
On the Difficulty of Securing Web Applications using CryptDB

Ihsan H. Akın
Dept. of Electrical and Computer Engineering

Worcester Polytechnic Institute
Worcester, MA 01609

Email: ihakin@wpi.edu

Berk Sunar
Dept. of Electrical and Computer Engineering

Worcester Polytechnic Institute
Worcester, MA 01609

Email: sunar@wpi.edu

Abstract—CryptDB has been proposed as a practical and se-
cure middleware to protect databases deployed on semi-honest
cloud servers. While CryptDB provides sufficient protection
under Threat-1, here we demonstrate that when CryptDB is
deployed to secure the cloud hosted database of a realistic web
application, an attacker to database or a Malicious Database
Administrator (mDBA) can easily steal information, and even
escalate his privilege to become the administrator of the
web application. Our attacks, fall under a restricted form
of Threat-2 where we only assume that the attackers or the
mDBA tampers with the CryptDB protected database and is
opens an ordinary user account through the web application.
Our attacks, are carried out assuming perfectly secure proxy
and application servers. Therefore, the attacks work without
recovering the master key residing on the proxy server. At
the root of the attack lies the lack of any integrity checks
for the data in the CryptDB database. We propose a number
of practical countermeasures to mitigate attacks targeting the
integrity of the CryptDB database. We also demonstrate that
the data integrity is not sufficient to protect the databases,
when query integrity and frequency attacks are considered.

Keywords-CryptDB; database integrity; query integrity; fre-
quency attacks

I. INTRODUCTION

Motivated by drastic savings in hardware, software, and
IT costs cloud computing gained mainstream popularity.
However, due to the unprecedented level of data sharing
cloud computing also gave rise to new security concerns. For
instance, despite intense efforts by the research community,
secure cloud based data storage has remained elusive. While
standard encryption techniques provide a baseline solution,
they are too rigid, i.e. further useful operations on encrypted
data such as text search, or standard aggregation operations
on encrypted databases are difficult to support in a practical
manner. Especially given the diversity of queries supported
by databases such as point, range, and aggregate queries the
task at hand becomes even more difficult.

Numerous techniques were proposed to execute private
queries on encrypted databases. Deterministic encryption is a
well known and efficient – yet insecure – method to execute
point queries. Song et al. proposed an elegant technique

The work of this author was supported by TUBITAK-2219
The work of this author was in part supported by NSF Awards #1117590

and #1319130.

based on the coupling of stream ciphers and pseudorandom
function to perform search directly on encrypted data [17].
Agrawal et al. proposed an order preserving encryption
(OPE) scheme that preserves the order relation of plaintexts
in ciphertexts, which permits range queries in encrypted
database [2]. Boldyreva et al. proposed to use OPE on sym-
metric encryption and gave a formal security analysis [4].
Popa et al. proposed a protocol to achieve order preserving
encryption [16] by using a binary tree structure to store the
order relation on a semi-trusted cloud server. This is the
first scheme to achieve ideal security, i.e. only the order
relation is leaked on the semi-trusted server. Along with
homomorphic encryption these techniques, e.g. Paillier’s
scheme [13], form a toolset for building encrypted database.

In 2011, Popa et al. proposed a software only, server-
side solution named CryptDB aiming practical deployment
by relaxing security requirements, i.e. confidentiality without
integrity, and by introducing a trusted proxy server. A signifi-
cant goal of CryptDB is to providey confidentiality of cloud
hosted databases, without disturbing the business processes
of the cloud providers. The scheme is tightly integrated with
MySQL, and heavily tested. CryptDB elegantly combines
DET, OPE, additive homomorphic encryption [13], and a
modification of Song’s idea to permit encrypted search on
text fields. Popa et al. claim that except for some well-
known weaknesses such as frequency analysis, order relation
and queries hits, the database is secure as long as the
proxy server is trusted [14]. More specifically, the machines
hosting the database management software and their admin-
istrators are not trusted (semi-honest, non-malicious passive
adversaries), but the application and the proxy server are
trusted.

Our Contribution. In this work we focus on the security
of web applications that are running with a CryptDB
protected database hosted on the cloud. It is well known
that CryptDB was designed without data integrity and
authenticity in mind [15]. We have divided databases secured
by CryptDB into two types; as single user databases,
e.g. personal calendar and contacts database, and multi-
user databases, e.g. the phpBB, HotCrp, and OpenEMR
web applications would use CryptDB in this mode. Under

realistic scenarios played on CryptDB protected multi-user
sites, we show that on-line attackers or a Malicious Database
Administrator (mDBA) can exploit the lack of data and
query integrity protection measures in CryptDB and steal
other user’s private data and even mount privilege escalations
attacks on the web applications

Login access to site is required Can be achieved by
Attack III-A Yes mDBA or Attackers
Attack III-A Yes mDBA or Attackers
Attack VI-A Yes mDBA or Attackers
Attack VI-B No sDBA or Attackers

Table I
OUR ATTACKS AND THEIR REQUIREMENTS

These attacks, Table I fall under a limited form of Threat-
2 in the CryptDB security model with the additional as-
sumption of login access to the CryptDB enabled database
application. Even further, it is shown with additional sce-
narios that existing and new countermeasures to ensure
database integrity and authenticity are not sufficient to
secure CryptDB. The lack of query integrity protection and
susceptibility to frequency analysis lie at the root of these
attacks. Our attacks do not target the proxy or application
servers, or the Master Key (MK) stored on the proxy server
as assumed in the Threat 2 security model.

This remainder of the paper is organized as follows;
In SectionII, we give a brief background on CryptDB.
Tampering attacks targeting the database are presented in
Section III. In Section IV, we describe the experimental
validation of the attacks. In Section V, we present counter-
measures against database tampering attacks. In Section VI,
we present two new attacks based on lack of query integrity
and frequency analysis. We draw the conclusions in Section
VII.

II. A BRIEF BACKGROUND ON THE CRYPTDB

In this section, we briefly review CryptDB. CryptDB
is designed to secure MySQL databases with the goal of
supporting practical deployments in the cloud. With an
average performance overhead on MySQL of only %21-26
CryptDB provides an attractive choice to developers who
want to encrypt their databases [14]. To deploy CryptDB
in applications, in general, adding only few lines of code
is sufficient.

Secured Zone

Application Site

CryptDB's

Encrypted

Database

Cloud

Client

Clients

DBA
Fake Client

Threat -1
Threat -2

Application

Server

Proxy

Server

Figure 1. The attack methodology. The application and the proxy server
are not under our attack

The CryptDB protocol assumes four parties as depicted in
Figure 1:

1) End Users: Users are owners of the data or parties
permitted to access the data through an application
server. Users wish to carry out common database
operations securely. Data must be revealed only to the
intended users. In Single user mode, user maintains
his own key to protect their private data. In addition, in
multi-user mode, MK is used to encrypt the com-
mon data and CryptDB provides a private messaging
service and data accessible only for some entities
for the users of the database.

2) Application server: This is the server through which
the users interact with the application that connects
to the CryptDB database over the CryptDB proxy
server. The application server manages the access con-
trol mechanisms. There may be a need to adjustment
of a few lines of code in the application to correctly
communicate with CryptDB. The application server
takes the user’s password to transmit to proxy server.

3) Proxy server: At the core of CryptDB lies the proxy
server. It stores a Master Key (MK), and obscures
the column names using the MK. In the single-user
mode, the user’s password is used to perform all
the encryptions on behalf of the user. In multi-user
mode; MK, random keys and users’ keys are used
to encrypt the sensitive data. In both modes, the
user’s key must be securely transferred to the proxy
server. Thus, the proxy server is the ultimate trusted
entity in the CryptDB protocol. The proxy server
maintains an annotated schema on the server that
defines the encryption level on the data whenever an
encryption is needed. The proxy server is responsible
for transforming the application’s queries to match
with the annotated schema, before forwarding them
to the MySQL database.

4) MySQL Server: The MySQL server is placed on the
cloud. It contains a number of User Defined Functions
(UDFs), which are executed by the MySQL server
with the instruction of the proxy server. The design
of CryptDB introduces a minor change to MySQL.
If encryption is enabled on a database column, then
MySQL administrators only see the data in encrypted
form. Moreover, MySQL administrators have access
to the queries issued by the proxy server as well as to
their responses. The MySQL server is assumed to be
semi-honest, i.e. the server is assumed to be trusted
to carry out the operations precisely as instructed.
However, the server administrator is also curious, i.e.
he may examine all data as well as the queries and
their responses during the transactions.

CryptDB uses various encryption schemes to process
SELECT, RANGE, JOIN, and simple aggregation queries

over various forms of encrypted data:
• Randomized Symmetric Encryption (RND): AES is

used with an IV in CBC mode. Due to randomization,
the scheme is semantically secure. However, this for-
bids any computation on the ciphertext.

• Deterministic Symmetric Encryption (DET): AES
in ECB mode is used to support conditional selection
queries via equality checks on ciphertexts. While this
type of encryption allows comparisons, it also opens
the door to frequency analysis attacks.

• Order Preserving Encryption (OPE): Boldyreva’s
OPE scheme is used to support range queries. This
scheme reveals the minimum, maximum, order and
the most significant digit. With the knowledge of the
ciphertext of plaintext x and its successor x + 1, an
attacker may recover the other plaintexts without using
the encryption key [3], [9]. Recently a more secure OPE
protocol was introduced in [16].

• Additive Homomorphic Encryption (HOM): Pail-
lier’s encryption scheme [13] is used to support simple
aggregation queries and arithmetic operations such as
ADD, INCREMENT, SUM, and AVERAGE.

A. Schema of a CryptDB Protected Database

To support various queries over encrypted data,
CryptDB’s team designed four types of onions, i.e. layers
of encryption, as shown in Figure 2. The onion layers
encrypt data stored in a column denoted by v. The onions
are stored in the separate columns of the encrypted database
to support various queries. For each onion level, a different
key derived from the IDs of the table, column, onion, onion
layer with the aid of a pseudo-random permutation, e.g. AES
is used:

Kt;c;o;l = PRPMK(table t; column c; onion o; layer l).

The DET and OPE layers can be protected by RND
encryption. The onion layers supported in CryptDB are as

int data

DET || JOIN

RND

DET onion

int data

OPE

RND

OPE onion

text data

Search
Search onion

Hom

int data

Hom onion

Figure 2. The onions are in their most secure level. The RND layers of
DET and OPE must be removed to perform range and point queries.
follows:

1) DET Onion: This onion is formed as
RND(IV,DET(v)‖JOIN DET(v)). To be able
to execute a point query, if an RND layer exist, it
must be removed falling back to a DET(v) onion
which allows point queries. The JOIN DET(v) part
is used to perform equality JOIN operations among
the tables. Dynamic adjustment and predetermined
version of the equality JOIN are suggested and
implemented.

2) OPE Onion: This onion is formed by
RND(IV, OPE(v)‖JOIN OPE(v)). As in DET,
The RND layer must be removed to execute a query.
After removal, the OPE(v) onion can be used to
perform range queries. Dynamic adjustment for
JOIN OPE(v) to perform dynamic JOIN operations
with range queries was proposed but not implemented
in CryptDB. Therefore, JOIN OPE(v) functionality
must be declared in advance in the schema, for
queries that require a range JOIN.

3) Homomorphic Onion: Hom(v). To support additive
based operation on the data, Paillier’s homomorphic
encryption scheme is used. Paillier’s scheme is CPA
secure, and therefore an RND layer is not needed.

4) Search Onion: This onion uses a modified version
Song et al.’s searchable encryption scheme [17]. The
words are, first, split by predetermined delimiters,
edited to eliminate duplicates, padded to the same
size, randomly permuted, and finally encrypted with
a simplified version of Song et al.’s idea.

CryptDB Threat Model. CryptDB was designed and
considered to survive two types of threats:

• Threat 1 covers database management system server
compromises. In this threat CryptDB guards against
a curious database administrator or external attacker.
CryptDB assumes a passive attacker model and does
not consider attacks compromising the integrity of the
server.

• Threat 2 includes attacks that target the entire system
including the application, the proxy as well as the
database server. The assumption is that the attack would
persist for a short time period and only records of
users accessing their data during this time period would
be compromised since the remaining entries in the
database are kept in encrypted form.

B. Multiple Principals in CryptDB

For multi-user web sites, like phpBB, CryptDB supplies
private messaging and forum protection according to groups’
permissions. Private messaging achieved by encrypting the
message with a random key keymsgi and then encrypting
this message key for the parties; one with the sender’s
key ESender key(keymsgi) and other with the receiver’s key
EReceiver key(keymsgi). These encryptions are performed
by the proxy-server. In thread-2 model only the online user’s
password and their allowed groups are compromised. Sim-
ilarly, the permission based access, like forums in phpBB
are protected. The posts in the forum are encrypted with a
random key, and the key is encrypted for each user who can
access the forum.

C. Query execution in CryptDB

CryptDB is designed for securing cloud hosted databases
under two use scenarios: the single-user mode and the

Employees Table
Table 0x65BD659A (Employees table in CryptDB)

Obscured ID columns Obscured Name columns
ID Name C1-IV C1-DET C1-OPE C2-IV C2-DET C2-OPE C2-Search

12 Alice Wu 0x651E 0x3A3 0x5CD 0x567 0x93B 0x122 0x453
17 Evil Eve 0x211 0xE33 0x555 0x5B7 0x666 0x11A 0x3B8
25 Bob Marley 0x2A 0x4C4 0x66A 0x713 0x78A 0x282 0x453

Table II
A SAMPLE TABLE (LEFT) AND ITS CRYPTDB VERSION (RIGHT). THE COLUMN NAMES ARE KEPT IN OBSCURED FORM. HOWEVER, THE same KEY IS

USED TO ENCRYPT ALL DATA IN THE SAME COLUMNS.

multi-user mode. In both approaches, the user’s password
must be transferred securely to proxy server by traditional
ways. In the single-user mode, the user has a private
database secured by his password. We will focus for the
remainder of this paper on the multi-user mode. In the
multi-user mode, the application server manages the access
control mechanism. Encryption and the decrption of all data
are performed by the proxy-server. The user passwords are
used by the proxy server to ensure the confidentiality of the
private messages exchanged between users. The restricted
data are encrypted with a random key, and this key encrypted
for every user who can access with keys and stored in the
database. The users personal information that are required in
the signup and login processes are encrypted with the MK.

When a client performs an action that is turned into a
query by the application server, if it is a private message,
the query and the user’s password is transferred to the proxy
server. The proxy server rewrites this query; encrypts the
necessary parts according to annotated schema with MK,
and performs the necessary modifications to the query so
that it matches with the current database schema. Before
executing the query on the database, the proxy server may
issue a pre-query so that the onions of the table which are
under selection, can correctly execute the query. This pre-
query removes the RND layer of the necessary columns of
the table or adjusting the keys for a JOIN query.
An Example. Table II shows a simplified CryptDB schema
(right) of the table (left) with only two columns. Assume a
legitimate user wants to retrieve all information about on Evil
Eve. Per request of the user, the application server prepares
a query to be executed on Employees Table, where the
query is

SELECT * from FROM users WHERE Name =
‘Evil Eve’

The proxy server receives this query from the application
server. First, it checks the Name column’s current layer
corresponding to the DET onion. If needed, it calls an UDF
function to remove the RND layer of the DET onion, i.e. the
C2-DET column, so that the equality can be tested. With
the layer dropped down to DET, it executes the modified
query, in which the table and column names are obscured
and the strings are encrypted with the correct key to match
the encryption of the table.

SELECT * from FROM 0x65BD659A WHERE
C2-DET = ‘0x666’

MySQL executes this query in encrypted form and returns
the result to proxy server which then decrypts the result and
sends it back to the application server.

III. TAMPERING ATTACKS ON CRYPTDB

In this section, we consider the security of multi-user
online sites run via the open source phpBB [1], a bulletin
board software, and HotCRP [8], a conference management
software where the backend of the sites is secured using
CryptDB.

The attacks outlined in this section, do fall under a
restricted version of type Threat-2. For instance, we do not:

• target the application and proxy servers, or
• steal the MK from the proxy server or
• target any user’s personal computer to steal the user’s

key.
Rather, the attacks presented here are enabled by online

attackers. They gain access to the database server and also
act as a registered users of the web application accessing
the system only through the application server. This attack
could also be enabled by the Malicious DBA (mDBA) taking
on two roles, i.e. mDBA managing the cloud database, but
also acting as a registered user of the web application. And
another combination for this attack; it could also be enabled
by a naı̈ve user who leaks information to the mDBA. This
scenario is quite plausible since many online applications
such as phpBB and hotCRP allow easy creation of user
accounts which is meant to facilitate user acquisition. For
the remainder of this section we will simply refer to the
attackers as mDBA.

For simplicity we assume that the proxy and application
servers are running in the same physical server, although
split versions will not affect the viability of the attacks. We
also assume that not all of the onions are under an RND layer
so that database can execute the queries. In what follows,
with the lack of any measures to protect the integrity of the
database rows, we demonstrate the viability of the proposed
attacks under several realistic scenarios.

A. Attacking phpBB

Consider an online forum that runs on phpBB. The
site administrators reduce operating costs by moving their

CryptDB enabled database to a cheap cloud server.
CryptDB’s proxy server and the application server are both
run on the forum administrator’s closely guarded physical
server.

user id username user password ... usr lvl salt

0x85B target i MD5(Yc!N6PaS$) . . . 1 0x8347
0x7A3 attacker MD5(EasyAttack) . . . 0 0xEC62
0x74A target j MD5(IT@cKd.) . . . 2 0x7014

Table III
PHPBB USERS TABLE

user id username user password ... usr lvl salt

0x85B target i MD5(EasyAttack) . . . 1 0xEC62
0x7A3 attacker MD5(EasyAttack) . . . 1 0xEC62
0x74A target j MD5(EasyAttack) . . . 2 0xEC62

Table IV
PHPBB USERS TABLE IN THE TIME OF ATTACK

Fake User Account Identification. To gain access to the
application server, the mDBA, first registers to the website
as a regular user. The first goal of the mDBA is to identify
the username_clean field in the phpbb_users table
for the user account he has established. The table names are
obscured as shown in Table II. To get the right table, the
mDBA enables the MySQL’s query log. After these steps,
the mDBA logs into the website. To verify the user login
attempt, phpBB executes an SQL query such as

SELECT user_id, username,
user_password, user_passchg,
user_pass_convert, user_email,
user_type, user_login_attempts

FROM phpbb_users
WHERE username_clean = ’mDBAs_FAKE_USER’

It is clear that the username_clean’s onion’s RND layer
must be revealed in advance by the proxy server to execute
this point query on CryptDB. In the mean time on the
cloud server, the mDBA checks the log the read queries. By
checking the login time in the CryptDB enabled MySQL
server log, the mDBA can identify the query and recover the
DET encrypted version of his username of his fake phpBB
account. At this point the mDBA can identify all traces for
his fake account in the CryptDB database. Even further, in
the current public version of CryptDB the table creation
operation preserves the orders of columns. Since the phpBB
source code is public, and since the order is preserved during
CryptDB table creation, one can match them against their
encrypted versions. At this point, the mDBA can tamper with
the CryptDB tables stored on the cloud server, and with the
help of his his fake phpBB account can compromise the
security of CryptDB in a number of ways:
Locating a Target. In phpBB, the user names can be seen
on the forums. For a specific target the attackers try to login

with the target name a few times. Since they do not have the
password they will fail. However on the database the login
queries over the same row will be noticed by the attackers.
With this notification, they can locate the position of the
target in the phpbb_users table.
Gleaning User Information. With this simple attack the
mDBA can view all sorts of sensitive information, e.g. e-
mail, last visit, registration date, website, time zone etc.
The mDBA copies encrypted fields from other users records
into the fake account’s corresponding record fields. In this
process, the username, the user_password, and IV
of user_password fields are not altered. Through the
fake account, the mDBA can then retrieve other user’s
information using the account info pages of the phpBB site.
The proxy server just decrypts the query result as usual. In a
sense we are using the proxy server as a decryption oracle.
Account Hijacking. The mDBA can overwrite the password
and IV fields, i.e. user_password and IV, of other user’s
records, with his own fields taken from the records of his
fake account. After this, the mDBA can login into phpBB
as any other user where the username will be visible on
the posts in the forums. The attack can also be modified to
hijack a specific user’s account. The mDBA can copy into
all, and then login as target account, determine the specific
row on which the login took place (in the log) and restore
the remaining rows.
Privilege Escalation. In a typical installation of phpBB,
the second row in the users table always belongs to the
Administrator. The mDBA can use this information to
raise the privilege level of his fake account to that of an
phpBB administrator. For this he copies the user_type
column from the administrator record into his fake ac-
counts respective column. The mDBA also needs to set the
user_permissions field to blank. It can be extracted
from a previous user type change in the binary log or
any other well known empty fields. After this simple task,
the mDBA logs back into his fake phpBB account but
in administrator mode. The changes CryptDB tables go
through, before and after this attack are shown in Tables III
and IV, respectively. Table IV shows the state of the system,
after the attacker copied his password hash and salt into other
users fields and managed to become an administrator.

The attacker, once become an administrator, can access all
the restricted forums by adjusting the previalges. Since the
phpBB is a dynamic web application, after the adjustments,
the system must supply them the password to access the
forums.

B. Attacking HotCRP
Essentially the same attack can be used to target HotCRP.

An unsecured HotCRP executes a read query for a login
which is

SELECT ContactInfo.* FROM ContactInfo
WHERE email=‘test@test.com’

As before the mDBA recovers the encrypted ID on the
cloud server upon which he can repeat the same attacks, i.e.
stealing other users information, account hijacking, privilege
escalation, etc.

IV. EXPERIMENTAL VALIDATION OF PROPOSED
ATTACKS

Unfortunately CryptDB with multiple principles is not
yet made available to the public. We want to perform these
attacks on a phpBB secured by CryptDB. Consequently,
the code released for phpBB is not functional. Therefore,
we used MySQL’s sample database to validate our attacks.
In our implementation, we set every column in the tables to
the highest level of onions and left no column in plaintext
form. Clearly, to execute a login query, the name column
must be in the DET layer. To see that even under a JOIN
operation that our attack works, we have added a password
table into this database, and written a simple login system on
a webpage to display the personal information and salaries.
We developed some MySQL scripts to swap the columns,
e.g. see Listing 1 which is used to swap personal informa-
tion. The double run of this procedure leaves no traces in
the table and attackers can clearly delete the necessary logs.
After the mDBA logs into the site and the the row for the
mDBA is identified on the cloud server. The mDBA runs
this script on any other user’s row. Note that, the names are
under DET encryption. After the execution of this procedure,
the mDBA refreshes his personal information page to access
the leaked information.

DELIMITER $$
CREATE DEFINER=‘root‘@‘localhost‘

PROCEDURE ‘NAMESWAP‘
(IN emp1 VARCHAR(100) , IN emp2

VARCHAR(100))
UPDATE table_MJBMWEKXOD
SET table_MJBMWEKXOD.EMKBCPSXBHoDET =

(CASE WHEN
table_MJBMWEKXOD.EMKBCPSXBHoDET =
emp1 THEN emp2

WHEN table_MJBMWEKXOD.EMKBCPSXBHoDET =
emp2 THEN emp1 END)

WHERE table_MJBMWEKXOD.EMKBCPSXBHoDET
IN (emp2, emp1)

Listing 1. MySQL script that swaps a user’s personal information to DBAs
account

When we turn our attention to phpBB, the queries tell us that
the necessary column that RND layer must be removed from
users table is username clean and this is for executing the
login point query with the following clause.

... WHERE username_clean = ’0x784EB1A’

V. COUNTERMEASURES TO TAMPERING ATTACKS

In the previous section, we have seen that a DBA can
cause great harm with unusually simple attacks as soon as
we allow go beyond the honest-but-curious model allow the
DBA tamper with the database even slightly.
CryptDB is designed to ensure the confidentiality of

databases. Ensuring confidentiality is not sufficient to estab-
lish a secure system. Malicious administrators can alter the
results of queries by deleting, inserting, copying or swapping
data in the database as discussed above. To prevent these
kinds of attacks, a database system regardless of whether
the rows are encrypted or not, needs to ensure data and
query integrity as well as the integrity of the query response.
Even further, the authenticity and freshness of these also
need to be ensured. We would like to mention that the
countermeasures will significantly decrease the performance
of the CryptDB.

There are a number of techniques in the literature that
can provide this kind of facility. Merkle, in his pioneering
work, proposed to arrange hashes values, which may be used
to construct integrity checks, into a binary tree structure
[10]. The verifier stores only the signed root. To see the
membership problem, the claimer must give its sibling’s
hash and all other second winners. Devanbu uses balanced
and I/O efficient B-trees, [6]. His approach is an extension
of Merkle trees in a single dimension. Hacıgümüş et al
[7] proposes a scheme to ensure row integrity using hash
functions. The scheme uses buckets to show the query
result integrity. Narasimha and Tsudik proposed Digital
Signature Aggregation and Chaining to provide integrity,
completeness and authentication [12]. Their idea is based
on hash chaining and signing. Their hash chaining includes
immediate predecessor row among any dimension (column)
that requires the order relation on dimensions. Mykletun
et al. uses condensed RSA signature scheme, which allows
aggregation of signature into one signature for single signer
[11]. Boneh et al. proposed multiple signers for aggregate
signatures [5].

VI. MORE POWERFUL ATTACKS

In Section III, we demonstrated that the lack of an
integrity exposes CryptDB attacks on multi-user databases.
Single user databases do still have security vulnerabilities
such as data deletion, replay, fork etc. We did not give any
scenarios for these attacks. These problems may be solved
by ensuring data integrity, authenticity, and freshness [6],
[12]. However, here we show that CryptDB will remain
to be vulnerable to more powerful attacks on multi-user
databases.

A. Query Compilation Attack

In CryptDB the queries are visible to database admin-
istrators. If the integrity of a query is not protected, it can
bring about serious privilege violations. We demonstrate how

the lack of query integrity can result in severe information
leakages.

In this attack, The database by it’s schema has security
levels to access the information. A user with security level 3,
cannot access all the information of his target that requires
level 1 privilege. To access this information he contacts
some attackers or mDBA to help him. Here we assume that
online attackers have full access to a cloud server hosting
a CryptDB protected database (or simply by the mDBA).
Furthermore, we assume that the integrity protection and
freshness shortcomings of CryptDB have been resolved.

Victim Identification. The first step in the attack is to
recover the victim’s encrypted CryptDB ID. User issues
queries that retrieves non-confidential information of his
target through the application server. Simultaneously, the
mDBA checks the log on the cloud server, identifies the
his query, and extracts the row and the ID of the target in
the CryptDB secured database.

Collecting Words of Interest. In the next step the user
makes requests, e.g. through a search query, for words
of interest using his fake account. The application server
issues selection queries based on his security level, as in the
following code fragment.

... WHERE security_level >= 3
AND

incidents LIKE ’%WORD%’;

Note that application server prevents the search below secu-
rity level 3. Hence, the queries do not result in any useful
responses about the victim user which is assumed to be at a
privilege level. However, in the cloud server log the mDBA
is now able to pick up the encrypted versions of the words
used in the queries. In a sense, the mDBA managed to use
the proxy server as an encryption oracle.

Modified Search Query. At this point the mDBA has
encrypted versions of the words of interest and the victim’s
CryptDB ID. He can now forge valid queries and execute
them on the cloud server. For example, if one of the words
was ‘DRUG’, he may execute a search query by calling the
UDF to learn whether there is a match in the target victim’s
row.

... WHERE ID = ’target’
incidents LIKE ’%DRUG%’;

If there is match this means that they identified one word.
This attack can be performed until a significant portion of
the words appearing in the victim’s rows are determined.
A basic understanding of the organization that owns the
database, e.g. law enforcement, medical, or financial records,
will significantly simplify the process.

Enrolling integrity checks or performing authentication
checks will not prevent this attack, since the attacker does

not need any decrypted values. The mDBA and users always
have access to the query interface which is sufficient to
carry out the attack. To counter this attack, one solution
is to keep every column under RND which does not allow
any comparisons on the data. Another solution is to embed
access control information into the fields, e.g. append all
data in the database with a prefix according to the security
level like 1 drug, 2 drug etc. This approach will restrict
searches to result in a match only at the same security level.

B. Frequency Analysis Attacks

Here we give a simple example of a frequency attack
applied on a CryptDB protected database. The attack falls
under Threat-1 in the CryptDB security model, since no
malicious modification is needed and the adversary remains
passive. In general, frequency attacks are dismissed as to
require too many samples to build a useful statistical profile.
However, here we show that when the search space is
small it is rather easy to narrow down the options and gain
useful information as long as what we are searching for is
deterministically encrypted.

visit id patient id visit hour visit date
0x593 0x345 0x6134BD 0x6434

.
0x355 0x53B 0cEE542 0x9457
0c522 0x345 0x447E3 0xEED4

treatment id patient id treatment
.

0x6341 0x53B 0x645342
0x55BA 0x345 0xBBAE21

.

Table V
VISIT (UP) AND TREATMENT (DOWN) TABLES

To illustrate this attack, we consider a more concrete
example. Assume that a hospital database residing on a cloud
server is secured using CryptDB. Further, the integrity
and authenticity problems of CryptDB resolved. Assume
a notable person, e.g. the Governor of the state, visits the
hospital on day x to have an examination. The real purpose
for this visit is not publicized. This is followed by another
visit by the Governor a few days later, say y. With this
information, the sDBA (semi-honest DBA) examines the
logs of the CryptDB database. He compares all the insert
logs of day x and day y and computes their intersection on
the ID column, see Visit table in Table V. The intersection
will give the encrypted CryptDB IDs of patients who came
in for a visit to the hospital on both days x and y. Only
very few patients will fall into the intersection besides the
Governor. With a few visits the sDBA will be able to identify
the ID of the Governor in the CryptDB protected visitors
table.

To support the execution of queries with a JOIN, all
of the ID’s have a deterministically encrypted value in the

all of the CryptDB protected tables. With the help of
this ID, the sDBA is able to locate the Governor’s rows
in the table keeping treatment information, see Treatment
table in Table V. If the treatment table is secured by
deterministic encryption, further frequency analysis focusing
on the specific treatment is possible.
Some notes on this attack. This attack does not require to
breaking into the client’s computer, or into the application
or the proxy servers. It passive access to cloud server to
recover the tables and the binary log. The binary log is the
key in this attack. The binary log in general requires for
recovery keeping track of write transactions, and database
replications. Disabling the binary log is an option to prevent
this attack. There is another way to realize this attack that
will work even with the log disabled. For this, the mDBA
takes snapshots of the database at reasonably chosen time
intervals. By checking for updates he can recover newly
updated IDs. This attack will work perfectly with slowly
updated databases.

VII. CONCLUSIONS

In this work, we analyzed the prospects of securing
web applications running CryptDB protected databases on
cloud servers under realistic adversarial assumptions. We
target web applications that run CryptDB in the multi-
user setting. Therefore all queries and data are relayed
through a trusted proxy server which also maintains the
master key. As it turns out that online attacker or malicious
database administrator by tampering with the integrity of
the CryptDB protected database entries, which are commu-
nicated between the database server and the proxy server,
can recover sensitive information of other users through
any user account on the web application. Even worse, the
administrator can easily escalate the privilege level of his
web application account to that of an administrator. What is
striking is that these attacks are possible without attacking
the proxy and the web application server in any way. The
attacks manage to extract information and escalate privilege
without recovering the mastering key stored on the proxy
server. Also, in our all attacks, OPE, the weakest encryption
scheme of CryptDB, is not targeted.

To mitigate the proposed attacks, we mentioned a number
of countermeasures from the literature to protect the integrity
of the CryptDB database and thereby render the malicious
DBA to the equivalent of a passive attacker. However,
we show that even when the integrity of the database
is protected, by manipulating the queries with the aid if
a simple user account on the web application with no
additional privileges, the online attackers or DBA can scan
the CryptDB protected database for sensitive information
on specific victims by tampering with the queries. Finally,
we demonstrated with a simple example, that frequency
analysis attacks cannot be taken lightly and deserve more
serious attention.

REFERENCES

[1] PhpBB : Free, open source bulletin board software. http:
//www.phpbb.com/.

[2] Agrawal, Kiernan, Srikant, and Xu. Order preserving encryp-
tion for numeric data. In SIGMODIC, 2004.

[3] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-
preserving encryption revisited: Improved security analy-
sis and alternative solutions. In Advances in Cryptology
(CRYPTO), page 578595, Aug. 2011.

[4] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and
Adam O’Neill. Order-preserving symmetric encryption. IACR
Cryptology ePrint Archive, 2012:624, 2012.

[5] Boneh, Gentry, Lynn, and Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In EUROCRYPT:
Advances in Cryptology: Proceedings of EUROCRYPT, 2003.

[6] Premkumar T. Devanbu, Michael Gertz, Charles U. Martel,
and Stuart G. Stubblebine. Authentic third-party data publi-
cation. In DBSec, volume 201, pages 101–112. Kluwer, 2000.

[7] H. Hacıgümüş, B.R. Iyer, and S. Mehrotra. Encrypted
database integrity in database service provider model. In
Certification and Security in E-Services, volume 255, pages
165–174. Kluwer, 2002.

[8] Eddie Kohler. Hot crap! In WOWCS. USENIX Association,
2008.

[9] Vladimir Kolesnikov and Abdullatif Shikfa. On the limits of
privacy provided by order-preserving encryption. Bell Labs
Technical Journal, 17(3):135–146, 2012.

[10] Merkle. Protocols for public key cryptosystems. In SIM-
MONS: Secure Comm. and Asymmetric Cryptosystems, 1982.

[11] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Au-
thentication and integrity in outsourced databases. ACM
Transactions on Storage, 2(2):107–138, May 2006.

[12] M. Narasimha and G. Gene. DSAC: integrity for outsourced
databases with signature aggregation and chaining. In Pro-
ceedings of the 2005 ACM CIKM, pages 235–236, 2005.

[13] Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In EUROCRYPT: Advances in Cryptol-
ogy: Proceedings of EUROCRYPT, 1999.

[14] R.A. Popa, C.M.S. Redfield, Z. Zeldovich, and H. Balakr-
ishnan. CryptDB: Protecting confidentiality with encrypted
query processing. In 23rd SOSP’11, pages 85–100, 2011.

[15] R.A. Popa, C.M.S. Redfield, Z. Zeldovich, and H. Balakrish-
nan. CryptDB: processing queries on an encrypted database.
Commun. ACM, 55(9):103–111, 2012.

[16] Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. An
ideal-security protocol for order-preserving encoding. IACR
Cryptology ePrint Archive, 2013:129, 2013.

[17] Song, Wagner, and Perrig. Practical techniques for searches
on encrypted data. In RSP: 21th IEEE Computer Society
Symposium on Research in Security and Privacy, 2000.

