
Key Recovery Attacks against NTRU-based Somewhat
Homomorphic Encryption Schemes

Massimo Chenal and Qiang Tang

APSIA group, SnT, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

{massimo.chenal; qiang.tang}@uni.lu

Abstract. A key recovery attack allows an attacker to recover the private key of an
underlying encryption scheme when given a number of decryption oracle accesses. Previ-
ous research has shown that most existing Somewhat Homomorphic Encryption (SHE)
schemes suffer from this attack. In this paper, we propose efficient key recovery attacks
against two NTRU-based SHE schemes, which have not gained much attention in the
literature. One is published by Lopez-Alt et al. at STOC conference 2012 and the other
is published by Bos et al. at the IMACC conference 2013. Parallel to our work, Dahab,
Galbraith and Morais have also proposed similar attacks but only for specific parameter
settings at ICITS conference 2015. In comparison, our attacks apply to all parameter
settings and are more efficient than theirs.

Keywords: Somewhat Homomorphic Encryption, Key Recovery Attack, IND-CCA1 Security.

1 Introduction

In the literature, all Somewhat Homomorphic Encryption (SHE) schemes have been developed
with the aim of being IND-CPA secure. In [Gen09], Gentry emphasized it as a future work to
investigate SHE schemes with IND-CCA1 security (i.e. secure against a non-adaptive chosen-
ciphertext attack). Up to now, the only scheme proven IND-CCA1 secure is that by Loftus et al.
[LMSV12]. Most works in this direction focus on devising attacks against existing SHE schemes.

It has been shown that most existing SHE schemes suffer from key recovery attacks, which
allow an attacker to recover the private key of an underlying encryption scheme when given a
number of decryption oracle accesses. It is clear that a key recovery attack is stronger than a
typical attack against IND-CCA1 security.

1.1 Related Works

Loftus et al. [LMSV12] showed key recovery attacks against SHE schemes from [Gen09,GH11].
Zhang et al. [ZPS12] presented an attack against the SHE scheme in [vDGHV10]. Chenal and
Tang [CT14] presented key recovery attacks for all the schemes in [BV11b,BV11a,GSW13,Bra12,BGV12].

Previous analysis has not paid much attention to the NTRU-based SHE schemes. Two rep-
resentative schemes in this line are those by Lopez-Alt, Tromer and Vaikuntanathan [LATV12]
and Jos et al. [BLLN13]. Note that, instead of relying on the original NTRU scheme by Hoffstein,
Pipher and Silverman [HPS98] (NTRUEncrypt), these schemes are based on a variant by Stehle
and Steinfeld [SS10]. Parallel to our work in this paper, we noticed that Dahab, Galbraith and
Morais [DGM15] constructed key recovery attacks for these schemes from [BLLN13,LATV12].

It is worth noticing that there was a similar line of research which focused on chosen ci-
phertext attacks on the original NTRUEncrypt. (NTRUEncrypt lacked a proof of security;
only in [SS10] it has been shown how to modify NTRUEncrypt to reduce security to standard
problems in ideal lattices.) In [JJ00], the authors present a chosen ciphertext attack on NTRU-
Encrypt that recovers the secret key with some probability. However, as it has been noticed in
[HGNP+03], these attacks use fake ciphertexts and can therefore be easily thwarted. The au-
thors of [HGNP+03] exploit a weakness of the NTRUEncrypt scheme, i.e. the fact that validly
generated ciphertexts can fail to decrypt, in order to develop attacks which use these decryption
failures to recover the private key. Other key-recovery chosen-ciphertext attacks, following the
same line of work, have been developed in [GN07].

1.2 Our Contribution

The key recovery attacks by Dahab, Galbraith and Morais [DGM15] work for arbitrarily-tailored
parameters for the LTV12 and BLLN13 SHE schemes. For example, they require 6(t2 + t) < q
and B2 < q

36t2 while these conditions are not assumed in [LATV12,BLLN13]. In this paper, we
present attacks that work for all parameter settings. Moreover, our attacks are more efficient
than theirs, see the following table. Note that n is defined as an integer of power of 2, B is a
bound on the coefficient size of error distribution and is much smaller than q, t ≥ 2 is an integer
that partially determines the message space size. More detailed definitions for these parameters
can be found in the following sections.

Our Attacks Attacks from [DGM15]
[LATV12] blog2Bc+ n n · dlog2Be+ n
[BLLN13] (t is odd) dlog2(B/t)e n · dlog2Be
[BLLN13] (t is even but not 2) dlog2(B/t)e+ n n · dlog2Be
[BLLN13] (t = 2) dlog2(B/t)e+ n n · dlog2Be+ n

1.3 Structure of the Paper

In Section 2, we recall some background on SHE schemes. In Section 3, we present our attack
against the LTV12 SHE scheme. In Section 4, we present our attack against the BLLN13 SHE
scheme. In Section 5, we conclude the paper.

2 Preliminary

Let N be the set of natural numbers, Z the ring of integers, Q the field of rational numbers,
and Fq a finite field with q elements, where q is a power of a prime p. In particular, we will
consider often Fp = Z/pZ = Zp. If r ∈ Zq, we indicate as r−1 its inverse in Zq, i.e. that value
such that r−1 · r = 1 mod q. For a ring R and a (two-sided) ideal I of R, we consider the
quotient ring R/I. For a given rational number x ∈ Q, we let bxe, bxc and dxe be respectively
the rounding function, the floor function and the ceiling function. For a given integer n ∈ N,
bn + 1/2e = n + 1. Of course, our attacks work also, with trivial modifications, in the case we
define bn + 1/2e = n. To indicate that an element a is chosen uniformly at random from a set

A we use notation a
$← A. For a set A, we let its cardinality be |A|. We denote the map that

reduces an integer x modulo q and uniquely represents the result by an element in the interval
(−q/2, q/2] by [·]q. Therefore, we will consider the ring Zq as Zq := {−

⌊
q
2

⌋
,−
⌊
q
2

⌋
+1, . . . ,

⌊
q
2

⌋
}.

We extend this map to polynomials in Z[X] and thus also to elements of R by applying it to
their coefficients separately; given a polynomial a(x) ∈ R, we define the map

[·]q : R→ R, a(x) =

n−1∑
i=0

aix
i 7→

n−1∑
i=0

[ai]qx
i

Unless otherwise specified, λ will always denote the security parameter. In the asymmetric
schemes we are going to discuss, the secret key is denoted as sk, and the public key is pk.

The following definitions are adapted from [Gen09]. We only assume bit-by-bit public-key
encryption, i.e. we only consider encryption schemes that are homomorphic with respect to
boolean circuits consisting of gates for addition and multiplication mod 2. Extensions to bigger
plaintext spaces and symmetric-key setting are straightforward, so that we skip it.

Definition 1 (Homomorphic Encryption). A public key homomorphic encryption (HE)
scheme is a set E = (KeyGenE ,EncryptE ,DecryptE ,EvaluateE) of four algorithms all of which
must run in polynomial time. When the context is clear, we will often omit the index E.

KeyGen(λ) = (sk, pk)

• input: λ
• output: sk; pk

Encrypt(pk,m) = c

• input: pk and plaintext m ∈ F2

• output: ciphertext c

2

Decrypt(sk, c) = m′

• input: sk and ciphertext c
• output: m′ ∈ F2

Evaluate(pk, C, (c1, . . . , cr)) = ce

• input: pk, a circuit C, ciphertexts
c1, . . . , cr, with ci = Encrypt(pk,mi)

• output: ciphertext ce

Informally, a homomorphic encryption scheme that can perform only a limited number of
Evaluate operations is called a Somewhat Homomorphic Encryption (SHE) scheme.

A public-key encryption scheme is IND-CCA1 secure if a polynomial time attacker can only
win the following game with a negligible advantage AdvIND-CCA1

A,E,λ = |Pr(b = b′)− 1/2|.

• (pk, sk)← KeyGen(1λ)

• (m0,m1)← A(Decrypt)
1 (pk) /* Stage 1 */

• b← {0, 1}
• c∗ ← Encrypt(mb, pk)
• b′ ← A2(c∗) /* Stage 2 */

According to the definition, in order to show that a scheme is not IND-CCA1 secure, we only
need to show that an adversary can guess the bit b with a non-negligible advantage given access
to the decryption oracle in Stage 1. In comparison, in a key recovery attack, an adversary can
output the private key given access to the decryption oracle in Stage 1. Clearly, a key recovery
attack is stronger and can result in more serious vulnerabilities in practice.

2.1 Impact of Key Recovery Attacks

In theory, IND-CPA security may be enough for us to construct cryptographic protocols, in
particular if we assume semi-honest attackers. However, key recovery attacks will pose serious
threat for practical usage of SHE schemes if an attacker becomes malicious (or, an honest party
is compromised) and submits manipulated ciphertexts to observe the behavior of the decryptor.
We illustrate this point by presenting an “attack” against the LWE-based single-server private
information retrieval (PIR) protocol in [BV11b].

The PIR protocol is very simple: the client has a long-term key tuple for a SHE scheme and
a secret key sk for a symmetric encryption scheme; a PIR query is an encrypted index under sk;
a PIR response is a ciphertext under the SHE public key, generated by the server (who is given
the ciphertext of sk under the SHE public key) by homomorphically evaluating the encrypted
index and the database; the client obtains the desired bit by decrypting the ciphertext using the
SHE private key.

Clearly, if the server is malicious, then it can mount a key recovery attack by manipulating
the responses and monitoring the client’s behavior. With the SHE private key, the server can
recover all the private information of the client. In order to prevent the attack, the client can
require the server to prove all computations are done properly. However, this might make the
server’s computational complexity very heavy and make the protocol less efficient than others.

3 Attack against the LTV12 SHE Scheme

We start by recalling the LTV12 SHE Scheme [LATV12]. Let λ be the security parameter,
consider an integer n = n(λ) and a prime number q = q(λ) 6= 2. Consider also a degree-n
polynomial φ(x) = φλ(x): following [LATV12], we will use φ(x) = xn+1. Finally, let χ = χ(λ) a
B(λ)-bounded error distribution over the ring R := Z[x]/(φ(x)). The parameters n, q, φ(x) and
χ are public and we assume that given λ, there are polynomial-time algorithms that output n, q
and φ(x), and sample from the error distribution χ. The message space is M = {0, 1}, and all
operations on ciphertexts are carried out in the ring Rq := Zq[x]/(φ(x)).

KeyGen(λ) :

• sample f ′, g ← χ

• set f := 2f ′ + 1 so that
f ≡ 1 mod 2

• if f is not invertible in Rq,
resample f ′

• pk := h = 2gf−1 ∈ Rq
• sk := f ∈ R

3

Encrypt(pk,m):
• sample s, e← χ
• output ciphertext c := hs+ 2e+m ∈ Rq

Decrypt(sk, c):
• let µ = f · c ∈ Rq
• output µ′ := µ mod 2

Since we don’t need the evaluation step, we omit it in the description. In the original paper
[LATV12], the somewhat homomorphic encryption scheme is multi-key, i.e. one can use several
secret keys sk1 = f1, . . . , skM = fM in order to decrypt. By analyzing the original decryption
step, one can see that, in order to decrypt the plaintext message, we need to multiply secret
keys sk1 = f1, . . . , skM = fM together, and then multiply the result with the ciphertext and
reduce. For this reason, it is enough to retrieve, as the secret key, the polynomial f1 · · · fM =:
s = s(x) = s0 +s1x+s2x

2 + · · ·+sn−1x
n−1 ∈ Rq, with si ∈ (−q/2, q/2] for all i = 0, 1, . . . , n−1.

For this reason, it is enough to present the scheme as we saw it, with only one secret key.

Remark 1. In [LATV12], the authors do not explicitly state how the decryption behaves if
µ mod 2 is not a constant. We consider three scenarios: (1) output directly µ mod 2; (2) output
the constant of µ mod R2; (3) output an error. In the following, we describe a key recovery
attack for scenario (1) and it can be easily extended to scenario (2). It is likely that we can
adapt our attack to scenario (3), but we have not succeeded so far.

3.1 Attack Preview

Generally, suppose the secret key is in the form of the polynomial f = s(x) = s0+s1x+s2x
2+· · ·+

sn−1x
n−1 ∈ Rq. Now, since we assume q odd, and si is an integer, we have −q/2 < si < q/2, and

in particular −
⌊
q
2

⌋
≤ si ≤

⌊
q
2

⌋
, ∀0 ≤ i ≤ n−1. Each coefficient si can have

⌊
q
2

⌋
−(−

⌊
q
2

⌋
)+1 =

q possible different values. We remark that there exists a bit representation of the si’s such that
#bits(si) = blog2(q − 1)c+ 1 =: N , and #bits(s) = n ·#bits(si) = n · (blog2(q − 1)c+ 1). The
decryption oracle reveals a polynomial µ′(x) = µ(x) mod 2 = µ′0 + µ′1x+ · · ·+ µ′n−1x

n−1, with
µ′i ∈ {0, 1} for i = 0, 1, . . . , n − 1. Hence, decryption oracle reveals n bits at a time. Therefore,
the minimum number of oracle queries needed to recover s is N . As we will see, our attack
needs N oracle queries, plus at most n− 1 oracle queries necessary to determine the signs of the
coefficients of the secret key. We remark that the scheme as described in [LATV12] has message
space M = {0, 1}. When the oracle decryption receives an honestly-generated ciphertext, it

returns either 0 =
∑n−1
i=0 0 ·xi ∈ Rq or 1 = 1 +

∑n−1
i=1 0 ·xi ∈ Rq. However, in principle the oracle

decryption can return any polynomial in {0, 1}/(xn + 1) and we will use this fact as basis to
build our attack.

Here is the workflow of our key recovery attack. First of all, we are going to determine the
parity of each coefficient si ∈ (−q/2, q/2]. Then, we are going to find si by gradually reducing
(halving) the interval in which it lies. At some point, si will be reduced to belong to some
interval with at most two consecutive integers; the absolute value of si will be deduced by its
(known) parity. At this point, we will know the secret key coefficient si in absolute value; in the
last step, we are going to query the oracle decryption at most n times in order to recover the
sign of the coefficients si, for i = 1, 2, . . . , n− 1, relative to the (unknown) sign of s0. So in the
end, we will end up with two possible candidate secret keys s1(x) and s2(x) = −s1(x). We have
then s(x) = s1(x) or s(x) = s2(x), and recovering which one of the two is trivial with an extra
oracle query.

In our description, we consider the coefficients si in the interval (−q/2, q/2] and can recover
the private key with at most blog2qc + n decryption oracle queries. However, we could consider
the stricter interval [−B,B], with B the bound on coefficients given by the distribution χ from
which the coefficients are picked from. In this case, we can see that the total number of queries
needed to be submitted to the decryption oracle are actually at most blog2Bc+ n.

3.2 Detailed Attack

Preliminary Step.

Submit to the decryption oracle the “ciphertext” c(x) = 1 ∈ Rq. The oracle will compute

and return the polynomial D(c(x) = 1) = s(x) mod 2 =
∑n−1
i=0 (si mod 2)xi, which tells us the

parity of each si, i = 0, 1, . . . , n− 1.

4

Step 1.
Choose and submit to the decryption oracle the “ciphertext” c(x) = 2 ∈ Rq. It will compute

and return the polynomial D(c(x) = 2) = (2s(x) ∈ Rq) mod 2 =
∑n−1
i=0 [(2si mod q) mod 2]xi.

For all i ∈ [0, n− 1] we have

−q + 1

2
≤ si ≤

q − 1

2
, and so − q + 1 ≤ 2si ≤ q − 1 (A)

For each i, we have two cases to distinguish:

Case A1: (2si mod q) mod 2 = 0. Then, condition (A) implies that −q+1
2 ≤ 2si ≤ q−1

2 , i.e. −q+1
4 ≤

si ≤ q−1
4

−q + 1 ≤ 4si ≤ q − 1 (A1)

Case B1: (2si mod q) mod 2 = 1. Then, condition (A) implies that q−1
2 + 1 ≤ 2|si| ≤ q − 1, i.e.

q+1
4 ≤ |si| ≤

q−1
2

q + 1 ≤ 4|si| ≤ 2q − 2 (B1)

Step 2.
Choose and submit to the decryption oracle the “ciphertext” c(x) = 4 ∈ Rq. It will compute

and return the polynomial D(c(x) = 4) = [s(x) · 4]q mod 2 =
∑n−1
i=0 [[4si]q mod 2]xi. For each i,

we have four cases to distinguish:

Case A2: In Step 1 case A1 held, and [4si]q mod 2 = 0. Then, condition (A1) implies that −q+1
2 ≤

4si ≤ q−1
2 , i.e. −q+1

8 ≤ si ≤ q−1
8

−q + 1 ≤ 8si ≤ q − 1 (A2)

Case B2: In Step 1 case A1 held, and [4si]q mod 2 = 1. Then, condition (A1) implies that q−1
2 + 1 ≤

4|si| ≤ q − 1, i.e. q+1
8 ≤ |si| ≤

q−1
4

q + 1 ≤ 8|si| ≤ 2q − 2 (B2)

Case C2: In Step 1 case B1 held, and [4si]q mod 2 = 0. Then, condition (B1) implies that q+1+ q−1
2 ≤

4|si| ≤ 2q − 2, i.e. 3q+1
8 ≤ |si| ≤ q−1

2

3q + 1 ≤ 8|si| ≤ 4q − 4 (C2)

Case D2: In Step 1 case B1 held, and [4si]q mod 2 = 1. Then, condition (B1) implies that q + 1 ≤
4|si| ≤ 3q−1

2 , i.e. q+1
4 ≤ |si| ≤

3q−1
8

2q + 2 ≤ 8|si| ≤ 3q − 1 (D2)

Step 3.
Choose and submit to the decryption oracle the “ciphertext” c(x) = 8 ∈ Rq. It will compute

and return the polynomial D(c(x) = 8) = [s(x) · 8]q mod 2 =
∑n−1
i=0 [[8si]q mod 2]xi. For each i,

we have four cases to distinguish:

Case A3: In Step 2 case A2 held, and [8si]q mod 2 = 0. Then, condition (A2) implies that −q+1
2 ≤

8si ≤ q−1
2 , i.e. −q+1

16 ≤ si ≤ q−1
16

−q + 1 ≤ 16si ≤ q − 1 (A3)

Case B3: In Step 2 case A2 held, and [8si]q mod 2 = 1. Then, condition (A2) implies that q−1
2 + 1 ≤

8|si| ≤ q − 1, i.e. q+1
16 ≤ |si| ≤

q−1
8

q + 1 ≤ 16|si| ≤ 2q − 2 (B3)

5

Case C3: In Step 2 case B2 held, and [8si]q mod 2 = 0. Then, condition (B2) implies that 3q+1
2 ≤

8|si| ≤ 2q − 2, i.e. 3q+1
16 ≤ |si| ≤

q−1
4

3q + 1 ≤ 16|si| ≤ 4q − 4 (C3)

Case D3: In Step 2 case B2 held, and [8si]q mod 2 = 1. Then, condition (B2) implies that q + 1 ≤
8|si| ≤ 3q−1

2 , i.e. q+1
8 ≤ |si| ≤

3q−1
16

2q + 2 ≤ 16|si| ≤ 3q − 1 (D3)

Case E3: In Step 2 case C2 held, and [8si]q mod 2 = 0. Then, condition (C2) implies that 7q+1
2 ≤

8|si| ≤ 4q − 4, i.e. 7q+1
16 ≤ |si| ≤

q−1
2

7q + 1 ≤ 16|si| ≤ 8q − 8 (E3)

Case F3: In Step 2 case C2 held, and [8si]q mod 2 = 1. Then, condition (C2) implies that 3q + 1 ≤
8|si| ≤ 7q−1

2 , i.e. 3q+1
8 ≤ |si| ≤ 7q−1

16

6q + 2 ≤ 16|si| ≤ 7q − 1 (F3)

Case G3: In Step 2 case D2 held, and [8si]q mod 2 = 0. Then, condition (D2) implies that 2q + 2 ≤
8|si| ≤ 5q−1

2 , i.e. q+1
4 ≤ |si| ≤

5q−1
16

4q + 4 ≤ 16|si| ≤ 5q − 1 (G3)

Case H3: In Step 2 case D2 held, and [8si]q mod 2 = 1. Then, condition (D2) implies that 5q+1
2 ≤

8|si| ≤ 3q − 1, i.e. 5q+1
16 ≤ |si| ≤

3q−1
8

5q + 1 ≤ 16|si| ≤ 6q − 2 (H3)

Final step.

We continue in this fashion and finally we obtain integers s′i := |si| ∈ [0, q−12], for i =
0, 1, . . . , n− 1. This is obtained in the last step, where all coefficients |si|, in absolute value, can
assume at most only two (consecutive) values; the known parity will then determine |si|. It is
easy to see that in order to achieve this we need blog2qc steps.

The strategy now is to find out whether si · sj < 0 or si · sj > 0 holds, for every i, j
with si, sj 6= 0. Let sm be the first non-zero coefficient. This way, we will obtain two possible
candidates of the secret key, one with sm > 0 and the other with sm < 0. A trivial query to the
oracle decryption will allow us to determine which is the correct secret key.

We have to choose an appropriate “ciphertext” c(x) = c0 + c1x+ · · ·+ cn−1x
n−1 to submit

to the decryption oracle. Choose c0 = 1, c1 = 1 and cj = 0 for j 6= 0, 1. Oracle decryption will
compute and return the polynomial

D(c(x)) = s(x) · c(x) = [s0 − sn−1]q mod 2 +

n−1∑
i=1

([si + si−1]q mod 2)xi

Fix i = 1, 2, . . . , n − 1 such that si, si−1 6= 0. Let bi := [si + si−1]q mod 2 be the coefficient of
xi, and let b′i := [s′i + s′i−1]q mod 2. There are two cases to consider:

• s′i + s′i−1 ≥
q+1
2 . Then

• if bi = b′i, then si and si−1 have the same sign;

• if bi 6= b′i, then si and si−1 have different signs.

• 0 ≤ s′i + s′i−1 ≤
q−1
2 . Then we need to make an extra query to understand whether si and

si−1 have the same sign or not.

6

Now, for each one of the i of the previous case (i.e. such that 0 ≤ s′i + s′i−1 ≤
q−1
2 , i =

1, 2, . . . , n− 1, and si, si−1 6= 0) we choose and submit to the decryption oracle the polynomial
c(x) = αi|si−1| + αi|si|x, i.e. we choose c0 = αi|si−1|, c1 = αi|si|, c2 = c3 = · · · = cn−1 = 0,
where αi is chosen such that

αi|si−1 · si| ∈
(
q − 1

4
,
q − 1

2

]
(1)

(it is always possible to find such an αi). The oracle decryption will return the polynomial

D(c(x)) = s(x)·c(x) = [αi|si−1|s0−αi|si|sn−1]q mod 2+

n−1∑
j=1

([αi|si−1|sj + αi|si|sj−1]q mod 2)xj

Let’s focus on the coefficient of xi, i.e. βi := [αi|si−1|si +αi|si|si−1]q mod 2. Now, there are two
cases:

• if si, si−1 have different signs, then βi = 0;
• if si, si−1 have the same sign, then βi = 1 (trivial to verify: 1 holds, and therefore [2αi · |si ·
si−1|]q) is odd.

By repeating this idea for every i = 1, 2, . . . , n− 1 such that 0 ≤ s′i + s′i−1 ≤
q−1
2 we will know

which one of the following relations si · si−1 < 0 ∨ si · si−1 > 0 holds, for every consecutive
non-zero coefficients si, si−1.

Now, we have one more thing to consider: we have to be careful in case one of the coefficient si
is zero. In this case in fact, no information can be given about the sign of si−1 if we compare it to
si. To solve this problem, we have to choose and submit to the decryption oracle a polynomial
c(x) = a + bxj for appropriates a, b, j. Let 0 ≤ m1 ≤ n − 1 be an integer such that sm1 is
the first non-zero coefficient of the secret key s(x). If there exists i1 > m1 such that si1 = 0,
then let m2 be the first non-zero coefficient such that i1 < m2 ≤ n − 1. Then we want to
compare the relative signs of sm1

and sm2
by choosing the polynomial c(x) with c0 = α|sm1

|,
cm2−m1

= α|sm2
|, cj = 0 for j 6= 0,m2 − m1. So we have c(x) = α|sm1

| + α|sm2
|xm2−m1 ,

with α such that α|sm1
sm2
| ∈

(
q−1
4 , q−12

]
. The oracle decryption will return the polynomial

D(c(x)) = s(x) · c(x) = β0 + β1x + · · · + βn−1x
n−1. Consider the m2-th coefficient βm2 =

[α|sm1 |sm2 + α|sm2 |sm1]q mod 2. As before, we can conclude that if sm1 , sm2 have different signs,
then βm2

= 0, and if sm1
, sm2

have the same sign, then βm2
= 1.

Now, similar to what just discussed, if there exists i2 > m2 such that si2 = 0, then let m3

be the first non-zero coefficient such that m3 > i2. We will in a similar fashion compare the
relative signs of sm1 and sm3 . We keep proceeding this way, and in the end we will know, for
every 0 ≤ i, j ≤ n − 1 such that si 6= 0, sj 6= 0, whether si · sj > 0 or si · sj < 0 occurs. This
allows us to determine two possible candidates for the secret key s(x) (assume sm is the first
non-zero coefficient; then one candidate has sm < 0, the other has sm > 0). A trivial oracle
decryption query will reveal which one of the two is the correct secret key. The total number of
queries needed to be submitted to the oracle decryption query is then at most blog2qc+ n.

4 Attack against the BLLN13 SHE Scheme

We start by recalling the BLLN13 SHE Scheme [BLLN13]. For a given positive integer d ∈ N>0,
define the quotient ring R := Z[x]/(Φd(x)), i.e. the ring of polynomials with integer coefficients
modulo the d-th cyclotomic polynomial Φd(x) ∈ Z[x]. The degree of Φd is n = ϕ(d), where ϕ
is Euler’s totient function. As considered by the authors of [BLLN13], for correctness of the
scheme, let d be a power of 2; in this case, we have Φd(x) = xn + 1 with n also a power of 2.
Therefore R = Z[x]/(xn + 1). The other parameters of the [BLLN13] SHE scheme are a prime
integer q ∈ N and an integer t ∈ N such that 1 < t < q. Let also χkey, χerr be two distributions
on R. The parameters d, q, t, χkey and χerr are public and we assume that given λ, there are
polynomial-time algorithms that output d, q, t and φ(x), and sample from the error distributions
χ. The message space is M = R/tR = Zt[x]/(xn + 1), and all operations on ciphertexts are
carried out in the ring Rq := Zq[x]/(φ(x)).

7

KeyGen(λ) :

• sample f ′, g ← χkey

• let f = [tf ′ + 1]q

• if f is not invertible in Rq, resample f ′

• set pk := h = [tgf−1]q ∈ Rq
• set sk := f ∈ Rq

Encrypt(pk,m):
• for a message m+ tR, choose [m]t as its

representative
• sample s, e← χerr

• output ciphertext c = [bq/tc[m]t + e +
hs]q ∈ Rq

Decrypt(sk, c):

• output m =
[⌊

t
q · [fc]q

⌉]
t
∈ Rt

Since we don’t need the evaluation step, we omit it in the description.

4.1 Attack Preview

We are going to recover the secret key f(x) = f0+f1x+f2x
2+· · ·+fn−1xn−1 ∈ Zq [x]

(xn+1) , where fi is

an integer in (−q/2, q/2] for all i = 0, 1, . . . , n−1. In order to recover f(x), we are going to submit

specifically-chosen ’ciphertexts’ of the form c(x) = c0 + c1x + c2x
2 + · · · + cn−1x

n−1 ∈ Zq [x]
(xn+1) ,

with integers ci ∈ (−q/2, q/2]. Choose c(x) = 1 = 1 + 0x+ 0x2 + · · ·+ 0xn−1. We have

D(c = 1) =

[⌊
t

q
· [f · 1]q

⌉]
t

=

[⌊
t

q
·
(
[f0]q + [f1]qx+ [f2]qx

2 + · · ·+ [fn−1]qx
n−1)⌉]

t

∗
=

[⌊
t

q
·
(
f0 + f1x+ · · ·+ fn−1x

n−1)⌉]
t

=

[⌊
t

q
f0

⌉
+

⌊
t

q
f1

⌉
x+ · · ·+

⌊
t

q
fn−1

⌉
xn−1

]
t

Equality
∗
= holds since the integer coefficients fi are already reduced modulo q. Now, for every

0 ≤ i ≤ n − 1 we have −q/2 < fi ≤ q/2. We have that q > 2 since in [BLLN13] it is claimed
that 1 < t < q, with t, q integers. In particular, q is a prime integer greater than 2, and therefore
q/2 /∈ N. So we have −q/2 < fi < q/2. In particular we have that − t

2 <
t
q · fi <

t
2 . For every

0 ≤ i ≤ n− 1, let u
(1)
i :=

⌊
t
qfi

⌉
. We have

⌈
− t

2

⌉
≤ u(1)i ≤

⌊
t
2

⌋
. Each u

(1)
i can have

⌊
t

2

⌋
−
⌈
− t

2

⌉
+ 1 = 2

⌊
t

2

⌋
+ 1 =

{
t if t is odd

t+ 1 if t is even

possible different values, i.e. u
(1)
i can have t different possible values if t is odd, and can have t+1

different possible values if t is even. Now, for every 0 ≤ i ≤ n−1, we have that [u
(1)
i]t ∈ (−t/2, t/2]

and therefore

• [u
(1)
i]t ∈= [− t

2 + 1
2 ,−

t
2 + 3

2 ,−
t
2 + 5

2 , · · · ,
t
2 −

1
2] =: T1 if t is odd;

• [u
(1)
i]t ∈

[
− t

2 + 1,− t
2 + 2, . . . , t2

]
=: T2 if t is even.

We have that #(T1) = #(T2) = t. Let v
(1)
i := [u

(1)
i]t for 0 ≤ i ≤ n − 1. It is clear that if

u
(1)
i = −t/2, i.e. if u

(1)
i = d−t/2e and t is even, then v

(1)
i = t/2. We have

D(c(x) = 1) =
[
u
(1)
0 + u

(1)
1 x+ u

(1)
2 x2 + · · ·+ u

(1)
n−1x

n−1
]
t

= [u
(1)
0]t + [u

(1)
1]tx+ · · ·+ [u

(1)
n−1]tx

n−1

= v
(1)
0 + v

(1)
1 x+ v

(1)
2 x2 + · · ·+ v

(1)
n−1x

n−1

where ∀i = 0, 1, . . . , n− 1, v
(1)
i =

{
t
2 if u

(1)
i = − t

2 (i.e. if u
(1)
i =

⌈
− t

2

⌉
and t is even)

u
(1)
i otherwise

In particular, if t is odd, then D(c = 1) = u
(1)
0 + u

(1)
1 x+ u

(1)
2 x2 + · · ·+ u

(1)
n−1x

n−1.
We have, ∀0 ≤ i ≤ n− 1,

if t is odd, − t

2
+

1

2
≤ v(1)i ≤ t

2
− 1

2
; if t is even, − t

2
+ 1 ≤ v(1)i ≤ t

2

8

In both cases, v
(1)
i can only have t different values. As we saw before, in case of t odd we

need to perform dlog2(q/t)e+ 1 oracle decryption queries; in case of t even, we need to perform
extra oracle decryption queries (at most n− 1) in order to understand which sign are given the
coefficients of the secret key. Therefore, the total number of queries to the decryption oracle is at
most dlog2(q/t)e+n. If we use the actual bound B given on the coefficients si by the distribution
χ, we have that the total number of queries to the decryption oracle is at most dlog2(B/t)e+n.

4.2 Detailed Attack in three Cases

Case 1: t is odd

Step 1: select c(x) = 1 Select “ciphertext” c(x) = 1 and submit it to the decryption

oracle. Since t is odd and v
(1)
i = u

(1)
i , ∀0 ≤ i ≤ n − 1, we obtain the polynomial D(c =

1) = u
(1)
0 +u

(1)
1 x+u

(1)
2 x2 + · · ·+u

(1)
n−1x

n−1, where
⌈
− t

2

⌉
≤ u(1)i ≤

⌊
t
2

⌋
. Every u

(1)
i can have only

t different values and can be written as u
(1)
i =

⌈
− t

2

⌉
+ ki,1, with ki,1 ∈ {0, 1, . . . , t− 1}. Now, it

is easy to see that

u
(1)
i =

⌈
− t

2

⌉
+ ki,1 ⇔ −

q

2
+
q

t
ki,1 < fi < −

q

2
+
q

t
(ki,1 + 1)

The polynomial obtained from the decryption oracle can therefore be written as

D(c(x) = 1) = u
(1)
0 + u

(1)
1 x+ u

(1)
2 x2 + · · ·+ u

(1)
n−1x

n−1 =

n−1∑
i=0

(⌈
− t

2

⌉
+ ki,1

)
xi

Each fi belongs to the interval (−q/2, q/2). But after this our first query we learn values
ki,1 ∈ [0, 1, . . . , t− 1], 0 ≤ i ≤ n− 1, such that

−q
2

+
q

t
ki,1 < fi < −

q

2
+
q

t
(ki,1 + 1) (F(0,1))

We have − q2 + q
t (ki+1 + 1)−

(
− q2 + q

t ki+1

)
= q

t . Therefore, we know each integer coefficient fi
with an error up to q

t . The idea now is to keep submitting ’ciphertext’ to the decryption oracle
and obtain values ki,j , with 0 ≤ i ≤ n− 1 and increasing integers j = 1, 2, 3, . . ., in such a way
that we keep reducing the interval in which fi lies until we know fi with an error smaller than
1, which determines each fi completely.

Step 2: select c(x) = 2 Select now “ciphertext” c(x) = 2 = 2 + 0x + 0x2 + · · · + 0xn−1.
Decryption oracle computes and return the polynomial

D(c = 2) =

[⌊
t

q
· [f · 2]q

⌉]
t

=

[⌊
t

q
·
(
[2f0]q + [2f1]qx+ [2f2]qx

2 + · · ·+ [2fn−1]qx
n−1)⌉]

t

=

[⌊
t

q
f
(2)
0

⌉
+

⌊
t

q
f
(2)
1

⌉
x+ · · ·+

⌊
t

q
f
(2)
n−1

⌉
xn−1

]
t

where we have put f
(2)
i := [2fi]q, for every 0 ≤ i ≤ n − 1; of course we have − q2 < f

(2)
i < q

2 .
Now,

• if −q/4 < fi < q/4, then − q2 < 2fi <
q
2 and therefore f

(2)
i = [2fi]q = 2fi

• if −q/2 < fi < −q/4, then −q < 2fi < − q2 and therefore f
(2)
i = [2fi]q = 2fi + q

• if q/4 < fi < q/2, then q
2 < 2fi < q and therefore f

(2)
i = [2fi]q = 2fi − q

So we have

f
(2)
i = [2fi]q =


2fi if − q

4 < fi <
q
4

2fi + q if − q
2 < fi < − q4 , and in this case 0 < f

(2)
i < q

2

2fi − q if q
4 < fi <

q
2 , and in this case − q

2 < f
(2)
i < 0

(2)

9

Let u
(2)
i :=

⌊
t
q · f

(2)
i

⌉
. Then D(c = 2) =

[
u
(2)
0 + u

(2)
1 x+ u

(2)
2 x2 + · · ·+ u

(2)
n−1x

n−1
]
t
. As be-

fore, u
(2)
i can have only t different possible values, and can be written as u

(2)
i =

⌈
− t

2

⌉
+

ki,2, with ki,2 ∈ {0, 1, . . . , t−1}, and also u
(2)
i =

⌈
− t

2

⌉
+ki,2 ⇔ − q2 + q

t ki,2 < fi < − q2 + q
t (ki,2+

1). As before, since −q/2 < f
(2)
i < q/2 and t is odd, we have

⌈
− t

2

⌉
≤ u(2)i ≤

⌊
t
2

⌋
, and therefore

we can simply write D(c = 2) = u
(2)
0 +u

(2)
1 x+u

(2)
2 x2 + · · ·+u

(2)
n−1x

n−1 =
∑n−1
i=0

(⌈
− t

2

⌉
+ ki,2

)
xi.

So now, for each 0 ≤ i ≤ n− 1, we know ki,1, ki,2 such that{
− q2 + q

t ki,1 < fi < − q2 + q
t (ki,1 + 1)

− q2 + q
t ki,2 < [2fi]q < − q2 + q

t (ki,2 + 1)

There are 3 cases to distinguish, where 3 = 22 − 1.

(1/3)[c=2]. If − q2 + q
t (ki,1 + 1) ≤ − q4 ∧ −

q
2 + q

t ki,1 ≥ −
q
2 , which says that 0 ≤ ki,1 ≤

⌊
t
4 − 1

⌋
, then we

are sure that fi ∈ (− q2 ,−
q
4). Therefore, by condition (2), we expect f

(2)
i = [2fi]q = 2fi + q.

Therefore, − 3q
4 + q

2tki,2 < fi < − 3q
4 + q

2t (ki,2 + 1)
(2/3)[c=2]. If − q2 + q

t (ki,1 + 1) ≤ q
4 ∧ −

q
2 + q

t ki,1 ≥ −
q
4 , which says that

⌈
t
4

⌉
≤ ki,1 ≤

⌊
3t
4 − 1

⌋
, then

we are sure that fi ∈ (− q4 ,
q
4). Therefore, by condition (2), we expect f

(2)
i = [2fi]q = 2fi.

Therefore, − q4 + q
2tki,2 < fi < − q4 + q

2t (ki,2 + 1)
(3/3)[c=2]. If − q2 + q

t (ki,1 + 1) ≤ q
2 ∧ −

q
2 + q

t ki,1 ≥
q
4 , which says that

⌈
3t
4

⌉
≤ ki,1 ≤ t − 1, then we

are sure that fi ∈ (q4 ,
q
2). Therefore, by condition (2), we expect f

(2)
i = [2fi]q = 2fi − q.

Therefore, q
4 + q

2tki,2 < fi <
q
4 + q

2t (ki,2 + 1)

Now, we remark that there are values of ki,1 for which is not clear to which of the previous cases
we are falling in. For instance, if ki,1 is such that − q4 ∈

(
− q2 + q

t ki,1,−
q
2 + q

t (ki,1 + 1)
)
, then we

are not sure whether we are in Case (1/3)[c=2] or in Case (2/3)[c=2]. This uncertainty happens
when @ki,1 ∈ [0, 1, . . . , t− 1] such that − q2 + q

t ki,1 = − q4 , i.e. such that ki,1 = t/4. So, if @ki,1 ∈
[0, 1, . . . , t− 1] such that ki,1 = t/4, i.e. if 4 - t, then − q4 ∈

(
− q2 + q

t

⌊
t
4

⌋
,− q2 + q

t

(⌊
t
4

⌋
+ 1
))

. So,

if ki,1 =
⌊
t
4

⌋
, with t

4 /∈ N, we have that fi ∈
(
− q2 + q

t

⌊
t
4

⌋
,− q2 + q

t

(⌊
t
4

⌋
+ 1
))

=: I. It is easy to
see that

−q
2

+
q

t

(⌊
t

4

⌋
+ 1

)
≤ 0,∀1 < t < q (3)

There are two cases:

1/2: fi ∈ I1 := I ∩ (−q/2,−q/4). Then condition (2) implies that f
(2)
i = [2fi]q ∈ (0, q/2)

2/2: fi ∈ I2 := I ∩ (−q/4, 0). Then f
(2)
i = [2fi]q ∈ (−q/2, 0)

So, to sum up we have that if ki,1 =
⌊
t
4

⌋
, with t

4 /∈ N, then

• if f
(2)
i ∈ (0, q/2) then fi ∈ (−q/2,−q/4) and apply Case (1/3)[c=2]

• if f
(2)
i ∈ (−q/2, 0) then fi ∈ (−q/4, 0) and apply Case (2/3)[c=2]

Similarly to what just discussed, if ki,1 is such that q
4 ∈

(
− q2 + q

t ki,1,−
q
2 + q

t (ki,1 + 1)
)
, then

we are not sure if we are in Case (2/3)[c=2] or in Case (3/3)[c=2] This uncertainty happens
when @ki,1 ∈ [0, 1, . . . , t − 1] such that − q2 + q

t ki,1 = q
4 , i.e. such that ki,1 = 3t/4. So, if

@ki,1 ∈ [0, 1, . . . , t− 1] such that ki,1 = 3t/4, then q
4 ∈

(
− q2 + q

t

⌊
3t
4

⌋
,− q2 + q

t

(⌊
3t
4

⌋
+ 1
))

. So, if

ki,1 =
⌊
3t
4

⌋
, with 3t

4 /∈ N, we have that fi ∈
(
− q2 + q

t

⌊
3t
4

⌋
,− q2 + q

t

(⌊
3t
4

⌋
+ 1
))

=: I. It is easy to
see that

−q
2

+
q

t

⌊
3t

4

⌋
≥ 0,∀t, q (4)

There are two cases:

10

1/2: fi ∈ I1 := I ∩ (0, q/4). Then f
(2)
i = [2fi]q ∈ (0, q/2)

2/2: fi ∈ I2 := I ∩ (q/4, q/2). Then condition (2) implies that f
(2)
i = [2fi]q ∈ (−q/2, 0)

So, to sum up we have that if ki,1 =
⌊
3t
4

⌋
, with 3t

4 /∈ N, then

• if f
(2)
i ∈ (0, q/2) then fi ∈ (−q/4, q/4) and apply Case (2/3)[c=2]

• if f
(2)
i ∈ (−q/2, 0) then fi ∈ (q/4, q/2) and apply Case (3/3)[c=2]

We can write now all the 3 cases in a more complete way:

(1/3)[c=2]. Suppose that

0 ≤ ki,1 ≤
⌊
t

4
− 1

⌋
∨
(
ki,1 =

⌊
t

4

⌋
,with

t

4
/∈ N ∧ f (2)i ∈ (0, q/2)

)
(K(1,1))

Then

fi ∈
(
−q

2
,−q

4

)
, −3q

4
+

q

2t
ki,2 < fi < −

3q

4
+

q

2t
(ki,2 + 1) (F((1,1))

(2/3)[c=2]. Suppose that⌈
t

4

⌉
≤ ki,1 ≤

⌊
3t

4
− 1

⌋
∨
(
ki,1 =

⌊
t

4

⌋
∧ f (2)i ∈ (−q/2, 0)

)
∨

∨
(
ki,1 =

⌊
3t

4

⌋
∧ f (2)i ∈ (0, q/2)

) (K(1,2))

Then
fi ∈

(
−q

4
,
q

4

)
, −q

4
+

q

2t
ki,2 < fi < −

q

4
+

q

2t
(ki,2 + 1) (F(1,2))

(3/3)[c=2]. Suppose that ⌈
3t

4

⌉
≤ ki,1 ≤ t− 1 ∨

(
ki,1 =

⌊
3t

4

⌋
∧ f (2)i ∈ (−q/2, 0)

)
(K(1,3))

Then
fi ∈

(q
4
,
q

2

)
,

q

4
+

q

2t
ki,2 < fi <

q

4
+

q

2t
(ki,2 + 1) (F(1,3))

In all cases, we end up by knowing fi with an error up to q
2t .

Step 3: select c(x) = 4 Select now “ciphertext” c(x) = 4 = 4 + 0x + 0x2 + · · · + 0xn−1.
Decryption oracle computes and return the polynomial

D(c = 4) =

[⌊
t

q
· [f · 4]q

⌉]
t

=

[⌊
t

q
·
(
[4f0]q + [4f1]qx+ [4f2]qx

2 + · · ·+ [4fn−1]qx
n−1)⌉]

t

=

[⌊
t

q
f
(3)
0

⌉
+

⌊
t

q
f
(3)
1

⌉
x+ · · ·+

⌊
t

q
f
(3)
n−1

⌉
xn−1

]
t

where we have put f
(3)
i := [4fi]q, for every 0 ≤ i ≤ n− 1; of course we have − q2 < f

(3)
i < q

2 . In
a similar way to what we have seen before, we have that

D(c = 4) = u
(3)
0 + u

(3)
1 x+ u

(3)
2 x2 + · · ·+ u

(3)
n−1x

n−1 =

n−1∑
i=0

(⌈
− t

2

⌉
+ ki,3

)

11

and therefore we learn integers ki,3, for 0 ≤ i ≤ n − 1. Now, for each 0 ≤ i ≤ n − 1, we know
ki,1, ki,2, ki,3 such that 

− q2 + q
t ki,1 < fi < − q2 + q

t (ki,1 + 1)

− q2 + q
t ki,2 < [2fi]q < − q2 + q

t (ki,2 + 1)

− q2 + q
t ki,3 < [4fi]q < − q2 + q

t (ki,3 + 1)

There are 7 = 23 − 1 cases to distinguish. As before, we obtain

(1/7)[c=4]. Suppose that

[Condition (K(1,1)) holds] ∧
(⌈

t

2

⌉
≤ ki,2 ≤

⌊
3t

4
− 1

⌋
∨
(
ki,2 =

⌊
3t

4

⌋
∧ f (3)i ∈

(
0,
q

2

)))
(K(2,1))

Then

fi ∈ (−q
2
,−3q

8
), −5q

8
+

q

4t
ki,3 < fi < −

5q

8
+

q

4t
(ki,3 + 1) (F(2,1))

(2/7)[c=4]. Suppose that

[Condition (K(1,1)) holds] ∧
(⌈

3t

4

⌉
≤ ki,2 ≤ t− 1 ∨

(
ki,2 =

⌊
3t

4

⌋
∧ f (3)i ∈

(
−q

2
, 0
)))

(K(2,2))
Then

fi ∈ (−3q

8
,−q

4
), −3q

8
+

q

4t
ki,3 < fi < −

3q

8
+

q

4t
(ki,3 + 1) (F(2,2))

(3/7)[c=4]. Suppose that

[Condition (K(1,2)) holds] ∧
(

0 ≤ ki,2 ≤
⌊
t

4
− 1

⌋
∨
(
ki,2 =

⌊
t

4

⌋
∧ f (3)i ∈

(
0,
q

2

)))
(K(2,3))

Then

fi ∈ (−q
4
,−q

8
), −3q

8
+

q

4t
ki,3 < fi < −

3q

8
+

q

4t
(ki,3 + 1) (F(2,3))

(4/7)[c=4]. Suppose that

[Condition (K(1,2)) holds] ∧
[⌈ t

4

⌉
≤ ki,2 ≤

⌊
3t

4
− 1

⌋
∨
(
ki,2 =

⌊
t

4

⌋
∧ f (3)i ∈

(
−q

2
, 0
))
∨

∨
(
ki,2 =

⌊
3t

4

⌋
∧ f (3)i ∈

(
0,
q

2

))]
(K(2,4))

Then
fi ∈ (−q

8
,
q

8
), −q

8
+

q

4t
ki,3 < fi < −

q

8
+

q

4t
(ki,3 + 1) (F(2,4))

(5/7)[c=4]. Suppose that

[Condition (K(1,2)) holds] ∧
(⌈

3t

4

⌉
≤ ki,2 ≤ t− 1 ∨

(
ki,2 =

⌊
3t

4

⌋
∧ f (3)i ∈

(
−q

2
, 0
)))

(K(2,5))
Then

fi ∈ (
q

8
,
q

4
),

q

8
+

q

4t
ki,3 < fi <

q

8
+

q

4t
(ki,3 + 1) (F(2,5))

(6/7)[c=4]. Suppose that

[Condition (K(1,3)) holds] ∧
(

0 ≤ ki,2 ≤
⌊
t

4
− 1

⌋
∨
(
ki,2 =

⌊
t

4

⌋
∧ f (3)i ∈

(
0,
q

2

)))
(K(2,6))

Then

fi ∈ (
q

4
,

3q

8
),

q

8
+

q

4t
ki,3 < fi <

q

8
+

q

4t
(ki,3 + 1) (F(2,6))

12

(7/7)[c=4]. Suppose that

[Condition (K(1,3)) holds] ∧
(⌈

t

4

⌉
≤ ki,2 ≤

⌊
t

2
− 1

⌋
∨
(
ki,2 =

⌊
t

4

⌋
∧ f (3)i ∈

(
−q

2
, 0
)))

(K(2,7))
Then

fi ∈ (
3q

8
,
q

2
),

3q

8
+

q

4t
ki,3 < fi <

3q

8
+

q

4t
(ki,3 + 1) (F(2,7))

In all cases, we end up by knowing fi with an error up to q
4t .

Generalization and complexity At each step, we keep submitting “ciphertexts” c(x) := 2h,
for increasing values h = 0, 1, 2, . . ., i.e. at step h + 1 we submit ciphertext c(x) = 2h. Suppose
we are at step h + 1. Then we submit to the decryption oracle the ’ciphertext’ c(x) = 2h, and
the decryption oracle will return us a polynomial

D(c = 2h) = u
(h+1)
0 + u

(h+1)
1 x+ · · ·+ u

(h+1)
n−1 xn−1 =

n−1∑
i=0

u
(h+1)
i xi =

n−1∑
i=0

(⌈
− t

2

⌉
+ ki,h+1

)
∈ Rt

from which we learn values ki,h+1 for 1 ≤ i ≤ n − 1. So, at this point, we know ki,j , for
0 ≤ i ≤ n− 1 and 1 ≤ j ≤ h+ 1. These values allow us to distinguish between mh := 2h+1 − 1
cases: for each 0 ≤ i ≤ n− 1, we know that integer fi belongs to one of the cases:

(a/2h+1 − 1)[c=2h]. Suppose that

[Condition (C(h, a, 1)) holds] ∧ [Condition (C(h, a, 2)) holds] (K(h,a))

Then

fi ∈ (xa,h, ya,h), ∆h,a +
q

2ht
ki,h+1 < fi < ∆h,a +

q

2ht
(ki,h+1 + 1) (F(h,a))

where a ∈ {1, 2, . . . , 2h+1 − 1}. Since

∆h,a +
q

2ht
(ki,h+1 + 1)−

(
∆h,a +

q

2ht
ki,h+1

)
=

q

2ht
,

this allows us to recover, for each 0 ≤ i ≤ n − 1, the integer fi with an error up to q
2ht

.

Therefore, we keep submitting ’ciphertexts’ c(x) = 2h for increasing values h = 0, 1, 2, . . . until
h is such that q

2ht
< 1, i.e. h ≥ dlog2(q/t)e. So, we have to repeat our attack, submitting

ciphertexts c(x) = 1 = 20, 21, 22, 23, . . . , 2H , where H := dlog2(q/t)e. Se we repeat our attack
H + 1 times. Now, the secret key is f(x) = f0 + f1x+ · · ·+ fn−1x

n−1, where fi ∈ (−q/2, q/2],
∀0 ≤ i ≤ n − 1. So fi can have q different values. The decryption oracle reveals a polynomial
m(x) = m0 + m1x + · · · + mn−1x

n−1, where mi ∈ (−t/2, t/2], ∀0 ≤ i ≤ n − 1. So mi can have
t different values. Each fi can be described with at most blog2(q − 1)c+ 1 bits. So f(x) can be
described with n · (blog2(q − 1)c+ 1). Oracle decryption reveals n · (blog2(t− 1)c+ 1) bits. So

the minimum number of oracle queries to determine f(x) is given by n·(blog2(q−1)c+1)
n·(blog2(t−1)c+1) . In order

to finish our attack for t odd, we need to give complete description of ∆h,a, Condition C(h, a, 1)
and Condition C(h, a, 2), for each 0 ≤ h ≤ dlog2(q/t)e = H and for each 1 ≤ a ≤ 2h+1 − 1. Fix
0 ≤ h ≤ dlog2(q/t)e. For a given 1 ≤ a ≤ 2h+1 − 1 put

δh,a :=


2h−1 if a = 2h⌊
a
2

⌋
if 1 ≤ a < 2h⌈

a
2

⌉
if 2h < a ≤ 2h+1 − 1

, ∆h,a := −
(

1

2
+

1

2h+1
− δh,a

2h

)
· q

Also, put

η(h, a) :=

{⌈
a
2

⌉
if 1 ≤ a ≤ 2h⌊

a
2

⌋
if 2h < a ≤ 2h+1 − 1

Then
Condition (C(h, a, 1)) = Condition (K(h− 1, η(h, a)))

13

Remark that, if h = 0 or h = 1, then Condition (C(h, a, 1)) = ∅ i.e., we don’t put any condition
at all, vacuous condition.

For Condition C(h, a, 2), remark that if h = 0 then Condition (C(0, a, 2)) = ∅ i.e., we don’t
put any condition at all, vacuous condition. One can see that, at step h+ 1, condition C(h, a, 2)
is only one among the following 5:

1. V3,h := U2,1 = U1,1 ∧ (r is even) = U3,1 ∧ (r is odd):

0 ≤ ki,h ≤
⌊
t

4
− 1

⌋
∨
(
ki,h =

⌊
t

4

⌋
∧ f (h+1)

i ∈
(

0,
q

2

))
(V3,h)

2. V5,h := U2,2: ⌈
t

4

⌉
≤ ki,h ≤

⌊
3t

4
− 1

⌋
∨
(
ki,h =

⌊
t

4

⌋
∧ f (h+1)

i ∈
(
−q

2
, 0
))
∨

∨
(
ki,h =

⌊
3t

4

⌋
∧ f (h+1)

i ∈
(

0,
q

2

)) (V5,h)

3. V2,h := U2,3 = U1,2 ∧ (r is odd) = U3,2 ∧ (r is even):⌈
3t

4

⌉
≤ ki,h ≤ t− 1 ∨

(
ki,h =

⌊
3t

4

⌋
∧ f (h+1)

i ∈
(
−q

2
, 0
))

(V2,h)

4. V1,h := U1,1 ∧ (r is odd) = U3,1 ∧ (r is even):⌈
t

2

⌉
≤ ki,h ≤

⌊
3t

4
− 1

⌋
∨
(
ki,h =

⌊
3t

4

⌋
∧ f (h+1)

i ∈
(

0,
q

2

))
(V1,h)

5. V0,h := U1,2 ∧ (r is even) = U3,2 ∧ (r is odd):⌈
t

4

⌉
≤ ki,h ≤

⌊
t

2
− 1

⌋
∨
(
ki,h =

⌊
t

4

⌋
∧ f (h+1)

i ∈
(
−q

2
, 0
))

(V0,h)

So, suppose we are in case (a/2h+1 − 1)[c=2h]. Then we see that we have
Therefore, we have

C(h, a, 2) =



V1,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 1 mod 4 or 2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 0 mod 4

V2,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 2 mod 4 or 2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 1 mod 4

or a = 2h + 1

V3,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 3 mod 4 or 2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 2 mod 4

or a = 2h − 1

V0,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 0 mod 4 or 2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 3 mod 4

V5,h if a = 2h

Case 2: t is even but not 2

Step 1: select c(x) = 1 Select “ciphertext” c(x) = 1 and submit it to the decryption oracle.

We obtain the polynomial D(c(x) = 1) = v
(1)
0 + v

(1)
1 x+ v

(1)
2 x2 + · · ·+ v

(1)
n−1x

n−1. Suppose there

exists v
(1)
i = t/2. This means that either u

(1)
i = t

2 or u
(1)
i = − t

2 . We want to find out which one
among the two above cases holds.

1. If we are in case u
(1)
i = t

2 , then we have
⌊
t
qfi

⌉
= t

2 ⇔
q
2 −

q
2t < fi <

q
2

2. If we are in case u
(1)
i = − t

2 , then we have
⌊
t
qfi

⌉
= − t

2 ⇔ −
q
2 < fi < − q2 + q

2t

14

To find out which one is the case, we have to wait for the next step.

Now, let’s focus on all the other v
(1)
i 6= t

2 . We have in this case, v
(1)
i = u

(1)
i . Now, similarly

as before, we have − t
2 + 1 ≤ u(1)i ≤ t

2 , and every u
(1)
i can have only t different values; it can be

written as u
(1)
i = − t

2 + 1 + ki,1, with ki,1 ∈ {0, 1, . . . , t− 1}. Now, it is easy to see that

u
(1)
i = − t

2
+ 1 + ki,1 ⇔ −

q

2
+
q

t
(ki,1 +

1

2
) < fi < −

q

2
+
q

t
(ki,1 +

3

2
)

The polynomial obtained from the decryption oracle can therefore be written as D(c(x) = 1) =∑n−1
i=0

(
− t

2 + 1 + ki,1
)
xi. Each fi belongs to the interval (−q/2, q/2). But after this our first

query we learn values ki,1 ∈ [0, 1, . . . , t − 1], 0 ≤ i ≤ n − 1, such that − q2 + q
t (ki,1 + 1

2) < fi <
− q2 + q

t (ki,1 + 3
2) We have that − q2 + q

t (ki+1 + 3/2)−
(
− q2 + q

t (ki+1 + 1/2)
)

= q
t . Therefore, we

know each integer coefficient fi with an error up to q
t .

The idea now is to keep submitting ’ciphertext’ to the decryption oracle and obtain values
ki,j , with 0 ≤ i ≤ n − 1 and increasing integers j = 1, 2, 3, . . ., in such a way that we keep
reducing the interval in which fi lies until we know fi with an error smaller than 1, which
determines each fi completely.

Step 2: select c(x) = 2 Select now “ciphertext” c(x) = 2 = 2 + 0x+ · · ·+ 0xn−1. Decryption
oracle computes and return the polynomial

D(c(x) = 2) =

[⌊
t

q
· [f · 2]q

⌉]
t

=

[⌊
t

q
·
(
[2f0]q + [2f1]qx+ · · ·+ [2fn−1]qx

n−1)⌉]
t

Now, let’s focus on
[⌊

t
q [2fi]q

⌉]
t
xi for each i such that, in the previous step, v

(1)
i = t

2 .

1. We have

q

2
− q

2t
< fi <

q

2
⇔ q − q

t
< 2fi < q ⇔ −q

t
< [2fi]q < 0

⇔ −1 <
t

q
[2fi]q < 0⇔ −1 ≤

[⌊
t

q
[2fi]q

⌉]
t

≤ 0

⇔
[⌊
t

q
[2fi]q

⌉]
t

=

{
0 or − 1 if t > 2

0 or 1 if t = 2

2. We have analogously − q2 < fi < − q2 + q
2t ⇔

[⌊
t
q [2fi]q

⌉]
t

= 0 or 1.

From now on we assume t > 2; we will consider later the case in which t = 2. Let v
(2)
i =[⌊

t
q [2fi]q

⌉]
t
. We have that

1. if v
(2)
i = −1, then u

(1)
i = t

2 and q
2 −

q
2t < fi <

q
2

2. if v
(2)
i = 1, then u

(1)
i = − t

2 and − q2 < fi < − q2 + q
2t

3. if v
(2)
i = 0, then we can’t conclude right now the exact interval in which fi belongs; this will

be considered in the next step.

Remark 2. Suppose we are in the above case 3, i.e. v(2) =
⌊
t
q [2fi]q

⌉
= 0. Then

1. We have
q

2
− q

2t
< fi <

q

2
∧

⌊
t

q
[2fi]q

⌉
= 0⇔ q

2
− q

4t
< fi <

q

2

2. Similarly, we have

−q
2
< fi < −

q

2
+

q

2t
∧

⌊
t

q
[2fi]q

⌉
= 0⇔ −q

2
< fi < −

q

2
+

q

4t

15

We will use this remark in the next step to investigate further the interval in which fi lies.
Now, let’s focus on all of the other coefficients. Using the same arguments as in section 4.2, the
decryption oracle computes and return the polynomial

D(c(x) = 2) =

[⌊
t

q
· [f · 2]q

⌉]
t

=

[⌊
t

q
f
(2)
0

⌉
+

⌊
t

q
f
(2)
1

⌉
x+ · · ·+

⌊
t

q
f
(2)
n−1

⌉
xn−1

]
t

=
[
u
(2)
0 + u

(2)
1 x+ u

(2)
2 x2 + · · ·+ u

(2)
n−1x

n−1
]
t

:= v
(2)
0 + v

(2)
1 x+ · · ·+ v

(2)
n−1x

n−1

As before, suppose there exists v
(2)
i = t/2. This means that either u

(2)
i = t

2 , or u
(2)
i = − t

2 . We

can easily understand which case we are by considering the known value v
(1)
i 6= t

2 . All the other

v
(2)
i correspond to values u

(2)
i 6= −t

2 . These u
(2)
i can then have only t different possible values,

and can be written as u
(2)
i = − t

2 + 1 + ki,2, with ki,2 ∈ {0, 1, . . . , t− 1}, and also

u
(2)
i = − t

2
+ 1 + ki,2 ⇔ −

q

2
+
q

t
(ki,2 +

1

2
) < fi < −

q

2
+
q

t
(ki,2 +

3

2
)

So now, for each 0 ≤ i ≤ n− 1 such that v
(1)
i 6= t

2 ∨ (v
(1)
i = t

2 ∧ v
(2)
i = 0), we know ki,1, ki,2 such

that {
− q2 + q

t (ki,1 + 1
2) < fi < − q2 + q

t (ki,1 + 3
2)

− q2 + q
t (ki,2 + 1

2) < fi < − q2 + q
t (ki,2 + 3

2)

There are 3 cases to distinguish. These cases can be computed in an analogous way to what seen
for the case t odd. We omit the details.

Generalization We continue in this way, following the blueprint for t odd and taking care

of all the coefficients for which v
(1)
i = t

2 and all subsequents v
(j)
i = 0 (when we finally find a

j ≥ 2 such that v
(j)
i = 1 or −1, then we can deduce the original value of u

(1)
i = t

2 or − t
2). If at

the last step m we still get v
(m)
i = 0, then all the values u

(1)
i remain undetermined, which also

say that all the corresponding coefficients fi can have only two possible values. At this point,
the strategy is to submit to the decryption oracle ’ciphertexts’ in order to determine whether
fi · fj < 0 or fi · fj > 0 holds among all the non-zero coefficients fi, fj , in a way similar to what
we have already discussed for the attack on the [LATV12] SHW scheme. We omit the details;
we will give a description of how to do this in the case t = 2; the general case t > 2 is then easy
to obtain. We study now the case t = 2.

Case 3: t = 2

Step 1: select c(x) = 1 Choose and submit to the decryption oracle the polynomial c(x) = 1.
It will compute and return the polynomial

D(c(x) = 1) =

[⌊
2

q
· [f · 1]q

⌉]
2

=

[⌊
2

q
f0

⌉
+

⌊
2

q
f1

⌉
x+ · · ·+

⌊
2

q
fn−1

⌉
xn−1

]
2

For every 0 ≤ i ≤ n− 1, u
(1)
i :=

⌊
2
q fi

⌉
is such that −1 ≤ u

(1)
i ≤ 1, and so v

(1)
i := [u

(1)
i]2 = 0 or

1. We have two cases to distinguish:

1) v
(1)
i = 0. We have v

(1)
i = 0⇔ u

(1)
i = 0⇔

⌊
2
q fi

⌉
= 0⇔ − 1

2 <
2
q fi <

1
2 ⇔ −

q
4 < fi <

q
4

2) v
(1)
i = 1. We have

v
(1)
i = 1⇔ u

(1)
i = −1 or u

(1)
i = +1⇔

⌊
2

q
fi

⌉
= −1 or

⌊
2

q
fi

⌉
= +1

⇔ −3

2
<

2

q
fi < −

1

2
or

1

2
<

2

q
fi <

3

2
⇔ −q

2
< fi < −

q

4
or

q

4
< fi <

q

2

16

Step 2: select c(x) = 2 Choose and submit to the decryption oracle the polynomial c(x) = 2.

It will compute and return the polynomialD(c(x) = 2) =
∑n−1
i=0

[⌊
2
q [2fi]q

⌉]
2
xi =:

∑n−1
i=0

[
u
(2)
i

]
2
xi =:∑n−1

i=0 v
(2)
i xi. We have two cases to distinguish:

1) v
(2)
i = 0. We have

v
(2)
i = 0⇔ u

(2)
i = 0⇔

⌊
2

q
[2fi]q

⌉
= 0⇔ −1

2
<

2

q
[2fi]q <

1

2
⇔ −q

4
< [2fi]q <

q

4

⇔ −q
4
< 2fi <

q

4
or − 5q

4
< 2fi < −

3q

4
or

3q

4
< 2fi <

5q

4

⇔ −q
8
< fi <

q

8
or − q

2
< fi < −

3q

8
or

3q

8
< fi <

q

2

We have three cases to distinguish, according to which known interval fi lies at the end of
step 1:

1.1) If − q4 < fi <
q
4 , then − q8 < fi <

q
8

1.2) If − q2 < fi < − q4 , then − q2 < fi < − 3q
8

1.3)] If q
4 < fi <

q
2 , then 3q

8 < fi <
q
2

2) v
(2)
i = 1. We have

v
(2)
i = 1⇔ u

(2)
i = −1 or u

(2)
i = +1⇔

⌊
2

q
[2fi]q

⌉
= −1 or

⌊
2

q
[2fi]q

⌉
= +1

⇔ −3

2
<

2

q
[2fi]q < −

1

2
or

1

2
<

2

q
[2fi]q <

3

2

⇔ −3q

4
< [2fi]q < −

q

4
or

q

4
< [2fi]q <

3q

4

⇔ −3q

4
< 2fi < −

q

4
or

q

4
< 2fi <

3q

4

⇔ −3q

8
< fi < −

q

8
or

q

8
< fi <

3q

8

Now, again we have three cases to distinguish, according to which known interval fi lies at the
end of step 1:

2.1) If − q4 < fi <
q
4 , then − q4 < fi < − q8 or q

8 < fi <
q
4

2.2) If − q2 < fi < − q4 , then − 3q
8 < fi < − q4

2.3)] If q
4 < fi <

q
2 , then q

4 < fi <
3q
8

Generalization and the last step We continue in this way, and in the end we will know
each coefficient fi up to the sign. Therefore, we will know a polynomial f ′(x) = f ′0 + f ′1x +
· · · + f ′n−1x

n−1, with f ′i = |fi| for every i. We proceed similarly to what we have seen for the
attack on the [LATV12] scheme, i.e. we query the decryption oracle in order to find out the
relations fi · fj < 0 or fi · fj > 0 among the coefficients fi of the secret key f(x). Suppose
that the two consecutive coefficients fi, fi−1 are both non-zero. We know their absolute values
f ′i , f

′
i−1. Choose and submit to the decryption oracle the polynomial c(x) = α|fi−1| + α|fi|x,

with α ∈ (−q/2, q/2] such that [2α|fi−1 · fi|]q ∈
[
q
4 ,

q
2

]
(it is always possible to find such an α).

Now, the decryption oracle will compute and return the polynomial

D(c(x)) =

[⌊
2

q
[α|fi−1|f0 − α|fi|fn−1]q

⌉]
2

+

n−1∑
j=1

[⌊
2

q
[α|fi−1|fj + α|fi|fj−1]q

⌉]
2

xj

Let’s focus on the i-th coefficient
[⌊

2
q [α|fi−1|fi + α|fi|fi−1]q

⌉]
2
. We have two cases:

1) If fi, fi−1 have different signs, then α|fi−1|fi+α|fi|fi−1 = 0, and therefore the i-th coefficient

is zero
[⌊

2
q [α|fi−1|fi + α|fi|fi−1]q

⌉]
2

= 0

17

2) If fi, fi−1 have the same positive sign, then [α|fi−1|fi + α|fi|fi−1]q = [2α|fifi−1|]q ∈
[
q
4 ,

q
2

]
.

In case fi, fi−1 are both negative, we have that [α|fi−1|fi + α|fi|fi−1]q = [−2α|fifi−1|]q ∈[
− q2 ,−

q
4

]
). In both cases, it easy to see that

[⌊
2
q [α|fi−1|fi + α|fi|fi−1]q

⌉]
2

= 1

So we can distinguish whether two consecutive non-zero coefficients fi, fi−1 have the same sign
or not. Exactly as we saw for the attack on the [LATV12] scheme, this leads us to two possible
candidates for the secret key; to determine which one is the correct one, it is enough to submit
an extra appropriate query to the decryption oracle.

Remark 3. As we saw for the attack on the [LATV12] scheme, we have to be careful in case
one of the coefficient fi is zero. In this case in fact, no information can be given about the sign
of fi−1 if we compare it to fi. To solve this problem, we have to choose and submit to the
decryption oracle a polynomial in the form c(x) = a+ bxj , for appropriates a, b, j. We omit the
details, which are straightforward from what we have just discussed and from the attack on the
[LATV12] scheme.

5 Conclusion

In this paper, we have described efficient key recovery attacks against the SHE schemes from
[LATV12,BLLN13]. At this moment, it is still not clear whether we can adapt our attack to the
scenario (3) of the LTV12 scheme, as noted in Remark 1 in the beginning of Section 3. This
is an interesting future work. Up to today, the only known IND-CCA1 SHE scheme is that of
Loftus et al. [LMSV12]. It is a wide open problem to design more efficient IND-CCA1 secure
SHE schemes, possibly based on standard assumptions such as LWE.

Acknowledgements

Massimo Chenal is supported by an AFR PhD grant from the National Research Fund, Lux-
embourg. Qiang Tang is partially supported by a CORE (junior track) grant from the National
Research Fund, Luxembourg. We thank the ePrint editors for pointing out references for three
papers on key recovery attack against NTRUEncrypt.

References

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS ’12, pages 309–325. ACM, 2012.

[BLLN13] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security for
a ring-based fully homomorphic encryption scheme. In Cryptography and Coding, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2013.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology -
CRYPTO 2012, volume 7417 of LNCS, pages 868–886. 2012.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In Advances in Cryptology - CRYPTO 2011,
pages 505–524, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. efficient fully homomorphic encryption from
(standard) lwe. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS ’11, pages 97–106, 2011.

[CT14] Massimo Chenal and Qiang Tang. On key recovery attacks against existing somewhat
homomorphic encryption schemes. In Progress in Cryptology - LATINCRYPT 2014, vol-
ume 8895 of Lecture Notes in Computer Science, pages 239–258. Springer International
Publishing, 2014.

[DGM15] Ricardo Dahab, Steven Galbraith, and Eduardo Morais. Adaptive key recovery attacks
on ntru-based somewhat homomorphic encryption schemes. Cryptology ePrint Archive,
Report 2015/127, 2015. http://eprint.iacr.org/.

18

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages 169–178.
ACM, 2009.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Advances in Cryptology - EUROCRYPT 2011, pages 129–148, 2011.

[GN07] Nicolas Gama and PhongQ. Nguyen. New chosen-ciphertext attacks on ntru. In Public Key
Cryptography PKC 2007. 2007.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and
JuanA. Garay, editors, Advances in Cryptology - CRYPTO 2013, volume 8042 of LNCS,
pages 75–92. 2013.

[HGNP+03] Nick Howgrave-Graham, PhongQ. Nguyen, David Pointcheval, John Proos, JosephH. Sil-
verman, Ari Singer, and William Whyte. The impact of decryption failures on the security
of ntru encryption. In Advances in Cryptology - CRYPTO 2003, pages 226–246. 2003.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key
cryptosystem. In JoeP. Buhler, editor, Algorithmic Number Theory, volume 1423 of Lecture
Notes in Computer Science, pages 267–288. Springer Berlin Heidelberg, 1998.

[JJ00] liane Jaulmes and Antoine Joux. A chosen-ciphertext attack against ntru. In Advances in
Cryptology CRYPTO 2000, pages 20–35. Springer Berlin Heidelberg, 2000.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption. In Proceedings of the
Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pages 1219–
1234, New York, NY, USA, 2012. ACM.

[LMSV12] Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. On cca-secure
somewhat homomorphic encryption. In Proceedings of the 18th International Conference
on Selected Areas in Cryptography, SAC’11, pages 55–72, 2012.

[SS10] Damien Stehle and Ron Steinfeld. Faster fully homomorphic encryption. In Masayuki Abe,
editor, Advances in Cryptology - ASIACRYPT 2010, volume 6477 of LNCS, pages 377–394.
2010.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomor-
phic encryption over the integers. In Advances in Cryptology - EUROCRYPT 2010, pages
24–43, 2010.

[ZPS12] Zhenfei Zhang, Thomas Plantard, and Willy Susilo. On the cca-1 security of somewhat ho-
momorphic encryption over the integers. In Proceedings of the 8th International Conference
on Information Security Practice and Experience, ISPEC’12, pages 353–368, 2012.

19

