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Abstract. Compact e-cash schemes allow users to withdraw a wallet containing K coins and
to spend each coin unlinkably. We present the first compact e-cash scheme with arbitrary
wallet size k ≤ K while the spending protocol is of constant time and space complexity.
Known compact e-cash schemes are constructed from either verifiable random functions or
bounded accumulators. We use both building blocks to construct the new scheme which
is secure under the q-SDH, the y-DDHI and the SXDH assumptions in the random oracle
model.
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1 Introduction
Electronic cash (e-cash) was introduced by Chaum [19] in 1982. Basically, an (offline) e-cash
scheme consists of three parties (the bank B, user U and merchant M) and three protocols
(WithdrawalProtocol, SpendProtocol and DepositProtocol). A user withdraws coins from the
bank and applies the coins to pay a merchant (without involving the bank during spending).
Then the merchant deposits the coins to the bank. In a compact e-cash scheme a user can
withdraw a wallet W containing K coins and can spend each coin unlinkably.

From the bank’s point of view, the most important security property is that no one is able
to forge a valid coin or can double-spend a coin without being identified (balance). Further, the
bank should be able to identify a double-spender without a third party. From the users point of
view, the most important security properties are that honest users are anonymous (anonymity)
and cannot be accused to have performed a double-spending (exculpability).

1.1 Related Work

CHL’s Compact E-Cash. Camenisch, Hohenberger and Lysyanskaya proposed the first com-
pact e-cash scheme [13]. There are two versions of the scheme, but we only describe the first
one (which we title as CHL scheme) since it is simpler and much more efficient than the other.

When a user with secret key skU withdraws a wallet, she obtains a signature σ from the bank
on a committed message (skU , s, t) for two secret random numbers s and t. Broadly speaking, the
number s is used to generate a serial number S, which is required to detect a double-spending.
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The number t is used to generate a blinding value B. By using this blinding value the user
computes a double-spending equation T , which is required to identify a double-spender.

To spend K coins, the user has to generate K serial numbers. For 1 ≤ J ≤ K, each
serial number SJ is computed by the number s and a counter J . To spend the resulting coins
unlinkably, a pseudorandom function F(·)(·) is used to generate this serial numbers and the
corresponding blinding values. The resulting values are SJ = Fs(J) and BJ = Ft(J). Each
double-spending equation is computed as TJ = pkU ·BR

J , where pkU is the user’s public key and
R is some hash value. For the counter J running from 1 to K, the wallet can be spent K times
unlinkably.

To spend a coin for some 1 ≤ J ≤ K, the user has to (1) compute SJ and TJ and has to
prove in zero-knowledge (2) that SJ and TJ are correctly formed from (skU , s, t, J), (3) that the
user is in possession of a signature σ on the message (skU , s, t) and (4) that 1 ≤ J ≤ K.

In the CHL scheme, a wallet containing K coins can be stored using O (λ+ log(K)) bits
and the complexity of the withdrawal and spend operations is O (λ+ log(K)), where λ is the
security parameter. The size of the bank’s public key is just O (λ).

ASM’s Compact E-Cash. Au, Susilo and Mu [4] modified the CHL scheme to construct a
generic compact e-cash scheme with a more efficient spending protocol. Further, they introduced
two additional protocols, namely, batch spending and compact spending. Batch spending allows
to spend several coins in one single execution, but is only slightly better than repeating the
protocol several times. In compact spending, the user can spend the whole wallet at once. Au,
Susilo and Mu constructed two instantiations, one scheme using BBS+ signature [3] and one
scheme using CL+ signature [14, 16]. We only describe how the usual spend protocol is formed
from the CHL scheme using BBS+ signature (scheme 1 in [4]) and we title the resulting e-cash
scheme as ASM scheme.

The ASM scheme is a modification of the CHL scheme. The essential difference is the manner
of proving that the counter J is within 1 to K. In the CHL scheme, the user directly proves
that J lies in the interval [1,K] with a zero-knowledge proof of knowledge proposed by Boudot
[12]. This proof is of complexity O(log(K)) and works in groups of unknown order. In the
ASM scheme, the bank signs each value from 1 to K and publishes the corresponding signatures
σ1, . . . , σK . Instead of proving that J lies in the interval [1,K], a user proves knowledge of a
signature σJ on counter J . Since the bank only publishes signatures on the values 1, . . . ,K,
proving knowledge of such a signature on J indirectly proves that 1 ≤ J ≤ K. Due to this
technique, the complexity of the spend operation is O(λ) instead of O (λ+ log(K)). The tradeoff
is that the size of the bank’s public key becomes O (λ ·K).

ASM’s Compact E-Cash with Arbitrary Wallet Size. In the same paper, the authors
extended their compact e-cash scheme to support arbitrary wallet size. They modified the
system in such a way that the wallet size k ≤ K can be chosen by the user arbitrarily during
the withdrawal protocol, while coins from wallets of different size are indistinguishable during
spending. The idea is that during withdrawal protocol, the value k is also signed by the bank.
To spend a coin, the user additionally has to prove in zero-knowledge that the counter J lies
in the interval [1, k] (with the same technique as in the CHL scheme) and that k is signed by
the bank, where k is hidden from the merchant. However, inefficient exact range proof [12]
has to be employed (see [4]). Due to this fact, the complexity of the spend protocol becomes
O (λ+ log(k)).
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1.2 Our Contribution

We first modify the ASM scheme to construct a compact e-cash scheme 1 and after that we
extend this scheme to construct compact e-cash scheme 2 that provides arbitrary wallet size. In
scheme 1, we change the manner of proving that the counter J is within 1 to K. We make use of
an accumulator [9, 23]. Instead of publishing signatures on the values 1 to K, the bank publishes
the accumulator V of the values 1, . . . ,K. Further, the bank publishes the corresponding witness
WJ for each value 1 ≤ J ≤ K. To prove that the counter J is in the interval [1,K], the user
proves that the counter J is accumulated in V . Thus, instead of proving knowledge of a signature
σJ , the user proves knowledge of a witness WJ . The resulting scheme is as efficient as the ASM
scheme (using the short BB signature [10], as proposed by Au [2]). So, the complexity of the
spend operation is O(λ) and the size of the bank’s public key is O (λ ·K).

To extend this compact e-cash scheme to a scheme that provides arbitrary wallet size, the
bank generates K accumulators. For 1 ≤ k ≤ K, each element Vk is the accumulator of the
values 1, . . . , k. To withdraw a wallet containing k coins, the user obtains a signature σ from
the bank on the committed message (Vk, skU , s, t). To generate those signatures, we make use
of the extended special signature (ESS) proposed by Au, Wu, Susilo and Mu [6]. Thus, during
spending, we don’t need inefficient exact range proof like in the ASM scheme to support arbitrary
wallet size.

Further, we can made a tradeoff between the size of the bank’s public key and the compu-
tational cost during the spending phase. If the bank only publishes the generators to compute
the accumulators and the witnesses, the bank’s public key still is O (λ ·K) as in scheme 1. To
compute an accumulator or a witness, the user has to perform one multi-base exponentiation
regarding k or k − 1 public generators, respectively. Nonetheless, a multi-base exponentiation
takes a similar time as a single-base exponentiation (see [25, 7]). On the other hand, if the bank
publishes all accumulators and all witnesses, the bank’s public key becomes O

(
λ ·K2).

However, it is also possible not to support every wallet size 1, . . . ,K, but n different wallet
sizes k1, . . . , kn where kn = K. This will reduce the size of the bank’s public key in the latter
case. For n = O(1), the size of the bank’s public key still is O (λ ·K). In section 4.3, we also
achieve a bank public key size of O (λ ·K) where n = O (log(K)).

1.3 Organization

We discuss technical preliminaries such as mathematical assumptions and cryptographic building
blocks in the next section. In section 3 we define the security model. The constructions and
security analyses are shown in Section 4. Finally we conclude in Section 5.

2 Preliminaries

2.1 Bilinear Maps

A bilinear map, also called pairing, maps two group elements to one group element. Let ê be a
bilinear map ê : G1 ×G2 → GT such that the following properties hold.

• G1 and G2 are cyclic multiplicative groups of prime order p.

• Each element of G1,G2 and GT has a unique binary representation.
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• g0 is a generator of G1 and h0 is a generator of G2.

• (Bilinear:) ∀ g ∈ G1, h ∈ G2 and a, b ∈ Zp, ê
(
ga, hb

)
= ê (g, h)ab.

• (Non-degenerate:) ê (g0, h0) 6= 1.

• The group action in G1,G2,GT and the bilinear map ê are all efficiently computable.

We call (G1,G2) a bilinear group pair. Let G := (p,G1,G2,GT , ê, g0, h0) be the global parameters
of a pairing.

Galbraith, Paterson and Smart [22] separated different possible pairing instantiations into
three basic types:

Type 1: G1 = G2.

Type 2: G1 6= G2 but there is an efficiently computable homomorphism ψ : G2 → G1.

Type 3: G1 6= G2 and there are no efficiently computable homomorphisms between G1 and G2.

2.2 Mathematical Assumptions

The security of our construction depends on the following assumptions.

Definition 1 (Decisional Diffie-Hellman). The Decisional Diffie-Hellman (DDH) problem
in G is the following: On input a quadruple

(
g, ga, gb, gc

)
∈ G4, output 1 if gc = gab and 0

otherwise. We say that the DDH assumption holds in G if no PPT algorithm has non-negligible
advantage over random guessing in solving the DDH problem in G.

Definition 2 (Symmetric External Diffie-Hellman [1, 6]). The Symmetric External Diffie-
Hellman (SXDH) assumption in (G1,G2) states that the DDH assumption holds in G1 and G2.
It implies that there are no efficiently computable isomorphisms between G1 and G2 (see [6]).

Definition 3 (q-Strong Diffie-Hellman [10, 4, 26]). The q-Strong Diffie-Hellman (q-SDH)
problem in (G1,G2) is the following: On input a (q + 3)-tuple

(
g0, g

x
0 , g

x2
0 , . . . , gx

q

0 , h0, h
x
0
)
∈

Gq+1
1 × G2

2, output a pair
(
g

1/(x+c)
0 , c

)
∈ G1 × Z∗p. We say that the q-SDH assumption holds

in (G1,G2) if no PPT algorithm has non-negligible advantage in solving the q-SDH problem in
(G1,G2).

Definition 4 (y-Decisional Diffie-Hellman Inversion [20, 13, 4]). The y-Decisional Diffie-
Hellman Inversion (y-DDHI) problem in a prime order group G is the following: On input a
(y + 2)-tuple

(
g, gx, gx

2
, . . . , gx

y
, gc
)
∈ Gy+2, output 1 if gc = g1/x and 0 otherwise. We say

that the y-DDHI assumption holds in G if no PPT algorithm has non-negligible advantage over
random guessing in solving the y-DDHI problem in G.

2.3 Building Blocks

Zero-Knowledge Proofs of Knowledge. A zero-knowledge proof of knowledge (PoK) is an
interactive protocol during which a prover proves to a verifier that he knows a secret that verifies
a given relation. We need those proofs for proving statements related to knowledge of discrete
logarithms constructed over cyclic groups of prime order p. We follow the notation by [17], for
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example, PoK
{

(a, b, c) : A = ga1g
b
2 ∧ B = ga3g

c
4

}
denotes a PoK such that the prover knows the

secret (a, b, c) ∈ Z3
p such that A = ga1g

b
2 and B = ga3g

c
4. Using the Fiat-Shamir heuristic [21]

these proofs can be made non-interactive and are secure in the random oracle model [8]. This
is referred to as a signature of knowledge (SoK). Back to the above example, the corresponding
SoK is denoted as SoK

{
(a, b, c) : A = ga1g

b
2 ∧ B = ga3g

c
4

}
(m), where m is some message.

Pseudorandom Functions. An important building block of the CHL scheme and the ASM
scheme is the pseudorandom function proposed by Dodis and Yampolskiy [20]. The function
F is defined by a quadruple (G, p, g, s), where G is a cyclic group of prime order p, g is a
generator of G and s is a seed in Zp. For any input x ∈ Zp, the function F(G,p,g,s)(·) is defined
as F(G,p,g,s)(x) = g1/(s+x+1). Under the y-DDHI assumption, the output of this function is
indistinguishable from random elements in G.

Signature Schemes with Efficient Protocols. Camenisch and Lysyanskaya [15] presented
a signature scheme with two efficient protocols for (1) issuing a signature on a committed message
and for (2) proving knowledge of a message-signature pair.

Boneh, Boyen and Shacham [11] proposed a group signature scheme which can be extended to
a signature scheme with efficient protocols (see [16]). Au, Susilu and Mu [3] gave a formal security
proof of the extended signature, implemented with a type 2 pairing, which they named BBS+
signature. A tight security reduction for all pairing types can be found in [26]. BBS+ allows to
sign a committed message m1, . . . ,mL ∈ Zp and is secure (unforgeable against adaptively chosen
message attack) in the standard model under the q-SDH assumption. We briefly describe the
construction of BBS+, which will be used in scheme 1.

Let (G1,G2) be a bilinear group pair with parameters G and additional generators g1, . . . ,
gL+1 ∈ G1. The secret signing key is skBBS+ = y ∈ Z∗p and the public key is pkBBS+ = Y =
hy0 ∈ G2. To sign a message m = (m1, . . . ,mL) ∈ ZLp , the signer randomly chooses e, s ∈R Z∗p
and computes A =

(
g0g

s
1g
m1
2 · · · gmL

L+1

)1/(y+e)
. The signature on the message is σ = (A, e, s).

Everyone can verify the equation ê (A, Y he0) ?= ê
(
g0g

s
1g
m1
2 · · · gmL

L+1, h0
)
.

The protocol for issuing a signature on a committed message is the following (see [3]): The
user randomly chooses s′ ∈R Z∗p, computes the perfectly hiding Pedersen Commitment [24]
C ′ = gs

′
1 g

m1
2 · · · gmL

L+1 and sends C ′ to the signer. The user also need to prove that C ′ is correctly
formed by the following proof of knowledge: PoK

{
(s′,m1, . . . ,mL) : C ′ = gs

′
1 g

m1
2 · · · gmL

L+1

}
. Af-

ter successful verification of the proof, the signer randomly chooses e, s′′ ∈R Z∗p, computes A =(
g0g

s′′
1 C ′

)1/(y+e)
and returns (A, e, s′′). The user computes s = s′ + s′′ to obtain σ = (A, e, s).

The protocol for proving knowledge of a message-signature pair is the following (see [3]):
The user randomly chooses r1, r2 ∈R Z∗p, computes A1 = gr1

1 g
r2
2 , A2 = Agr1

2 and generates the
following signature of knowledge:

SoK
{

(r1, r2, δ1, δ2, e, s,m1, . . . ,mL) : A1 = gr1
1 g

r2
2 ∧ 1 = Ae1g

−δ1
1 g−δ2

2 ∧ ê (A2, Y ) ê (g0, h0)−1

= ê (g1, h0)s ê (g2, h0)m1+δ1 ê (g3, h0)m2 · · · ê (gL+1, h0)mL ê (g2, Y )r1 ê (A2, h0)−e
}

(R)

where δ1 = r1e, δ2 = r2e and R is some message.
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ESS is an extension of BBS+, proposed in [6] and extended to ESS+ in [5]. ESS allows
signing a committed message m1, . . . ,mL ∈ Zp together with a group element M ∈ G1 and is
secure (unforgeable against adaptively chosen message attack) in the generic group model under
the SXDH assumption. So, ESS is not secure when it is implemented with type 1 or type 2
pairing. We briefly describe the construction of ESS, which will be used in scheme 2.

Again, let (G1,G2) be a bilinear group pair with parameters G and additional generators
g1, . . . , gL+1 ∈ G1 such that there are no efficient isomorphisms between G1 and G2. The secret
signing key is skESS = (X, y) ∈ G1×Z∗p and the public key is pkESS = (Z, Y ) = (ê (X,h0) , hy0) ∈
GT × G2. To sign a message m = (M,m1, . . . ,mL) ∈ G1 × ZLp , the signer randomly chooses

e, s ∈R Z∗p and computes A = XM e, B =
(
g0g

s
1g
m1
2 · · · gmL

L+1

)1/(y+e)
and C = he0. The signature

on the message is σ = (A,B,C, s). Everyone can verify the equations ê (A, h0) ?= Zê (M,C) and
ê (B,CY ) ?= ê

(
g0g

s
1g
m1
2 · · · gmL

L+1, h0
)
.

The protocol for issuing a signature on a committed message is the following (see [6]): The
user randomly chooses s′ ∈R Z∗p, computes the perfectly hiding Pedersen Commitment [24] C ′ =
gs

′
1 g

m1
2 · · · gmL

L+1 and sends M,C ′ to the signer. The user also need to prove that C ′ is correctly
formed by the following proof of knowledge: PoK

{
(s′,m1, . . . ,mL) : C ′ = gs

′
1 g

m1
2 · · · gmL

L+1

}
. Af-

ter successful verification of the proof, the signer randomly chooses e, s′′ ∈R Z∗p, computes

A = XM e, B =
(
g0g

s′′
1 C ′

)1/(y+e)
, C = he0 and returns (A,B,C, s′′). The user computes

s = s′ + s′′ to obtain σ = (A,B,C, s).
The protocol for proving knowledge of a message-signature pair is the following (see [6]):

Let h1 ∈R G2 be an additional generator of G2. The user randomly chooses r1, r2, r3, r4, r5 ∈R
Z∗p, computes A1 = Agr1

1 , A2 = Bgr2
2 , A3 = Chr3

1 , A4 = Mgr4
3 , A5 = gr3

1 g
r5
2 and generates the

following signature of knowledge:

SoK
{

(r1, r2, r3, r4, r5, δ2,3, δ2,5, δ3,4, δ4,5, s,m1, . . . ,mL) :

A5 = gr3
1 g

r5
2 ∧ 1 = Ar2

5 g
−δ2,3
1 g

−δ2,5
2 ∧ 1 = Ar4

5 g
−δ3,4
1 g

−δ4,5
2 ∧

Zê (A4, A3) ê (A1, h0)−1 = ê (A4, h1)r3 ê (g3, A3)r4 ê (g1, h0)−r1 ê (g3, h1)−δ3,4 ∧
ê (A2, A3Y ) ê (g0, h0)−1 = ê (g1, h0)s ê (g2, h0)m1 · · · ê (gL+1, h0)mL

ê (A2, h1)r3 ê (g2, A3Y )r2 ê (g2, h1)−δ2,3
}

(R)

where δi,j = rirj and R is some message.

(Bounded) Accumulators. An accumulator scheme is a method for accumulating several
values into one element, called the accumulator. The notion, bounded accumulator, was intro-
duced in [6] as an accumulator with a limit q of values that can be accumulated. Au et al. [6]
observed that the construction due to Nguyen [23], whose security relies on the q-SDH assump-
tion, is a bounded accumulator. However, this observation is unproved and our schemes won’t
rely on any boundedness property. We briefly describe Nguyen’s construction.

Let (G1,G2) be a bilinear group pair with parameters G. The generation algorithm randomly
selects α ∈R Z∗p and computes the elements hα := hα0 and gα

i

0 for 1 ≤ i ≤ q. The public
parameters of the accumulator scheme are

(
G, gα0 , gα

2
0 , . . . , gα

q

0 , hα
)
. The accumulator of a set of
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values x1, . . . , xq ∈ Zp \{−α} is computed as V = g

∏q

j=1(α+xj)
0 , what does not require knowledge

of the secret α since the elements g0, g
α
0 , . . . , g

αq

0 are publicly known. A witnessWi, to prove that

the value xi is accumulated in V , is computed as Wi = g

∏q

j=1,j 6=i
(α+xj)

0 . Thus, the witness-value
pair (Wi, xi) satisfies the equation ê (V, h0) = ê (Wi, hαh

xi
0 ).

Under the q-SDH assumption, the described accumulator fulfills the security property colli-
sion-resistance. That is, it is infeasible on input

(
G, gα0 , gα

2
0 , . . . , gα

q

0 , hα
)
to output (x1, . . . , xq′ ,

W,x) where q′ ≤ q, such that x /∈ {x1, . . . , xq′} and ê
(
g

∏q′

j=1(α+xj)
0 , h0

)
= ê (W,hαhx0). Broadly

speaking, it is infeasible to compute a valid witness for a value which has not been accumulated.
The following proofs of knowledge have been proposed in [6]: Let g1, g2 ∈R G1 be additional

generators of G1. To prove that a hidden value xi is accumulated in an accumulator V , the user
randomly chooses r1, r2 ∈R Z∗p, computes A1 = gr1

1 g
r2
2 , A2 = Wig

r1
2 and generates the following

proof of knowledge:

PoK
{

(r1, r2, δ1, δ2, xi) : A1 = gr1
1 g

r2
2 ∧ 1 = Axi

1 g
−δ1
1 g−δ2

2 ∧

ê (V, h0) ê (A2, hα)−1 = (A2, h0)xi ê (g2, h0)−δ1 ê (g2, hα)−r1
}

where δ1 = r1xi and δ2 = r2xi. This proof will be used in scheme 1.
To prove that a hidden value xi is accumulated in a hidden accumulator V , the user randomly

chooses r1, r2, r3 ∈R Z∗p, computes A1 = gr1
1 g

r2
2 , A2 = Wig

r1
2 , A3 = V gr3

1 and generates the
following proof of knowledge:

PoK
{

(r1, r2, r3, δ1, δ2, xi) : A1 = gr1
1 g

r2
2 ∧ 1 = Axi

1 g
−δ1
1 g−δ2

2 ∧

ê (A3, h0) ê (A2, hα)−1 = (A2, h0)xi ê (g2, h0)−δ1 ê (g2, hα)−r1 ê (g1, h0)r3
}

where δ1 = r1xi and δ2 = r2xi. This proof will be used in scheme 2.

3 Syntax
Let K be the maximum size of a wallet and let λ be the security parameter. A compact e-cash
scheme can be defined by the following polynomial time algorithms and protocols between the
bank B, the user U and the merchantM:

• BankSetup(1λ,K) is a probabilistic algorithm that outputs a key pair (pkB, skB) for B.
Further, an empty database D is set up. In the following, 1λ and K are implicitly in the
input of all algorithms and protocols.

• UserSetup(pkB) is a probabilistic algorithm that outputs a key pair (pkU , skU ) for U . A
merchantM executes the same algorithm to get (pkM, skM).

• WithdrawalProtocol (U (pkB, skU , k) ,B (pkB, skB, k)) is a protocol where U withdraws a wal-
let W containing k ≤ K coins. B outputs its protocol view view.

• SpendProtocol (U (pkB, pkM, skU ,W) ,M (pkB, skM)) is a protocol where U spends one coin
coin from the wallet W. U outputs an updated wallet W ′ andM outputs the coin coin.
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• DepositProtocol (M (pkB, skM, coin) ,B (skB, pkM)) is a protocol whereM deposits a coin
coin. If it concerns a double-spending, B executes the RevokeDoubleSpender algorithm.
Otherwise, B outputs 1 and stores the coin coin in the database D.

• RevokeDoubleSpender(coin, coin′) is a deterministic algorithm that outputs the public key
pkU of a fraudulent user or merchant.

• VerifyGuilt(pkB, pkU , coin, coin′) is a deterministic algorithm that outputs 1 if the two coins
are valid and the output of RevokeDoubleSpender(coin, coin′) is pkU , and 0 otherwise.

For correctness, we require that whenever an honest user obtains a wallet W from B, an honest
merchant shall accept the coin coin from W. Whenever an honest merchant obtains a coin coin,
the deposit of coin will be accepted by the honest bank.

3.1 Security Definitions

We first informally describe the security properties of a compact e-cash system.

• Balance guarantees that no collusion of users and merchants can deposit more coins than
they have withdrawn from the bank. We require that a collusion of users and merchants,
having run the withdrawal protocol for n times, cannot deposit more than nk coins. If
they deposit nk + 1 coins, at least one of the colluder must be identified.

• Anonymity guarantees that no collusion of users, merchants and the bank can link a spent
coin to its owner or to other coins from the same wallet.

• Exculpability guarantees that no collusion of users, merchants and the bank can falsely
accuse an honest user from having double spent a coin.

For a formal definition of the security, we use a game-based approach. Since our scheme is
a modified version of the ASM scheme, we apply the same security definitions. However, the
ASM scheme also fulfills the security definition given by Au [2]. The adversary’s capabilities are
modeled by arbitrary and adaptive queries to the following oracles:

• Withdrawal Oracle. The adversary A presents a public key pkA and engages in the
WithdrawalProtocol as user to obtain a wallet. The oracle stores pkA in a set UA.

• Spend Oracle. The adversary A presents a public key pkU /∈ UA and engages in the
SpendProtocol as merchant to request the user pkU to spend a coin.

• Hash Oracle. The adversary A can ask for the output of the hash functions for any input.

Definition 5 (Game Balance)

• (Initialization Phase.) The challenger C takes a sufficiently large security parameter λ and
runs BankSetup to generate the key pair (pkB, skB). C sends pkB to A.

• (Probing Phase.) The adversary A can perform a polynomially bounded number of queries
to the oracles in an adaptive manner.
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• (End Game Phase.) Let qW be the number of queries to the Withdrawal Oracle where ki
is the wallet size of the i-th query and let qS be the number of queries to the Spend Oracle.
The adversary A wins the game if it can deposit at least

∑qW
i=1 ki + qS + 1 coins such that

RevokeDoubleSpender does not output any pkA ∈ UA.

The advantage of A is defined as the probability that A wins.

Definition 6 (Game Anonymity)

• (Initialization Phase.) The challenger C takes a sufficiently large security parameter λ and
sends λ to A. The adversary generates a key pair (pkB, skB) and returns pkB. Since A is
in possession of the secret key skB, only Hash Oracle query is allowed.

• (Challenge Phase.) The challenger C chooses two public keys pk0 and pk1 and presents
them to A. The challenger C runs the WithdrawalProtocol with A acting as the bank to
obtain several wallets W0,1, . . . ,W0,n and W1,1, . . . ,W1,m on behalf of the two public keys,
where n and m are specified by A. Then C runs the SpendProtocol with A acting as a
merchant and asking for spending from C, where A is allowed to specify which wallet C
uses, with the restriction that it cannot ask C to over-spend any of the wallets. Finally,
A chooses one wallet W0 ∈ {W0,1, . . . ,W0,n} and one wallet W1 ∈ {W1,1, . . . ,W1,m} from
the set of wallets that contain at least one unspent coin. C then randomly chooses a bit
b ∈R {0, 1} and uses wallet Wb for the challenge spending.

• (End Game Phase.) The adversary A outputs a bit b′ and wins the game if b′ = b.

The advantage of A is defined as the probability that A wins minus 1/2.

Definition 7 (Game Exculpability)

• (Initialization Phase.) The challenger C takes a sufficiently large security parameter λ and
sends λ to A. The adversary generates a key pair (pkB, skB) and returns pkB. Since A is
in possession of the secret key skB, only Hash Oracle query is allowed.

• (Challenge Phase.) The challenger C runs the WithdrawalProtocol for q times with A acting
as the bank to obtain several wallets W1, . . . ,Wq. Then C runs the SpendProtocol with A
acting as a merchant and asking for spending from C, where A is allowed to specify which
wallet C uses, with the restriction that it cannot ask C to over-spend any of the wallets. A
can also ask to corrupt any of the user in the above WithdrawalProtocol. A corrupted user
needs to surrender its private key as well as the wallet to A.

• (End Game Phase.) The adversary A runs two deposit protocols with C and wins the
game if RevokeDoubleSpender on this two deposit protocols points to a user in any of the
WithdrawalProtocol and that user has not been corrupted.

The advantage of A is defined as the probability that A wins.

Definition 8. A compact e-cash scheme is secure if no PPT adversary A can win in Game
Balance, Game Anonymity and Game Exculpability with non-negligible advantage.

9



4 Our Constructions

4.1 Compact E-Cash Scheme 1

Since our scheme is a modification of the ASM scheme, there are only a few differences. The
crucial difference is the manner of proving that the counter J is within 1 to K. So, the bank’s
public key doesn’t contain signatures σ1, . . . , σJ on the values 1, . . . ,K, but an accumulator
V and witnesses W1, . . . ,WK . UserSetup and WithdrawalProtocol are the same as in the ASM
scheme. During SpendProtocol, a user proves knowledge of WJ rather then proving knowledge
of σJ . To explain our modification, we only describe the normal SpendProtocol. Batch spend-
ing and compact spending can be done analogously. DepositProtocol,RevokeDoubleSpender and
VerifyGuilt are the same as in the ASM scheme.

Since the ASM scheme applies the BBS+ [3] signature scheme, which security has been
proven using an efficiently computable isomorphism ψ : G2 → G1, it uses a type 2 pairing.
However, BBS+ signature implemented with a type 3 pairing is also secure (see [18, 26]). So,
the parameters of the ASM scheme can be easily set to type 3 and we don’t need the isomorphism
ψ.

BankSetup. Let λ be the security parameter. Let G1,G2,GT be cyclic groups of order p
such that p is a λ-bit prime and such that ê : G1 × G2 → GT is a bilinear map. Let Gp be an
additional cyclic group of order p where the y-DDHI assumption holds and let H : {0, 1}∗ → Z∗p
be a secure cryptographic hash function. Let g0, g1, g2, g3, g4, g5 be random generators of G1, h0
be a random generator of G2 and u0, u1 be random generators of Gp such that related discrete
logarithm of the generators are unknown. This can be done by setting these generators to be
output by a hash function of some publicly known seed (see [4]).

The bank generates a BBS+ key pair
(
pkBBS+, skBBS+

)
= (Y, y). Next, the bank randomly

chooses α ∈R Z∗p, computes hα = hα0 , V = g

∏K

j=1(α+j)
0 and WJ = g

∏K

j=1j 6=J
(α+j)

0 for 1 ≤ J ≤ K.
V is the accumulator of the values 1, . . . ,K and WJ is the witness for the value J . The bank
publishes pkB = (g0, g1, g2, g3, g4, g5, V,W1, . . . ,WK , h0, hα, Y, u0, u1) and saves the secret key
skB = y. α can be safely deleted (see [6]). Let be Ei := ê (gi, h0) for i = 0, . . . , 5, EV :=
ê (V, h0) , EY := ê (g2, Y ) and Eα := ê (g2, hα). For efficiency consideration, these elements can
also be published as part of the public key.

Further, B sets up a database D.

UserSetup. To join the system, the user randomly selects a secret x ∈R Z∗p and computes the
public key pkU = ux0 . U sends pkU together with a proof of correctness to B. The bank stores
pkU as the identity of U in its database and the user stores the key pair (pkU , skU ) = (ux0 , x).

WithdrawalProtocol. The user randomly chooses s′, t, y, r ∈R Z∗p, computes the commit-
ment C ′ = gs

′
1 g

t
2g
x
3g

y
4g
r
5 and sends C ′ to B. Then, the user generates the following proof of

knowledge:
Π0 = PoK

{(
s′, t, x, y, r

)
: C ′ = gs

′
1 g

t
2g
x
3g

y
4g
r
5 ∧ pkU = ux0

}
.

The bank verifies the proof, randomly chooses e, s′′ ∈R Z∗p, computes A =
(
g0g

s′′
1 C ′

)1/(y+e)
and

sends (A, e, s′′) to U .
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The user computes s = s′ + s′′ and checks if ê (A, Y he0) = ê
(
g0g

s
1g
t
2g
x
3g

y
4g
r
5, h0

)
. Then, U

stores the wallet W = (A, e, s, t, x, y, r, J) and sets counter J = 1.

SpendProtocol. Let the wallet be W = (A, e, s, t, x, y, r, J) such that J ≤ K. First, the
user and the merchant with public key pkM agree on transaction information info. Then, both
parties compute the hash value R = H (pkM||info).

The user computes S = u
1/(s+J+1)
1 and T = pkUu

1/(t+J+1)
1 . The user also computes A1 =

gr1
1 g

r2
2 , A2 = Agr1

2 , A3 = gJ1 g
t
2g
r3
3 , A4 = gr4

1 g
r5
2 , A5 = WJg

r4
2 for r1, r2, r3, r4, r5 ∈R Z∗p. Then, U

generates the following signature of knowledge:

Π1 = SoK
{

(r1, r2, r3, r4, r5, δ1, δ2, δ3, δ4, δ5, δJ , δt, e, s, t, x, y, r, J) :

A1 = gr1
1 g

r2
2 ∧ 1 = Ae1g

−δ1
1 g−δ2

2 ∧
ê (A2, Y )E−1

0 = Es1E
t+δ1
2 Ex3E

y
4E

r
5E

r1
Y ê (A2, h0)−e ∧

u1S
−1 = SJ+s ∧ A3 = gJ1 g

t
2g
r3
3 ∧ 1 = Ax3g

−δJ
1 g−δt

2 g−δ3
3 ∧

uR1 T
−1 = T J+tu−δJ−δt−x

0 ∧ A4 = gr4
1 g

r5
2 ∧ 1 = AJ4 g

−δ4
1 g−δ5

2 ∧

EV ê (A2, hα)−1 = ê (A5, h0)J E−δ4
2 E−r4

α

}
(R)

where δ1 = r1e, δ2 = r2e, δ3 = r3x, δ4 = r4J, δ5 = r5J, δJ = Jx, δt = tx.
The user sends S, T,A1, A2, A3, A4, A5 along with Π1 to the merchant. The merchant

verifies Π1. If the proof is valid, the merchant accepts the payment and stores the coin
coin = (S, T,R,A1, A2, A3, A4, A5,Π1, info).

Finally, the user increases the counter J of his wallet by 1.

DepositProtocol. The merchant sends a coin coin = (S, T,R,A1, A2, A3, A4, A5,Π1, info) to
the bank. The bank checks R ?= H (pkM||info) to verify that pkM is the real merchant. After
verification of Π1, the bank checks if the serial number S is already in its database D. If so,
the bank runs the identification algorithm RevokeDoubleSpender to identify the double-spender.
Else, B stores coin in D.

RevokeDoubleSpender. Let coin = (S, T,R,A1, A2, A3, A4, A5,Π1, info) and coin′ = (S, T ′,
R′, A′1, A

′
2, A

′
3, A

′
4, A

′
5,Π′1, info′) be two coins where a double spending occurred and let pkM be

the merchant who deposited the coin coin. The bank checks if R ?= R′. If so, the merchant
pkM tried to deposit the same coin twice since the hash function H is collision-resistant. Else,

B computes the public key of the double-spender as follows: pkU =
(
TR

′
/T ′R

)1/(R′−R)
.

VerifyGuilt. The bank publishes the two double-spent coins and the identity pkU of the
double-spender. Everyone can verify the two coins and execute RevokeDoubleSpender to check
if pkU is the double-spender.

4.1.1 Security Analysis

We have the following theorem for scheme 1.
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Theorem 1. Compact e-cash scheme 1 is secure under the q-SDH assumption in the random
oracle model, if the ASM scheme is secure.

Proof. The security of scheme 1 directly follows from the security of the ASM scheme and the
collision-resistance of the accumulator scheme.

Balance: Let A be a PPT adversary that makes qW withdrawal queries and qS spend queries.
We show that the success probability of A is negligible under the q-SDH assumption in the
random oracle model, if the ASM scheme [4] is secure.

We construct a simulator S which acts as challenger C.
S simulates the oracle queries as in [4]: For each withdrawal query, A sends pkU , C ′ and proves

the knowledge of representation of pkU and C ′ in Π0. S acts as if an honest bank would, except
during the proof of knowledge where S runs a rewind simulation and extracts (s′, t, x, y, r). After
each execution, S computesW = (S1, . . . , SK , s, t, x, y, r) where SJ = u

1/(s+J+1)
0 for 1 ≤ J ≤ K.

Let SW = (Si,J |1 ≤ i ≤ qW , 1 ≤ J ≤ K) be the set of all serial numbers after qW executions of
the withdrawal protocol.

For each spend query, A presents a public key pkU , a transaction information info, a mer-
chant public key pkM and request a legal number of spend protocol. For each query, S ran-
domly chooses s, t ∈R Z∗p, J ∈R [1,K] and sends S = u

1/(s+J+1)
1 , T = pkUu

R/(t+J+1)
1 such

that R = H (pkM||info). Further, S randomly chooses A1, A2, A3, A4, A5 ∈R G1. Thus,
A1, . . . , A5 are perfectly simulated. S then generates a simulated signature of knowledge Π1. Let
SS = (Sj |1 ≤ j ≤ qS) be the set of all serial numbers after qS executions of the spend protocol.

Finally, A runs
∑qW
i=1 ki + qS + 1 = KqW + qS + 1 deposit protocols with S.

As in [4], A wins the game either if (1) all KqW +qS+1 serial numbers are unique or (2) some
of the serial numbers are duplicated but the RevokeDoubleSpender algorithm does not output
any public key pkA ∈ UA of a corrupted user. We analyze these two cases separately.

Case (1): Since only qS serial numbers are given to A during the spend queries, A must have
produce another KqW + 1 serial numbers. Thus, A can only win in case (1) by convincing S to
accept a serial number S /∈ SW ∪ SS . As in [4], A must have generated a false proof as part of
the signature of knowledge such that one of the following is fake:

1. Possession of BBS+ signature σ = (A, e, s) on message m = (t, x, y, r).

2. S = u
1/(s+J+1)
1 .

3. Possession of witness WJ for counter J and accumulator V (instead: possession of BBS+
signature σJ on counter J).

The first two cases are the same as in ASM scheme and happens with negligible probability
under the q-SDH assumption and the discrete logarithm assumption.

Now we have to be intent on the last case.
Assume, S extracts a valid witness-value pair (WJ , J) such that J /∈ {1, . . . ,K}. Then, S

can output (1, . . . ,K,WJ , J) such that J /∈ {1, . . . ,K} and ê
(
g

∏K

j=1(α+j)
0 , h0

)
= ê

(
WJ , hαh

J
0

)
.

Thus, S breaks the collision-resistance of the Nguyen accumulator scheme. This is negligible
under the q-SDH assumption (see [23]). Thus, A’s success probability is negligible in case (1).

As in [4], case (2) is negligible. Thus, A’s total success probability is negligible.
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Anonymity: Anonymity directly follows from the ASM scheme which ensures anonymity
under the y-DDHI assumption (see [4]). The only difference of a coin is the computation of
A5. Instead of computing A5 = BJg

r4
2 where BJ is part of the public signature on counter J ,

the user computes A5 = WJg
r4
2 where WJ is the witness for counter J . Thus, the counter J

is still perfectly hidden. Consequently, the information leaked about a user or wallet during
SpendProtocol are the same as in the ASM scheme which fulfills anonymity.

Exculpability: Since the algorithms RevokeDoubleSpender and VerifyGuilt are the same as in
the ASM scheme, exculpability directly follows from [4].

4.2 Compact E-Cash Scheme 2

Now we extend scheme 1 to scheme 2 that provides arbitrary wallet size k ≤ K. In distinction
from scheme 1, we needK accumulators where for 1 ≤ k ≤ K each element Vk is the accumulator
of the values 1, . . . , k. Let Wk,J , 1 ≤ k ≤ K, 1 ≤ J ≤ k be the witness for counter J and
accumulator Vk. To spend a coin, the user has to prove knowledge of Wk,J without revealing
k or J . Unlike scheme 1, it is not sufficient that the bank just publishes Vk and Wk,J for
1 ≤ k ≤ K and 1 ≤ J ≤ k. This is because a user always can prove knowledge of WK,J for all
1 ≤ J ≤ K, independent of the wallet size. So, to withdraw a wallet containing k ≤ K coins,
the user obtains a signature σ from the bank on the accumulator Vk and (t, x, y, r). We use
ESS to generate these signatures. During spending, a user has to prove knowledge of WK,J and
knowledge of a signature on the corresponding accumulator Vk.

Since we make use of ESS which is only secure under the SXDH assumption, we have to
implement our scheme with a type 3 pairing.

BankSetup. Let λ be the security parameter. Let G1,G2,GT be cyclic groups of order p
such that p is a λ-bit prime and such that ê : G1 × G2 → GT is a bilinear map and there are
no efficient isomorphisms between G1 and G2. Let Gp be an additional cyclic group of order p
where the y-DDHI assumption holds and let H : {0, 1}∗ → Z∗p be a secure cryptographic hash
function. Let g0, g1, g2, g3, g4, g5 be random generators of G1, h0, h1 be random generators of G2
and u0, u1 be random generators of Gp such that related discrete logarithm of the generators
are unknown. This can be done by setting these generators to be output by a hash function of
some publicly known seed.

The bank generates an ESS key pair (pkESS, skESS) = ((Z, Y ) , (X, y)). Next, the bank ran-
domly chooses α ∈R Z∗p and computes hα = hα0 . The bank publishes pkB = (g0, g1, g2, g3, g4, g5,
h0, h1, hα, Y, u0, u1, Z) and saves the secret key skB = (X, y).

To compute the accumulators Vk = g

∏k

j=1(α+j)
0 and witnesses Wk,J = g

∏k

j=1,j 6=J
(α+j)

0 without
the secret α, the bank either additionally publishes K elements gαi

0 , 1 ≤ i ≤ K or directly
generates all K accumulators and all K (K + 1) /2 witnesses. Note, that since Wk,k = Vk−1 for
1 ≤ k ≤ K and V0 := g0 only K (K − 1) /2 witnesses have to be published. In the following, we
assume that the bank publishes the accumulators and witnesses.

Again, α can be safely deleted. Let be Ei := ê (gi, h0) for i = 0, . . . , 5, Eα := ê (g2, hα) and
Ei,1 := ê (gi, h1) for i = 2, 3. For efficiency consideration, these elements can also be published
as part of the public key.

Further, B sets up a database D.
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UserSetup. This is the same as in scheme 1.

WithdrawalProtocol. The user randomly chooses s′, t, y, r ∈R Z∗p, computes the commit-
ment C ′ = gs

′
1 g

t
2g
x
3g

y
4g
r
5 and sends C ′ to B. Then, the user generates the following proof of

knowledge:
Π0 = PoK

{(
s′, t, x, y, r

)
: C ′ = gs

′
1 g

t
2g
x
3g

y
4g
r
5 ∧ pkU = ux0

}
.

The bank verifies the proof, randomly chooses e, s′′ ∈R Z∗p, computes A = XV e
k , B =(

g0g
s′′
1 C ′

)1/(y+e)
, C = he0 and sends (A,B,C, s′′) to U .

The user computes s = s′ + s′′ and checks if ê (A, h0) = Zê (Vk, C) and ê (B,CY ) =
ê
(
g0g

s
1g
t
2g
x
3g

y
4g
r
5, h0

)
. Then, U stores the wallet W = (A,B,C, s, t, x, y, r, J, k) and sets counter

J = 1.

SpendProtocol. Let the wallet be W = (A,B,C, s, t, x, y, r, J, k) such that J ≤ k and let Vk
and Wk,J be the corresponding accumulator and witness (either computed by the user or pub-
lished by the bank). First, the user and the merchant with public key pkM agree on transaction
information info. Then, both parties compute the hash value R = H (pkM||info).

As in scheme 1, the user computes S = u
1/(s+J+1)
1 and T = pkUu

1/(t+J+1)
1 . Now, the user

has to hide the elements A,B,C, Vk,Wk,J . So, U also computes A1 = Agr1
1 , A2 = Bgr2

2 , A3 =
Chr3

1 , A4 = Vkg
r4
3 , A5 = Wk,Jg

r5
2 , A6 = gJ1 g

t
2g
r6
3 , A7 = gr3

1 g
r7
2 , A8 = gr5

1 g
r8
2 for r1, r2, r3, r4, r5, r6,

r7, r8 ∈R Z∗p. Then, U generates the following signature of knowledge (cf. [6, 2]):

Π1 = SoK
{

(r1, r2, r3, r4, r5, r6, r7, r8, δ2,3, δ2,7, δ3,4, δ4,7, δ6, δJ , δt, δ5,J , δ8,J , s, t, x, y, r, J) :

A7 = gr3
1 g

r7
2 ∧ 1 = Ar2

7 g
−δ2,3
1 g

−δ2,7
2 ∧ 1 = Ar4

7 g
−δ3,4
1 g

−δ4,7
2 ∧

Zê (A4, A3) ê (A1, h0)−1 = ê (A4, h1)r3 ê (g3, A3)r4 E−r1
1 E

−δ3,4
3,1 ∧

ê (A2, A3Y )E−1
0 = Es1E

t
2E

x
3E

y
4E

r
5 ê (A2, h1)r3 ê (g2, A3Y )r2 E

−δ2,3
2,1 ∧

u1S
−1 = SJ+s ∧ A6 = gJ1 g

t
2g
r6
3 ∧ 1 = Ax6g

−δJ
1 g−δt

2 g−δ6
3 ∧

uR1 T
−1 = T J+tu−δJ−δt−x

0 ∧ A8 = gr5
1 g

r8
2 ∧ 1 = AJ8 g

−δ5,J

1 g
−δ8,J

2 ∧

ê (A4, h0) ê (A5, hα)−1 = ê (A5, h0)J E−δ5,J

2 E−r5
α Er4

3

}
(R)

where δi,j = rirj , δ6 = r6x, δJ = Jx, δt = tx, δi,J = riJ .
The user sends S, T,A1, A2, A3, A4, A5, A6, A7, A8 along with Π1 to the merchant. The mer-

chant verifies Π1. If the proof is valid, the merchant accepts the payment and stores the coin
coin = (S, T,R,A1, A2, A3, A4, A5, A6, A7, A8,Π1, info).

Finally, the user increases the counter J of his wallet by 1.
DepositProtocol,RevokeDoubleSpender and VerifyGuilt proceed analogously to scheme 1.

4.2.1 Security Analysis

We have the following theorem for scheme 2.

Theorem 2. Compact e-cash scheme 2 is secure under the q-SDH assumption and the SXDH
assumption in the random oracle model, if the ASM scheme is secure.

14



Proof. The security of scheme 2 directly follows from the security of scheme 1 and the unforge-
ability of ESS.

Balance: Let A be a PPT adversary that makes qW withdrawal queries and qS spend queries.
We show that the success probability of A is negligible under the q-SDH assumption and the
SXDH assumption in the random oracle model, if the ASM scheme [4] is secure.

We construct a simulator S which acts as challenger C.
For each withdrawal query, A sends pkU , C ′ and proves the knowledge of representation of

pkU and C ′ in Π0. S acts as if an honest bank would, except during the proof of knowledge
where S runs a rewind simulation and extracts (s′, t, x, y, r). After each execution, S computes
W = (S1, . . . , Ski

, s, t, x, y, r) where SJ = u
1/(s+J+1)
0 for 1 ≤ J ≤ ki and ki ≤ K is the requested

wallet size of the i-th query. Let SW = (Si,J |1 ≤ i ≤ qW , 1 ≤ J ≤ ki) be the set of all serial
numbers after qW executions of the withdrawal protocol.

For each spend query, A presents a public key pkU , a transaction information info, a merchant
public key pkM and request a legal number of spend protocol. For each query, S randomly
chooses s, t ∈R Z∗p, k ∈R [1,K] , J ∈R [1, k] and sends S = u

1/(s+J+1)
1 , T = pkUu

R/(t+J+1)
1 such

that R = H (pkM||info). Further, S randomly chooses A1, A2, A4, A5, A6, A7, A8 ∈R G1 and
A3 ∈R G2. Thus, A1, . . . , A8 are perfectly simulated. S then generates a simulated signature of
knowledge Π1. Let SS = (Sj |1 ≤ j ≤ qS) be the set of all serial numbers after qS executions of
the spend protocol.

Finally, A runs
∑qW
i=1 ki + qS + 1 deposit protocols with S.

As in scheme 1, A wins the game either if (1) all
∑qW
i=1 ki + qS + 1 serial numbers are unique

or (2) some of the serial numbers are duplicated but the RevokeDoubleSpender algorithm does
not output any public key pkA ∈ UA of a corrupted user.

Case (1): Since only qS serial numbers are given to A during the spend queries, A must have
produce another

∑qW
i=1 ki + 1 serial numbers. Thus, A can only win in case (1) by convincing S

to accept a serial number S /∈ SW ∪ SS . Analogous to scheme 1, A must have generated a false
proof as part of the signature of knowledge such that one of the following is fake:

1. Possession of ESS signature σ = (A,B,C, s) on message m = (Vk, t, x, y, r) (instead:
possession of BBS+ signature σ = (A, e, s) on message m = (t, x, y, r)).

2. S = u
1/(s+J+1)
1 .

3. Possession of witnessWk,J for counter J and accumulator Vk (instead: possession of witness
WJ for counter J and accumulator V ).

The last two cases are the same as in scheme 1 and happens with negligible probability under
the discrete logarithm assumption and the q-SDH assumption.

Fake proof of possession of ESS signature happens with negligible probability under the
SXDH assumption.

As in scheme 1, case (2) is negligible. Thus, as in scheme 1, A’s total success probability is
negligible.

Anonymity: Anonymity directly follows from scheme 1. During spending, the used accu-
mulator Vk and witness Wk,J are perfectly hidden. Thus, the counter J and the wallet size k
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are also perfectly hidden. Consequently, the information leaked about a user or wallet during
SpendProtocol are the same as in scheme 1 which fulfills anonymity.

Exculpability: Since the algorithms RevokeDoubleSpender and VerifyGuilt are the same as in
scheme 1, exculpability directly follows from scheme 1.

4.3 Efficiency and Modification of Compact E-Cash Scheme 2

To achieve a spend protocol of complexity O(λ), the bank publishes a set of all accumulators
and witnesses. The size of this set is

|{Vk : 1 ≤ k ≤ K} ∪ {Wk,J : 1 ≤ k ≤ K, 1 ≤ J ≤ k − 1}| = K(K + 1)
2 ,

because we need K accumulators and K(K − 1)/2 additional witnesses, since Wk,k = Vk−1 for
V0 := g0 as mentioned above. So, the size of the bank’s public key is O

(
λ ·K2).

As already mentioned in the introduction, it is also possible not to support every wallet size
1, . . . ,K, but n different wallet sizes k1, . . . , kn where kn = K. Let I = {k1, . . . , kn} be the set of
all possible wallet sizes. In this case, the size of the set of all needed accumulators and witnesses
is

|{Vki
: 1 ≤ i ≤ n} ∪ {Wki,J : 1 ≤ i ≤ n, 1 ≤ J ≤ ki} \ {g0}| = n+

n∑
i=1

ki−|{ki : ki − 1 ∈ I ∪ {0}}| ,

because we only need n accumulators and ki witnesses for each accumulator Vki
for 1 ≤ i ≤ n.

However, as above, we have Wk,k = Vk−1 for V0 := g0. For n = O(1), the size of the bank’s
public key is reduced to O (λ ·K).

For example, let K = 1 000 be the maximum wallet size. Then, the size of the set of all
accumulators and witnesses is 500 500. If, for example, a user only can choose a wallet size of
1, 2, 5, 10, 20, 50, 100, 200, 500 and 1 000 coins, the size of the set of all needed accumulators and
witnesses is only 1 896 < 2K.

We give an other example. If we require K = 2L as in [13] and want to support every wallet
size 2` for 0 ≤ ` ≤ L, the size of the set of all needed accumulators and witnesses is∣∣∣{V2` : 0 ≤ ` ≤ L} ∪

{
W2`,J : 0 ≤ ` ≤ L, 1 ≤ J ≤ 2`

}
\ {g0, V1}

∣∣∣
= L+ 1 +

L∑
`=0

2` − 2 = 2L+1 + L− 2 = 2K + L− 2,

because we only need L+1 accumulators and 2` witnesses for each accumulator V2` for 0 ≤ ` ≤ L,
but again we have W1,1 = V0 := g0 and W2,2 = V1. Thus, again the size of the bank’s public key
is O (λ ·K) where now n = O(log(K)). For L = 10 we have K = 1 024 and the size of the set
of all accumulators and witnesses is 2 056 ≈ 2K.

5 Concluding Remarks
We introduced a new idea of a compact e-cash scheme that provides arbitrary wallet size without
the need of inefficient exact range proof like in [4] and gave an efficient and secure construction.
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Analogous to [4], this construction can be extended to support batch spending and compact
spending. Further, it also can be extended to support full coin tracing of double-spenders as
proposed in [13] or [4].
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