed to in that UA-slot, and they can be used as a WIPOK witness.)

Finally, aux-S outputs the qℓ messages that are simulated by these q recursive executions.
We remark that for technical reasons, the formal description of S below is a bit more complex.

• To avoid the circularity that arises when aux-S uses it own code, we use a technique by Chung,
Lin, and Pass [CLP13b]. Roughly speaking, aux-S takes the code of a machine Π as input and
uses this code rather than its own code; we then design S and aux-S in such a way that when
aux-S is invoked, we always have Π = aux-S.

21

• To avoid the circularity issue about randomness that we sketched in Section 2.2, we use a tech-
nique of [CLP13a, CLP13b] that uses a forward-secure PRG f-PRG. Roughly speaking, aux-S
takes a seed σ of f-PRG as input, computes a sequence of pseudorandomness ρqℓ , . . . , ρ2, ρ1
(notice that the indices are written in the reverse order), and simulates the prover messages in
such a way that the i-th message in the transcript is simulated with randomness ρi.

Formal Description of S

The input to S is (x, z), and the input to aux-S is (x, z, ℓ,Π, trans, σ) such that:

• ℓ ∈ {0, . . . , d}.

• Π is a code of a machine. (In what follows, we always have Π = aux-S.)

• trans ∈ {0, 1}poly(n) is a prefix of a transcript between V∗(x, z) and honest provers.

• σ ∈ {0, 1}n is a seed of f-PRG.

The auxiliary simulator aux-S is also given oracle access to three tables TΠ,TUA,TW such that:

• TΠ = {vs, j}s∈[m], j∈[Ncol] is a table of the hash values of some machines.

• TUA = {uas, j}s∈[m], j∈[Ncol] is a table of second-round UA messages.

• TW = {ws}s∈[m] is a table of WIPOK witnesses.

We allow aux-S to read and update the entries in TΠ,TUA,TW freely.

Simulator S(x, z):

1. Choose a random seed σqd+1 ∈ {0, 1}n of f-PRG. Initialize TΠ, TUA, TW by vs, j := 0n, uas, j :=
0n, ws := ⊥ for every s ∈ [m] and j ∈ [Ncol].

2. Compute trans := aux-STΠ,TUA,TW(x, z, d, aux-S, ε, σqd+1), where ε is the empty string.

3. Output (x, z, trans).

Auxiliary Simulator aux-STΠ,TUA,TW(x, z, ℓ,Π, trans, σ):

Step 1.
/* Preparing randomness for simulating the next qℓ messages */
Let κ := |trans| (i.e., κ be the number of the messages that are included in trans). Then, compute

(σκ+qℓ , . . . , σ1, ρκ+qℓ , . . . , ρ1) := f-PRG(σ, κ + qℓ) .

Step 2a: Simulation (base case). If ℓ = 0, do the following.

1. If the next-scheduled message msg is a verifier message, feed trans to V∗(x, z) and receive msg
from V∗.

If the next-scheduled message msg is a prover message of the s-th session (s ∈ [m]), do the
following with randomness ρκ+1. (If necessary, ρκ+1 is expanded by a pseudorandom generator.)
Let τs be the first-round message of Com of the s-th session, which can be found from trans.

22

• If msg is the prover message in a Π-slot, compute msg = (C1, . . . ,CNcol) by C j ←
Comτs(vs, j) for every j ∈ [Ncol], where vs, j is read from TΠ.

• If msg is the prover message in a UA-slot, compute msg = (D1, . . . ,DNcol) by D j ←
Comτs(uas, j) for every j ∈ [Ncol], where uas, j is read from TUA.

• If msg is the first prover message of WIPOK, compute msg by using ws as a witness,
where ws is read from TW; if ws is not a valid witness, abort with output stuck.

• If msg is the second prover message of WIPOK, reconstruct the prover state of WIPOK
from ws and ρ1, . . . , ρκ and then honestly compute msg by using this prover state, where
ws is read from TW.9

2. Output msg.

Step 2b: Simulation (recursive case). If ℓ > 0, do the following.

1. /* Storing it own code in TΠ */
Let T′

Π
, T′UA, T′W be the tables that are obtained by copying the current entries of TΠ, TUA, TW.

Let

Πmyself(·)
def
= ΠT′

Π
,T′UA,T

′
W(x, z, ℓ,Π, trans, ·) .

Then, for each s ∈ [m], if the s-th session has already started in trans, do the following: Let
hs be the hash function chosen by V∗ in the s-th session in trans; then, update TΠ by setting
vs,ℓ := hs(Πmyself).

2. Set temporary variables ctrs := 0 and tmps := ⊥ for every s ∈ [m], and a temporary variable

new-trans := ε. Define a function head(·) as head(k) def
= κ + 1 + (k − 1)qℓ−1.

3. For each k ∈ [q], do the following:

(a) /* Storing the machine that executes the k-th child-block. */

Let T(k)
Π

, T(k)
UA, T(k)

W be the tables that are obtained by copying the current entries of TΠ,
TUA, TW. Then, let

Πk(·) def
= ΠT(k)

Π
,T(k)

UA,T
(k)
W (x, z, ℓ − 1,Π, trans∥new-trans, ·) .

(b) /* Executing the k-th child-block. */

Compute

transk := ΠTΠ,TUA,TW(x, z, ℓ − 1,Π, trans∥new-trans, σhead(k+1))

while reading and updating TΠ,TUA,TW for Π.

(c) For each s ∈ [m], if the s-th session has already started in trans ∥ new-trans, do the
following. Let (hs, τs) be the first-round message of the s-th session.

Case 1. ctrs = 0, and transk contains a Π-slot of the s-th session.
/* Computing offline proof */

Let sl denote the Π-slot that is contained by transk. (If there are more than one such
Π-slot, sl denote the first such one.) Let i1 denote the slot-index of sl, i.e., i1 ∈ [Nslot]
such that sl is the i1-th Π-slot in the s-th session. Let (Ci1 , ri1) denote the messages
in sl, where Ci1 = (Ci1,1, . . . ,Ci1,Ncol).

9From the construction of S and aux-S, the first prover message of WIPOK in trans must have been computed with
witness ws and randomness in ρ1, . . . , ρκ.

23

i. From ρhead(k), . . . , ρhead(k+1)−1 (which are computed in Step 1), find the random-
ness R1 that was used for generating Ci1,ℓ−1.10 Then, compute a PCP proof πs

for statement (hs, τs,Ci1,ℓ−1, ri1) ∈ Λ2 using (Πk,R1, σhead(k+1)) as a witness (see
Section 4.1.2 for details). Then, compute UA2 := hs(πs).

ii. Update TUA by setting uas,ℓ−1 := UA2.
iii. Update tmps := (i1, πs,UA2) and ctrs := ctrs + 1.

Case 2. ctrs = 1, and transk contains a UA-slot of the s-th session.
/* Computing WIPOK witness */
Let sl denote the UA-slot that is contained by transk. (If there are more than one such
UA-slot, sl denote the first such one.) Let i2 be the slot-index of sl. Let (Di2 , ωi2)
denote the messages in sl, where Di2 = (Di2,1, . . . ,Di2,Ncol).

i. Parse (i1, πs,UA2) := tmps. Then, compute a fourth-round UA message UA4
from the offline proof (hs, πs,UA2) and the third-round UA message ωi2 .

ii. From ρhead(k), . . . , ρhead(k+1)−1 (which are computed in Step 1), find the random-
ness R2 that was used for generating Di2,ℓ−1. Then, if ws = ⊥, update TW by
setting ws := (i1, i2, ℓ − 1,UA2,UA4,R2).

iii. Update ctrs := ctrs + 1.
Case 3. All the other cases.

Do nothing.

(d) Update new-trans := new-trans∥ transk.

4. Output new-trans.

4.1.2 Correctness of S.

In this section, we observe the correctness of S. Specifically, we observe that aux-S can indeed
compute a valid PCP proof πs and a valid WIPOK witness ws in Step 2b.

First, we see that aux-S can indeed compute a PCP proof πs in Step 2b. Specifically, we see that
when aux-S computes πs in Step 2b, (Πk,R1, σhead(k+1)) is indeed a witness for (hs, τs,Ci1,ℓ−1, ri1) ∈
Λ2 (that is, Ci1,ℓ−1 is a commitment to hs(Πk) and Πk outputs a string that has ri1 as a substring).

1. First, we observe that Ci1,ℓ−1 is a commitment to hs(Πk). Recall that when aux-S computes πs

in Step 2b, the Π-slot (Ci1,ℓ−1, ri1) is contained by transk. Then, since transk is generated by a
recursive execution

ΠTΠ,TUA,TW(x, z, ℓ − 1,Π, trans, σhead(k+1)) ,

and this recursive execution updates vs,ℓ−1 ∈ TΠ to be the hash of its own code at the beginning,
Ci1,ℓ−1 is a commitment to the hash of this code, which is identical with hs(Πk).

2. Next, we observe that Πk outputs transk on input σhead(k+1). This is because from its definition
Πk(σhead(k+1)) is identical with

ΠTΠ,TUA,TW(x, z, ℓ − 1,Π, trans, σhead(k+1))

(including the entries in the tables), which outputs transk.

10From the construction of aux-S, every message in the k-th child-block is computed by using randomness in
ρhead(k), . . . , ρhead(k+1)−1.

24

Since ri1 is contained by transk, we conclude that (Πk,R1, σhead(k+1)) is indeed a witness for (hs, τs,Ci1,ℓ−1, ri1) ∈
Λ2.

Next, we see that aux-S can compute a WIPOK proof in Step 2a as long as ws , ⊥. In other
words, we see that if aux-S updates ws to (i1, i2, ℓ − 1,UA2,UA4,R2) in Step 2b, it is indeed a valid
WIPOK witness (that is, Di2,ℓ−1 is a commitment to UA2 and (hs,UA2, ωi2 ,UA4) is an accepting UA
proof for (hs, τs,Ci1,ℓ−1, ri1) ∈ Λ2).

1. First, UA2 is the hash value of a PCP proof πs that is computed at the end of a previous re-
cursive execution, and from what is observed above, πs is a valid PCP proof for statement
(hs, τs,Ci1,ℓ−1, ri1) ∈ Λ2. Hence, (hs,UA2, ωi2 ,UA4) is an accepting proof for (hs, τs,Ci1,ℓ−1, ri1) ∈
Λ2

2. Next, since uas,ℓ−1 ∈ TUA is not updated during level-(ℓ − 1) recursive executions, Di2,ℓ−1 is a
commitment to UA2.

Thus, (i1, i2, ℓ − 1,UA2,UA4,R2) is a valid WIPOK witness.
Finally, we see that we have ws , ⊥ when aux-S computes a WIPOK proof in Step 2a. This

follows from the following claim.

Claim 1. During the execution of S, any execution of aux-S does not output stuck.

Proof . We first introduce notations. Recall that an execution of S involves recursive executions of
aux-S. We use block to denote each execution of aux-S. Notice that each block can be identified
by the value of ℓ and κ = |trans|. A block is in level ℓ if the corresponding aux-S is executed with
input ℓ. The child-blocks of a block are the blocks that are recursively executed by this block; thus,
each block has q child-blocks. A block contains a slot of a session if the execution of aux-S that
corresponds to this block outputs a transcript that includes this slot (i.e., includes both the prover and
the verifier message of this slot), where we use slots to refer to both Π-slots and UA-slots. A block is
good w.r.t. a session if this block contains at least two slots of this session but contain neither the first
verifier message of this session nor the first prover message of WIPOK of this session.11

Given these notations, we prove the claim as follows. From the constructions of S and aux-S,
none of aux-S outputs stuck if for every session that reaches Stage 3, there exists a block such that
two of its child-blocks are good. (If there exists such a block for a session, the first good child-block
contains a Π-slot of that session and the second one contains a UA-slot of that session; thus, a WIPOK
witness for that session is computed at the end of the second good child-block.) Thus, it suffices to
show that if a session reaches Stage 3, there exists a block such that at least two of its child-blocks are
good w.r.t. that session. To show this, it suffices to show that if a session reaches Stage 3, there exists
a block such that at least four of its child-blocks contain two or more slots of that session. (If four
child-blocks contain two or more slots, two of them are good since at most one child-block contains
the first verifier message and at most one child-block contains the first prover message of WIPOK.)
Assume for contradiction that there exists a session s∗ such that s∗ reaches Stage 3 but every block
has at most three child-blocks that contain two or more slots of session s∗. For ℓ ∈ {0, . . . , d} and
κ ∈ [qd], let Γκ(ℓ) be the number of the slots that belong to session s∗ and are contained by the block
that is identified by ℓ and κ, and let Γ(ℓ) def

= maxκ(Γκ(ℓ)). Then, since for each block b,

• at most three child-blocks of b contain two or more slots of s∗, and the other child-blocks
contain at most a single slot of s∗, and

• s∗ has at most q−1 slots that are contained by block b but are not contained by its child-blocks,

11The definition of good blocks here is slightly different from that in the technical overview in Section 2.2.

25

we have

Γ(ℓ) ≤ 3 · Γ(ℓ − 1) + (q − 2) · 1 + q − 1 = 3Γ(ℓ − 1) + 2q − 3 .

Thus, we have

Γ(d) ≤ 3Γ(d − 1) + 2q − 3

≤ 32Γ(d − 2) + 3(2q − 3) + 2q − 3

≤ · · · ≤ 3dΓ(0) +
d−1∑
i=0

3i(2q − 3)

= 3dΓ(0) +
1
2

(3d − 1)(2q − 3) .

From d = O(1) and Γ(0) = 0, we have Γ(d) = O(q). Then, since S outputs the view of V∗ that is
generated by the level-d block, there are at most O(q) = O(nϵ/2) slots of s∗ in the simulated transcript.
Then, since we have Nslot = O(nϵ), this contradicts to the assumption that s∗ reaches Stage 3. □

From the above three observations, we conclude that aux-S can indeed compute a valid PCP
proof πs and a WIPOK valid witness ws in Step 2b.

4.1.3 Running Time of S

Lemma 3. S(x, z) runs in polynomial time.

Proof . We bound the running time of S as follows. Recall that an execution of S involves recursive
executions of aux-S. We identify each execution of aux-S by the value of ℓ and κ = |trans|. In the
following, we use aux-Sℓ,κ to denote the execution of aux-S with ℓ and κ. Let tℓ,κ be the running

time of aux-Sℓ,κ, and let tℓ
def
= maxκ(tℓ,κ). Then, observe that in the execution of aux-Sℓ,κ, every

computation is performed in fixed polynomial time in n except for the following computations.

1. The recursive executions of aux-S (i.e., the executions of aux-Sℓ−1,κ, aux-Sℓ−1,κ+qℓ−1 , . . .).

2. The generations of the offline proofs (i.e., PCP proofs and their hash values) and the fourth-
round UA messages.

Each recursive execution takes at most tℓ−1 steps. Furthermore, from the relatively efficient oracle
construction property of PCP systems, each offline proof can be generated in poly(tℓ−1) steps. Then,
since for each k ∈ [q] there are a single recursive execution and at most m computations of offline
proofs and fourth-round UA proofs, we have

tℓ ≤ q · (tℓ−1 + m · poly(tℓ−1) + poly(n)) + poly(n) ≤ poly(tℓ−1)

for any ℓ ∈ [d]. Then, since we have d = O(1) and t0 = poly(n), we have td = poly(n). Thus, S runs
in polynomial time. □

4.1.4 Indistinguishability of Views

Lemma 4. The output of S(x, z) is computationally indistinguishable from the view of V∗.

26

Proof . We prove this lemma by considering a sequence of hybrid experiments, H0, . . . ,Hqd+1. Hy-
brid H0 is identical with the real interaction between V∗ and honest provers, and Hqd+1 is identical
with the execution of S. Hybrid Hi (i ∈ [qd]) is identical with Hqd+1 except that, roughly speaking,
the simulation stops after simulating the i-th message, and later on the prover messages are generated
honestly as in H0. Formally, we define Hi (i ∈ [qd]) by using the following hybrid auxiliary simulator
aux-S̃i, which differs from aux-S in that it simulates the transcript only until the i-th message and
that it simulates the i-th message using true randomness ρ (rather than pseudorandomness ρi derived
by f-PRG). Though aux-S̃i is very similar to aux-S, we give a complete description of aux-S̃i below.
The differences from aux-S are highlighted by blue color and underline.

Hybrid Auxiliary Simulator aux-S̃TΠ,TUA,TW
i (x, z, ℓ,Π, trans, σ, Π̃i, ρ):

Step 1.
/* Preparing randomness for simulating the next qℓ messages */
Let κ := |trans| (i.e., κ be the number of the messages that are included in trans). Then, compute

(σi−1, . . . , σ1, ρi−1, . . . , ρ1) := f-PRG(σ, i − 1)

and let ρi := ρ.

Step 2a: Simulation (base case). If ℓ = 0, do the following.

1. If the next-scheduled message msg is a verifier message, feed trans to V∗(x, z) and receive msg
from V∗.

If the next-scheduled message msg is a prover message of the s-th session (s ∈ [m]), do the
following with randomness ρκ+1. (If necessary, ρκ+1 is expanded by a pseudorandom generator.)
Let τs be the first-round message of Com of the s-th session, which can be found from trans.

• If msg is the prover message in a Π-slot, compute msg = (C1, . . . ,CNcol) by C j ←
Comτs(vs, j) for every j ∈ [Ncol], where vs, j is read from TΠ.

• If msg is the prover message in a UA-slot, compute msg = (D1, . . . ,DNcol) by D j ←
Comτs(uas, j) for every j ∈ [Ncol], where uas, j is read from TUA.

• If msg is the first prover message of WIPOK, compute msg by using ws as a witness,
where ws is read from TW; if ws is not a valid witness, abort with output stuck.

• If msg is the second prover message of WIPOK, reconstruct the prover state of WIPOK
from ws and ρ1, . . . , ρκ and then honestly compute msg by using this prover state, where
ws is read from TW.12

2. Output msg.

Step 2b: Simulation (recursive case). If ℓ > 0, do the following.

1. /* Storing it own code in TΠ */
Let T′

Π
, T′UA, T′W be the tables that are obtained by copying the current entries of TΠ, TUA, TW.

Let

Πmyself(·)
def
= ΠT′

Π
,T′UA,T

′
W(x, z, ℓ,Π, trans, ·) .

12From the construction of S and aux-S, the first prover message of WIPOK in trans must have been computed with
witness ws and randomness in ρ1, . . . , ρκ.

27

Then, for each s ∈ [m], if the s-th session has already started in trans, do the following: Let
hs be the hash function chosen by V∗ in the s-th session in trans; then, update TΠ by setting
vs,ℓ := hs(Πmyself).

2. Set temporary variables ctrs := 0 and tmps := ⊥ for every s ∈ [m], and a temporary variable

new-trans := ε. Define a function head(·) as head(k) def
= κ + 1 + (k − 1)qℓ−1.

3. For each k ∈ [q] such that head(k) + qℓ−1 < i, do the following:

(a) /* Storing the machine that executes the k-th child-block. */

Let T(k)
Π

, T(k)
UA, T(k)

W be the tables that are obtained by copying the current entries of TΠ,
TUA, TW. Then, let

Πk(·) def
= ΠT(k)

Π
,T(k)

UA,T
(k)
W (x, z, ℓ − 1,Π, trans∥new-trans, ·) .

(b) /* Executing the k-th child-block. */

Compute

transk := ΠTΠ,TUA,TW(x, z, ℓ − 1,Π, trans∥new-trans, σhead(k+1))

while reading and updating TΠ,TUA,TW for Π.

(c) For each s ∈ [m], if the s-th session has already started in trans ∥ new-trans, do the
following. Let (hs, τs) be the first-round message of the s-th session.

Case 1. ctrs = 0, and transk contains a Π-slot of the s-th session.
/* Computing offline proof */

Let sl denote the Π-slot that is contained by transk. (If there are more than one such
Π-slot, sl denote the first such one.) Let i1 denote the slot-index of sl, i.e., i1 ∈ [Nslot]
such that sl is the i1-th Π-slot in the s-th session. Let (Ci1 , ri1) denote the messages
in sl, where Ci1 = (Ci1,1, . . . ,Ci1,Ncol).

i. From ρhead(k), . . . , ρhead(k+1)−1 (which are computed in Step 1), find the random-
ness R1 that was used for generating Ci1,ℓ−1.13 Then, compute a PCP proof πs

for statement (hs, τs,Ci1,ℓ−1, ri1) ∈ Λ2 using (Πk,R1, σhead(k+1)) as a witness (see
Section 4.1.2 for details). Then, compute UA2 := hs(πs).

ii. Update TUA by setting uas,ℓ−1 := UA2.
iii. Update tmps := (i1, πs,UA2) and ctrs := ctrs + 1.

Case 2. ctrs = 1, and transk contains a UA-slot of the s-th session.
/* Computing WIPOK witness */
Let sl denote the UA-slot that is contained by transk. (If there are more than one such
UA-slot, sl denote the first such one.) Let i2 be the slot-index of sl. Let (Di2 , ωi2)
denote the messages in sl, where Di2 = (Di2,1, . . . ,Di2,Ncol).

i. Parse (i1, πs,UA2) := tmps. Then, compute a fourth-round UA message UA4
from the offline proof (hs, πs,UA2) and the third-round UA message ωi2 .

ii. From ρhead(k), . . . , ρhead(k+1)−1 (which are computed in Step 1), find the random-
ness R2 that was used for generating Di2,ℓ−1. Then, if ws = ⊥, update TW by
setting ws := (i1, i2, ℓ − 1,UA2,UA4,R2).

iii. Update ctrs := ctrs + 1.
13From the construction of aux-S, every message in the k-th child-block is computed by using randomness in

ρhead(k), . . . , ρhead(k+1)−1.

28

Case 3. All the other cases.
Do nothing.

(d) Update new-trans := new-trans∥ transk.

4. For k ∈ [q] such that head(k) ≤ i < head(k + 1), do the following.

(a) Compute

transk := Π̃TΠ,TUA,TW
i (x, z, ℓ − 1,Π, trans∥new-trans, σhead(k+1), Π̃i, ρ)

while reading and updating TΠ,TUA,TW for Π̃i.

(b) Update new-trans := new-trans∥ transk.

5. Output new-trans.

Now, we formally define the hybrids as follows.

Hybrids H0, . . . ,Hqd+1:

Hybrid H0 is the same as the real interaction between V∗ and honest provers.

Hybrid Hi (i ∈ [qd]) is the same as the real execution of S except for the following.

1. S obtains trans by executing

aux-S̃TΠ,TUA,TW
i (x, z, d, aux-S, ε, σi, aux-S̃i, ρi)

rather than

aux-STΠ,TUA,TW(x, z, d, aux-S, ε, σqd+1) ,

where (σi, ρi) := f-PRG(σi+1, 1) for a randomly chosen seed σi+1 of f-PRG. We remark
that in trans, the view of V∗ is simulated up until the i-th message (inclusive) in a way
that the i-th message is simulated by using ρi as randomness.

2. After trans, the simulation of V∗’s view is continued as follows:

• Every message is computed with true randomness.
• Every message in Π-slots and UA-slot is generated by committing to 0n.
• Every WIPOK that starts after trans is executed with a witness for x ∈ L.
• Every WIPOK that already started in trans is executed as in aux-S (i.e., by recon-

structing the prover state).

Hybrid Hqd+1 is the same as the real execution of S.

From a hybrid argument, it suffices to show the indistinguishability between the outputs of each
neighboring hybrids. In the following, we show the indistinguishability in the reverse order, i.e., we
show that the output of Hi is indistinguishable from that of Hi−1 for every i ∈ [qd + 1].

Claim 2. The output of Hqd+1 and that of Hqd are identically distributed.

29

Proof . This claim can be proven by inspection. Notice that the only difference between Hqd+1 and
Hqd is that in Hqd+1, trans is obtained by executing

aux-STΠ,TUA,TW(x, z, d, aux-S, ε, σqd+1)

whereas in Hqd , trans is obtained by executing

aux-S̃TΠ,TUA,TW

qd (x, z, d, aux-S, ε, σqd , aux-S̃, ρqd)

such that (σqd , ρqd) := f-PRG(σqd+1, 1). The former execution simulates the qd messages in trans
using the randomness ρ1, . . . , ρqd that are obtained by f-PRG(σqd+1, qd), whereas the latter execu-
tion simulates the first qd − 1 messages using the randomness ρ1, . . . , ρqd−1 that are obtained by
f-PRG(σqd , qd − 1) and then simulates the qd-th message using the randomness ρqd . Then, since
(σqd , ρqd) = f-PRG(σqd+1, 1) in Hqd , it follows from the consistency of f-PRG that the messages in the
latter execution are simulated using the randomness ρ1, . . . , ρqd that are obtained by f-PRG(σqd+1, qd).
Hence, the messages in the latter execution are generated identically with those in the former execu-
tion. □

Claim 3. The output of Hi and that of Hi−1 are computationally indistinguishable for every i ∈ [qd].

Proof . To prove this claim, we consider a sequence of intermediate hybrids in which Hi is gradually
changed to Hi−1 as follows.

Hybrid Hi:1 is the same as Hi except that S obtains trans by executing

aux-S̃TΠ,TUA,TW
i (x, z, d, aux-S, ε, σi, aux-S̃i, ρi)

for random σi and ρi rather than for (σi, ρi) := f-PRG(σi+1, 1).

Notice that in Hi:1, the i-th message is simulated with true randomness rather than pseudoran-
domness.

Hybrid Hi:2 is the same as Hi:1 except that if the i-th message is a prover message of Com (either
in a Π-slot or in a UA-slot), then the message is computed as in the honest prover (i.e., C j ←
Com(0n) or D j ← Com(0n) for every j ∈ [Ncol]).

Hybrid Hi:3 is the same as Hi:2 except that if the i-th message is the first prover message of WIPOK,
then subsequently all messages in this WIPOK are computed by using a witness for x ∈ L.

From a hybrid argument, it suffices to show the indistinguishability between each neighboring inter-
mediate hybrids.

Claim 4. For every i ∈ [qd], the output of Hi:1 is computationally indistinguishable from that of Hi.

Proof . The indistinguishability follows immediately from the forward security of f-PRG. Assume for
contradiction that the output of Hi and that of Hi:1 are distinguishable. Then, consider the following
adversaryD against the forward security of f-PRG. On input (σ′i , ρ

′
i), adversaryD internally invokes

V∗ and simulates Hi for V∗ honestly except for the following.

• Rather than executing

aux-S̃TΠ,TUA,TW
i (x, z, d, aux-S, ε, σi, aux-S̃i, ρi)

for (σi, ρi) := f-PRG(σi+1, 1),D executes it for σi := σ′i and ρi := ρ′i .

30

When σ′i and ρ′i are generated by (σ′i , ρ
′
i) := f-PRG(σi+1, 1), the output ofD is identically distributed

with that of Hi, and when σ′i and ρ′i are chosen randomly, the output of D is identically distributed
with that of Hi:1. Therefore, D breaks the forward security of f-PRG from the assumption, and thus
we reach a contradiction.

□

Claim 5. For every i ∈ [qd], the output of Hi:2 is computationally indistinguishable from that of Hi:1.

Proof . It suffices to consider the case that the i-th message msg is a prover message of Com. Note
that both in Hi:1 and Hi:2, the Com commitments in msg are generated by using true randomness;
furthermore, the information about their committed values and randomness are not used in the other
messages (e.g., the randomness is not hardwired in the committed machines, and the committed
value and the randomness are not used as a witness in the generations of PCP and WIPOK). Thus, the
indistinguishability follows from the hiding property of Com. □

Claim 6. For every i ∈ [qd], the output of Hi:3 is computationally indistinguishable from that of Hi:2.

Proof . It suffices to consider the case that the i-th message msg is the first prover message of WIPOK.
Note that both in Hi:2 and in Hi:3, this WIPOK proof is generated with true randomness that is not
used anywhere else; furthermore, from Claim 1, a valid witness is used both in Hi:2 and in Hi:3. Thus,
the indistinguishability follows from the witness indistinguishability of WIPOK. □

Claim 7. For every i ∈ [qd], the output of Hi−1 is identically distributed with that of Hi:3.

Proof . From the consistency of f-PRG, the first (i−1) messages are computed both in Hi:3 and in Hi−1
by using the pseudorandomness that is generated by f-PRG(σi, i − 1) for random σi. In addition, the
i-th message msg is computed in exactly the same way in Hi:3 and Hi−1. Thus, the claim follows. □

From Claims 4, 5, 6, and 7, the output of Hi and that of Hi−1 are computationally indistinguishable.
This completes the proof of Claim 3. □

From Claims 2 and 3, the output of H0 and that of Hqd+1 are indistinguishable. This completes
the proof of Lemma 4. □

This completes the proof of Lemma 1. □

4.2 Argument of Knowledge Property

As noted in Remark 2, the language Λ2 shown in Figure 8 is slightly over-simplified, and we can
prove the argument-of-knowledge property of cZKAOK only when H is collision resistant against
poly(nlog log n)-time adversaries.

Below, we prove the argument-of-knowledge property assuming that H is collision resistant
against poly(nlog log n)-time adversaries. By using a trick shown in [BG09], we can extend this proof
so that it works even under the assumption thatH is collision resistant only against polynomial-time
adversaries. The details are given at the end of this section.

Proof of Lemma 2 (whenH is collision resistant against poly(nlog log n)-time adversaries). For any cheat-
ing prover P∗, let us consider the following extractor E.

• Given oracle access to P∗, the extractor E emulates a verifier of cZKAOK for P∗ honestly until
the beginning of Stage 3. E then extract a witness from WIPOK using its extractor.

31

To show that E outputs a witness for x ∈ L, it suffices to show that the extracted witness is a
witness for (h, τ,C1, r1,D1, ω1, . . . ,CNslot , rNslot ,DNslot , ωNslot) ∈ Λ1 only with negligible probability.
In the following, we call a witness for (h, τ,C1, r1,D1, ω1, . . . ,CNslot , rNslot ,DNslot , ωNslot) ∈ Λ1 a fake
witness, and we say that P∗ is bad if E outputs a fake witness with non-negligible probability. Below,
we show that if there exists a bad cheating prover, we can break the collision resistance ofH .

We first show the following claim, which roughly states that if there exists a bad P∗, there also
exists a prover P∗∗ that can prove a statement in Λ2 with non-negligible probability.

Claim 8. For any ITM P, let us consider an experiment Exp1(n, P) in which P interacts with a verifier
V as follows.

1. Interactively generating statement. V sends a random h ∈ Hn and τ ∈ {0, 1}3n to P. Then, P
sends a commitment C of Com to V, and V sends a random r ∈ {0, 1}n2

to P.

2. Generating UA proof. P sends a second-round UA message UA2 of statement (h, τ,C, r) ∈ Λ2
to V. Then, V sends a third-round UA message ω to P, and P sends a fourth-round UA message
UA4 to V.

3. We say that P wins in the experiment if (h,UA2, ω,UA4) is an accepting UA proof for (h, τ,C, r) ∈
Λ2.

Then, if there exists a bad P∗, there exists a ppt ITM P∗∗ that wins in Exp1(n, P∗∗) with non-negligible
probability.

Proof . From the assumption that P∗ is bad, for infinitely many n we can extract a fake witness
from P∗ with probability at least δ(n) def

= 1/poly(n). In the following, we fix any such n. From an
average argument, there exist i∗1, i

∗
2 ∈ [Nslot] and j∗ ∈ [Ncol] such that with probability at least δ′(n) def

=

δ(n)/NcolN2
slot > δ(n)/n3, we can extract a fake witness (i1, i2, j, . . .) such that (i1, i2, j) = (i∗1, i

∗
2, j∗).

Then, we consider the following cheating prover P∗∗ against Exp1.

1. P∗∗ internally invokes P∗ and emulates a verifier of cZKAOK for P∗ honestly with the following
differences:

• In Stage 1, P∗∗ forwards h and τ from the external V to the internal P∗.

• In the i∗1-th Π-slot of Stage 2, P∗∗ forwards Ci∗1, j
∗ from the internal P∗ to the external V

and forwards r from V to P∗.

• In Stage 3, P∗∗ extracts a witness w from P∗ by using the extractor of WIPOK.

2. If w is not a fake witness of the form (i∗1, i
∗
2, j∗, . . .), P∗∗ aborts with output fail. Otherwise, parse

(i∗1, i
∗
2, j∗,UA2,UA4,R) := w. Then, P∗∗ sends UA2 to the external V and receives ω.

3. P∗∗ rewinds the internal P∗ to the point just after P∗ sent the Com commitments in the i∗2-th
UA-slot. Then, P∗∗ sends ω to P∗ as the verifier message of the i∗2-th UA-slot, interacts with P∗

again as an honest verifier, and then extracts a witness w′ in Stage 3.

4. If w′ is not a fake witness of the form (i∗1, i
∗
2, j∗, . . .), P∗∗ aborts with output fail. Otherwise,

parse (i∗1, i
∗
2, j∗,UA′2,UA′4,R

′) := w′. Then, P∗∗ sends UA′4 to the external V .

To analyze the probability that P∗∗ wins in Exp1(n, P∗∗), we first observe that the transcript of
cZKAOK that is internally emulated by P∗∗ is “good” with probability at least δ′/2. Formally, let trans
be the prefix of a transcript of cZKAOK up until the prover message of the i∗2-th UA-slot (inclusive).
Then, we say that trans is good if under the condition that trans is a prefix of the transcript, a fake

32

witness of the form (i∗1, i
∗
2, j∗, . . .) is extracted from P∗ with probability at least δ′/2. From an average

argument, the prefix of the transcript is good with probability at least δ′/2 when P∗ interacts with an
honest verifier of cZKAOK. Then, since a transcript of cZKAOK is perfectly emulated in Step 1 of
P∗∗, the prefix of the internally emulated transcript is good with probability at least δ′/2.

We next observe that under the condition that the prefix of the internally emulated transcript is
good in Step 1 of P∗∗, P∗∗ wins in Exp1(n, P∗∗) with probability at least (δ′/2)2 − negl(n). First, from
the definition of a good prefix, it follows that under the condition that the prefix of the internally
emulated transcript is good in Step 1 of P∗∗, the probability that both w and w′ are fake witnesses of
the form (i∗1, i

∗
2, j∗, . . .) is at least (δ′/2)2. Next, if w and w′ are fake witnesses, both UA2 and UA′2 are

the committed values of Di∗2, j
∗ , so UA2 = UA′2 holds except with negligible probability; this means

that if w and w′ are fake witnesses, (h,UA2, ω,UA′4) is an accepting UA proof except with negligible
probability. Hence, under the aforementioned condition, P∗∗ wins in Exp1(n, P∗∗) with probability at
least (δ′/2)2 − negl(n).

By combining the above two observations, we conclude that the probability that P∗∗ wins in
Exp1(n, P∗∗) is at least

δ′

2

(δ′2
)2

− negl(n)

 ≥ 1
poly(n)

.

□

Next, we show the following claim, which roughly states that if there exists P∗∗ that proves a
statement in Λ2 with non-negligible probability, then we can extract a valid witness from P∗∗ with
non-negligible probability.

Claim 9. For any ITM E∗, let us consider an experiment Exp2(n, E∗) in which E∗ interacts with a
verifier V as follows.

1. Interactively generating statement. This step is the same as the one in Exp1, where E∗ plays
as P. Let (h, τ,C, r) be the interactively generated statement.

2. Outputting witness. E outputs w = (Π,R, y). We say that E wins in the experiment if w is a
valid witness for (h, τ,C, r) ∈ Λ2.

Then, if there exists a ppt ITM P∗∗ that wins in Exp1(n, P∗∗) with non-negligible probability, there
exists a poly(nlog log n)-time ITM E∗ that wins in Exp2(n, E∗) with non-negligible probability.

Proof . We first observe that UA satisfies weak/global proof-of-knowledge property even when the
statement is generated after the hash function h is chosen, i.e., even when the first-round message of
UA is sent before the statement is generated. Roughly speaking, the UA extractor by [BG09] extracts a
witness by combining the extractor of the underlying PCP system with an oracle-recovery procedure
that (implicitly) recovers a PCP proof for the extractor of the PCP system. A nice property of the UA
extractor by [BG09] is that it invokes the oracle-recovery procedure on input a random hash function
h that is chosen independently of the statement. Because of this property, the UA extractor can be
modified straightforwardly so that it works even when h is chosen before the statement.

We then obtain E∗ by simply using the global UA extractor for P∗∗. Since the running time of the
global UA extractor is poly(nlog log n), the running time of E∗ is also poly(nlog log n). □

Finally, we reach a contradiction by showing that given E∗ described in Claim 9, we can break
the collision resistance ofH .

Claim 10. If there exists a poly(nlog log n)-time ITM E∗ that wins in Exp2(n, E∗) with non-negligible
probability, there exists a poly(nlog log n)-time machineA that breaks the collision resistance ofH .

33

Proof . We consider the followingA.

1. Given h ∈ H ,A internally invokes E∗ and emulates Exp2(n, E∗) for E∗ perfectly except thatA
forwards h to E∗ in Step 1. Let (h, τ,C, r) and w be the statement and the output of E∗ in this
emulated experiment.

2. If w is not a valid witness for (h, τ,C, r) ∈ Λ2, A aborts with output fail. Otherwise, let
(Π,R, y) := w.

3. A rewinds E∗ to the point just after E∗ sent C, and from this point A emulates Exp2(n, E∗)
again with fresh randomness. Let (h, τ,C, r′) be the statement and w′ be the witness in this
emulated experiment.

4. If w′ is not a valid witness for (h,C, r′) ∈ Λ2, A aborts with output fail. Otherwise, let
(Π′,R′, y′) := w′.

5. A outputs (Π,Π′) if Π , Π′ and h(Π) = h(Π′). Otherwise,A outputs fail.

First, we show that both w and w′ are valid witnesses with non-negligible probability. From the
assumption that E∗ wins in Exp2(n, E∗) with non-negligible probability, E∗ outputs a valid witness in

Exp2(n, E∗) with probability ϵ def
= 1/poly(n) for infinitely many n. In the following, we fix any such n.

Let trans be the prefix of a transcript of Exp2(n, E∗) up until E∗ sends C (inclusive). We say that trans
is good if under the condition that trans is a prefix of the transcript, E∗ outputs a valid witness with
probability at least ϵ/2. From an average argument, the prefix of the internally emulated transcript is
good with probability at least ϵ/2. Thus, the probability that both w and w′ are valid witnesses is at
least (ϵ/2)(ϵ/2)2 = (ϵ/2)3.

Next, we show that when A obtains two valid witnesses w = (Π,R, y) and w′ = (Π′,R′, y′), we
have Π , Π′ and h(Π) = h(Π′) except with negligible probability. First, from the binding property of
Com, we have h(Π) = h(Π′) except with negligible probability. (Recall that from the condition that w
and w′ are valid witnesses, we have Comτ(h(Π); R) = Comτ(h(Π′); R′) = C.) Next, since r′ is chosen
randomly after Π is determined, and since we have∣∣∣∣{r′′ ∈ {0, 1}n2 | ∃y ∈ {0, 1}n s.t. r′′ is a substring of the output of Π(y)

}∣∣∣∣
≤ nlog log n · 2n ≤ 22n ,

the probability that there exists y′′ ∈ {0, 1}n such that r′ is a substring of the output of Π(y′′) is at most
22n/2n2

= negl(n). Then, since r′ is a substring of the output of Π′(y′), we conclude that we have
Π , Π′ except with negligible probability.

From the above two observations, we conclude thatA finds a collision ofH with non-negligible
probability. □

From Claims 8, 9, and 10, it follows that there exists no bad P∗. Thus, the extractor E outputs a
witness for x ∈ L except with negligible probability. This concludes the proof of Lemma 2. □

On the proof of Lemma 2 whenH is secure only against poly-time adversaries.

As noted before, we can use a trick by [BG09] to extend the above proof so that it works even when
H is secure only against polynomial-time adversaries. Recall that in the above proof, H need to be
secure against super-polynomial-time adversaries because a collision ofH (i.e., the pair of Π and Π′)
is found by using the global argument-of-knowledge property of UA. Hence, the overall strategy is

34

to modify the protocol and the proof so that the weak argument-of-knowledge property can be used
instead of the global one.

Roughly speaking, the trick by [BG09] works as follows. Recall that, as noted in Section 3.2,
H is a hash function family that is obtained by applying Merkle’s tree-hashing technique on any
length-halving collision-resistant hash function family. From the properties of the tree-hashing, it
follows that for any h ∈ Hn and x = (x1, . . . , x|x|) ∈ {0, 1}≤nlog log n

, we can compute short certificates
auth(x) = {authi(x)}i∈[|x|] such that given h(x), xi, and authi(x), one can verify in time polynomial
in n that the i-th bit of x is indeed xi. Furthermore, for any collision (x, x′) of H , a collision of the
underlying hash function can be found in polynomial time from any pairs of a bit and a certificate
(xi, authi(x)) and (x′i , authi(x′)) such that xi , x′i . Then, the idea of the trick by [BG09] is, instead
of finding a collision ofH by extracting the whole of Π and Π′, finding a collision of the underlying
hash function by extracting Π and Π′ in a single bit position along with their certificates. Specifically,
in the trick by [BG09], the language Λ2 is first modified in such a way that a witness includes the
certificates of the committed machine so that, if we know a bit position in which Π and Π′ differ, we
can find a collision of the underlying hash function by extracting Π and Π′ in that position along with
the corresponding certificates. Then, to make sure that we can find a position in which Π and Π′ differ
with non-negligible probability, the language Λ2 is further modified in such a way that the cheating
prover is required to commit to the hash value of ECC(Π) instead of the hash value of Π, where ECC
is an error-correcting code with constant relative distance and with polynomial-time encoding and
decoding; since ECC(Π) and ECC(Π′) differ in a constant fraction of their indices, they differ in a
randomly chosen position with constant probability. Since we can extract ECC(Π) and ECC(Π′) in
a single position along with their certificates in time polynomial in n using the weak argument-of-
knowledge property of UA, the proof now works under collision resistance against polynomial-time
adversaries.

More formally, the trick by [BG09] works as follows. First, we replace the language Λ2 in Fig-
ure 8 with the one in Figure 9. Next, we modify Claim 9 in such a way that E∗ is required to extract a
witness only implicitly (i.e., output the i-th bit of the witness on input any i); the proof of Claim 9 is
the same as before except that we use weak argument-of-knowledge property instead of global one.
Finally, we modify the proof of Claim 10 in such a way that, instead of extracting the whole of w and
w′, the adversary A extracts ECC(Π) and ECC(Π′) only in a randomly chosen bit position and then
extracts the certificates that correspond to that position; also, at the end A outputs a collision of the
underlying hash function if A can compute it from the extracted bits and certificates. From essen-
tially the same argument as before, it follows thatA finds a collision of the underlying hash function
with non-negligible probability. Since the running time of A is now bounded by a polynomial, we
can derive a contradiction even when the underlying hash function is collision resistant only against
polynomial-time adversaries.

5 Acknowledgment

The author greatly thank the anonymous reviewers of Journal of Cryptology and TCC 2015 for their
useful comments about the presentation of this paper. I also thank an anonymous reviewer of TCC
2015 for pointing out an error that I made in an earlier version of this paper.

References

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteriza-
tion of np. J. ACM, 45(1):70–122, January 1998.

35

Language Λ2:

Let ECC be an error-correcting code with constant relative distance and with polynomial-time
encoding and decoding.
(h, τ,C, r) ∈ Λ2 if and only if there exist

• a machine Π (with some inputs being hardwired) such that |Π| ≤ nlog log n

• a set of certificates {authi}i∈[|η|], where η def
= ECC(Π)

• randomness R ∈ {0, 1}poly(n) for Com

• a string y such that |y| = n

such that

• C = Comτ((|η|, h(η)); R), and

• authi = authi(η) for every i ∈ [|η|], and

• Π(y) outputs a string that has r as a substring, and Π(y) outputs it within nlog log n steps.

Figure 9: A modified version of Λ2.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–
115, 2001.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In CRYPTO, pages
390–420, 1992.

[BG09] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM
Journal on Computing, 38(5):1661–1694, 2009.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-sound
zero-knowledge and its applications. In FOCS, pages 116–125, 2001.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In the International
Congress of Mathematicians, pages 1444–1451, 1986.

[BP12] Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to a new non-
black-box simulation technique. In FOCS, pages 223–232, 2012.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and
applications to resettable cryptography. In STOC, pages 241–250, 2013.

[BP15] Nir Bitansky and Omer Paneth. On non-black-box simulation and the impossibility of
approximate obfuscation. SIAM Journal on Computing, 44(5):1325–1383, 2015.

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In
CT-RSA, pages 1–18, 2003.

36

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge. In STOC, pages 235–244, 2000.

[CKPR02] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-
knowledge requires (almost) logarithmically many rounds. SIAM Journal on Computing,
32(1):1–47, 2002.

[CLP13a] Ran Canetti, Huijia Lin, and Omer Paneth. Public-coin concurrent zero-knowledge in
the global hash model. In TCC, pages 80–99, 2013.

[CLP13b] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero knowledge
from P-certificates. In FOCS, pages 50–59, 2013.

[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero-
knowledge from indistinguishability obfuscation. In CRYPTO, pages 287–307, 2015.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous resettability conjec-
ture and a new non-black-box simulation strategy. In FOCS, pages 251–260, 2009.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
STOC, pages 416–426, 1990.

[GGS15] Vipul Goyal, Divya Gupta, and Amit Sahai. Concurrent secure computation via non-
black box simulation. In CRYPTO, pages 23–42, 2015.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 25(1):169–192, 1996.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–
729, 1991.

[Goy13] Vipul Goyal. Non-black-box simulation in the fully concurrent setting. In STOC, pages
221–230, 2013.

[HILL99] Johan Htad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396,
1999.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In STOC, pages 560–569, 2001.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158,
1991.

37

[PPS15] Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. Obfuscation-based non-black-
box simulation and four message concurrent zero knowledge for NP. In TCC, pages
638–667, 2015.

[PR05] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable crypto-
graphic protocols. In STOC, pages 533–542, 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS, pages 366–375, 2002.

[PRT13] Rafael Pass, Alon Rosen, and Wei-Lung Dustin Tseng. Public-coin parallel zero-
knowledge for NP. J. Cryptology, 26(1):1–10, 2013.

[PTW09] Rafael Pass, Wei-Lung Dustin Tseng, and Douglas Wikstrm. On the composition of
public-coin zero-knowledge protocols. In CRYPTO, pages 160–176, 2009.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In EUROCRYPT, pages 415–431, 1999.

38

