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Abstract

Vectorial Boolean bent functions, which possess the maximal nonlinearity and the
minimum differential uniformity, contribute to optimum resistance against linear crypt-
analysis and differential cryptanalysis for the cryptographic algorithms that adopt them
as nonlinear components. This paper is devoted to the new primary constructions of
vectorial Boolean bent functions, including four types: vectorial monomial bent func-
tions, vectorial Boolean bent functions with multiple trace terms, H vectorial functions
and H-like vectorial functions. For vectorial monomial bent functions, this paper an-
swers one open problem proposed by E. Pasalic et al. and characterizes the vectorial
monomial bent functions corresponding to the five known classes of bent exponents. For
the vectorial Boolean bent functions with multiple trace terms, this paper answers one
open problem proposed by A. Muratović-Ribić et al., presents six new infinite classes of
explicit constructions and shows the nonexistence of the vectorial Boolean bent func-

tions from F2n to F2k of the form
∑2k−2

i=1 Trnk (ax(2i−1)(2k−1)) with n = 2k and a ∈ F∗
2k .

Moreover, H vectorial functions are further characterized. In addition, a new infinite
class of vectorial Boolean bent function named as H-like vectorial functions are derived,
which includes H vectorial functions as a subclass.

1 Introduction

Vectorial Boolean functions, which are widely used in block ciphers, stream ciphers and Hash
functions, paly an important role in cryptography. The security of the cryptographic algo-
rithms, adopting vectorial Boolean functions as nonlinear components, usually depends on
the cryptographic properties of the vectorial Boolean functions adopted. The nonlinearity
and the differential uniformity of the adopted vectorial Boolean functions are two parame-
ters that measure the resistence of the cryptographic algorithms against linear cryptanalysis
[27, 39] and differential cryptanalysis [1, 2] respectively. The vectorial Boolean functions
possessing the maximal nonlinearity, which is the optimal nonlinearity, are referred to as
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vectorial Boolean bent functions. The concept bent of vectorial Boolean functions, which is
an extension of Boolean bent functions [56], was first considered by Nyberg in [51], where it
was shown that bent (n,m)-functions (i.e., the vectorial Boolean functions from F2n to F2m)
exist if and only if n is even and n ≥ 2m. Vectorial Boolean bent functions are also named
as perfect nonlinear functions [17, 51], for the reason possessing the minimum differential
uniformity, which is the optimal differential uniformity. Thus, the constructions of vectorial
Boolean bent functions have both theoretical significance and practical applications.

The construction methods of vectorial Boolean bent functions can be divided into two
categories: primary constructions and secondary constructions. Primary constructions are
also called direct constructions, and secondary constructions lead to vectorial Boolean bent
functions based on some known vectorial Boolean bent functions, which are also called in-
direct constructions. Among the constructions of vectorial Boolean bent functions, primary
constructions hold a key status.

Strict Maiorana-McFarland vectorial functions, extended Maiorana-McFarland vecto-
rial functions and general Maiorana-McFarland vectorial functions are the three infinite
classes of vectorial Boolean bent functions [11, 51, 52, 54, 57] stemming from the Maiorana-
McFarland constructions of Boolean bent functions [22, 40]. In the light of the Partial
Spread constructions of Boolean bent functions [22], two infinite classes of vectorial Boolean
bent functions, PSap vectorial functions [11] and Partial Spread vectorial functions [15], were
presented. In [5], two infinite classes of vectorial Boolean bent functions were introduced by
investigating the bent component functions of non-bent vectorial Boolean functions. Two
infinite classes of vectorial hyper-bent functions, which is a subclass of vectorial Boolean
bent functions, were discussed in [38, 61]. A vectorial hyper-bent function is the vectorial
Boolean function that every one of its component functions is a hyper-bent function, and
the Boolean bent function f(x) on F2n is a hyper-bent function if f(xj) is also bent for any
gcd(j, 2n− 1) = 1 [61]. All the above infinite classes of vectorial Boolean bent functions are
primary constructions, and a few primary constructions of vectorial Boolean bent functions
which are not infinite classes can be found in [15]. Recently, the primary constructions
of some other infinite classes of vectorial Boolean bent functions have attracted a lot of
attentions.

The bent (n,m)-functions of the form Trnm(axd) are referred to as vectorial monomial
bent functions, which are monomial bent functions if m = 1, i.e., the Boolean bent functions
of the form Trn1 (axd) on F2n , and exist only if gcd(d, 2n − 1) 6= 1 [34], where d is integer
and a ∈ F∗2n . In [55], it was shown that Trnm(axd) is a vectorial monomial bent function
if Trn1 (axd) is a monomial bent function and xd is a permutation on F2m , i.e., gcd(d, 2m −
1) = 1, and some classes of vectorial monomial bent functions with the Kasami exponent,
the Leander exponent and the Canteaut-Charpin-Kyureghyan exponent were investigated.
However, whether the condition that gcd(d, 2m − 1) = 1 is necessary or not and how to
relax the condition gcd(d, 2m − 1) = 1 for Trnm(axd) to be bent are unknown and left open
in [55]. In [58], a counter example to show that gcd(d, 2m − 1) = 1 is not necessary for
Trnm(axd) to be bent was found. In [26], it was shown that Trnk (axd), with n = 2k, is a
vectorial monomial bent function if gcd(d, 2n − 1) | (2k + 1) and Trn1 (axd) is a monomial
bent function with the Gold exponent or the Kasimi exponent. However, in [26], whether
the condition gcd(d, 2n−1) | (2k+1) is necessary or not for Trnk (axd) to be bent is unknown.
In [48], it was proved that there does not exist a vectorial monomial bent function of the
form Trnk (axd) with the Dillon exponent for a ∈ F∗

2k
, d = s(2k − 1) and gcd(s, 2k + 1) = 1.

Although many works have been done, the characterization of vectorial monomial bent
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functions is still not clear.

In [48], the general construction of the bent (n,m)-functions of the form Trnm(a1x
d1 +∑j

i=2 aix
d1+vi(2

m−1)) was studied, where ai ∈ F∗2n for i = 1, 2, · · · , j. An (n,m)-functions

Trnm(a1x
d1 +

∑j
i=2 aix

d1+vi(2
m−1)) was shown in [48] to be bent if gcd(d1, 2

m−1) = 1 and the

Boolean function Trn1 (a1x
d1 +

∑j
i=2 aix

d1+vi(2
m−1)) on F2n is bent, where vi is nonnegative

integer for i = 2, 3, · · · , j. In [48], whether the condition that gcd(d1, 2
m−1) = 1 is necessary

or not was unknown, and an open problem (i.e., Open Problem 1 in [48]) left was to find a
similar result to the above conclusion (i.e., Theorem 1 in [48]) with gcd(d1, 2

m − 1) 6= 1.

The explicit constructions of vectorial Boolean bent functions with multiple trace terms
are rare, and only four classes of them can be found in the public literatures. The bent
(n,m)-functions of the form Trnm(a1x

d1 + a2x
d2) are named as vectorial binomial bent func-

tions, which are binomial bent functions if m = 1, i.e., the Boolean bent functions of the
form Trn1 (a1x

d1 + a2x
d2) on F2n , where a1, a2 ∈ F∗2n . Based on the three infinite classes of

binomial bent functions given in [25], three infinite classes of the vectorial binomial bent
functions with two Niho exponents and m = k were presented in [48]. In [49], an infinite

class of the hyper-bent (n, k)-functions of the form Trnk (
∑2k

i=1 aix
i(2k−1)) was presented.

In [45], a new primary construction named as H vectorial functions was introduced,

i.e., the infinite class of the vectorial Boolean bent functions of the form yG(zy2k−2), where
(y, z) ∈ F2k × F2k and G is an o-polynomial on F2k .

This paper is devoted to new primary constructions of vectorial Boolean bent functions.
Four types of vectorial Boolean bent functions, i.e., vectorial monomial bent functions,
vectorial Boolean bent functions with multiple trace terms, H vectorial functions and H-
like vectorial functions, are investigated.

Firstly, several general constructions of vectorial monomial bent functions are given,
which imply answers to one open problem proposed by E. Pasalic et al. in [55], i.e., given
a monomial bent function Trn1 (axd), we present several conditions which are much closer
to the sufficient and necessary conditions for Trnm(axd) to be bent than the condition that
gcd(d, 2m − 1) = 1. Subsequently, the vectorial monomial bent functions corresponding to
the five known classes of bent exponents are characterized. For vectorial monomial bent
functions, the main results are the existence and constructions of the vectorial monomial
bent functions corresponding to the five known classes of bent exponents.

In the second place, several general constructions of the bent (n,m)-functions of the
form Trnm(

∑j
i=1 aix

di), where ai ∈ F∗2n for i = 1, 2, · · · , j, are derived, which are answers
to one open problem proposed by A. Muratović-Ribić et al. in [48], i.e., we give similar
results to Theorem 1 in [48] with gcd(d1, 2

m − 1) 6= 1. Then we focus on the explicit
constructions of the vectorial Boolean bent functions with multiple trace terms. Six new
infinite classes of the explicit constructions of such bent (n,m)-functions are obtained, i.e.,
one classes with 2r−1 Niho exponents, where r < k and gcd(r, k) = 1, four classes with some
Gold exponents and one class with 2k−2 Dillon exponents. For the vectorial Boolean bent
functions with multiple trace terms, the main results are the six infinite classes of the explicit
constructions. Furthermore, it is shown that there does not exist a bent (n, k)-function of

the form
∑2k−2

i=1 Trnk (ax(2i−1)(2k−1)), where a ∈ F∗
2k

.

Moreover, by the relation between the projectively equivalence of o-polynomials and the
corresponding H functions, we further characterize H vectorial functions that the vectorial
Boolean bent functions of the form Trkm(yG(zy2k−2)), where (y, z) ∈ F2k ×F2k and G is an
o-polynomial on F2k .
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In addition, we present a new infinite class of the vectorial Boolean bent functions of
the form Trkm(yV (zy2k−2lc), where (y, z) ∈ F2k ×F2k , l | k, c ∈ Z k

l
and V is a ϕ-polynomial

on F2k corresponding to Φ ≡ c, and name it as H-like vectorial functions, which includes H
vectorial functions as a subclass.

The rest of this paper is organized as follows. Section 2 provides some preliminaries for
the description of the paper and introduces the basic idea of the constructions of vectorial
Boolean bent functions. Section 3 discusses vectorial monomial bent functions. Section 4
analyzes the vectorial Boolean bent functions with multiple trace terms. Section 5 charac-
terizes H vectorial functions. Section 6 presents H-like vectorial functions. And Section 7
concludes this paper.

2 Preliminaries

Throughout this paper, let k, m be two positive integers, n = 2k, F2k denote the Galois
field GF (2k), F∗

2k
= F2k \{0}, F2n be identified with F2k ×F2k and α be a primitive element

of F2n , and let t = 2n−m + 2n−2m + · · ·+ 2m + 1 if m | n.

For m | k, the trace function Trkm : F2k → F2m is defined as

Trkm(z) = z + z2m + z22m
+ · · ·+ z2( nm−1)m

.

In particular, Trk1(z) is called the absolute trace function on F2k . Note that the trace
function has the well known properties that Trkm(z) = Trm1 ◦Trkm(z) and Trkm(z) = Trkm(z2).

For m | k, the norm function Nk
m : F2k → F2m is defined as

Nk
m(z) = z · z2m · z22m · · · z2( km−1)m

.

A mapping G : F2k → F2m is referred to as a vectorial Boolean function, which is also
known as a (k,m)−function, a multiple output Boolean function or an S-box, particularly,
G is a Boolean function on F2k if m = 1. The (k,m)−function G can be represented as

G(z) = (g1(z), g2(z), · · · , gm(z)),

where g1(z), g2(z), · · · , gm(z) are m Boolean functions on F2k and called the coordinate
functions of G. All nonzero linear combinations of the coordinate functions are called the
component functions of G, and can be represented as v ·G or Trm1 (λ ·G), where 0 6= v ∈ Fm2
and λ ∈ F∗2m .

G can be uniquely represented in the univariate polynomial representation as

G(z) =
2k−1∑
i=0

aiz
i, ai ∈ F2k .

The algebraic degree of G, denoted by deg(G), is defined as

deg(G) = max{wt(i) : 0 ≤ i ≤ 2k − 1, ai 6= 0},

where wt(i) denotes the Hamming weight of i, i.e., the number of 1’s of i in its 2-adic
representation. G is called an affine vectorial Boolean function if deg(G) ≤ 1. Particularly,
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the linear vectorial Boolean functions are the affine vectorial Boolean functions with the
algebraic degree being 1 whose constant terms are null, and with the algebraic degree being
0 (i.e., constant functions).

For m | k, G can also be represented in a non-unique way as

G(z) = Trkm(P (z)), P (z) ∈ F2k [z].

An (n,m)-function F can be uniquely represented in the bivariate polynomial represen-
tation as

F (y, z) =
∑

0≤i1,i2≤2k−1

ai1,i2y
i1zi2 , (y, z) ∈ F2k × F2k , ai1,i2 ∈ F2k .

The algebraic degree of F in the bivariate polynomial representation is

deg(F ) = max{wt(i1) + wt(i2) : 0 ≤ i1, i2 ≤ 2k − 1, ai1,i2 6= 0}.

For m | k, F can also be represented non-uniquely as

F (y, z) = Trkm(P (y, z)), P (y, z) ∈ F2k [y, z].

The nonlinearity of the Boolean function g on F2k , denoted by nl(g), is defined as

nl(g) = min
g′∈An

d(g, g′),

where An is the set of all the affine Boolean functions on F2k and d(g, g′) is the Hamming
distance between g and g′, i.e., the cardinality of the set {x ∈ F2k : g(x) 6= g′(x)}.

The nonlinearity of g can be measured as

nl(g) = 2k−1 − 1

2
max
ω∈F

2k

Wg(ω),

where Wg(ω) is the Walsh transform of g and defined as

Wg(ω) =
∑
z∈F

2k

(−1)g(z)+Tr
k
1 (ωz), ∀ ω ∈ F2k .

The Walsh spectrum of g is the set {Wg(ω) : ω ∈ F2k}.
The well known Parseval’s equation∑

ω∈F
2k

(Wg(ω))2 = 22k,

implies that, for the Boolean function g on F2k ,

nl(g) ≤ 2k−1 − 2
k
2
−1.

Definition 1. Let f be a Boolean function on F2n. Then f is referred to as a Boolean bent
function if and only if nl(f) = 2n−1 − 2

n
2
−1.
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The nonlinearity of the (k,m)-function G, denoted by nl(G), is defined as

nl(G) = min{nl(Trm1 (λG)) : λ ∈ F∗2m},

By the relation between the nonlinearity of Boolean functions and the Walsh transform,
the nonlinearity of G can be measured as

nl(G) = 2k−1 − 1

2
max
ω∈F

2k

max
λ∈F∗2m

WG(ω, λ).

where WG(ω, λ) is the extended Walsh transform of G and defined as

WG(ω, λ) =
∑
z∈F

2k

(−1)Tr
m
1 (λF (z))+Trk1 (ωz), ∀ ω ∈ F2k , ∀ λ ∈ F∗2m .

The extended Walsh spectrum of G is the set {WG(ω, λ) : ω ∈ F2k , λ ∈ F∗2m}.
The Parseval’s equation also implies that, for the (k,m)-function G,

nl(F ) ≤ 2k−1 − 2
k
2
−1.

Among the many equivalent definitions of vectorial Boolean bent functions, we recall
the following two definitions.

Definition 2. Let F be an (n,m)-function. Then F is referred to as a vectorial Boolean
bent function if and only if nl(F ) = 2n−1 − 2

n
2
−1.

Definition 3. A vectorial Boolean function is bent if and only if all of its component
functions are Boolean bent functions.

We recall the binary Kloosterman sums on F2k , which is an classical exponential sums.

Definition 4. The binary Kloosterman sums on F2k is defined as

K(a) =
∑
z∈F

2k

(−1)Tr
k
1 (z2k−2+az), ∀ a ∈ F2k .

2.1 The basic idea of constructing vectorial Boolean bent functions

Definition 3, which indicates that the bent property of vectorial Boolean functions can
be characterized by their component functions, is the common underlying idea of all the
constructions of vectorial Boolean bent functions.

The following theorem give the presentation of this idea over finite field.

Theorem 1 ([11, 51]). An (n,m)-function F is bent if and only if Trm1 (λF ) is bent for all
λ ∈ F∗2m.

To construct vectorial Boolean bent functions, it is the essential issue to ensure that
Trm1 (λF ) is bent for all λ ∈ F∗2m . In the following, we give two methods to deal with this
issue.
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2.1.1 The invariance of bentness under EA-equivalence

The equivalence relations of vectorial Boolean functions are important tools to study the
existence, constructions and various properties of vectorial Boolean functions. The extended
affine equivalence (EA-equivalence) and the Carlet-Charpin-Zinoviev equivalence (CCZ-
equivalence) are two greatly useful equivalence relations.

Definition 5 ([3, 8, 53]). Let G, G′ be two (k,m)-functions and

G′ = A1 ◦G ◦A2 +A3.

The corresponding concepts of equivalence between G and G′ are called:

• Linear equivalence, if A1 and A2 are two linear permutations on F2m and F2k respec-
tively, and A3 is null.

• Affine equivalence, if A1 and A2 are two affine permutations on F2m and F2k respec-
tively, and A3 is null.

• Extended affine equivalence (EA-equivalence), if A1 and A2 are two affine permuta-
tions on F2m and F2k respectively, and A3 is an affine (k,m)-function.

Clearly, the relations among the three equivalence are: linear equivalence ⊂ affine e-
quivalence ⊂ EA-equivalence.

Definition 6 ([3, 8, 13]). Let G, G′ be two (k,m)-functions and

A(GRG) = GRG′ ,

where GRG = (z,G(z)) and GRG′ = (z,G′(z)) are graphs of G(z) and G′(z) respective-
ly. The corresponding concept of equivalence between G and G′ is called Carlet-Charpin-
Zinoviev equivalence (CCZ-equivalence) if A is an affine permutation on F2k × F2m.

CCZ-equivalence is a more general concept than EA-equivalence [4, 8]. Under EA-
equivalence, the algebraic degree, the nonlinearity and the differential uniformity [8] are
invariable. Under CCZ-equivalence, the nonlinearity and the differential uniformity [8] are
also invariable, however, the algebraic degree is not always the same. For example, any per-
mutation and its inverse are CCZ-equivalent [13], but the algebraic degree of a permutation
is often different from its inverse. For k > 5, m > 1 and m | k, the concept of CCZ-
equivalence of (k,m)-functions is strictly more general than EA-equivalence [4]. Although
CCZ-equivalence is more general than EA-equivalence, the two concepts of equivalent rela-
tions are equivalent in some special cases [3], such as for Boolean functions [4] and vectorial
Boolean bent functions [5].

Since the nonlinearity of vectorial Boolean functions is an invariant under EA-equivalence,
the bent property of vectorial Boolean functions is invariable under EA-equivalence [11].
Thus, for an (n,m)-function F and ∀ λ ∈ F∗2m , Trm1 (λF ) is bent if it is EA-equivalent to
some Boolean bent functions. By Theorem 1, the following conclusion can be obtained.

Theorem 2. Let F be an (n,m)-function, and F have a bent component function f . Then
F is bent if Trm1 (λF ) is EA-equivalent to f for all λ ∈ F∗2m.

To construct some bent (n,m)-function F that has a bent component function f , we
may consider how to ensure Trm1 (λF ) to be EA-equivalent to f for all λ ∈ F∗2m .

7



2.1.2 The class of a bent component function

Boolean bent functions have been studied extensively in public literatures, and the charac-
terizations of many classes of Boolean bent functions are clear. For an (n,m)-function F ,
if it can be determined that Trm1 (λF ) belongs to some classes of Boolean bent function for
every λ ∈ F∗2m , then the bent property of F is sure. By Theorem 1, the following conclusion
can be obtained.

Theorem 3. Let F be an (n,m)-function, and F have a bent component function f . Then
F is bent if Trm1 (λF ) and f belong to the same class of Boolean bent functions for all
λ ∈ F∗2m.

To construct some bent (n,m)-function F that has a bent component function f , we
may focus on the class of Boolean bent functions that f belongs to.

Remark 1. Usually, if two Boolean functions are EA-equivalent, they belong to the same
class of Boolean functions. Thus, Theorem 3 almost always includes Theorem 2 as a special
case.

Hereafter, we will study the existence and constructions of vectorial Boolean bent func-
tions by Theorem 1, Theorem 2 or Theorem 3 according to the situation.

3 Vectorial monomial bent functions

An integer d (in the sense of modulo 2n − 1) is named as a bent exponent if there exists
an element a ∈ F∗2n such that the Boolean function Trn1 (axd) on F2n is bent. So far, five
classes of bent exponents [43] have been found (see Table 1), and the corresponding five
classes of monomial bent functions have been well studied in public literatures. However,
the characterization of the vectorial monomial bent functions with the five known classes of
bent exponents is still not clear. In this section, we study the existence and constructions
of vectorial monomial bent functions.

3.1 General constructions of vectorial monomial bent functions

This subsection discusses the general constructions of vectorial monomial bent functions
and answers one open problem proposed by E. Pasalic et al. [55].

In order to obtain the general constructions of vectorial monomial bent functions, we
give the following theorem, which can be obtained by Theorem 2 directly.

Theorem 4. Let Trn1 (axd) be a monomial bent function. Then Trnm(axd) is a vectorial
monomial bent function if Trn1 (aλxd) is linear equivalent to Trn1 (axd) for all λ ∈ F∗2m.

To make use of Theorem 4, it is foremost to ensure the linear equivalence between
Trn1 (aλxd) and Trn1 (axd) for all λ ∈ F∗2m . We give three equivalent conditions which will be
used to meet the condition that Trn1 (aλxd) is linear equivalent to Trn1 (axd) for all λ ∈ F∗2m .

Before that, a useful lemma is presented as follows, which can be proved easily.

Lemma 1. Let G = {xd : x ∈ F∗2n}. Then G = 〈αd〉 = 〈αgcd(d,2n−1)〉.

Theorem 5. Let m | n and d be integer. Then the following three conditions are equivalent:
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(1) F∗2m ⊆ {xd : x ∈ F∗2n}.

(2) gcd(d, 2n − 1) | t.

(3) gcd( d
gcd(d,t) , 2

m − 1) = 1.

Proof. By Lemma 1, it is known that {xd : x ∈ F∗2n} = 〈αgcd(d,2n−1)〉. Since F∗2m = 〈αt〉,
the equivalence between item (1) and item (2) can be obtained. In the following, we prove
the equivalence between item (1) and item (3).

Let lcm[t, d] denote the lowest common multiple of t and d. By Lemma 1, {xd : x ∈
F∗2n} = 〈αd〉. Then we have

F∗2m ⊆ {xd : x ∈ F∗2n}
⇔ 〈αt〉 ⊆ 〈αd〉
⇔ 〈αt〉 ∩ 〈αd〉 = 〈αt〉
⇔ 〈αlcm[t,d]〉 = 〈αt〉
⇔ gcd(lcm[t, d], 2n − 1) = t

⇔ gcd(
td

gcd(d, t)
, 2n − 1) = t

⇔ gcd(
d

gcd(d, t)
, 2m − 1) = 1.

Given the above, the conclusion of the theorem holds.

Note that F∗2m ⊆ {xd : x ∈ F∗2n} if and only if there exists some β ∈ F∗2n such that
λ = βd for all λ ∈ F∗2m . If one of the three conditions in Theorem 5 holds, by Definition
5, then Trn1 (aλxd) = Trn1 (a(βx)d) is linear equivalent to Trn1 (axd) for all λ ∈ F∗2m . Thus,
according to Theorem 4 and Theorem 5, the general constructions of the vectorial monomial
bent functions corresponding to the three conditions in Theorem 5 can be obtained as the
following theorem.

Theorem 6. Let m | n and Trn1 (axd) be a monomial bent function. If one of the three
conditions in Theorem 5 holds, then Trnm(axd) is a vectorial monomial bent function.

In [55], given a monomial bent function Trn1 (axd), E. Pasalic et al. proved that xd is a
permutation on F2m , i.e., gcd(d, 2m − 1) = 1, is sufficient for Trnm(axd) to be bent, and left
an open problem as follows.

Open Problem 1 ([55]). Let m | n and Trn1 (axd) be a monomial bent function. Let xd be
a permutation of F2m. Then Trnm(axd) is a vectorial monomial bent function.

The condition that the mapping xd is a permutation over F2m seems to be a necessary
condition as well, but this still remains open.

It is certainly of interest to relax the condition regarding the permutation property of xd

over Fm2 . Anyway, a generalization of the above result for nonpermutating over F2m seems
not to be straightforward.

In [58], by giving a counter example, it was shown that the condition gcd(d, 2m−1) = 1 is
not necessary. However, the relaxation of the condition regarding the permutation property
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of xd on Fm2 is still unknown. Here, we answer Open Problem 1 adequately. Before that, we
investigate the relation between gcd(d, 2m − 1) = 1 and the three conditions in Theorem 5.

According to item (3) of Theorem 5, the following theorem can be obtained directly.

Theorem 7. Let m | n and d be integer. If gcd(d, 2m − 1) = 1, then every one of the three
conditions in Theorem 5 holds. But it is not vice versa.

By Theorem 6 and Theorem 7, we have that, given a monomial bent function Trn1 (axd),
every one of the three conditions in Theorem 5 is closer to the sufficient and necessary
conditions for Trnm(axd) to be bent than gcd(d, 2m − 1) = 1.

While how much difference between gcd(d, 2m − 1) = 1 and the three conditions in
Theorem 5? In fact, given a monomial bent function Trn1 (axd), there exist many conditions
that are much closer to the sufficient and necessary conditions for Trnm(axd) to be bent than
gcd(d, 2m − 1) = 1, and further than every one of the three conditions in Theorem 5.

Theorem 8. Let m | n, d be integer, l1, l2 ∈ N∗, l1 ≥ 2, l1 > l2, Condition-A denote every
one of the three conditions in Theorem 5 and Condition-B denote every one of the three
conditions in Theorem 5 with d = dl1. Then

Condition−A ;
⇐ Condition−B ;

⇐ gcd(
dl1

gcd(dl2 , t)
, 2m − 1) = 1 ;

⇐ gcd(d, 2m − 1) = 1

Proof. Condition-A ;
⇐ Condition-B is obvious.

Since l1 > l2, gcd( dl1

gcd(dl1 ,t)
, 2m − 1) = 1 ;

⇐ gcd( dl1

gcd(dl2 ,t)
, 2m − 1) = 1 is also obvious. By

Theorem 5, Condition-B ;
⇐ gcd( dl1

gcd(dl2 ,t)
, 2m − 1) = 1 holds.

Since gcd( dl1

gcd(dl2 ,t)
, 2m − 1) = 1 ;

⇐ gcd(dl1 , 2m − 1) = 1, and gcd(dl1 , 2m − 1) = 1 ⇔

gcd(d, 2m − 1) = 1, we have that gcd( dl1

gcd(dl2 ,t)
, 2m − 1) = 1 ;

⇐ gcd(d, 2m − 1) = 1.

Given the above, the conclusion of the theorem holds.

According to Theorem 6 and Theorem 8, the following theorem can be obtained.

Theorem 9. Let m | n and Trn1 (axd) be a monomial bent function. Then Trnm(axd) is
a vectorial monomial bent function if one of the following four conditions holds, where
l, l′ ∈ N∗, l ≥ l′:

(1) F∗2m ⊆ {xd
l

: x ∈ F∗2n}.

(2) gcd(dl, 2n − 1) | t.

(3) gcd( dl

gcd(dl′ ,t)
, 2m − 1) = 1.

(4) gcd(d, 2m − 1) = 1.

Remark 2. (1) Note that, in this paper, without statement, there is no restriction that
Trn1 (axd) is bent when referring to the four conditions in Theorem 9.

(2) The construction corresponding to item (4) of Theorem 9 is Theorem 1 in [55]. For
the convenience of discussion, we let Theorem 9 include the condition gcd(d, 2m − 1).
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In [51], it was shown that bent (n,m)-functions exist if and only if n is even and n ≥ 2m.
Thus, by Theorem 9, we have the following corollary.

Corollary 1. Let m | n and Trn1 (axd) be a monomial bent function. Then one of the four
conditions in Theorem 9 holds only if m ≤ k.

Anwsers to Open Problem 1. Following from Theorem 8 and Theorem 9, given a mono-
mial bent function Trn1 (axd), we have that every one of the three conditions corresponding
to item (1)-item (3) of Theorem 9 is closer to the sufficient and necessary conditions for
Trnm(axd) to be a vectorial monomial bent function than gcd(d, 2m − 1) = 1.

Although the non-necessity of gcd(d, 2m − 1) = 1 and every one of the three conditions
corresponding to item (1)-item (3) of Theorem 9 with l ≥ 2 for Trnm(axd) to be bent can be
obtained by Theorem 8 and Theorem 9 directly, given a monomial bent function Trn1 (axd),
whether every one of the three conditions in Theorem 5 is necessary or not for Trnm(axd)
to be bent is also interesting. According to Theorem 8, item (1) of Remark 4, item (1)
of Remark 5, item (1) of Remark 7 and item (1) of Remark 8 (see below), we have the
following conclusion.

Theorem 10. Let m | n and Trn1 (axd) be a monomial bent function. For Trnm(axd) to be
a vectorial monomial bent function, every one of the four conditions in Theorem 9 is

(1) sufficient but not necessary in general case;

(2) sufficient and necessary if d is a Kasami exponent or a Leander exponent.

In addition, if d is a Gold exponent, then every one of the four conditions in Theorem
9 with m = k is also sufficient and necessary for Trnk (axd) to be bent.

On the other hand, in some cases, the four conditions in Theorem 9 may be equivalent.

Theorem 11. Let m | n and d be integer. If gcd(2m − 1, t) = 1, then the four conditions
in Theorem 9 are equivalent.

Proof. According to Theorem 5 and Theorem 8, it only needs to prove that gcd( d
gcd(d,t) , 2

m−
1) = 1 is necessary for gcd(d, 2m − 1) = 1 to hold. Since gcd(2m − 1, t) = 1, we have that
gcd(d, 2m − 1) = 1 if and only if gcd( d

gcd(d,t) , 2
m − 1) = 1 holds.

Remark 3. Let m | n and Trn1 (axd) be a monomial bent function. Then gcd(2m−1, t) = 1
is not necessary for the four conditions in Theorem 9 to be equivalent. The reason is as
follows.

Let m = 3 and n = 84. By Theorem 15, Theorem 16, Theorem 22 and Theorem 23
(see below), we have that the four conditions in Theorem 9 are equivalent if d is a Kasami
exponent or a Leander exponent. However, gcd(2m − 1, t) = gcd(2m − 1, nm) = 7.

Assuming that gcd(2m − 1, t) = 1, given a monomial bent function Trn1 (axd), whether
every one of the four conditions in Theorem 9 are necessary or not for Trnm(axd) to be
bent is interesting. However, we cannot determine the necessity, and this is left as an open
problem.

11



Open Problem 2. Let m | n and Trn1 (axd) be a monomial bent function. If gcd(2m−1, t) =
1, it is not yet known whether every one of the four conditions in Theorem 9 is necessary
or not for Trnm(axd) to be a vectorial monomial bent function.

Trivially, by Theorem 1, the (n,m)-function Trnm(axd) is bent if and only if Trn1 (aλxd)
is bent for all λ ∈ F∗2m , where a ∈ F∗2n . The same idea was also considered in [58]. For the
convenience of discussion, we list this fact as the following theorem.

Theorem 12 ([58]). Let m | n, a ∈ F∗2n and denote

C = {β ∈ F2n : Trn1 (βxd) is a monomial bent function}.

Then Trnm(axd) a vectorial monomial bent function if and only if

a · F∗2m ⊆ C.

3.2 The characterizations of vectorial monomial bent functions

In this subsection, we focus on the characterizations of the vectorial monomial bent functions
with the known bent exponents.

3.2.1 The known monomial bent functions

It is known that there are five classes of monomial bent functions, accordingly, five classes of
bent exponents have been found so far. The known monomial bent functions are introduced
below and listed in Table 1, which will be used to characterize the vectorial monomial bent
functions corresponding to the five known classes of bent exponents.

The monomial bent functions with the Gold exponent d = 2s + 1 are well known, where
s ∈ N. By Lemma 1, this can be described as the following theorem.

Theorem 13 (Gold Case [34]). Let s ∈ N, d = 2s + 1 and a ∈ F∗2n. The Boolean function
Trn1 (axd) on F2n is bent if and only if

a /∈ 〈αgcd(d,2n−1)〉.

It was shown in [22] that the Boolean function Trn1 (ax2k−1) on F2n is bent if and only

if K(a) = 0 with a ∈ F∗
2k

, and in [32] that Trn1 (ax2k−1) on F2n is bent if and only if

K(Nn
k (a)) = 0 with a ∈ F∗2n . In [18], it was shown that Trn1 (axs(2

k−1)) on F2n is bent
if and only if K(a) = 0, where gcd(s, 2k + 1) = 1 and a ∈ F∗

2k
. For the Dillon exponent

d = s(2k − 1) with s integer, we recall Theorem 5 in [18] and Theorem 3 in [32] as the
following theorem. Note that the Kloosterman sums defined in this paper is the same as
that in [18] and is different from that in [32].

Theorem 14 (Dillon Case [18, 32]). Let s be an integer and d = s(2k−1). For the Boolean
function Trn1 (axd) on F2n, the following conclusions hold:

(1) Let gcd(s, 2k + 1) = 1 and a ∈ F∗
2k

. Then Trn1 (axd) is bent if and only if

a ∈ {µ : K(µ) = 0, µ ∈ F∗2k}.

12



(2) Let s = 1 and a ∈ F∗2n. Then Trn1 (axd) is bent if and only if

a ∈ {β : K(Nn
k (β)) = 0, β ∈ F∗2n}.

The conclusion for the monomial bent functions on F2n with the Kasami exponent
d = 22s− 2s + 1, where s ∈ N and gcd(s, n) = 1, was conjectured in [28] and proved in [23].
Since 3 | (2n − 1), by Lemma 1, the conclusion for the monomial bent functions with the
Kasami exponent can be described as follows.

Theorem 15 (Kasami Case [23, 34]). Let gcd(3, n) = 1, s ∈ N, gcd(s, n) = 1, d =
22s − 2s + 1 and a ∈ F∗2n. The Boolean function Trn1 (axd) on F2n is bent if and only if

a /∈ 〈α3〉.

In [34], it was proved that there exist monomial bent functions with the Leander expo-
nent d = (2s+1)2, and further result was given in [19]. It was shown in [19] that the Boolean
function Trn1 (ax(2s+1)2

) on F2n is bent if and only if s is positive odd integer and there exist
some ρ ∈ εF∗2s and β ∈ F∗2n such that a = ρβ(2s+1)2

holds, where n = 4s and ε ∈ F4 \ F2.
Note the fact, the condition that there exist some ρ ∈ εF∗2s and β ∈ F∗2n with ε ∈ F4 \F2 and
n = 4s such that a = ρβ(2s+1)2

is equivalent to a ∈ F4\F2 ·F∗2s ·{x(2s+1)2
: x ∈ F∗2n}. By Lem-

ma 1 and n = 4s, {x(2s+1)2
: x ∈ F∗2n} = 〈α2s+1〉 holds. Since F∗2s = 〈α(2s+1)(22s+1)〉, we have

F∗2s ⊂ {x(2s+1)2
: x ∈ F∗2n}. Therefore, F4 \ F2 · F∗2s · {x(2s+1)2

: x ∈ F∗2n} = F4 \ F2 · 〈α2s+1〉.
Thus, Theorem 4.8 in [19] can be described equivalently and more succinctly as the following
theorem.

Theorem 16 (Leander Case [19, 34]). Let s ∈ N∗, n = 4s, d = (2s + 1)2 and a ∈ F∗2n.
Then the Boolean function Trn1 (axd) on F2n is bent if and only if

s is odd and a ∈ F4 \ F2 · 〈α2s+1〉.

For the the Canteaut-Charpin-Kyureghyan exponent d = 22s + 2s + 1, in [10, 19], it was
shown that the Boolean function Trn1 (axd) on F2n is bent if and only if a ∈ {ρ : Trks (ρ) =
0, ρ ∈ F∗

2k
} · {xd : x ∈ F∗2n}, where the integer s > 1 and n = 6s. By Lemma 1, we describe

this conclusion as the following theorem.

Theorem 17 (Canteaut-Charpin-Kyureghyan Case [10, 19]). Let s > 1 be an integer,
n = 6s, d = 22s + 2s + 1 and a ∈ F∗2n. Then the Boolean function Trn1 (axd) on F2n is bent
if and only if

a ∈ {ρ : Trks (µ) = 0, µ ∈ F∗2k} · 〈α
d〉.

3.2.2 Characterizing the vectorial monomial bent functions with the known
bent exponents

Based on the general constructions of vectorial monomial bent functions and the results
of monomial bent functions, we characterize the vectorial monomial bent functions corre-
sponding to the five known classes of bent exponents. The results of the constructions and
the nonexistence of vectorial monomial bent functions are listed in Table 2 and Table 3 re-
spectively. Among the constructions of vectorial Boolean bent functions, the constructions
which reach maximal dimension of the output space, i.e., half of the dimension of the input
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Table 1: The Known Monomial Bent Functions of the form Trn1 (axd) 1

Case Exponent d Condition-1 Condition-2 2 References

Gold 2s + 1 s ∈ N a /∈ 〈αgcd(d,2n−1)〉 [34]

Dillon s(2k − 1)
gcd(s, 2k + 1) = 1 K(a) = 0, a ∈ F∗2k [18, 34]

s = 1 K(Nn
k (a)) = 0, a ∈ F∗2n [32]

Kasami 22s − 2s + 1
s ∈ N,

gcd(3, n) = 1,
gcd(s, n) = 1

a /∈ 〈α3〉 [23, 34]

Leander (2s + 1)2 s ∈ N∗, n = 4s s odd, a ∈ F4 \ F2 · 〈α2s+1〉 [19, 34],
Theorem 16

Canteaut-
Charpin-
Kyureghyan

22s + 2s + 1
s > 1 integer,

n = 6s
a ∈ {ρ : Trks (ρ) = 0, ρ ∈ F∗2k} · 〈α

d〉 [10, 19]

1 n = 2k and a ∈ F∗2n .
2 Necessary and sufficient conditions for Trn1 (axd) to be bent.

space, are optimal. Thus, we list the results of the vectorial monomial bent functions of the
form Trnk (axd) in Table 4.

According to Theorem 9 and Theorem 13-17, the following theorem can be obtained
directly, which gives the vectorial monomial bent functions corresponding to the five known
classes of bent exponents.

Theorem 18. Let m | n, a ∈ F∗2n and one of the four conditions in Theorem 9 holds. For
the (n,m)-function Trnm(axd), the following conclusions hold:

(1) (Gold Case). Let s ∈ N and d = 2s + 1. Then Trnm(axd) is bent if and only if

a /∈ 〈αgcd(d,2n−1)〉.

(2) (Dillon Case). Let s be an integer and d = s(2k − 1).

(2.1) Let gcd(s, 2k + 1) = 1 and a ∈ F∗
2k

. Then Trnm(axd) is bent if and only if

a ∈ {β : K(µ) = 0, µ ∈ F∗2k}.

(2.2) Let s = 1 and a ∈ F∗2n. Then Trnm(axd) is bent if and only if

a ∈ {β : K(Nn
k (β)) = 0, β ∈ F∗2n}.

(3) (Kasami Case). Let gcd(3, n) = 1, s ∈ N, gcd(s, n) = 1 and d = 22s − 2s + 1 . Then
Trnm(axd) is bent if and only if

a /∈ 〈α3〉.

(4) (Leander Case). Let s ∈ N∗, n = 4s and d = (2s + 1)2. Then Trnm(axd) is bent if and
only if

s is odd and a ∈ F4 \ F2 · 〈α2s+1〉.

(5) (Canteaut-Charpin-Kyureghyan Case). Let s > 1 be an integer, n = 6s and d =
22s + 2s + 1. Then Trnm(axd) is bent if and only if

a ∈ {ρ : Trks (µ) = 0, µ ∈ F∗2k} · 〈α
d〉.
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Although five classes of vectorial monomial bent functions are given in Theorem 18,
the four conditions in Theorem 9 seem inconvenient to use directly. In order to construct
vectorial monomial bent functions more practically, we further characterize the vectorial
monomial bent functions corresponding to the five known classes of bent exponents.

We have a new sufficient and necessary condition for the vectorial monomial bent func-
tions with the Gold exponent to be bent, which has less restrictions than that in Theorem
18.

Theorem 19 (Gold Case). Let m | n, s ∈ N, d = 2s + 1 and a ∈ F∗2n. The (n,m)-function
Trnm(axd) is bent if and only if

a /∈ 〈αgcd(d,t)〉.

Proof. By Theorem 13, the set of the coefficients such that Trn1 (βxd) on F2n is bent is

C = {β ∈ F∗2n : β /∈ 〈αgcd(d,2n−1)〉}.

Then, by Theorem 12, we get that Trnm(axd) is bent if and only if

a · F∗2m ⊆ {β ∈ F∗2n : β /∈ 〈αgcd(d,2n−1)〉}
⇔ a · F∗2m ∩ 〈αgcd(d,2n−1)〉 = ∅
⇔ a /∈ 〈αgcd(d,2n−1)〉 · F∗2m
⇔ a /∈ 〈αgcd(d,2n−1)〉 · 〈αt〉
⇔ a /∈ 〈αgcd(t,gcd(d,2n−1))〉
⇔ a /∈ 〈αgcd(d,t)〉

Given the above, the theorem is proved to be true.

Remark 4. (1) Here, we give an example that Trnm(axd) is a vectorial monomial bent
function with a Gold exponent and the three conditions in Theorem 5 do not hold,
which means that the three conditions in Theorem 5 are not necessary for Trnm(axd)
to be bent. In Gold case, let s = 3, m = 4 and n = 12. Then gcd(d, t) = gcd(2s +
1, 2n−1

2m−1) = gcd(9, 273) = 3 6= 1. Thus, F∗2n \ 〈αgcd(d,t)〉 = F∗212 \ 〈α3〉 6= ∅. For ∀ a ∈
F∗212\〈α3〉, by Theorem 19, we have Tr12

4 (ax9) is bent. However, gcd( d
gcd(d,t) , 2

m−1) =

gcd(3, 15) = 3 6= 1.

(2) Obviously, all the vectorial monomial bent functions constructed by item (1) of Theorem
18 can be constructed by Theorem 19. However, by item (1), we know that it is not
vice-versa.

Then we discuss the necessary and sufficient conditions for the (n, k)-function of the
form Trnk (axd) with the Gold exponent to be bent. Before the discussion, the following
lemma is given, which can be derived from Lemma 1 in [34].

Lemma 2. Let Trn1 (axd) be a monomial bent function. Then gcd(d, 2k−1) = 1 if and only
if gcd(d, 2k + 1) 6= 1.

Corollary 2. Let m | n, s ∈ N, d = 2s + 1 and a ∈ F∗2n. For the (n, k)-function Trnk (axd),
the following three conditions are equivalent:

(1) Trnk (axd) is bent.
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(2) a /∈ 〈αgcd(d,2k+1)〉.

(3) a /∈ 〈αgcd(d,2n−1)〉 and one of the four conditions in Theorem 9 with m = k holds.

Proof. By Theorem 19, the equivalence between item (1) and item (2) is trivial.

(2)⇒(3): Since a ∈ F∗2n \ 〈αgcd(d,2k+1)〉 and a ∈ F∗2n , we have that a /∈ 〈αgcd(d,2n−1)〉 and
gcd(d, 2k + 1) 6= 1. By Lemma 2, gcd(d, 2k − 1) = 1. According to Theorem 8, all the four
conditions in Theorem 9 with m = k hold.

(3)⇒(1): This follows from item (1) of Theorem 18.

Given the above, the corollary is proved to be true.

Remark 5. (1) If Trn1 (axd) is a monomial bent function with a Gold exponent, by Theo-
rem 13 and item (3) of Corollary 2, then every one of the four conditions in Theorem
9 with m = k is also necessary for Trnk (axd) to be bent.

(2) Theorem 6 in [26] is a special case corresponding to item (3) of Corollary 2. More-
over, Corollary 2 indicates that the conditions gcd(2s + 1, 2n − 1) | (2k + 1) and
a 6∈ {xgcd(d,2n−1) : x ∈ F2n} of Theorem 6 in [26] are also necessary for Trnk (axd) to
be bent, which is unknown in [26].

In order to discuss the vectorial monomial bent functions with the Dillon exponent, a
lemma is given as follows.

Lemma 3. Let m ≥ 2, m | n, s be an integer, gcd(s, 2k + 1) = 1, d = s(2k − 1) and
Trn1 (axd) be a monomial bent function. Then one of the three conditions in Theorem 5
holds if and only if m = 2, n ≥ 6 and n ≡ 2(mod 4).

Proof. Since gcd(s, 2k + 1) = 1, we have

gcd(d, 2n − 1) | t
⇔ (2m − 1) | (2k + 1)

⇔ 2m − 1 = gcd(2m − 1, 2k + 1).

Necessity: If m | k, then gcd(2m − 1, 2k + 1) = gcd(2m − 1, 2m + 1) = 1. Because
m ≥ 2, there is no m such that 2m − 1 = gcd(2m − 1, 2k + 1) = 1. Then we have m - k.
According to Corollary 1 and m - k, it is obtained that m < k.

By m ≥ 2 and m < k, we have n ≥ 6.

Since m < k, gcd(2m − 1, 2k + 1) = gcd(2m − 1, 2k mod m + 1). And because m ≥ 2,
m - k and 2m − 1 = gcd(2m − 1, 2k + 1), we have that m = 2 and k ≡ 1(mod 2), i.e.,
n ≡ 2(mod 4).

Thus, m = 2, n ≥ 6 and n ≡ 2(mod 4).

Sufficiency: If m = 2, n ≥ 6 and n ≡ 2(mod 4), then m - k and m < k. Therefore,
gcd(2m − 1, 2k + 1) = gcd(2m − 1, 2k mod m + 1) = 2m − 1.

By Theorem 5, the lemma is proved to be true.

By item (2) of Theorem 18 and Lemma 3, we can derive the following theorem.

Theorem 20 (Dillon Case). Let n ≡ 2(mod 4) and n ≥ 6, s be an integer and d =
s(2k − 1). For the (n, 2)-function Trn2 (axd), the following conclusions hold:
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(1) Let gcd(s, 2k + 1) = 1 and a ∈ F∗
2k

. Then Trn2 (axd) is bent if and only if

a ∈ {β : K(µ) = 0, µ ∈ F∗2k}.

(2) Let s = 1 and a ∈ F∗2n. Then Trn2 (axd) is bent if and only if

a ∈ {β : K(Nn
k (β)) = 0, β ∈ F∗2n}.

Remark 6. According to Theorem 8 and Lemma 3, we have that all the vectorial monomial
bent functions constructed by item (2) of Theorem 18 and by Theorem 20 are the same.

It was shown by Theorem 10 in [48] that there does not exist a vectorial monomial bent
functions of the form Trnk (axd) with the Dillon exponent d = s(2k−1), where gcd(s, 2k+1) =
1 and a ∈ F∗

2k
. Here, we give an alternative proof of Theorem 10 in [48], and also prove

the nonexistence of the vectorial monomial bent functions of the form Trnk (axd) with the
Dillon exponent for s = 1 and a ∈ F∗2n . Before the proof, a lemma is given as follows.

Lemma 4. For ∀ a ∈ F∗2n, {Nn
k (aλ) : λ ∈ F∗

2k
} = F∗

2k
.

Proof. Note the fact that, for ∀ λ1, λ2 ∈ F∗
2k

, if λ1 6= λ2, then λ2k+1
1 6= λ2k+1

2 . Therefore,

{λ2k+1
: λ ∈ F∗

2k
} = F∗

2k
. Since Nn

k (aλ) = a2k+1λ2k+1 and a2k+1 ∈ F∗
2k

, we have {Nn
k (aλ) :

λ ∈ F∗
2k
} = F∗

2k
.

Theorem 21. Let s be an integer and d = s(2k − 1). The following conclusions hold:

(1) ([48]) Let gcd(s, 2k+1) = 1 and a ∈ F∗
2k

. Then there does not exist a vectorial monomial

bent function of the form Trnk (axd).

(2) Let s = 1 and a ∈ F∗2n. Then there does not exist a vectorial monomial bent function
of the form Trnk (axd).

Proof. Assume the contrary that such a vectorial monomial bent function Trnk (axd) exists.

(1) According to Theorem 1 and item (1) of Theorem 14, we have that Trnk (axd) is bent
if and only if K(aλ) = 0 holds for all λ ∈ F∗

2k
. Then,

∑
z∈F

2k

(−1)Tr
k
1 (z2k−2+aλz) = 0 for all λ ∈ F∗2k

⇔
∑

z,y∈F∗
2k

(−1)Tr
k
1 (z2k−2+y) = −1

⇔
∑
z∈F∗

2k

(−1)Tr
k
1 (z2k−2)

∑
y∈F∗

2k

(−1)Tr
k
1 (y) = −1

⇔ (
∑
z∈F∗

2k

(−1)Tr
k
1 (z))2 = −1

This is obviously impossible.
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(2) By Theorem 1 and item (2) of Theorem 14, we get that Trnk (axd) is bent if and only
if K(Nn

k (aλ)) = 0 holds for all λ ∈ F∗
2k

. By Lemma 4, we have

∑
z∈F

2k

(−1)Tr
k
1 (z2k−2+z·Nn

k (aλ)) = 0 for all λ ∈ F∗2k

⇔
∑

z,y∈F∗
2k

(−1)Tr
k
1 (z2k−2+y) = −1

⇔
∑
z∈F∗

2k

(−1)Tr
k
1 (z2k−2)

∑
y∈F∗

2k

(−1)Tr
k
1 (y) = −1

⇔ (
∑
z∈F∗

2k

(−1)Tr
k
1 (z))2 = −1

This is also impossible.

The above impossible inductions mean that, the assumption of the existence of the
vectorial monomial bent function Trnk (axd) is wrong. Hence the conclusions of the theorem
hold.

For the vectorial monomial bent functions with the Kasami exponent, we can derive the
following theorem.

Theorem 22 (Kasami Case). Let m | n, gcd(3, n) = 1, s ∈ N, gcd(s, n) = 1, d = 22s−2s+1
and a ∈ F∗2n. For the (n,m)-function Trnm(axd), the following four conditions are equivalent:

(1) Trnm(axd) is bent.

(2) a /∈ 〈αgcd(3,t)〉.

(3) a /∈ 〈α3〉 and m is odd.

(4) a /∈ 〈α3〉 and one of the four conditions in Theorem 9 holds.

Proof. By Theorem 12 and Theorem 15, the proof of the equivalence between item (1) and
item (2) is similar to the proof of Theorem 19.

(2)⇒(3): It is easy to prove that,

gcd(3, t) =


gcd(3, 2m + 1) = 3, m odd, n

m even
1, m odd, n

m odd
gcd(3, 2m+1 + 1) = 3, m even, 0 ≡ n

m(mod 3)
1, m even, 1 ≡ n

m(mod 3)
gcd(3, 2m + 1) = 1, m even, 2 ≡ n

m(mod 3).

Because n is even, the case both m and n
m are odd does not exist. Since gcd(3, n) = 1,

the case 0 ≡ n
m(mod 3) does not exist either.

Then we have

gcd(3, t) =

{
3, m odd
1, m even.
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Because a ∈ F∗2n and a /∈ 〈αgcd(3,t)〉, we have 〈αgcd(3,t)〉 6= F∗2n . Then, gcd(3, t) 6= 1, i.e.,
gcd(3, t) = 3.

Therefore, m is odd.

(3)⇒(4): If m is odd, then gcd(3, 2m − 1) = 1. Since gcd(d, 2n − 1) = 3 (see the proof
of Theorem 11 in [23]), we have gcd(d, 2m − 1) = 1.

By Theorem 8, we have that every one of the four conditions in Theorem 9 holds.

(4)⇒(1): This follows from item (3) of Theorem 18.

Consequently, the conclusion of the theorem have been proved to be true.

Remark 7. (1) If Trn1 (axd) is a monomial bent function with a Kasami exponent, by
Theorem 15 and item (4) of Theorem 22, then every one of the four conditions in
Theorem 9 is also necessary for Trnm(axd) to be bent.

(2) According to item (4) of Theorem 22, we also know that the vectorial monomial bent
functions constructed by item (3) of Theorem 18 and by Theorem 22 are the same.

(3) Since gcd(d, 2n − 1) = 3 in Kasami case, by Lemma 1, it is known that {xgcd(d,2n−1) :
x ∈ F2n} = {x3 : x ∈ F2n} = 〈α3〉, where d is a Kasami exponent. Then we have

(3.1) Theorem 2 in [55] is a special case corresponding to item (3) of Theorem 22
with s odd and m = k odd. The conditions that k is odd and a /∈ {x3 : x ∈ F2n} of
Theorem 2 in [55] are also necessary for Trnk (axd) to be bent, which is unknown
in [55].

(3.2) Theorem 7 in [26] is a special case corresponding to item (4) of Theorem 22
with m = k. The conditions that gcd(d, 2n − 1) | (2k + 1) and a 6∈ {xgcd(d,2n−1) :
x ∈ F2n} of Theorem 7 in [26] are also necessary for Trnk (axd) to be bent, which
is unknown in [26].

(3.3) Theorem 2 in [58] is a special case corresponding to item (3) of Theorem 22 for
the case n = 2s1+1k1 and m = k1, where s1 ≥ 0 and k1 is odd. The conditions
that k1 is odd and a /∈ {x3 : x ∈ F2n} of Theorem 2 in [58] are also necessary for
Trnk1

(axd) to be bent, which is unknown in [58].

According to item (3) of Theorem 22, the following corollary can be obtained.

Corollary 3. Let m | n, gcd(3, n) = 1, s ∈ N, gcd(s, n) = 1, d = 22s − 2s + 1 and
a ∈ F∗2n. If m is even, then there does not exist a vectorial monomial bent function of the
form Trnm(axd).

In order to discuss the vectorial monomial bent functions with the Leander exponent, a
lemma is given as follows.

Lemma 5. If s is a positive odd and n = 4s, then 〈α2s+1〉 ∩ F4 \ F2 · 〈α2s+1〉 = ∅.

Proof. If s is a positive odd, then gcd(3, (2s − 1)(22s + 1)) = 1. Since the order of every
element in F4 \ F2 is 3 and the order of every element in 〈α2s+1〉 is (2s − 1)(22s + 1), we
have that 〈α2s+1〉 ∩ F4 \ F2 = ∅. Therefore, 〈α2s+1〉 ∩ F4 \ F2 · 〈α2s+1〉 = ∅.

For the vectorial monomial bent functions with the Leander exponent, we have the
following theorem.
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Theorem 23 (Leander Case). Let s ∈ N∗, n = 4s, m | n, d = (2s + 1)2 and a ∈ F∗2n. For
the (n,m)-function Trnm(axd), the following four conditions are equivalent:

(1) Trnm(axd) is bent.

(2) s is odd, a ∈ F4 \ F2 · 〈α2s+1〉 and m is odd.

(3) s is odd, a ∈ F4 \ F2 · 〈α2s+1〉 and m | s.

(4) s is odd, a ∈ F4 \ F2 · 〈α2s+1〉 and one of the four conditions in Theorem 9 holds.

Proof. (1)⇒(2): According to Theorem 12 and Theorem 16, Trnm(axd) is bent if and only
if

s is odd and a · F∗2m ⊆ F4 \ F2 · 〈α2s+1〉.

Thus, there exist some ε ∈ F4 \ F2 and τ ∈ 〈α2s+1〉 such that a = ε · τ .

If m is even, then F4 \ F2 ⊆ F∗2m . Therefore, ε2 ∈ F4 \ F2 ⊆ F∗2m . Let λ = ε2. Then
aλ = ε3τ = τ ∈ 〈α2s+1〉. By Lemma 5, we have that aλ /∈ F4 \F2 · 〈α2s+1〉. This contradicts
a · F∗2m ⊆ F4 \ F2 · 〈α2s+1〉. Thus, m cannot be even, i.e., m is odd.

(2)⇔(3): Because s is odd and m | 4s, we have that m is odd if and only if m | s.
(3)⇒(4): Since m | s, we have gcd(d, 2m − 1) = 1. By Theorem 8, every one of the four

conditions in Theorem 9 holds.

(4)⇒(1): This follows from item (4) of Theorem 18.

Given the above, the theorem is proved to be true.

Remark 8. (1) If Trn1 (axd) is a monomial bent function with a Leander exponent, by
Theorem 16 and item (4) of Theorem 23, then every one of the four conditions in
Theorem 9 is also necessary for Trnm(axd) to be bent.

(2) According to item (4) of Theorem 23, we also know that the vectorial monomial bent
functions constructed by item (4) of Theorem 18 and by Theorem 23 are the same.

(3) In [55], it was claimed that, if s > 1 is odd, n = 4s and d = (2s + 1)2, then the (n, s)-
function Trns (axd) is bent for any a ∈ F∗2s \F22. That is Theorem 3 in [55]. However,
it is wrong. The reason is as follows.

According to Lemma 5, we know that F∗2s ∩ F4 \ F2 · 〈α2s+1〉 = ∅. By item (2) of
Theorem 23, we have that such (n, s)-function Trns (axd) is not bent for any a ∈ F∗2s.

According to item (2) and item (3) of Theorem 23, we have the following corollary.

Corollary 4. Let s ∈ N∗, n = 4s, m | n, d = (2s + 1)2 and a ∈ F∗2n. If m is even or m - s,
then there does not exist a vectorial monomial bent function of the form Trnm(axd).

For the vectorial monomial bent functions with the Canteaut-Charpin-Kyureghyan ex-
ponent, we have the following theorem.

Theorem 24 (Canteaut-Charpin-Kyureghyan Case). Let s > 1 be an integer, n = 6s,
d = 22s + 2s + 1 and a ∈ F∗2n. If m | 2s, then the (n,m)-function Trnm(axd) is bent if and
only if

a ∈ {µ : Trks (µ) = 0, µ ∈ F∗2k} · 〈α
d〉.

20



Proof. Note thatm | 2s if and only if (2m−1) | (22s−1). Since 2n−1 = d(22s−1)(22s−2s+1),
we have d | t. Thus, gcd(d, 2n−1) | t. By item (5) of Theorem 18, the conclusion holds.

Remark 9. (1) According to the proof of Theorem 24, we have that the vectorial monomial
bent functions constructed by item (5) of Theorem 18 include all of those constructed
by Theorem 24.

(2) In [55], it was claimed that, if s > 1 is an odd integer, n = 6s and d = 22s+2s+1, then
the (n, 2s)-function Trn2s(ax

d) and the (n, s)-function Trns (axd) are bent for a ∈ F∗22s,
respectively a ∈ F∗2s, satisfying Tr3s

s (a3) = 0. That is Theorem 4 in [55]. However,
there is no such vectorial monomial bent function. The reasons are as follows.

Since s is odd, gcd(d, 22s − 1) = 1. If Trn2s(ax
d) with a ∈ F∗22s is bent, then there

exists some β ∈ F∗22s such that Trn2s((βx)d) is bent. Since Trn2s((βx)d) and Trn2s(x
d)

are linear equivalent, Trn2s(x
d) is bent. Then Trn1 (xd) is bent. However Tr3s

s (1) =
1 6= 0. This contradicts Theorem 3 in [10]. Thus, we have that such (n, 2s)-function
Trn2s(ax

d) is not bent for any a ∈ F∗22s.

The reason for the nonexistence of such vectorial monomial bent functions of the form
Trns (axd) for any a ∈ F∗2s is similar to the above.

(3) Theorem 3 in [58] is a special case of Theorem 24 with m = 2s and a ∈ {µ : Trks (µ) =
0, µ ∈ F∗

2k
}.

However, whether all the vectorial monomial bent functions constructed by item (5) of
Theorem 18 can be constructed by Theorem 24 or not is unknown. We leave this as an
open problem.

Open Problem 3. It is not yet known whether item (5) of Theorem 18 and Theorem 24
construct the same vectorial monomial bent functions.

We conclude that no vectorial monomial bent function with the Canteaut-Charpin-
Kyureghyan exponent has the optimal dimension of the output space, i.e., half of the di-
mension of the input space.

Theorem 25. Let s > 1 be an integer, n = 6s, d = 22s + 2s + 1 and a ∈ F∗2n. There is no
vectorial monomial bent function of the form Trnk (axd).

Proof. Trivially, according to Theorem 17, the (n, k)-function Trnk (axd) is not bent for
a /∈ {µ : Trks (µ) = 0, µ ∈ F∗

2k
} · 〈αd〉. In the following, we discuss the case a ∈ {µ : Trks (µ) =

0, µ ∈ F∗
2k
} · 〈αd〉.

For ∀ a ∈ {µ : Trks (µ) = 0, µ ∈ F∗
2k
}·〈αd〉, there are some µ1 ∈ {µ : Trks (µ) = 0, µ ∈ F∗

2k
}

and some β1 ∈ F∗2n such that a = µ1β
d
1 . According to Theorem 1 and Theorem 17, Trnk (axd)

is bent if and only if µ1λβ
d
1 ∈ {µ : Trks (µ) = 0, µ ∈ F∗

2k
} · 〈αd〉 for all λ ∈ F∗

2k
.

Let µ2 = µ1λ. Because of µ1 ∈ F∗
2k

and the ergodicity of λ over F∗
2k

, we have that

µ1λβ
d
1 ∈ {µ : Trks (µ) = 0, µ ∈ F∗

2k
} · 〈αd〉 for all λ ∈ F∗

2k
, is equivalent to, µ2β

d
1 ∈ {µ :

Trks (µ) = 0, µ ∈ F∗
2k
} · 〈αd〉 for all µ2 ∈ F∗

2k
. Thus, Trnk (axd) is bent if and only if

Trn1 (µ2β
d
1x

d) is bent for all µ2 ∈ F∗
2k

.

Since Trn1 (µ2x
d) is linear equivalent to Trn1 (µ2β

d
1x

d), we have that Trnk (axd) is bent if
and only if Trn1 (µ2x

d) is bent for all µ2 ∈ F∗
2k

.
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Considering the equivalence induced by replacing µ2 with µ2β
d for all β ∈ F∗2n , then

Trnk (axd) is bent if and only if Trn1 (a′xd) is bent for all a′ ∈ F∗
2k
· 〈αd〉, where a′ = µ2β

d.

Since gcd(d, 2k + 1) = 1, we have F∗
2k
· 〈αd〉 = F∗2n . If Trnk (axd) is bent, then Trn1 (a′xd) is

bent for all a′ ∈ F∗2n . This contradicts Theorem 17. Hence Trnk (axd) cannot be bent.

Given the above, the conclusion of the theorem holds.

Table 2: The Known Vectorial Monomial Bent Functions of the form Trnm(axd) 1

Case Exponent d Condition-1 Condition-2 Condition-3 Reference

Gold 2s + 1 s ∈ N a /∈ 〈αgcd(d,2n−1)〉 2 Condition-C Theorem 18

a /∈ 〈αgcd(d,t)〉 2 − Theorem 19

Dillon s(2k − 1)

gcd(s, 2k + 1) = 1 K(a) = 0, a ∈ F∗2k
2

Condition-C Theorem 18
m = 2,

n ≡ 2(mod 4)
Theorem 20

s = 1
K(Nn

k (a)) = 0,
a ∈ F∗2n 2

Condition-C Theorem 18
m = 2,

n ≡ 2(mod 4)
Theorem 20

Kasami 22s − 2s + 1
s ∈ N,

gcd(3, n) = 1,
gcd(s, n) = 1

a /∈ 〈αgcd(3,t)〉 2 −
Theorem 22

a /∈ 〈α3〉 2 m is odd 2

Condition-C3,2

Leander (2s + 1)2 s ∈ N∗, n = 4s
s odd,

a ∈ F4 \ F2 · 〈α2s+1〉 2

m is odd 2

Theorem 23m | n 2

Condition-C 2

Canteaut-
Charpin-

Kyureghyan
22s + 2s + 1

s > 1 integer,
n = 6s

a ∈ {ρ : Trks (ρ) = 0,

ρ ∈ F∗2k} · 〈α
d〉 2

Condition-C Theorem 18

m | 2s Theorem 24

1 n = 2k and a ∈ F∗2n .
2 Necessary and sufficient conditions for Trnm(axd) to be bent.
3 Every one of the four conditions in Theorem 9.

Table 3: The Nonexistence of the Vectorial Monomial Bent Functions
of the form Trnm(axd) 1

Case Exponent d Condition-1 m 2 References

Dillon s(2k − 1)
gcd(s, 2k + 1) = 1 k

[48],
Theorem 21

s = 1 k Theorem 21

Kasami 22s − 2s + 1
s ∈ N,

gcd(3, n) = 1,
gcd(s, n) = 1

m even Corollary 3

Leander (2s + 1)2 s ∈ N∗, n = 4s
m even

Corollary 4
m - s

Canteaut-
Charpin-

Kyureghyan
22s + 2s + 1

s > 1 integer,
n = 6s

k Theorem 25

1 n = 2k and a ∈ F∗2n .
2 If m is the value in this column, there does not exist the vectorial monomial bent

functions of the form Trnm(axd).
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Table 4: The Vectorial Monomial Bent Functions of the form Trnk (axd) 1

Case Exponent d Condition-1 Condition-2 E.4 References

Gold 2s + 1 s ∈ N a /∈ 〈αgcd(d,2k+1)〉 2

Yes Corollary 2
a /∈ 〈αgcd(d,2n−1)〉2 Condition-D3,2

Dillon s(2k − 1)
gcd(s, 2k+1) = 1 a ∈ F∗2k No

[48],
Theorem 21

s = 1 − Theorem 21

Kasami 22s − 2s + 1
s ∈ N,

gcd(3, n) = 1,
gcd(s, n) = 1

a /∈ 〈αgcd(3,2k+1)〉 2

Yes Theorem 22
a /∈ 〈α3〉 2 k is odd 2

Condition-D2

Leander (2s + 1)2 s ∈ N∗, n = 4s − No Corollary 4

Canteaut-
Charpin-

Kyureghyan
22s + 2s + 1

s > 1 integer,
n = 6s

− No Theorem 25

1 n = 2k and a ∈ F∗2n .
2 Necessary and sufficient conditions for Trnk (axd) to be bent.
3 Every one of the four conditions in Theorem 9 with m = k.
4 The existence of the vectorial monomial bent functions of the form Trnk (axd).

4 The vectorial Boolean bent functions with multiple trace
terms

The Boolean bent functions with multiple trace terms have been researched in a large
number of public literatures [7, 9, 14, 18, 20, 24, 25, 29, 33, 35, 41–44, 47, 59, 62]. However,
the discussions of the vectorial Boolean bent functions with multiple trace terms are rare,
only few can be found in [48, 49, 58].

In this section, we investigate the constructions of the vectorial Boolean bent functions
with multiple trace terms.

4.1 General constructions of the vectorial Boolean bent functions with
multiple trace terms

This subsection discusses general constructions of the vectorial Boolean bent functions with
multiple trace terms, and answers Open Problem 1 in [48] (named Open Problem 4 in this
paper).

In order to gain general constructions of the vectorial Boolean bent functions with
multiple trace terms, we give the following theorem, which can be obtained by Theorem 2
directly.

Theorem 26. Let the Boolean function Trn1 (
∑j

i=1 aix
di) on F2n be bent, where ai ∈ F∗2n

for i = 1, 2, · · · , j. Then the (n,m)-function Trnm(
∑j

i=1 aix
di) is bent if Trn1 (λ

∑j
i=1 aix

di)

is linear equivalent to Trn1 (
∑j

i=1 aix
di) for all λ ∈ F∗2m.

Given a Boolean bent function Trn1 (
∑j

i=1 aix
di) on F2n , where ai ∈ F∗2n for i = 1, 2, · · · , j,

to construct vectorial Boolean bent functions by Theorem 26, it is the principal concern
that ensuring the linear equivalence between Trn1 (λ

∑j
i=1 aix

di) and Trn1 (
∑j

i=1 aix
di) for

all λ ∈ F∗2m . We give four conditions which will be used to meet the condition that
Trn1 (λ

∑j
i=1 aix

di) is linear equivalent to Trn1 (
∑j

i=1 aix
di) for all λ ∈ F∗2m .

Before that, the following lemma is given.
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Lemma 6. Let m | n and d ∈ Z∗. For ∀ β ∈ F∗2n, then βu = 1 if one of the following four
conditions holds:

(1) u = v1(2m−1) gcd(dl1 ,2m−1)

dl1−1 and βd ∈ F∗2m.

(2) u = v2(2n−1) gcd(dl2 ,2m−1)

dl2
.

(3) u = v3(2m−1) gcd(dl
′
3 ,t)

dl3−1 and gcd( dl3

gcd(dl
′
3 ,t)

, 2m − 1) = 1, βd ∈ F∗2m.

(4) u = v4(2n−1) gcd(dl
′
4 ,t)

dl4
and gcd( dl4

gcd(dl
′
4 ,t)

, 2m − 1) = 1,

where v% are some integers such that u is integer and l% ∈ N∗ for % = 1, 2, 3, 4, l′3, l
′
4 ∈ N∗,

l3 ≥ l′3 and l4 ≥ l′4.

Proof. (1) Let λ = βd. Then λ ∈ F∗2m . For u = v1(2m−1) gcd(dl1 ,2m−1)

dl1−1 , we have

βu = β
v1(2m−1) gcd(dl1 ,2m−1)

dl1−1

= β
d· v1(2m−1) gcd(dl1 ,2m−1)

dl1

= λ
v1(2m−1) gcd(dl1 ,2m−1)

dl1

(∵ gcd(
dl1

gcd(dl1 , 2m − 1)
, 2m − 1) = 1, ∴ ∃ γ ∈ F∗2m s.t. λ = γ

dl1

gcd(dl1 ,2m−1) )

= (γ
dl1

gcd(dl1 ,2m−1) )
v1(2m−1) gcd(dl1 ,2m−1)

dl1

= γv1(2m−1)

= 1.

(2) Let σ = βt. Then σ ∈ F∗2m . For u = v2(2n−1) gcd(dl2 ,2m−1)

dl2
, we have

βu = β
v2(2n−1) gcd(dl2 ,2m−1)

dl2

= β
t· v2(2m−1) gcd(dl2 ,2m−1)

dl2

= σ
v2(2m−1) gcd(dl2 ,2m−1)

dl2

(∵ gcd(
dl2

gcd(dl2 , 2m − 1)
, 2m − 1) = 1, ∴ ∃ γ ∈ F∗2m s.t. σ = γ

dl2

gcd(dl2 ,2m−1) )

= (γ
dl2

gcd(dl2 ,2m−1) )
v2(2m−1) gcd(dl2 ,2m−1)

dl2

= γv2(2m−1)

= 1.

24



(3) Let λ = βd. Then λ ∈ F∗2m . For u = v3(2m−1) gcd(dl
′
3 ,t)

dl3−1 , we have

βu = β
v3(2m−1) gcd(d

l′3 ,t)
dl3−1

= β
d· v3(2m−1) gcd(d

l′3 ,t)
dl3

= λ
v3(2m−1) gcd(d

l′3 ,t)
dl3

(∵ gcd(
dl3

gcd(dl
′
3 , t)

, 2m − 1) = 1, ∴ ∃ γ ∈ F∗2m s.t. λ = γ
dl3

gcd(d
l′3 ,t) )

= (γ
dl3

gcd(d
l′3 ,t) )

v3(2m−1) gcd(d
l′3 ,t)

dl3

= γv3(2m−1)

= 1.

(4) Let σ = βt. Then σ ∈ F∗2m . For u = v4(2n−1) gcd(dl
′
4 ,t)

dl4
, we have

βu = β
v4(2n−1) gcd(d

l′4 ,t)
dl4

= β
t· v4(2m−1) gcd(d

l′4 ,t)
dl4

= σ
v4(2m−1) gcd(d

l′4 ,t)
dl4

(∵ gcd(
dl4

gcd(dl
′
4 , t)

, 2m − 1) = 1, ∴ ∃ γ ∈ F∗2m s.t. σ = γ
dl4

gcd(d
l′4 ,t) )

= (γ
dl4

gcd(d
l′4 ,t) )

v4(2m−1) gcd(d
l′4 ,t)

dl4

= γv4(2m−1)

= 1.

Given the above, the theorem is proved to be true.

If gcd( dl

gcd(dl′ ,t)
, 2m − 1) = 1 with l ≥ l′ holds, by Theorem 8, then every one of the

three conditions in Theorem 5 holds. By item (1) of Theorem 5 and Lemma 6, we have the
following theorem.

Theorem 27. Let m | n and d ∈ Z∗. For ∀ λ ∈ F∗2m, then there exist some β ∈ F∗2n such
that λ = βd = βd+u if one of the following four conditions holds:

(1) u = v1(2m−1) gcd(dl1 ,2m−1)

dl1−1 and one of the three conditions in Theorem 5 holds,

(2) u = v2(2n−1) gcd(dl2 ,2m−1)

dl2
and one of the three conditions in Theorem 5 holds,

(3) u = v3(2m−1) gcd(dl
′
3 ,t)

d
l3−1
1

and gcd(
d
l3
1

gcd(dl
′
3 ,t)

, 2m − 1) = 1,

(4) u = v4(2n−1) gcd(dl
′
4 ,t)

dl4
and gcd( dl4

gcd(dl
′
4 ,t)

, 2m − 1) = 1,
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where v% are some integers such that u is integer and l% ∈ N∗ for % = 1, 2, 3, 4, l′3, l
′
4 ∈ N∗,

l3 ≥ l′3 and l4 ≥ l′4.

The general constructions of the vectorial Boolean bent functions with multiple trace
terms corresponding to the four conditions in Theorem 27 can be obtained as the following
theorem.

Theorem 28. Let m | n and

ui =



si(2
m−1) gcd(d

li
1 ,2

m−1)

d
li−1
1

, i = 2, · · · , j1
si(2

n−1) gcd(d
li
1 ,2

m−1)

d
li
1

, i = j1 + 1, · · · , j2

si(2
m−1) gcd(d

l′i
1 ,t)

d
li−1
1

, i = j2 + 1, · · · , j3

si(2
n−1) gcd(d

l′i
1 ,t)

d
li
1

, i = j3 + 1, · · · , j,

where li, l
′
i ∈ N∗, li ≥ l′i and si are some integers such that ui is integer. Let the Boolean

function Trn1 (a1x
d1 +

∑j
i=2 aix

d1+ui) on F2n be bent, where ai ∈ F∗2n for i = 1, 2, · · · , j.
Then the (n,m)-function

Trnm(a1x
d1 +

j∑
i=2

aix
d1+ui)

is bent if one of the following two conditions holds:

(1) j ≥ j2 + 1 and gcd(
d
li
1

gcd(d
l′
i

1 ,t)
, 2m − 1) = 1 for i = j2 + 1, j2 + 2, · · · , j,.

(2) j ≤ j2 and the three conditions in Theorem 5 with d = d1 holds.

Proof. Since the proofs of the two items are similar, we only give the proof of item (1).

If gcd(
d
li
1

gcd(d
l′
i

1 ,t)
, 2m − 1) = 1 with li ≥ l′i holds for some i, by Theorem 8, then every one

of the three conditions in Theorem 5 with d = d1 holds. By item (1) of Theorem 5, there
exist some β ∈ F∗2n such that λ = βd1 for all λ ∈ F∗2m . According to Theorem 27, for every
λ ∈ F∗2m , we know that there exist some β ∈ F∗2n such that λ = βd1+ui for i = 2, 3, · · · , j.

By Definition 5, we have that there exist some β ∈ F∗2n such that

Trn1 (a1λx
d1 +

j∑
i=2

aiλx
d1+ui) = Trn1 (a1(βx)d1 +

j∑
i=2

ai(βx)d1+ui)

is linear equivalent to Trn1 (a1x
d1 +

∑j
i=2 aix

d1+ui) for all λ ∈ F∗2m . According to Theorem

26, the (n,m)-function Trnm(a1x
d1 +

∑j
i=2 aix

d1+ui) is bent.

Given the above, the theorem is proved to be true.

In [48], on the premise that xd1 is a permutation of F2m , i.e., gcd(d1, 2
m − 1) = 1,

A.Muratović-Ribić et al. presented a general construction of the bent (n,m)-functions of
the form Trnm(a1x

d1 +
∑j

i=2 aix
d1+vi(2

m−1)), and left an open problem as follows.
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Open Problem 4 (named Open problem 1 in [48]). Let n ≥ 4, m | n and m ≤ k. Let
xd1 be a permutation of F2m and Trn1 (

∑j
i=1 aix

di) be a Boolean bent function, where di =

d1+vi(2
m−1) for i = 2, · · · , j and some integers vi ≥ 0. Then the function Trnm(

∑j
i=1 aix

di)
is a vectorial bent function.

It is interest to prove a similar result to the above result for the functions of the form
Trn1 (

∑j
i=1 aix

di), if xd1 is not a permutation over F2m.

To answer Open Problem 4 in detail, we should discuss the relations between every one of
the four conditions in Theorem 27 and the condition that u = v(2m−1), gcd(d, 2m−1) = 1.

Before that, a lemma is given as follows.

Lemma 7. Let m | n, d ∈ Z∗ and denote

S1 = {v1(2m−1) gcd(dl1 ,2m−1)

dl1−1 + θ1(2n − 1) ∈ Z : v1, θ1 ∈ Z, l1 ∈ N∗},

S2 = {v2(2n−1) gcd(dl2 ,2m−1)

dl2
+ θ2(2n − 1) ∈ Z : v2, θ2 ∈ Z, l2 ∈ N∗},

S3 = {v3(2m−1) gcd(dl
′
3 ,t)

d
l3−1
1

+ θ3(2n − 1) ∈ Z : v3, θ3 ∈ Z, gcd(
d
l3
1

gcd(dl
′
3 ,t)

, 2m − 1) = 1, l3, l
′
3 ∈

N∗, l3 ≥ l′3},

S4 = {v4(2n−1) gcd(dl
′
4 ,t)

dl4
+ θ4(2n − 1) ∈ Z : v4, θ4 ∈ Z, gcd( dl4

gcd(dl
′
4 ,t)

, 2m − 1) = 1, l4, l
′
4 ∈

N∗, l4 ≥ l′4},

S5 = {v5(2m − 1) + θ5(2n − 1) : v5, θ5 ∈ Z, gcd(d, 2m − 1) = 1}.

Then the following conclusions hold:

(1) S1 ⊃ S5.

(2) S2 6⊆ S5 and S2 6⊇ S5.

(3) S3 ⊃ S5.

(4) S4 6⊆ S5 and S4 6⊇ S5.

Proof. (1) For ∀ v1(2m−1) gcd(dl1 ,2m−1)

dl1−1 +θ1(2n−1) ∈ S1, if v1(2m−1) gcd(dl1 ,2m−1)

dl1−1 +θ1(2n−1) ∈
S5, then there exist some θ ∈ Z such that v1(2m−1) gcd(dl1 ,2m−1)

dl1−1 can be represented in the
form v5(2m − 1) + θ(2n − 1) and

v5 =
v1 gcd(dl1 , 2m − 1)

dl1−1
− θt.

Note that there exist some v1(2m−1) gcd(dl1 ,2m−1)

dl1−1 + θ1(2n − 1) ∈ S1 such that some
v1 gcd(dl1 ,2m−1)

dl1−1 are not integer. If S1 ⊆ S5, then there exists some v1(2m−1) gcd(dl1 ,2m−1)

dl1−1 such

that some v5 = v1 gcd(dl1 ,2m−1)

dl1−1 − θt are not integer. This contradicts v5 ∈ Z. Therefore,
S1 6⊆ S5.
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If gcd(d, 2m − 1) = 1, by Theorem 8, every one of the three conditions in Theorem 5

holds, and dl1−1

gcd(dl1 ,2m−1)
= dl1−1. For gcd(d, 2m − 1) = 1 and ∀ v5 identified as in S5, let the

integer v1 = v5 · dl1−1

gcd(dl1 ,2m−1)
. Then v5(2m− 1) = v1(2m−1) gcd(dl1 ,2m−1)

dl1−1 . Therefore, S1 ⊇ S5.

Thus, S1 ⊃ S5.

(2) For ∀ v2(2n−1) gcd(dl2 ,2m−1)

dl2
+θ2(2n−1) ∈ S2, if v2(2n−1) gcd(dl2 ,2m−1)

dl2
+θ2(2n−1) ∈ S5,

then there exist some θ ∈ Z such that v2(2n−1) gcd(dl2 ,2m−1)

dl2
can be represented in the form

v5(2m − 1) + θ(2n − 1) and

v5 =
v2t gcd(dl2 , 2m − 1)

dl2
− θt.

Note that there exist some v2(2n−1) gcd(dl2 ,2m−1)

dl2
+ θ2(2n − 1) ∈ S2 such that some

v2t gcd(dl2 ,2m−1)

dl2
are not integer. If S2 ⊆ S5, then there exist some v2(2n−1) gcd(dl2 ,2m−1)

dl2
such

that some v5 = v2t gcd(dl2 ,2m−1)

dl2
− θt are not integer. This contradicts v5 ∈ Z. Therefore,

S2 6⊆ S5.

For ∀ v5(2m−1) + θ5(2n−1) ∈ S5, if v5(2m−1) + θ5(2n−1) ∈ S2, then there exist some

θ ∈ Z such that v5(2m − 1) can be represented in the form v2(2n−1) gcd(dl2 ,2m−1)

dl2
+ θ(2n − 1)

and

v2 =
v5d

l2

t gcd(dl2 , 2m − 1)
− θ · dl2

gcd(dl2 , 2m − 1)
.

Note that dl2

gcd(dl2 ,2m−1)
is integer and there exist some v5(2m− 1) + θ5(2n− 1) ∈ S2 such

that some v5dl2

t gcd(dl2 ,2m−1)
are not integer. If S2 ⊇ S5, then there exist some v5(2m − 1) such

that some v2 = v5dl2

t gcd(dl2 ,2m−1)
− θ · dl2

gcd(dl2 ,2m−1)
are not integer. This contradicts v2 ∈ Z.

Therefore, S2 6⊇ S5.

Item (3) can be proved by the similar method of item (1), and item (4) can be proved
by the similar method of item (2).

By Theorem 8 and Lemma 7, we can derive the following theorem.

Theorem 29. Let v be integer and the other parameters be identified with them in Theorem
27. Then the following conclusions hold:

(1) Each of item (1) and item (3) in Theorem 27 includes the condition that u = v(2m−1),
gcd(d, 2m − 1) = 1 as a special case.

(2) Each of item (2) and item (4) in Theorem 27 is neither sufficient and nor necessary
for the condition that u = v(2m − 1), gcd(d, 2m − 1) = 1 to hold.

Remark 10. Let v be integer and the other parameters be identified with them in Theorem
27. The reason why the four conditions in Theorem 27 and the condition u = v(2m − 1),
gcd(d, 2m−1) = 1 can educe bent (n,m)-functions is that they make there exist some β ∈ F∗2n
such that λ = βd = βd+u for all λ ∈ F∗2m.

There are some other conditions, which are neither sufficient and nor necessary for the
condition u = v(2m − 1), gcd(d, 2m − 1) = 1 to hold, can also ensure that there exist some
β ∈ F∗2n such that λ = βd = βd+u for all λ ∈ F∗2m. But they are special cases of item (1)
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or item (3) of Theorem 27. Three such examples are given as follows, where v′% are some
integers such that u is integer for % = 1, 2, 3 and l ∈ N∗:

(1) u =
v′1(2m−1)d2

gcd(d,2m−1) and one of the three conditions in Theorem 5 holds.

(2) u =
v′2(2m−1)d2

gcd(d,t) and one of the three conditions in Theorem 5 holds.

(3) u =
v′3(2n−1)

dl−1 and one of the three conditions in Theorem 5 with d = dl holds.

By the similar method of the proof of Lemma 7, it can be proved that each of item (1) and
item (3) of Theorem 27 includes the above three items as special cases.

Anwsers to Open Problem 4. By Theorem 8 and Theorem 29, we have that Theorem
28 gives answers to Open Problem 4.

Similarly to Theorem 12, by Theorem 1, the (n,m)-function of the form Trn1
m (
∑j1

i=1 aix
di)

+Trn2
m (
∑j2

j1+1 aix
di) + · · ·+ Trnrm (

∑j
i=jr−1+1 aix

di) is bent if and only if the Boolean func-

tion Trn1
1 (
∑j1

i=1 aiλx
di) +Trn2

1 (
∑j2

j1+1 aiλx
di) + · · ·+Trnr1 (

∑j
i=jr−1+1 aiλx

di) is bent for all
λ ∈ F∗2m , where ai ∈ F∗2n for i = 1, 2, · · · , j. A similar idea was also used in [5, 58]. For the
convenience of discussion, we list this fact as the following theorem.

Theorem 30. Let m | n, n% ∈ N∗ and m | n% for % = 1, 2, · · · , ς, ai ∈ F∗2n for i = 1, 2, · · · , j,
and denote

C = {(β1, β2, · · · , βj) ∈ (F∗2n)r for i = 1, 2, · · · , j : f(x) is bent},

where f(x) is the Boolean function on F2n of the form

Trn1
1 (

j1∑
i=1

βix
di) + Trn2

1 (

j2∑
j1+1

βix
di) + · · ·+ Trnς1 (

j∑
i=jς−1+1

βix
di).

Then the (n,m)-function

F (x) = Trn1
m (

j1∑
i=1

aix
di) + Trn2

m (

j2∑
j1+1

aix
di) + · · ·+ Trnςm (

j∑
i=jς−1+1

aix
di)

is bent if and only if
(a1, a2, · · · , aj) · F∗2m ⊆ C.

4.2 Explicit constructions of the vectorial Boolean bent functions with
multiple trace terms

This subsection focuses on the explicit constructions of vectorial Boolean bent functions
with multiple trace terms.
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4.2.1 The Boolean bent functions with multiple trace terms

We recall some constructions of the Boolean bent functions with multiple trace terms,
which will be used in the explicit constructions of the vectorial Boolean bent functions with
multiple trace terms.

A positive integer d (in the sense of modulo 2n−1) is named as a Niho exponent and xd a
Niho power function if the restriction of xd to F2k is linear [25, 50], i.e., d ≡ 2s(mod 2k−1)
for some nonnegative integer s < n. A bent function is named as a Niho bent function if
the exponents of all its non-constant terms are Niho exponents, when it is viewed in the
univariate representation.

When considering Trn1 (xd), without loss of generality, we assume that the Niho exponent
d is in the normalized form [33], i.e., with s = 0. Then the Niho exponent d can be
represented uniquely [33] as

d = (2k − 1)l + 1,

where 2 ≤ l ≤ 2k. If l for the definition of the Niho exponent is written as a fraction, then
l is in the sense of modulo 2k + 1. For example, l = 1

2 = 2k−1 + 1, i.e., 2l ≡ 1(mod 2k + 1).

Note that the monomial bent functions with a Niho exponent for l = 1
2 , i.e., Trn1 (ax2k+1),

where a ∈ F∗
2k

, is a special case of the monomial bent functions with the Gold exponent for
s = k (see Theorem 13).

In [24, 25], three infinite classes of binomial Niho bent functions were obtained. Later,
an infinite class of the Boolean bent functions on F2n with 2r−1 Niho exponents for any
integer r > 1 and gcd(r, k) = 1 was presented in [33], which is a generalization of one class
of the binomial Niho bent functions in [24, 25]. Further study on the Boolean bent functions
on F2n with 2r−1 Niho exponents can be found in [7, 9, 14], where r > 1 and gcd(r, k) = 1.
In [35], up to the EA-equivalence, an equivalent form of the construction as in [33] was
presented.

Theorem 31 ([35]). Let i, r ∈ N∗, r < k, gcd(r, k) = 1, li ≡ i
2r (mod 2k + 1) and a ∈ F∗2n.

Then the Boolean function

Trn1 (ax(2k−1) 1
2

+1 + (a+ a2k)
2r−1−1∑
i=1

x(2k−1)li+1)

on F2n is bent if a ∈ F2n \ F2k .

The quadratic functions which are the sums of some trace functions with Gold exponents
were studied in several papers [20, 31, 37, 60, 62]. In [29], four infinite classes of the Boolean
bent functions with some Gold exponents were introduced, and can be described as the
following theorem.

Theorem 32 ([29]). Let e ∈ N∗, e | n, ζ = n
e be even, ζ0, j, l ∈ N∗, ζ0 be the maximum

odd divisor of ζ, 1 ≤ j ≤ ζ
2 − 1 and a ∈ F∗2e. For the Boolean functions on F2n below, the

following conclusions hold:

(1)

ζ
2
−1∑
i=0

Trn1 (ax2ei+1) + Trk1(ax2k+1) is bent.

(2)
j∑
i=0

Trn1 (ax2eli+1) + Trk1(ax2k+1) is bent if and only if gcd((2j + 1)l, ζ0) = gcd(l, ζ0).
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(3)

ζ
2
−1∑
i=0

Trn1 (ax2ei+1) +
j∑
i=0

Trn1 (ax2eli+1) + Trk1(ax2k+1) is bent if and only if gcd((2j + 1)l,

ζ0) = gcd(l, ζ0).

(4) Trn1 (ax2el+1) + Trn1 (ax23el+1) + Trk1(ax2k+1) is bent if and only if gcd(3l, ζ0) = gcd(5l,
ζ0) = gcd(l, ζ0).

In [36], the functions which are the sums of the trace functions with Dillon exponents
were investigated. An infinite class of Boolean bent functions as the following theorem was
obtained in [36].

Theorem 33 ([36]). Let 1 ≤ s ≤ k − 1, gcd(s− 1,m) = 1 and a ∈ F∗
2k

. Then the Boolean
function

2k−s∑
i=1

Trn1 (ax(2i−1)(2k−1))

on F2n is bent if and only if ∑
z∈F

2k

(−1)Tr
k
1 (a2s−1

z2s−1−1+z) = 0.

A corollary of Theorem 33 was also given in [36], which shows that then the Boolean

function
∑2k−2

i=1 Trn1 (ax(2i−1)(2k−1)) on F2n is bent if a ∈ F2k \ {0, 1}. Note the fact that,

for a ∈ F2k ,
∑

z∈F
2k

(−1)Tr
k
1 ((a2+1)z) = 0 if and only if a ∈ F2k \ {1}. Thus, by Theorem

33, for a ∈ F2k , we have that a ∈ F2k \ {0, 1} is also necessary for the Boolean function∑2k−2

i=1 Trn1 (ax(2i−1)(2k−1)) on F2n to be bent.

Corollary 5. Let a ∈ F∗
2k

. Then the Boolean function

2k−2∑
i=1

Trn1 (ax(2i−1)(2k−1))

on F2n is bent if and only if a ∈ F2k \ {0, 1}.

4.2.2 Constructing the vectorial Boolean bent functions with multiple trace
terms

Based on the above, we discuss the explicit constructions of the vectorial Boolean bent
functions with multiple trace terms. Six new infinite classes of the explicit constructions of
such bent (n,m)-functions are obtained, i.e., one classes with 2r−1 Niho exponents, where
r < k and gcd(r, k) = 1, four classes with some Gold exponents and one classes with
2k−2 Dillon exponents. Besides, the nonexistence of the bent (n, k)-functions of the form∑2k−2

i=1 Trnk (ax(2i−1)(2k−1)) is shown, where a ∈ F∗
2k

. The known vectorial Boolean bent
functions with multiple trace terms are listed in Table 5.

An infinite class of the bent (n,m)-functions with 2r−1 Niho exponents is given as the
following theorem, where r > 1 and gcd(r, k) = 1.
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Theorem 34. Let m | k, i, r ∈ N∗, r < k, gcd(r, k) = 1, li ≡ i
2r (mod 2k + 1) and a ∈ F∗2n.

Then the (n,m)-function

Trnm(ax(2k−1) 1
2

+1 + (a+ a2k)

2r−1−1∑
i=1

x(2k−1)li+1)

is bent if a ∈ F2n \ F2k .

Proof. Since m | k, F∗2m ⊆ F∗
2k

. For ∀ a ∈ F2n \ F2k , we have a · F∗2m ⊆ F2n \ F2k . By
Theorem 30 and Theorem 31, the conclusion holds.

Four infinite classes of the vectorial Boolean bent functions which are the sums of some
trace functions with Gold exponents can be derived as the following theorem.

Theorem 35. Let e ∈ N∗, e | n, ζ = n
e be even, ζ0, j, l ∈ N∗, ζ0 be the maximum odd divisor

of ζ, 1 ≤ j ≤ ζ
2 − 1 and a ∈ F∗2e. For the (n,m)-functions below, if m | e, then the following

conclusions hold:

(1)

ζ
2
−1∑
i=0

Trnm(ax2ei+1) + Trkm(ax2k+1) is bent.

(2)
j∑
i=0

Trnm(ax2eli+1) + Trkm(ax2k+1) is bent if and only if gcd((2j + 1)l, ζ0) = gcd(l, ζ0).

(3)

ζ
2
−1∑
i=0

Trnm(ax2ei+1) +
j∑
i=0

Trnm(ax2eli+1) + Trkm(ax2k+1) is bent if and only if gcd((2j

+1)l, ζ0) = gcd(l, ζ0).

(4) Trnm(ax2el+1)+Trnm(ax23el+1)+Trkm(ax2k+1) is bent if and only if gcd(3l, ζ0) = gcd(5l,
ζ0) = gcd(l, ζ0).

Proof. Since n
d is even, we have that m | k if m | n. By Theorem 30 and Theorem 32, the

conclusions of this theorem hold.

An infinite class of the bent (n,m)-functions with 2k−2 Niho bent exponents is given as
the following theorem.

Theorem 36. Let m | k and a ∈ F∗
2k

. Then the (n,m)-function

2k−2∑
i=1

Trnm(ax(2i−1)(2k−1))

is bent if and only if a ∈ F2k \ F2m .

Proof. Since m | k and a ∈ F∗
2k

, we have that a · F∗2m ⊆ F∗
2k

. Note that, for ∀ a ∈ F∗
2k

,
{1} /∈ a · F∗2m if and only if a ∈ F2k \ F2m . By Theorem 30 and Corollary 5, the conclusion
holds.
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Remark 11. In [58], it was claimed that, if a ∈ F2n \ F2k , then the (n, k)-function F (x) =∑2k−2

i=1 Trnk (ax(2i−1)(2k−1)) is bent. That is Theorem 4 in [58]. However, it is wrong. Here,
we give a counter example.

Let k = 2. Then F (x) = Tr4
2(ax3). According to item (2) of Theorem 21, we have that

Tr4
2(ax3) is not bent.

If m = k, then F2k \ F2m = ∅. Thus, by Theorem 36, we have the following corollary.

Corollary 6. Let a ∈ F∗
2k

. Then there does not exist a bent (n, k)-function of the form

2k−2∑
i=1

Trnk (ax(2i−1)(2k−1)).

Table 5: The Known Bent (n,m)-functions 1 with Multiple Trace Terms

Expression Condition-1 Condition-2 Condition-3 References

Trnk (a1x
(2k−1) 1

2
+1

+a2x
(2k−1)l+1)

(a1 + a2k

1 )2 = a2k+1
2

l = 3
a2 ∈ 〈αgcd(5,t)〉,
k ≡ 2(mod 4)

[48]

a2 ∈ F∗2n ,
k 6≡ 2(mod 4)

l = 1
4
,

k odd
a1, a2 ∈ F∗2nl = 1

6
,

k even

Trnk (
∑2k

i=1 aix
i(2k−1))

ai characterized by
Corollary 2 in [49]

− − [49]

Trnm(ax(2k−1) 1
2

+1

+(a+ a2k )

·
∑2r−1−1
i=1 x(2k−1)li+1)

i, r ∈ N∗, r < k,
gcd(r, k) = 1,

li ≡ i
2r
(mod 2k+1),
m | k

− a ∈ F2n \ F2k Theorem 34

∑ ζ
2
−1

i=0 Trnm(ax2ei+1)

+Trkm(ax2k+1)

e ∈ N∗,
e | n,

ζ = n
e
even

a ∈ F∗2e ,
m | e

− −

Theorem 35

∑j
i=0 Tr

n
m(ax2eli+1)

+Trkm(ax2k+1) ζ0, j, l ∈ N∗
ζ0 be the
maximum
odd divisor

of ζ,

1 ≤ j ≤ ζ
2
− 1

gcd((2j + 1)l, ζ0)
= gcd(l, ζ0)

2
∑ ζ

2
−1

i=0 Trnm(ax2ei+1)

+
∑j
i=0 Tr

n
m(ax2eli+1)

+Trkm(ax2k+1)

Trnm(ax2el+1)

+Trnm(ax23el+1)

+Trkm(ax2k+1)

gcd(3l, ζ0)
= gcd(5l, ζ0)
= gcd(l, ζ0)

2∑2k−2

i=1 Trnm(ax(2i−1)(2k−1)) a ∈ F∗2k , m | k − a ∈ F2k \ F2m
2 Theorem 36

1 n = 2k.
2 Necessary and sufficient conditions for the vectorial Boolean bent function to be bent.

5 H vectorial functions

In [45], S. Mesnager introduced an infinite class of vectorial Boolean bent functions of the

form yG(zy2k−2), where (y, z) ∈ F2k × F2k and G is an o-polynomial on F2k , and called it
as H vectorial functions. This section further characterizes H vectorial functions.
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5.1 H functions

In this subsection, we recall some results of H functions, which will be used to characterize
H vectorial functions.

In [22], a class of Boolean bent functions named as H functions was introduced, which
is based on the Desarguesian spread [12, 46]. A set E = {E1, E2, · · · , Ej}, which is a set of
the k-dimensional subspaces of F2n , is referred to as a k-spread of F2n if

Ei1
⋂

i1 6=i2, i1,i2=1,2,··· ,j
Ei2 = {0} and

j⋃
i=1

Ei = F2n .

The Desarguesian k-spread of F2n is the set {(0, y), y ∈ F2k} and {(z, νz), z ∈ F2k}, where
ν ∈ F2k .

In [22], H functions are defined in the bivariate representation as Trk1(z + yG(zy2k−2)),
where (y, z) ∈ F2k × F2k and G is a permutation on F2k with G(z) + z 6= 0 and G(z) + νz
is two-to-one for all ν ∈ F2k . In [16], it was pointed out that the condition G(z) + z 6=
0, which makes H functions to be a subclass of PS functions [22], is not necessary for

Trk1(z + yG(zy2k−2)) to be bent. A development of H functions named as H functions

was introduced in [16], whose bivariate representation [45] is Trk1(νz + yG(zy2k−2)), with
(y, z) ∈ F2k × F2k , ν ∈ F2k and G being an o-polynomial on F2k . Note that all the known
o-polynomials were listed in Table 1 of [45].

Definition 7 ([16]). A permutation polynomial G on F2k is called an oval polynomial (o-
polynomial), if the function

z ∈ F2k 7→
{

G(z+γ)+G(γ)
z , if z 6= 0

0, if z = 0

is a permutation on F2k for all γ ∈ F2k .

Since the Boolean function Trk1(νz) is linear and the bentness of H functions is our main
concern, here, we describe H functions as follows.

H functions ([16, 45]). The Boolean function

Trk1(yG(zy2k−2))

is bent if and only if G is an o-polynomial on F2k , where (y, z) ∈ F2k × F2k .

Two o-polynomials G and G′ are called projectively equivalent [6] if Gα = G(z)+G(0)
G(1)+G(0)

and G′α = G′(z)+G′(0)
G′(1)+G′(0) define equivalent hyperovals. In [16], five projectively equivalent o-

polynomials of an o-polynomial G on F2k were given, i.e., µG(z) +ν, G(µz+ν), zG(z2k−2),

(G(z2s))2k−s and G−1(z), where µ ∈ F∗
2k

, ν ∈ F2k , s ∈ N and G−1 denotes the compositional

inverse of G. The H functions corresponding to G, µG(z) + ν, G(µz + ν), zG(z2k−2) and

(G(z2s))2k−s are EA-equivalent [16, 45]. However, in general, Trk1(yG−1(zy2k−2)) is not

EA-equivalent to the H functions corresponding to G, µG(z)+ν, G(µz+ν), zG(z2k−2) and

(G(z2s))2k−s [16, 45].

For the composite functions of the above five projectively equivalent o-polynomials of an
o-polynomial G, the projectively equivalence is preserved. The H functions educed by these
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composite functions may be EA-equivalent or EA-inequivalent. Therefore, the classification
of these composite functions is interesting. In [6], by the transformations related to a group
of order 24, the classification of some of these composite functions was studied.

The above five projectively equivalent o-polynomials of the o-polynomial G on F2k and
some of their composite functions can be divided into four classes, which were discussed in
[6, 16]. We let the four classes be denoted by

SG(z), SG−1(z), S(zG(z2k−2))−1 and S
(z+zG(y2k−2+1))−1 ,

and summarize the classification as Table 6. Note that, in Table 6, except (G(z2s))2k−s ,
all the other projectively equivalent o-polynomials of G can be obtained by compounding
µG(z) + ν, G(µz + ν), zG(z2k−2) and G−1(z).

Table 6: The Known Classification of the Projectively Equivalent o-polynomials of the
o-polynomial G on F2k

(a) The o-polynomials in SG(z)

Elements Ref.
G(z) −

(G(z2
s

))2
k−s 1 [16]

µG(z) + ν 2 [16]

G(µz + ν) 2 [16]

zG(z2
k−2) [6, 16]

G(z + 1) + 1 [6]

z(G(z2
k−2 + 1) + 1) [6]

z + (z + 1)G(z(z + 1)2
k−2) [6]

(z + 1)G((z + 1)2
k−2) + 1 [6]

1 s ∈ N.
2 µ ∈ F∗

2k
and ν ∈ F

2k
.

(b) The o-polynomials in SG−1(z)

Elements Ref.

G−1(z) [16]

zG−1(z2
k−2) [6]

G−1(z + 1) + 1 [6]

z(G−1(z2
k−2 + 1) + 1) [6]

z + (z + 1)G−1(z(z + 1)2
k−2) [6]

(z + 1)G−1((z + 1)2
k−2) + 1 [6]

(c) The o-polynomials in S
(zG(z2

k−2))−1

Elements Ref.

(zG(z2
k−2))−1 [6]

(zG−1(z2
k−2))−1 [6]

(z(z2
k−2 + (z2

k−2 + 1)G((z + 1)2
k−2))−1)−1 [6]

((z + 1)G((z + 1)2
k−2) + 1)−1 [6]

((z + 1)G−1((z + 1)2
k−2) + 1)−1 [6]

(z(z2
k−2 + (z2

k−2 + 1)G−1((z + 1)2
k−2))−1)−1 [6]

(d) The o-polynomials in S
(z+zG(z2

k−2+1))−1

Elements Ref.

(z + zG(z2
k−2 + 1))−1 [6]

(z + zG−1(z2
k−2 + 1))−1 [6]

(z + (z + 1)G−1(z(z + 1)2
k−2))−1 [6]

z(z2
k−2 + (z2

k−2 + 1)G−1((z + 1)2
k−2))−1 [6]

(z + (z + 1)G(z(z + 1)2
k−2))−1 [6]

z(z2
k−2 + (z2

k−2 + 1)G((z + 1)2
k−2))−1 [6]

The H functions are EA-equivalent [6, 16] if the corresponding o-polynomials are in

the same class Si, where i ∈ {G(z), G−1(z), (zG(z2k−2))−1,(z + zG(z2k−2 + 1))−1}. On
the other hand, the o-polynomials in different Si may induce EA-inequivalent H functions
[6, 16].

For the convenience of discussion, we list the above fact as the following theorem.

Theorem 37 ([6, 16]). Let G be an o-polynomial on F2k ,

i1, i2 ∈ {G(z), G−1(z), (zG(z2k−2))−1, (z + zG(z2k−2 + 1))−1},

G1 ∈ Si1 and G2 ∈ Si2. Then the two H functions Trk1(yG1(zy2k−2)) and Trk1(yG2(zy2k−2)),
where (y, z) ∈ F2k × F2k ,

(1) are EA-equivalent if i1 = i2;

(2) may be EA-inequivalent if i1 6= i2.

35



5.2 Characterizing H vectorial functions

In order to characterize H vectorial functions, we give the following theorem that can be
obtained by Theorem 2 directly.

Theorem 38. Let m | k and the Boolean function Trk1(yG(zy2k−2)) be bent, where (y, z) ∈
F2k×F2k and G is a function on F2k . Then the vectorial Boolean function Trkm(yG(zy2k−2))

is bent if Trk1(λyG(zy2k−2)) is EA-equivalent to Trk1(yG(zy2k−2)) for all λ ∈ F∗2m.

Note that, if G is an o-polynomial on F2k , then µG(z)+ν ∈ SG(z) (see Table 6 (a)), where

µ ∈ F∗
2k

and ν ∈ F2k . By Theorem 37, we have that the Boolean functions Trk1(yG(zy2k−2))

and Trk1(λyG(zy2k−2)) are EA-equivalent for all λ ∈ F∗2m ⊆ F∗
2k

, where (y, z) ∈ F2k×F2k and
G is an o-polynomial on F2k . Thus, according to the definition of H functions and Theorem
38, the following theorem can be derived, which is the generalization of S. Mesnager’s H
vectorial functions, i.e., Theorem 1 in [45].

Theorem 39 (H vectorial functions). Let m | k. Then the vectorial Boolean function

Trkm(yG(zy2k−2))

is bent if and only if G is an o-polynomial on F2k , where (y, z) ∈ F2k × F2k .

Then we discuss the EA-equivalent relations among the H vectorial functions induced
by the projectively equivalent o-polynomials.

Before the discussion, a theorem is presented as follows.

Theorem 40. Let G, G′ be two (k,m)-functions. Then Trk1(G) and Trk1(G′) are EA-
equivalent if and only if there exist some affine permutation A2 on F2k and some affine
(k,m)-function A3 such that G′ = G ◦A2 +A3.

Proof. The sufficiency is obvious. In the following, we prove the necessity.

By Definition 5, Trm1 (G) and Trm1 (G′) are EA-equivalent if and only if there exist
some affine permutation A2 on F2k and some affine Boolean function g on F2k such that
Trm1 (G′(z)) = Trm1 (G(A2(z))) + g(z).

For the affine Boolean function g on F2k , there exists some affine function P (z) ∈ F2k [z]
such that g(z) = Trk1(P (z)) = Trm1 ◦ Trkm(P (z)). Let A3(z) = Trkm(P (z)). Then A3 is an
affine (k,m)-function.

Thus, Trm1 (G′(z)) = Trm1 (G(A2(z)))+Trm1 (A3(z)), i.e., Trm1 (G′(z)+G(A2(z))+A3(z)) ≡
0. Then G′(z) = G(A2(z)) +A3(z).

Given the above, the conclusion holds.

By Definition 5 and Theorem 40, the following corollary can be obtained.

Corollary 7. Let G and G′ be two (k,m)-functions. If Trm1 (G) and Trm1 (G′) are EA-
equivalent, then G and G′ are EA-equivalent.

By Theorem 37, Theorem 39 and Corollary 7, we have the following theorem.
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Theorem 41. Let m | k, G be an o-polynomial on F2k ,

i1, i2 ∈ {G(z), G−1(z), (zG(z2k−2))−1, (z + zG(z2k−2 + 1))−1},

G1 ∈ Si1 and G2 ∈ Si2. Then the two H vectorial functions Trkm(yG1(zy2k−2)) and

Trkm(yG2(zy2k−2)), where (y, z) ∈ F2k × F2k ,

(1) are EA-equivalent if i1 = i2;

(2) may be EA-inequivalent if i1 6= i2.

Remark 12. Theorem 41 includes Proposition 2 in [45] as special cases.

The restrictions of H functions to all the elements of the Desarguesian spread are linear
[16], which indicates that the restrictions of H functions to the vector space ωF2k are linear
for all ω ∈ F∗2n . According to this fact, it was shown in [16] that, when viewed in the
univariate representation, H functions are the Niho Boolean bent functions. Then whether
H vectorial functions viewed in the univariate representation are the Niho vectorial Boolean
bent functions or not is also interesting.

By the similar method to the proof of Lemma 4 in [16], the following lemma can be
obtained.

Lemma 8. Let F (x) =
∑2n−1

i=0 aix
i be a vectorial Boolean function on F2n, where ai ∈ F2n

for i = 1, 2, · · · , j. The restriction of F to the vector space ωF2k is linear for all ω ∈ F∗2n
if and only if i ≡ 2s(mod 2k − 1) for all ai 6= 0 and i = 1, 2, · · · , 2n − 1, where s is some
nonnegative integer and s < n.

It is obvious that the restrictions of H vectorial functions to all the elements of the
Desarguesian spread are linear. Similarly to H functions, we know that the restrictions of
H vectorial functions to the vector space ωF2k are linear for all ω ∈ F∗2n . By the definition
of the Niho bent functions and Lemma 8, we have the following conclusion.

Theorem 42. H vectorial functions viewed in univariate representation are Niho vectorial
Boolean bent functions.

6 H-like vectorial functions

In this section, we present a new infinite class of vectorial Boolean bent functions and call
it as H-like vectorial functions, which includes H vectorial functions as a subclass. H-like
vectorial functions drive from H-like functions that is a generalization of H functions.

H functions is associated to the Desarguesian spread, while many other k-spreads of
F2n exist [12, 21, 30]. In [12], C. Carlet generalized H functions into a new class of Boolean
bent functions named H-like functions by using several other classes of k-spreads, especially,
André’s spread. André’s k-spread is the set {(0, y), y ∈ F2k} and {(z, νz2kΦ(ν)

), z ∈ F2k},
where ν ∈ F2k , l | k, Φ = φ ◦ Nk

l and φ is any function from F2l to Z k
l
. In other word, Φ

can be any function from F2k to Z k
l

such that it is constant on every multiplicative coset

of the subgroup of order 2k−1
2l−1

of F∗
2k

[12].

For the H-like functions related to André’s spreads, ϕ-polynomial plays a basic role.
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Definition 8 ([12]). Let l ∈ N∗, l | k, Φ be a function from F2k to Z k
l

and constant on

every multiplicative coset of the subgroup of order 2k−1
2l−1

of F∗
2k

. A permutation polynomial
V on F2k is called a ϕ-polynomial if for every b1 ∈ F∗

2k
and every b2 ∈ F2k , there exist two

solutions or none of the equation

V (z) + (b1z)
2k−lΦ(z)

= b2.

The H-like functions related to André’s k-spread are as follows.

Theorem 43 ([12]). Let l ∈ N∗, l | k, Φ be a function from F2k to Z k
l

and constant on

every multiplicative coset of the subgroup of order 2k−1
2l−1

of F∗
2k

. The Boolean function

Trk1(yV (zy2k−2lΦ(zy2k−2)
)),

is bent if and only if V is a ϕ-polynomial corresponding to Φ, where (y, z) ∈ F2k × F2k .

In the following theorem, we show that, if an integer-valued function Φ on F2k is a
constant in Z k

l
, then multiplying the corresponding ϕ-polynomial by any element of F∗

2k
is

still a ϕ-polynomial.

Theorem 44. Let l ∈ N∗, l | k, c ∈ Z k
l
, Φ ≡ c be a constant function on F2k and V be

the corresponding ϕ-polynomial. Then µV is a ϕ-polynomial corresponding to Φ ≡ c for all
µ ∈ F∗

2k
.

Proof. For ∀ µ, b1 ∈ F∗
2k

and ∀ b2 ∈ F2k , we have

V (z) + (b1z)
2k−lc = b2

⇔ µV (z) + µ(b1z)
2k−lc = b2µ

⇔ µV (z) + (µ2lcb1z)
2k−lc = b2µ

Let b′1 = µ2lcb1 and b′2 = b2µ. Because V is a ϕ-polynomial corresponding to Φ ≡ c,

we know that µV (z) + (b′1z)
2k−lc = b′2 has two solutions or none. For every µ ∈ F∗

2k
, by

gcd(2lc, 2k − 1) = 1 and the arbitrariness of b1 and b2, we have that b′1 and b′2 can traverse
F∗

2k
and F2k respectively. By Definition 8, µV is a ϕ-polynomial corresponding to Φ ≡ c.

By Theorem 43 and Theorem 44, we have that Trkm(yλV (zy2k−2lc)) belongs to H-like
functions for all λ ∈ F∗2m ⊆ F∗

2k
if V is a ϕ-polynomial on F2k corresponding to Φ ≡ c, where

(y, z) ∈ F2k×F2k and c ∈ Z k
l
. Thus, according to Theorem 3, we obtain a new infinite class

of vectorial Boolean bent functions, and call it as H-like vectorial functions.

Theorem 45 (H-like vectorial functions). Let l ∈ N∗, l | k, m | k, c ∈ Z k
l

and Φ ≡ c

be a constant function on F2k . Then the vectorial Boolean function

Trkm(yV (zy2k−2lc))

is bent if and only if V is a ϕ-polynomial corresponding to Φ ≡ c, where (y, z) ∈ F2k × F2k .

Remark 13. Note that o-polynomials belong to ϕ-polynomials [12], and are equivalent to
0-polynomials, i.e., the ϕ-polynomials corresponding to Φ(z) ≡ 0. Therefore, we have that
H vectorial functions form a subclass of H-like vectorial functions.
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7 Conclusions

In this paper, we studied new primary constructions of vectorial Boolean bent functions
about four types, i.e., vectorial monomial bent functions, vectorial Boolean bent functions
with multiple trace terms, H vectorial functions and H-like vectorial functions.

We give answers to one open problem (see Open Problem 1) proposed by E. Pasalic et
al. in [55]. More precisely, when Trn1 (axd) is a monomial bent function, several conditions
which are much closer to the sufficient and necessary conditions for Trnm(axd) to be bent
than the condition that gcd(d, 2m − 1) = 1 are given. We also characterize the vectorial
monomial bent functions corresponding to the five known classes of bent exponents, and
list the results in Table 2, Table 3 and Table 4.

We provide answers to one open problem (see Open Problem 4) proposed by A. Mura-
tović-Ribić in [48]. That is, several similar results to Theorem 1 in [48] with gcd(d1, 2

m−1) 6=
1 are presented. We also obtain six infinite classes of the vectorial Boolean bent functions
with multiple trace terms, and list them in Table 5. Besides, the nonexistence of the bent

(n, k)-functions of the form
∑2k−2

i=1 Trnk (ax(2i−1)(2k−1)) is proved, where a ∈ F∗
2k

.

H vectorial functions, which are the vectorial Boolean bent functions of the form
Trkm(yG(zy2k−2) with (y, z) ∈ F2k × F2k and G being an o-polynomial on F2k , are fur-
ther characterized.

The vectorial Boolean bent functions of the form Trkm(yV (zy2k−2lc)) are derived, where
(y, z) ∈ F2k × F2k , l | k, c ∈ Z k

l
and V is a ϕ-polynomial on F2k corresponding to Φ ≡ c,

and named as H-like vectorial functions. Furthermore, H-like vectorial functions includes
H vectorial functions as a subclass.
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