
Key Recovery Attack against an NTRU-type Somewhat
Homomorphic Encryption Scheme

Massimo Chenal and Qiang Tang

APSIA group, SnT, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

{massimo.chenal; qiang.tang}@uni.lu

Abstract. In this note, we present our key recovery attacks against NTRU-type somewhat
homomorphic encryption schemes.

1 Key Recovery attack against the NTRU-based LTV12 SHE Scheme

In [LATV12], the authors present a multikey fully homomorphic encryption scheme, which allows to
operate on inputs encrypted under multiple, unrelated keys. A ciphertext resulting from a multikey
evaluation can be jointly decrypted using the secret keys of all the users involved in the computation.
Their scheme is based on NTRU [HPS98], more specifically the variant of Stehle and Steinfeld [SS11].
Next, we are going to present key recovery attacks against the SHE Scheme in [LATV12].

1.1 The LATV12 SHE Scheme

Let λ be the security parameter, consider an integer n = n(λ) and a prime number q = q(λ). Consider
also a degree-n polynomial φ(x) = φλ(x): following [LATV12], we will use φ(x) = xn + 1. Finally, let
χ = χ(λ) a B(λ)-bounded error distribution over the ring R := Z[x]/(φ(x)).

The parameters n, q, φ(x) and χ are public and we assume that given λ, there are polynomial-time
algorithms that output n, q and φ(x), and sample from the error distribution χ. The message space is
M = {0, 1}, and all operations on ciphertexts are carried out in the ring Rq := Zq[x]/(φ(x)).

KeyGen(λ) :
– sample f ′, g ← χ
– set f := 2f ′ + 1 so that f ≡ 1 mod 2
– if f is not invertible in Rq, resample f ′

– pk := h = 2gf−1 ∈ Rq
– sk := f ∈ R

Encrypt(pk,m):
– sample s, e← χ
– output ciphertext c := hs+ 2e+m ∈ Rq

Decrypt(sk, , c):
– let µ = f · c ∈ Rq
– output µ′ := µ mod 2

For the purposes of our attack we don’t need the evaluation step, so we omit it from the description
of the scheme.

In [LATV12], the authors do not explicitly state how the decryption behaves if µ mod 2 is not
a constant. We consider three possibilities: (1) output directly µ mod 2; (2) output the constant of
µ mod R2; (3) output an error.

1.2 Our Key Recovery Attack in Case (1)

Suppose the secret key is in the form of the polynomial

f = s(x) = s0 + s1x+ s2x
2 + · · ·+ sn−1x

n−1 ∈ Rq

with si ∈ [0, q − 1] for all i = 0, 1, . . . , n− 1.
We remark that

#bits(si) = blog2(q − 1)c+ 1 =: N

#bits(s) = n ·#bits(si) = n · (blog2(q − 1)c+ 1)

The decryption oracle reveals a polynomial

µ′(x) = µ(x) mod 2 = µ′0 + µ′1x+ · · ·+ µ′n−1x
n−1 ∈ R2

with µ′i ∈ {0, 1} for i = 0, 1, . . . , n − 1. Hence, decryption oracle reveals n bits at a time. Therefore,
the minimum number of oracle queries needed to recover s is N . As we will see, our attack needs at
most N oracle queries, so in this sense it is optimal.

Here is the idea of our key recovery attack. First of all, we are going to determine the parity of each
coefficient si ∈ [0, q − 1]. Then, we are going to find si by gradually reducing (halving) the interval in
which it lies. In the last step, si will be reduced to belong to some interval with at most two consecutive
integers; the exact value of si will be deduced by its (known) parity.

Preliminary Step.
Submit to the decryption oracle the ’ciphertext’ c = 1 ∈ Rq. The oracle will compute

µ mod 2 = s mod 2 = (s0 mod 2) + (s1 mod 2)x+ · · ·+ (sn−1 mod 2)xn−1

=

n−1∑
i=0

(si mod 2)xi

which tells us the parity of each si, i = 0, 1, . . . , n− 1.

Step 1.
Put c = 2 ∈ Rq and submit it to the decryption oracle; it will compute and return the polynomial

µ mod 2 = (2s ∈ Rq) mod 2

= [(2s0 mod q) mod 2] + [(2s1 mod q) mod 2]x+ · · ·+ [(2sn−1 mod q) mod 2]xn−1

=

n−1∑
i=0

[(2si mod q) mod 2]xi

For all i ∈ [0, n− 1] we have 0 ≤ si ≤ q − 1, and so

0 ≤ 2si ≤ 2q − 2 (A)

For each i, we have two cases to distinguish:

Case A1: (2si mod q) mod 2 = 0. Then, condition (A) implies that

0 ≤ 2si ≤ q − 1, or 0 ≤ si ≤
q − 1

2

We also have

0 ≤ 4si ≤ 2q − 2 (A1)

Case B1: (2si mod q) mod 2 = 1. Then, condition (A) implies that

q + 1 ≤ 2si ≤ 2q − 2, or
q + 1

2
≤ si ≤ q − 1

We also have

2q + 2 ≤ 4si ≤ 4q − 4 (B1)

2

Step 2.
Put c = 4 ∈ Rq and submit it to the decryption oracle; it will compute and return the polynomial

µ mod 2 = (4s ∈ Rq) mod 2

= [(4s0 mod q) mod 2] + [(4s1 mod q) mod 2]x+ · · ·+ [(4sn−1 mod q) mod 2]xn−1

=

n−1∑
i=0

[(4si mod q) mod 2]xi

For each i, we have four cases to distinguish:

Case A2: In Step 1 case A1 held, and (4si mod q) mod 2 = 0. Then, condition (A1) implies that

0 ≤ 4si ≤ q − 1, or 0 ≤ si ≤
q − 1

4

We also have

0 ≤ 8si ≤ 2q − 2 (A2)

Case B2: In Step 1 case A1 held, and (4si mod q) mod 2 = 1. Then, condition (A1) implies that

q + 1 ≤ 4si ≤ 2q − 2, or
q + 1

4
≤ si ≤

q − 1

2

We also have

2q + 2 ≤ 8si ≤ 4q − 4 (B2)

Case C2: In Step 1 case B1 held, and (4si mod q) mod 2 = 0. Then, condition (B1) implies that

2q + 2 ≤ 4si ≤ 3q − 1, or
q + 1

2
≤ si ≤

3q − 1

4

We also have

4q + 4 ≤ 8si ≤ 6q − 2 (C2)

Case D2: In Step 1 case B1 held, and (4si mod q) mod 2 = 1. Then, condition (B1) implies that

3q + 1 ≤ 4si ≤ 4q − 4, or
3q + 1

4
≤ si ≤ q − 1

We also have

6q + 2 ≤ 8si ≤ 8q − 8 (D2)

Generalizing.
Put I0,1 := [0, q− 1]. We can see that, after Step 1, we have reduced each si to one of the two intervals

I1,1 :=

[
0,
q − 1

2

]
, I1,2 :=

[
q + 1

2
, q − 1

]
After Step 2, we have reduced each si to one of the four intervals:

I2,1 :=

[
0,
q − 1

4

]
, I2,2 :=

[
q + 1

4
,
q − 1

2

]
I2,3 :=

[
q + 1

2
,

3q − 1

4

]
, I2,4 :=

[
3q + 1

4
, q − 1

]
3

Reasoning in similar ways, in Step 3 we put c = 8 and, after the decryption oracle query, we are able
to reduce each si to one of the eight intervals

I3,1 :=

[
0,
q − 1

8

]
, I3,2 :=

[
q + 1

8
,
q − 1

4

]
I3,3 :=

[
q + 1

4
,

3q − 1

8

]
, I3,4 :=

[
3q + 1

8
,
q − 1

2

]
I3,5 :=

[
q + 1

2
,

5q − 1

8

]
, I3,6 :=

[
5q + 1

8
,

3q − 1

4

]
I3,7 :=

[
3q + 1

4
,

7q − 1

8

]
, I3,8 :=

[
7q + 1

8
, q − 1

]
It is easy to see that, after each step k, a smallest interval is given by

Ik,2k =

[(
2k − 1

)
· q + 1

2k
, q − 1

]

The numbers of elements in Ik,2k is given by

|Ik,2k | = q − 1−

⌈(
2k − 1

)
· q + 1

2k

⌉
+ 1

=

⌊
q −

(
2k + 1

)
2k

⌋
+ 1

A largest interval is given by

Ik,1 =

[
0,
q − 1

2k

]
with

|Ik,1| =
⌊
q − 1

2k

⌋
+ 1

Now, we keep on reasoning in the same way until we reach Step m, where m is such that

2m ≤ q − 1 ≤ 2m+1, i.e. m = blog2(q − 1)c

In fact, at Step m we have

|Im,1| =
⌊
q − 1

2m

⌋
+ 1 = 2, and

|Im,2m | =
⌊
q − (2m + 1)

2m

⌋
+ 1 = 1

where last equality holds since

q − (2m + 1)

2m
=
q − 1

2m
− 1, and 1 ≤ q − 1

2m
< 2

so we have

0 ≤ q − (2m + 1)

2m
< 1, i.e.

⌊
q − (2m + 1)

2m

⌋
= 0

So, at Step m, the interval I0,1 = [0, q − 1] is divided into 2m intervals {Im,t}2
m

t=1. Moreover,

1 = |Im,2m | ≤ |Im,t| ≤ |Im,1| = 2, ∀t = 1, 2, 3, . . . , 2m

4

Final step.
For any given t ∈ [1, 2, 3, . . . , 2m] we have to distinguish two cases:

• if |Im,t| = 1, then si ∈ Im,t is determined;
• if |Im,t| = 2, then Im,t = {r, r+ 1} for some r ∈ [0, q− 2]. Therefore, si ∈ Im,t is determined by its

parity (which was computed in the preliminary step).

How many oracle queries we need in order to recover s? We have to perform m steps each one with
one call to the oracle query, plus one additional call to the oracle query in the preliminary step. Hence,
we need

m+ 1 = blog2(q − 1)c+ 1 = N

oracle queries to recover s, and for what we have said previously, our attack is indeed optimal.

General form of the intervals Ik,t, for k ≥ 1 and 1 ≤ t ≤ 2k.
For a given prime q, we give the explicit general form of the set of intervals {Ik,1, . . . , Ik,2k}mk=0. For
any integer a ∈ I0,1 = [0, q − 1] = Zq, consider the function

f : Zq → N
a 7→ max

{
2r s.t. 2r | a, with r ∈ N = {0, 1, 2, . . .}

}
We put f(0) := 0.

So, for a given a ∈ Zq\{0}, f(a) is the maximum power of 2 dividing a. Then we can check that

Ik,t =

f(t− 1) ·
(

t−1
f(t−1) · q + 1

)
2k

,
f(t) ·

(
t

f(t) · q − 1
)

2k


Special care has to be taken when t = 1; in fact

f(t− 1) ·
(

t− 1

f(t− 1)
· q + 1

) ∣∣∣∣
t=1

= 0 ·
(

0

0
· q + 1

)
To avoid confusion given by division by 0, we write Ik,t as before for 2 ≤ t ≤ 2k, and Ik,1 =

[
0, q−1

2k

]
.

Our Key Recovery Attack, formally We can now generalize our key recovery attack, and more
formally write the generic k-th step, for 1 ≤ k ≤ m. Let I0,1 := [0, q − 1]. The preliminary step (or
Step 0) is as before. For any 1 ≤ k ≤ m, Step k can be written as follows.
Step k: Put c = 2k ∈ Rq and submit it to the decryption oracle; it will compute and return the
polynomial

µ mod 2 = (2k · s ∈ Rq) mod 2

=
[
(2k · s0 mod q) mod 2

]
+
[
(2k · s1 mod q) mod 2

]
x+ · · ·+

[
(2k · sn−1 mod q) mod 2

]
xn−1

=

n−1∑
i=0

[
(2k · si mod q) mod 2

]
xi

For each i, we know from Step (k − 1) the value t ∈ [1, 2k−1] such that si ∈ Ik−1,t. Now, we have two
cases to distinguish:

• if (2k · si mod q) mod 2 = 0, then si ∈ Ik,2t−1;
• if (2k · si mod q) mod 2 = 1, then si ∈ Ik,2t

Repeat Step k for k = 1, 2, . . . ,m.
Final step is as before.

5

1.3 Our Key Recovery Attack in Case (2)

We show that, even in this Case (2), our attack works with few modifications. Instead of recovering
all coefficients si of the polynomial s(x) = s0 + s1x + · · · + sn−1x

n−1 ∈ Rq at once, we are going to
recover in sequence s0, s1, . . . , sn−1.

Recovering s0 .
It is clear that, by performing the same attack as described above, we recover coefficient s0 with at
most N oracle queries; but no information will be leaked about si, for 1 ≤ i ≤ n− 1.

Recovering s1 .
In order to recover s1, we repeat the same attack as before, with the following modifications:

Preliminary step: submit to the decryption oracle the ’ciphertext’ c = −xn−1 ∈ Rq. This way,

µ(x) mod 2 = s · (−xn−1) mod 2 =

= (s1 mod 2) + (s2 mod 2)x+ · · ·+ (sn−1 mod 2)xn−2 − (s0 mod 2)xn−1

since xn = −1 in Rq. So µ′0 = s1 mod 2.

Similarly,

Step k, for 1 ≤ k ≤ m, with m = blog2(q − 1)c: Submit to the decryption oracle the ’ciphertext’

c = 2k · (−xn−1) ∈ Rq

These modifications lead to a full recovery of s1 (the final step is the same as in the original key-recovery
attack).

Recovering si, for 0 ≤ i ≤ n − 1 .
Similarly, and more generally, we are going to recover si ∈ [0, q− 1], for all 0 ≤ i ≤ n− 1. Steps are as
follows:

Preliminary step: submit to the decryption oracle the ’ciphertext’ c = −xn−i ∈ Rq.
Step k, for 1 ≤ k ≤ m, with m = blog2(q − 1)c: Submit to the decryption oracle the ’ciphertext’

c = 2k · (−xn−i) ∈ Rq

Final step: same as in the original key-recovery attack.

We can consider an efficiency analysis of our key-recovery attack for the modified [LATV12] SHE
scheme. In this case, decryption oracle reveals only one bit at a time. Since secret polynomial s(x) has
n · N bits, we need at least n · N oracle queries in order to recover s(x). In our previous attack, we
recover each si, for 0 ≤ i ≤ n − 1, with N oracle queries; repeating the attack for every i, gives us a
total of n ·N oracle queries. Hence, our attack is optimal.

2 Summary

So far, we have only successfully mount key recovery attacks for Case (1) and (2). It is likely that we
can adapt our attack to Case (3), but we have not succeeded so far. This is still an ongoing work. It is
worth noting that our attack can be applied to the NTRU variant of Stehle and Steinfeld [SS11] and
others straightforwardly.

6

References

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosys-
tem. In JoeP. Buhler, editor, Algorithmic Number Theory, volume 1423 of Lecture Notes in Computer
Science, pages 267–288. Springer Berlin Heidelberg, 1998.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In Proceedings of the Forty-fourth Annual
ACM Symposium on Theory of Computing, STOC ’12, pages 1219–1234, New York, NY, USA, 2012.
ACM.

[SS11] Damien Stehlé and Ron Steinfeld. Making ntruencrypt and ntrusign as secure as standard worst-case
problems over ideal lattices. In K. G. Paterson, editor, Advances in Cryptology — EUROCRYPT
2011, volume 6632 of LNCS, pages 27–47. Springer, 2011.

7

