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Some New Results on Binary Polynomial

Multiplication
Murat Cenk and M. Anwar Hasan

Abstract

This paper presents several methods for reducing the number of bit operations for multiplication of

polynomials over the binary field. First, a modified Bernstein’s 3-way algorithm is introduced, followed by a

new 5-way algorithm. Next, a new 3-way algorithm that improves asymptotic arithmetic complexity compared

to Bernstein’s 3-way algorithm is introduced. This new algorithm uses three multiplications of one-third size

polynomials over the binary field and one multiplication of one-third size polynomials over the finite field with

four elements. Unlike Bernstein’s algorithm, which has a linear delay complexity with respect to input size,

the delay complexity of the new algorithm is logarithmic. The number of bit operations for the multiplication of

polynomials over the finite field with four elements is also computed. Finally, all these new results are combined

to obtain improved complexities.

Index Terms

Polynomial multiplication, elliptic curve scalar multiplication, binary fields, Karatsuba, Toom, divide-and-

conquer
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1 INTRODUCTION

The design of algorithms for binary polynomial multiplication has long been of great interest to many

researchers. Because of applications in a variety of areas, such as cryptography and coding theory, new

techniques for improving polynomial multiplication have been presented in numerous papers, e.g., [4], [5],

[7], [23], [13], [14], [15], [16], [17], [18], [25], [20], [8], [24], [1], [28] and [27]. For cryptographic applications,

arithmetic in the binary extension field F2n is often used and, of the basic operations in F2n , multiplication

contributes most to the total number of bit operations. For example, Bernstein in [3] showed that a 251-bit

scalar multiplication on a binary Edward curves entails 44,679,665 bit operations, and that about 96.3%
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of this computational cost is due to field multiplications. Multiplications in F2n can be performed in

two steps: polynomial multiplication and polynomial reduction. The cost of reduction is O(n) arithmetic

operations, whereas the cost of multiplication is O(nω), where 1 < ω ≤ 2. The cost of reduction is therefore

negligible with respect to polynomial multiplication for a large value of n.

Let O(nω) be the arithmetic complexity, i.e., the number of bit operations for computing the product of

two degree (n− 1) polynomials over the binary field. The classical or the school-book method of binary

polynomial multiplication requires n2 and (n − 1)2 bit level multiplications and additions, respectively.

Using Karatsuba’s algorithm [19], multiplication of two binary polynomials can be performed with three

multiplications and four additions of half-size polynomials. Recursive use of the Karatsuba algorithm

gives ω ≤ 1.58. More precisely, the Karatsuba algorithm requires 7n1.58 +O(n) operations.

The Karatsuba algorithm is based on the 2-way split, where the polynomials being multiplied are

divided into two parts and the Karatsuba algorithm is then applied recursively. As an extension, the

3-way split version of the Karatsuba algorithm requires six multiplications of one-third size polynomials.

In [26], the use of the Chinese remainder theorem resulted in sub-quadratic complexity for polynomial

multiplication algorithms with six multiplications. In [24] and [25], methods have been presented for

3-way splits with 6.33n1.63 + O(n) operations. More recently, this complexity has been improved to

6.27n1.63 +O(n) as reported in [11] and then to 5.8n1.63 +O(n) as described in [9].

At the CRYPTO 2009 conference, Bernstein proposed several algorithms, including 2-, 3- and 4-way split

methods for polynomial multiplication over binary fields [3]. Bernstein’s 2-way split algorithm improves

the complexity of the Karatsuba algorithm to 6.5n1.58 +O(n). It should be noted that in [27], Zhou and

Michalic also reported similar results for a 2-way split algorithm using a different approach. Bernstein’s

2-way and 4-way split algorithms improve the additive complexity, while his 3-way split algorithm

improves both the multiplicative and the additive complexity; specifically, the latter was reduced to

25.5n1.46 +O(n).

The approach used in [3] for reducing z complexity is to use the best possible algorithms in each

recursion rather than the same algorithm in all recursions. For example, the product of degree five

binary polynomials, (that is n = 6), requires 61 operations using the school-book method, but Bernstein

reduced it to 57 operations by first using his 2-way split algorithm and then applying the school-book

algorithm. The improved upper bounds are presented in [2]. This approach was also used in [25] and

[13]. The best known results for almost all input sizes up to 1000 are listed in [2] by using the 3-way and

4-way algorithms introduced in [3]. On the other hand, for values of n = 11, 12, 15, 16, 18, 19 and 20, the

results reported in [6] are superior to those in [2].

Notation and model of computation. Fqn is used for the finite field with qn elements (where q is a prime

power), and Fq[X] is employed for the ring of polynomials over Fq . Mq(n) represents the minimum

number of bit operations required for the computation of the product of two polynomials of degree less
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than n over Fq . Dq(n) is used for the delay complexity of polynomaial multiplication over Fq , and DA

and DX denote the delay of bit level multiplication and addition, respectively. Throughout this paper,

the cost metric related to polynomial multiplication is taken as the number of bit operations (bit addition

and bit multiplication) required for multiplying polynomials over F2 or F4, and since the computations

are over characteristic two fields, addition and subtraction are equal.

Our contributions. The work presented in this paper represents the following contributions:

• A modification of Bernstein’s 3-way algorithm offering improvements, albeit small but covering a

wider range of polynomial degrees.

• An improved version of the 5-way algorithm introduced in [12] through an optimization of the

number of additions.

• A new 3-way algorithm with a lower complexity than the ones described in [3], [10], [11]: it entails

the asymptotic arithmetic complexity of 15.125n1.46+O(n) and delay complexity 10 log3(n)DX +DA.

• New optimizations of algorithms for polynomial multiplication over F4.

• A new minimum number of bit operations for binary polynomial multiplication presented in [2] and

[6].

• New results on the minimum number of bit operations for binary polynomial multiplication with

logarithmic delay complexity.

Organization of paper. The remainder of the paper is organized as follows. Known algorithms related to

our work are presented in the next section along with a description of the slight improvements that have

been developed. The proposed improved algorithms over F2 are introduced in Section 3, and the reduced

complexity of multiplication over F4 is explained in Section 4. Section 5 details how our improvements

can enhance cryptographic applications, followed by a summary of our conclusions in Section 6.

2 SOME KNOWN ALGORITHMS AND THEIR SLIGHT IMPROVEMENTS

This section provides a brief review of a number of known efficient polynomial multiplication algorithms

over F2 and presents methods of obtaining slight improvements in some of these algorithms. To save

space, the details of the known algorithms are not included; only their complexities are discussed with

appropriate references.

School-book algorithm. Let A =
∑n−1

i=0 aiX
i, B =

∑n−1
i=0 biX

i and C = AB =
∑2n−2

i=0 ciX
i. The school-

book algorithm computes the coefficients of the product of A and B as Ci =

2n−2∑
j+k=i

ajbkX
i where 0 ≤

j, k < n. The number of multiplications and additions required are n2 and (n−1)2, respectively. Moreover,
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one can easily derive the following:  M2(n+ 1) ≤M2(n) + 4n,

D2(n+ 1) ≤ D2(n) +DX .
(1)

Karatsuba algorithm (with Bernstein’s improvement). Now, let A and B be degree (2n−1) polynomials

over F2 and C be their product. The improved Karatsuba algorithm splits A and B in two parts as

A(x) = A0+X
nA1 and B(x) = B0+X

nB1 where A0 =
∑n−1

i=0 aiX
i, A1 =

∑n−1
i=0 ai+nX

i, B0 =
∑n−1

i=0 biX
i,

and B1 =
∑n−1

i=0 bi+nX
i. Bernstein proposed the following algorithm:

(A0 +XnA1)(B0 +XnB1) = (1 +Xn)(A0B0 +XnA1B1) +Xn(A0 +A1)(B0 +B1).

The arithmetic complexity of the algorithm is as follow [3]:

M2(n+ k) ≤ 2M2(n) +M2(k) + 3n+ 4k − 3, n/2 ≤ k ≤ n,

D2(2n) ≤ D2(n) + 3DX ,

M2(n) ≤ 6.5n1.58 − 7n+ 1.5,

D2(n) ≤ 3 log2(n)DX +DA.

(2)

Remark 1. Assume that k = n− ` in (2) where ` = {1, 2, 3}. In this case, it should be noted that the last

` terms of A0B0 and (A0 + A1)(B0 + B1) are identical. Therefore, once A0B0 is computed, the cost of

computing (A0 +A1)(B0 +B1) is less than M2(n). The computation of the last ` terms is done using the

school-book method, which yields the minimum values, and it is `2 for ` ∈ {1, 2, 3}. Hence we have the

following recursion:

M2(2n− `) ≤ 2M2(n) +M2(n− `) + 7n− 4`− 3− `2, 1 ≤ ` ≤ 3. (3)

It should be noted that Bernstein obtained bounds by computing explicit algorithms and thus because of

the detection of common operations, the bounds in [2] are less than the values obtained directly through

the recursion. For ` > 3, the number of common expressions might change depending on the value of n.

Bernstein’s 3-way split algorithm. Let A and B be degree (3n − 1) polynomials over F2 and C be

their product. This method splits A and B in three parts as follows: A = A0 + A1X
n + A2X

2n, B =

B0+B1X
n+B2X

2n where Aj =
∑n−1

i=0 ai+njX
i and Bj =

∑n−1
i=0 bi+njX

i for j = 0, 1, 2. Bernstein’s 3-way

split algorithm is the following [3]:

P0 = A0B0, P1 = (A0 +A1 +A2)(B0 +B1 +B2),

P2 = (A0 +A1X +A2X
2)(B0 +B1X +B2X

2),

P3 =
(
(A0 +A1 +A2) + (A1X +A2X

2
) (

(B0 +B1 +B2) + (B1X +B2X
2)
)
,

P4 = A2B2, U = P0 + (P0 + P1)X
n, V = P2 + (P2 + P3)(X

n +X),

C = U + P4(X
4n +Xn) +

(U + V + P4(X
4 +X))(X2n +Xn)

X2 +X
.

(4)
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The arithmetic complexity of the algorithm is as follows [3], [10], [11]:

M2(3n) ≤ 3M2(n) + 2M2(n+ 2) + 35n− 12, n ≥ 2,

M2(2n+ k) ≤ 2M2(n) +M2(k) + 2M2(n+ 1) + 25n+ 10k − 12, 1 ≤ k ≤ n− 1,

D2(3n) ≤ D2(n) + (3n+ 8)DX ,

M2(n) ≤ 25.5n1.46 − 25.5n+ 1,

D2(n) ≤ (1.5n+ 8 log3(n)− 1.5)DX +DA.

(5)

The reason for the linear delay complexity is the division by (X2 +X) in the equation (4). This division

requires (n− 2) bit additions and a delay of (n− 2)DX . A detailed explanation is in Section 2.3.2 of [11].

We also note that one can obtain a logarithmic delay for this type of exact division. However, in this

case, the number of additions increases significantly.

Remark 2. It should be noted that in (4), the first term of each of P0 and P2 is a0b0, and the first term

of each of P1 and P3 is (a0 + an + a2n)(b0 + bn+2n). Two multiplications are thus saved here. As well,

the last term of P2 and that of P4 are identical, which also saves a multiplication. Finally, the last two

terms of P2 and P3 are likewise the same, which brings the savings up to five operations. It should also

be noted that the first term of P0 + P1 and that of P2 + P3 are also the same. The result of all of the

above observations is a total of nine common expressions for computing M(3n). On the other hand, for

M2(2n+ k), 1 ≤ k ≤ n− 1, one can observe three common multiplications in the first term of P2 and P0,

the first term of P3 and P1, and the last term of P2 and P3. Furthermore, the first term of P0 + P1 and

that of P2 + P3 are the same. Therefore, (5) can be rewritten as M2(3n) ≤ 3M2(n) + 2M2(n+ 2) + 35n− 12− 9, n ≥ 2,

M2(2n+ k) ≤ 2M2(n) +M2(k) + 2M2(n+ 1) + 25n+ 10k − 12− 4, 1 ≤ k ≤ n− 1.
(6)

One can also note that the number of common operations is actually greater than indicated above. These

observations were also reported in [3] and explicit algorithms are obtained by eliminating the common

operations in [2]. The results in [2] are therefore better than the theoretical results detailed in [3].

Karatsuba-like improved 3-way split algorithm. Let A,B,C,A0, A1, A2, B0, B1 and B2 be as in Bernstein’s

3-way algorithm presented above. This algorithm was obtained in [9] using a technique similar to that

employed in [27]. The algorithm is as follows:

P0 = A0B0 = P0L + P0HX
n, P1 = A1B1 = P1L + P0HX

n,

P2 = A2B2 = P2L + P2HX
n, P3 = (A1 +A2)(B1 +B2) = P3L + P3HX

n,

P4 = (A0 +A1)(B0 +B1) = P4L + P4HX
n, P5 = (A0 +A2)(B0 +B2) = P5L + P5HX

n,

R0 = P0H + P1L, R1 = R0 + P0L, R2 = R1 + P4L, R3 = P1H + P2L, R4 = R1 +R3,

R5 = P4H + P5L, R6 = R4 +R5, R7 = R3 + P2H , R8 = R7 +R0, R9 = R8 + P3L,

R10 = R9 + P5H , R11 = R7 + P3H ,

C = P0L +R2X
n +R6X

2n +R10X
3n +R11X

4n + P2HX
5n.
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Assume that A and B are degree 2n + k − 1 polynomials, where 1 ≤ k ≤ n. A0, A1, B0 and B1 are

then degree (n − 1) polynomials, and A2 and B2 are degree (k − 1) polynomials. Therefore, P0L, P1L,

and P2L are degree (n− 1) polynomials, and P0H and P1H are (n− 2) polynomials. On the other hand,

P2L is a degree (n − 1) polynomial, P2H is a degree (2k − n − 1) polynomial for n/2 < k ≤ n, P2L is a

degree (2k− 2) polynomial, and P2H = 0 for k ≤ n/2. Note that (A0 +A1) and (B0 +B1) each require n

additions, (A0 +A2), (A1 +A2), (B0 +B2), and (B1 + b2) each require k additions; R0, R3, R5, R10, and

R11 each require (n− 1) additions; R1, R2, R4, R6, R8, and R9 each require n additions and R7 requires

(2k − n− 1) additions for n/2 < k ≤ n. For k ≤ n/2, R7 requires no additions. Therefore, we obtain the

following recursions [9]:

M2(3n) ≤ 6M2(n) + 18n− 6,

M2(2n+ k) ≤ 5M2(n) +M2(k) + 12n+ 6k − 6, n/2 < k ≤ n,

M2(2n+ k) ≤ 5M2(n) +M2(k) + 13n+ 4k − 5, k ≤ n/2,

D2(3n) ≤ D2(n) + 4DX ,

M2(n) ≤ 5.8n1.63 − 6n+ 1.2,

D2(n) ≤ 4 log3(n)DX +DA.

(7)

Remark 3. Assume that k = n−` for 1 ≤ ` ≤ 2. The last ` terms of the products A0B0 and (A0+A2)(B0+

B2) are then the same, and the last ` terms of the products A1B1 and (A1 + A2)(B1 + B2) are also the

same. Therefore, we can obtain the following bound by using the school-book method:

M2(3n− `) ≤ 5M2(n) +M2(n− `) + 18n− 6`− 6− 2`2, 1 ≤ ` ≤ 2. (8)

Bernstein’s 4-way split algorithm. Let A and B be two degree (4n − 1) polynomials over F2 and C

be their product. This method splits A and B into four parts as A = A0 + A1X
n + A2X

2n + A3X
3n,

B = B0 + B1X + B2X
2n + B3X

3n where Aj =
∑n−1

i=0 ai+njX
i and Bj =

∑n−1
i=0 bi+njX

i for j = 0, 1, 2, 3.

Bernstein’s 4-way algorithm is the following:
AB = (1 +X2n)((1 +Xn)(A0B0 +XnA1B1 +X2nA2B2 +X3nA3B3)

+Xn(A0 +A1)(B0 +B1) +X3n(A2 +A3)(B2 +B3))

+X2n(A0 +A2 + (A1 +A3)X
n)(B0 +B2 + (B1 +B3)X

n).

The arithmetic complexity of the algorithm is as follows [3], [9]:

M2(4n) ≤M2(2n) + 6M2(n) + 27n− 8,

M2(3n+ k) ≤M2(2n) + 5M2(n) +M2(k) + 19n+ 8k − 8, n/2 ≤ k ≤ n,

D2(4n) ≤ D2(n) + 5DX ,

M2(n) ≤ 6.425n1.58 − 6.8n+ 1.375,

D2(n) ≤ 5 log4(n)DX +DA.

(9)
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Remark 4. It should be noted that if k = n − ` in (9) for 1 ≤ ` ≤ 3, then A2B2 and (A2 + A3)(B2 + B3)

have the same last ` terms. Similarly, (A0 +A2 + (A1 +A3)X
n)(B0 +B2 + (B1 +B3)X

n) and A1B1 have

the same last ` terms. Therefore, once A2B2 and A1B1 are computed using the school-book method, the

cost of computing (A2 +A3)(B2 +B3) and (A0 +A2 +(A1 +A3)X
n)(B0 +B2 +(B1 +B3)X

n) is less than

or equal to M2(n)− `2 and M2(2n)− `2, respectively. Thus, we get the following recursion:

M2(4n− `) ≤M2(2n) + 5M2(n) +M2(n− `) + 27n− 8`− 8− 2`2, 1 ≤ ` ≤ 3. (10)

CNH 3-way split algorithm. Let A,B,C,A0, A1, A2, B0, B1, and B2 be defined as in Bernstein’s 3-way

algorithm. In [10], [11], Cenk, Negre, and Hasan proposed the following algorithm for computing C = AB,

where α is the generator of F4:

P0 = A0B0, P1 = (A0 +A1 +A2)(B0 +B1 +B2),

P2 = (A0 +A2 + α(A1 +A2))(B0 +B2 + α(B1 +B2)),

P3 = (A0 +A1 + α(A1 +A2))(B0 +B1 + α(B1 +B2)), P4 = A2B2,

C = (P0 +XnP4)(1 +X3n) + (P1 + (1 + α)(P2 + P3))(X
n +X2n +X3n)

+α(P2 + P3)X
3n + P2X

2n + P3X
n

(11)

The complexities of the algorithm are computed in [10], [11] as follows:

M2(3n) ≤ 2M4(n) + 3M2(n) + 29n− 12,

M4(3n) ≤ 5M4(n) + 58n− 21,

D2(n) ≤ D4(n/3) + 8DX ,

D4(n) ≤ D4(n/3) + 10DX .

(12)

Remark 5. We can improve this algorithm by observing the common additions in (P1 + (1 + α)(P2 +

P3))(X
n+X2n+X3n). Assume that the inputs are from F4[X]. For simplicity let R = (P1+(1+α)(P2+P3)).

Since R is a degree (2n − 2) polynomial, we can write R = R0 + R1X
n where R0 is a degree (n − 1)

polynomial and R1 is a degree (n− 2) polynomial. We have then

R(Xn +X2n +X3n) = XnR0 +X2n(R0 +R1) +X3n(R0 +R1) +X4nR1,

requiring 2(n − 1) F4 additions for R0 + R1 which improves the original computation cost 2(2n − 2). It

should be noted that this technique does not change the delay complexity. The complexity for degree

(2n + k) polynomials can be easily be obtained for 1 ≤ k ≤ n since, in this case, (A1 + A2), (B1 + B2),

((A0 + A1) + A2), and ((B0 + B1) + B2) each requires 8k additions. As well, (P0 +XnP4) needs (n− 1)

additions if k > n/2 and (2k − 1) additions if k < n/2. The following are thus the new complexities for
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polynomial multiplication over F4:

M4(3n) ≤ 5M4(n) + 56n− 19, M4(1) = 7,

M4(2n+ k) ≤ 4M4(n) +M4(k) + 48n+ 8k − 19, n/2 ≤ k ≤ n,

M4(2n+ k) ≤ 4M4(n) +M4(k) + 46n+ 12k − 19, 1 ≤ k < n/2,

D4(n) ≤ D4(n/3) + 10DX , D4(1) = 2DX +DA

M4(n) ≤ 30.25n1.46 − 28n+ 4.75,

D4(n) ≤ (10 log3(n) + 2)DX +DA.

(13)

Similarly, the complexities over F2 are obtained as follows:

M2(n) ≤ 2M4(n/3) + 3M2(n/3) + 29n− 12, M2(1) = 1,

D2(n) ≤ D4(n/3) + 8DX , D2(1) = DA,

M2(n) ≤ 30.25n1.46 − 9.27n log3(n)− 27.5n+ 0.75,

D2(n) ≤ 10 log3(n)DX +DA.

(14)

3 NEW IMPROVED ALGORITHMS OVER F2

This section presents a method that yields better complexities than the Bernstein 3-way algorithm.

Moreover, a new 5-way split algorithm for binary polynomial multiplication resulting from improvements

to the one described in [12] is introduced, and a new 3-way split algorithm with improved complexity

is also proposed.

3.1 A new split method for Bernstein’s 3-way split algorithm

Let A(X) =
∑3n−1

i=0 aiX
i and B(X) =

∑3n−1
i=0 biX

i be two polynomials of degree 3n− 1. In this method,

we compute (XA(X))(XB(X)) instead of A(X)B(X) by using Bernstein’s 3-way split algorithm. Note

that XA(X) =
∑3n−1

i=0 aiX
i+1 and XB(X) =

∑3n−1
i=0 biX

i+1 are degree 3n polynomials with first terms

zero. We now apply Bernstein’s 3-way split algorithm by assuming that XA(X) and XB(X) are degree

3n + 2 polynomials. Here, we take the coefficients of X3n+1 and X3n+2 of both XA(X) and XB(X) as

zero, and thus we have:

XA(X) = A0 +A1X
n+1 +A2X

2n+2, XB(X) = B0 +B1X
n+1 +B2X

2n+2,

where each of Ai and Bi for 0 ≤ i ≤ 2 are degree n polynomials. However, it should be noted that the

first term of A0 and B0 is zero and that the last two terms of A2 and B2 are zero. Therefore, we can

say that this method splits 3n-term polynomials as (n, n + 1, n − 1) rather than (n, n, n) where the i-th

value in the triples for i = 1, 2, 3 shows the number of terms of Ai and Bi. The computational cost of

Bernstein’s 3-way algorithm for this splitting approach is as follows:

• 4n− 2: Computing A0 +A1 +A2 and B0 +B1 +B2. These are degree n polynomials.

• 2n − 2: Computing A1X + A2X
2 and B1X + B2X

2. These are degree (n + 1) polynomials with the

constant term being zero.
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• 2n: Computing A0 + (A1X +A2X
2) and B0 + (B1X +B2X

2). These are degree (n+ 1) polynomials

with the constant term being zero.

• 2n: Computing A0 +A1 +A2 + (A1X +A2X
2) and B0 +B1 +B2 + (B1X +B2X

2). These are degree

(n+ 1) polynomials.

• M2(n): Computing P0 = A0B0 whereP0 is a degree 2n polynomial with the constant term and the

coefficient of X as zero.

• M2(n+ 1): Computing P1 = (A0 +A1 +A2)(B0 +B1 +B2) where P1 is a degree 2n polynomial.

• M2(n + 1): Computing P2 = (A0 + A1X + A2X
2)(B0 + B1X + B2X

2) where P2 is a degree 2n + 2

polynomial with the constant term and the coefficient of X being zero.

• M2(n+2)− 1: Computing P3 = (A0 +A1 +A2 +A1X +A2X
2)(B0 +B1 +B2 +B1X +B2X

2) where

P3 is a degree 2n+ 2 polynomial and the last term is the same as that of P2.

• M2(n− 1): Computing P4 = A2B2 where P4 is a degree 2n− 4 polynomial.

• 2n: Computing S = P2 + P3 where S is a degree (2n + 1) polynomial because the last terms of P2

and P3 are equal.

• 3n− 1: Computing U = P0+(P0+P1)X
n+1 where U is a degree 3n+1 polynomial and the first two

terms are zero.

• 3n+3: Computing V = P2+S(X
n+1+X) where V is a degree 3n+2 term with the first term being

zero.

• 7n− 6: Computing W = U + V + P4(X
4 +X) where W is a degree 3n+ 2 polynomial with the first

term as zero.

• 3n: Computing W ′ =W/(X(X + 1)) where W ′ is a degree 3n polynomial.

• 2n: Computing W ′′ =W ′(X2n+2+Xn+1) where W ′′ is a degree 5n+2 polynomial with first n terms

being zero.

• 5n− 3: Computing C = U +P4(X
4n+4+Xn+1)+W ′′. This is the product polynomial X2A(X)B(X).

It should also be noted that the original algorithm is better for (3n − 1) terms polynomials. However,

for (2n + k) term polynomials with 1 ≤ k ≤ n − 2, the proposed splitting approach yields better results

than the original recursion. For example, the method introduced above splits (3n− 2) term polynomials

as (n− 1, n, n− 1) instead of (n, n, n− 2). The recursions for the above computations for a 3n-term and

a similar computations for (3n− 2) term polynomials can be summed up as follows: M2(3n) ≤M2(n) + 2M2(n+ 1) +M(n+ 2) +M(n− 1) + 35n− 12,

M2(3n− 2) ≤ 2M2(n) +M2(n+ 1) + 2M(n− 1) + 35n− 13.
(15)

3.2 Improved 5-way split algorithm

This section presents a new improvement to the 5-way split algorithm described in [12]. Let A =∑5n−1
i=0 aiX

i and B =
∑5n−1

i=0 biX
i two degree (5n − 1) polynomials over F2 and C =

∑10n−2
i=0 ciX

i be

their product. This method splits A and B in five parts as A = A0 + A1X
n + A2X

2n + A3X
3n + A4X

4n,
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B = B0 + B1X
n + B2X

2n + B3X
3n + B4X

4n, where Aj =
∑n−1

i=0 ai+njX
i and Bj =

∑n−1
i=0 bi+njX

i for

j = 0, 1, 2, 3, 4. Then we can write C =
∑8

i=0 CiX
in. Cenk and Özbudak proposed the following algorithm

in [12]: 

m1 = A0B0, m2 = A1B1, m3 = A2B2, m4 = A3B3, m5 = A4B4,

m6 = (A0 +A1)(B0 +B1), m7 = (A0 +A2)(B0 +B2), m8 = (A2 +A4)(B2 +B4),

m9 = (A3 +A4)(B3 +B4), m10 = (A0 +A2 +A3)(B0 +B2 +B3),

m11 = (A1 +A2 +A4)(B1 +B2 +B4),

m12 = (A0 +A3 +A1 +A4)(B0 +B3 +B1 +B4),

m13 = (A0 +A1 +A2 +A3 +A4)(B0 +B1 +B2 +B3 +B4),

C0 = m1, C1 = m6 +m1 +m2, C2 = m7 +m1 +m3 +m2,

C3 = m1 +m13 +m12 +m10 +m8 +m3 +m5 +m4,

C4 = m6 +m1 +m2 +m13 +m10 +m11 +m9 +m5 +m4,

C5 = m7 +m1 +m3 +m2 +m13 +m11 +m12 +m5,

C6 = m8 +m3 +m5 +m4, C7 = m9 +m4 +m5, C8 = m5.

(16)

The improvement to this algorithm is based on the use of the method described in [27]. To this end, we

divide each mi for 1 ≤ i ≤ 13 into two parts as mi = p2i−1 + p2iX
n, where p2i−1 is a degree (n − 1)

polynomial, p2i is a degree (n− 2) polynomial, and n ≥ 2. We substitute the new decompositions of the

mi’s into Ci’s and let the new representation of C be C =
∑10

i=1 UiX
(i−1)n. The explicit new algorithm is

as follows: 

t1 = p1 + p2, t2 = t1 + p3, t3 = t2 + p11, t4 = p4 + p5, t5 = p12 + p13,

t6 = t4 + t5, t7 = t2 + t6, t8 = t1 + t4, t9 = p6 + p7, t10 = t8 + t9,

t11 = t10 + p9, t12 = p14 + p15, t13 = t11 + t12, t14 = p19 + p23, t15 = t14 + p25,

t16 = t13 + t15, t17 = p8 + p9, t18 = t17 + p10, t19 = t18 + p18, t20 = t18 + t9,

t21 = p16 + p17, t22 = t20 + t21, t23 = t22 + t3, t24 = p20 + p21,

t25 = p24 + p25, t26 = p19 + p24, t27 = t24 + t25, t28 = t27 + t26, t29 = t28 + t23,

t30 = t7 + t19, t31 = t27 + t30, t32 = p22 + p23, t33 = t31 + t32, t34 = t11 + p1,

t35 = t34 + p10, t36 = t35 + t12, t37 = t36 + p22, t38 = t37 + p24, t39 = t38 + p26,

U1 = p1, U2 = t3, U3 = t7, U4 = t16, U5 = t29, U6 = t33, U7 = t39,

U8 = t22, U9 = t19, U10 = p10,

(17)

The cost of (17) is (39n−17) additions. The cost of linear combinations of Ai’s and the linear combinations

of Bi’s can be computed with a total of 16n additions. The following recursion is thus obtained:

M2(5n) ≤ 13M2(n) + 55n− 17. (18)

When the input sizes are (4n + k) for 1 ≤ k ≤ n, the sizes of A4 and B4 are then k bits and the cost

of (A2 + A4), (A3 + A4), (B2 + B4), and (B3 + B4) is 4k rather than 4n. On the other hand, the size

of m5 = A4B4 = p9 + p10X
n is a 2k − 1. It should be noted that p9 is an n-bit polynomial, p10 is a
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(2k − n− 1)-bit polynomial for n/2 ≤ k ≤ n, p9 is a (2k − 1)-bit polynomial, and p10 is the 0 polynomial

for 1 ≤ k < n/2. When the cost of t11, t17, t18, and t35 in (17) are re-computed, the following recursion is

obtained:

M2(4n+ k) ≤ 12M2(n) +M2(k) + 47n+ 8k − 17. (19)

An additional remark can be made regarding the case of k = n − ` for 1 ≤ ` ≤ 3. Here, the last ` terms

of m4 and m9 are identical, and similarly the last ` terms of m3 and m8 are identical. We can therefore

write:

M2(5n− `) ≤ 12M2(n) +M2(n− `) + 55n− 8`− 17− `2. (20)

The delay complexity can be computed as

D2(5n) ≤ D2(n) + 13DX . (21)

The complexities are summarized as follow:
M2(5n) ≤ 13M2(n) + 55n− 17,

M2(4n+ k) ≤ 12M2(n) +M2(k) + 47n+ 8k − 17, 1 ≤ k ≤ n,

D2(5n) ≤ D2(n) + 13DX .

(22)

Asymptotic complexities of this algorithm are the following:

M2(n) ≤ 13M2(n/5) + 55n/5− 17, M2(1) = 1,

M2(n) ≤ 6.46n1.58 − 6.87n+ 1.42,

D2(n) ≤ D2(n/5) + 13DX , D2(1) = DA,

D2(n) ≤ 13 log5(n)DX +DA.

(23)

3.3 New improved 3-way algorithm

This section presents a process for improving the algorithm discussed in Section 2 by about 50%. The

enhancement is obtained by analyzing the products P2 and P3 in (11). Let A, B, C, A0, A1, A2, B0, B1,

and B2 ∈ F2[X] be defined as in the explanation of the CNH algorithm in Section 2. It should be noted

that if

P2 = (A0 +A2 + α(A1 +A2))(B0 +B2 + α(B1 +B2)) = P2,0 + αP2,1,

then one can compute

P3 = (A0 +A1 + α(A1 +A2))(B0 +B1 + α(B1 +B2)) = (P2,0 + P2,1) + αP2,1.

This calculation shows that P3 can be obtained from P2. Note that this method works because Ai, Bi ∈

F2[X] for 0 ≤ i ≤ 2. By using P3 = (P2,0 + P2,1) + αP2,1, we propose the following algorithm:

P0 = A0B0, P1 = (A0 +A1 +A2)(B0 +B1 +B2), P4 = A2B2,

P2 = (A0 +A2 + α(A1 +A2))(B0 +B2 + α(B1 +B2)) = P2,0 + αP2,1,

C = P4X
4n + (P0 + P1 + P2,1)X

3n + (P2,0 + P1 + P2,1)X
2n

+(P4 + P1 + P2,0)X
n + P0

(24)
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Now we can compute the complexity of this algorithm where A0, B0, A1, and B1 are degree (n − 1)

polynomials and A2 and B2 are degree (k − 1) polynomials. Assume that 1 ≤ k ≤ n. Each of (A1 + A2)

and (A0+A2) then requires k additions, and (A0+(A1+A2)) requires n additions. Since the polynomials

are over F2, (A0 +A2 + α(A1 +A2)) does not require any additions. Similarly, the right hand side of the

products, i.e., Bi’s, require (n+ 2k) additions. On the other hand, each of (P1 + P2,1), (P0 + (P1 + P2,1)),

(P2,0 + (P1 + P2,1)) and (P1 + P2,0) requires (2n − 1) additions, and (P4 + (P1 + P2,0)) requires (2k − 1)

additions. Finally, the overlaps of the coefficients of X0, Xn, X2n, and X3n require (3n − 3) additions,

and the cost of the overlapping of the coefficient of X4n with the other terms is (n− 1) if n/2 ≤ k ≤ n,

and (2k − 1) if 1 ≤ k < n/2. On the other hand, the delay complexity can be computed as described in

[11] and we obtain the complexities as follows:

M2(3n) ≤ 3M2(n) +M4(n) + 20n− 5,

M2(2n+ k) ≤ 2M2(n) +M2(k) +M4(n) + 14n+ 6k − 5, n/2 ≤ k ≤ n,

M2(2n+ k) ≤ 2M2(n) +M2(k) +M4(n) + 13n+ 8k − 11, 1 ≤ k < n/2.

D2(3n) ≤ D4(n) + 7DX ,

(25)

Asymptotic complexities of this algorithm are the following:

M2(n) ≤ 3M2(n/3) +M4(n/3) + 20n/3− 5, , M2(1) = 1,

M2(n) ≤ 15.125n1.46 − 14.25n− 2.4274 log3(n) + 0.125,

D2(n) ≤ D4(n/3) + 8DX , D2(1) = DA,

D2(n) ≤ 10 log3(n)DX +DA.

(26)

3.4 Comparison of complexities

To enable an easy comparison, the complexity results are presented in Table 1. As it can be seen, the 2-way

algorithm is the Karatsuba algorithm with Bernstein’s improvement. On the other hand, the proposed

3-way algorithm is far superior to the 3-way split algorithms. Bernstein’s 4-way split and the proposed

5-way split algorithms that yield improvements are also included in the table. It should also be noted

that Negre has reported [21] and [22] about improvements in the 3-way splits algorithm of [9] with a

complexity 4.68n1.63 +O(n) and in the 4-way split algorithm of [3] with a complexity 5.25n1.58 +O(n).
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TABLE 1

Cost of multiplication in F2n

Algorithm Split M(n) Delay

Bernstein [3] 2 6.5n1.58 − 7n+ 1.5 3 log2(n) +DA

Bernstein [3] 3 25.5n1.46 − 25.5n+ 1 (1.5n+ 8 log3(n)− 1.5)DX +DA

CNH [9] 3 5.8n1.63 − 6n+ 1.2 4 log3(n)DX +DA

CNH [10],[11] 3 30.25n1.46 − 28n+ 4.75 10 log3(n)DX +DA

Proposed (24) 3 15.125n1.46 − 2.67n log3(n)− 14.25n+ 0.125 10 log3(n)DX +DA

Bernstein [3] 4 6.425n1.58 − 6.8n+ 1.375 5 log4(n)DX +DA

Proposed (17) 5 6.46n1.58 − 6.877n+ 1.42 13 log5(n)DX +DA

4 MINIMUM NUMBER OF BIT OPERATIONS FOR M4(n)

The algorithm presented in Section 3.3 entails the multiplication of polynomials over F4. Efficient algo-

rithms for multiplication over F4 are therefore needed in order to obtain better complexity results over F2.

We can use the multiplication algorithms over F2 presented in the previous sections for multiplications

over F4. However, it should be noted that the addition of F4 elements requires two-bit additions and

that the multiplication of F4 elements requires seven-bit operations, i.e., four multiplications and three

additions (using the school-book algorithm). The determination of the cost of multiplications over F4

therefore requires the following modifications to the recursions presented in the previous sections: M2(n)

is converted to M4(n), and the number of additions over F2 is multiplied by two. If the algorithm includes

bit multiplications (as in the case of the school-book algorithm), then the number of bit multiplications

is multiplied by seven, which is the cost of multiplication in F4. As an illustration, the school-book

algorithm for the multiplication of polynomials over F4 can be modified as follows: Let A and B be

degree n polynomials over F4. We can write A = A0 +Xnan and B = B0 +Xnbn, where A0 and B0 are

degree (n− 1) polynomials over F4, and an and bn are in F4. Then

A ·B = A0B0 +Xn(A0bn + anB0) +X2nanbn.

The costs of A0B0, (A0bn + anB0) and anbn are M4(n), 2nM4(1) + 2n, and M4(1), respectively. The final

overlap needs 2(n− 1) additions. Using M4(1) ≤ 7, we obtain the following: M4(n+ 1) ≤M4(n) + 18n+ 5,

D4(n+ 1) ≤ D4(n) +DX .
(27)

Similarly, the improved Karatsuba algorithm presented in Section 2 has the following recursion for F4
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multiplications:  M4(n+ k) ≤ 2M4(n) +M4(k) + 6n+ 8k − 6, n/2 ≤ k ≤ n,

D4(2n) ≤ D4(n) + 3DX .
(28)

On the other hand, the 3-way algorithm discussed in Section 2 has the following recursion for multi-

plications over  M4(2n+ k) ≤ 5M4(n) +M4(k) + 24n+ 12k − 12, n/2 < k ≤ n,

D4(3n) ≤ D4(n) + 4DX .
(29)

Bernstein’s 4-way split algorithm presented in Section 2 can be used for multiplication over F4 using

the following recursion:

M4(3n+ k) ≤M4(2n) + 5M4(n) +M4(k) + 38n+ 16k − 16, n/2 ≤ k ≤ n. (30)

The recursive equation for the new 5-way split algorithm introduced in Section 3.2 can be used for

multiplications over F4 by applying the following recursion: M4(4n+ k) ≤ 12M4(n) +M4(k) + 96n+ 16k − 36, 1 ≤ k ≤ n,

D4(4n) ≤ D4(n) + 5DX .
(31)

The next step is to describe a general method for multiplying polynomials over F4. Let α be the

generator of F4, A =
∑n−1

i=0 aiX
i, B =

∑n−1
i=0 BiX

i and C = AB =
∑2n−2

i=0 CiX
i be polynomials over F4.

We can write, A = A0 + αA1 and B = B0 + αB1 where A0, A1, B0, and B1 are degree n− 1 polynomials

over F2. We then have

AB = (A0 + αA1)(B0 + αB1) = A0B0 +A1B1 + ((A0 +A1)(B0 +B1) +A0B0)α. (32)

The complexity of this formula can be computed as M4(n) ≤ 3M2(n) + 6n− 2.

D4(n) ≤ D2(n) + 2DX .
(33)

As a final step, we can then use the CNH 3-way algorithm discussed in Section 2. The recursion of

this algorithm is the following:
M4(3n) ≤ 5M4(n) + 56n− 19,

M4(2n+ k) ≤ 4M4(n) +M4(k) + 48n+ 8k − 19, n/2 ≤ k ≤ n,

D4(n) ≤ D4(n/3) + 10DX .

(34)

5 IMPROVED UPPER BOUNDS OVER F2

This section presents the new upper bounds on the minimum number of operations for binary polynomial

multiplications with the use of the algorithms discussed in the previous sections.

The first improvement is for n = 9. The improved 3-way algorithm presented in Section 2 yields

M2(9) ≤ 126 whereas this bound is reported as 132 in [2]. On the other hand, the new 5-way algorithm
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results in M2(15) ≤ 317, which is better than the 326 arrived at [6]. Explicit algorithms for n = 9 and n = 15

are presented in the appendix. Similarly, we obtain M2(18) ≤ 438, which is better than that reported in

[6]. For n = 11, 12, we were unable to obtain improvements on the upper bounds compared to the results

described in [6]. However, for almost all values of n greater than 20, we have obtained improved bounds

and tabulated new bounds for some specific values of n, which are used in cryptographic applications.

Details are included in the appendix.

We also note that although improvements in the number of bit operations can be obtained primarily

through modifications to Bernstein’s 3-way algorithm, the corresponding level of delay complexities is

significantly higher because Bernstein’s 3-way algorithm entails a linear delay complexity in input size.

For this reason, we have also searched the minimum number of bit operations with a logarithmic delay.

In this respect, the new 3-way algorithm introduced in Section 3.3 produces the best results. It should be

noted that although the numbers of operations increase slightly, delay complexities decrease significantly

since the new 3-way split algorithm is associated with a logarithmic delay. The results are summarized

in Table 2 that includes four different complexities. Column A shows the known best bounds reported

in [2] and [6] before the current work. The improved minimum numbers of bit operations over F2 and

F4 are listed in columns B and C, respectively, and the best possible minimum number of bit operations

with logarithmic delay complexities are indicated in column D. In additions to M2(n) and M4(n), the

table also provides the name of the algorithm along with the new size of the polynomial after splitting.

The numbers in the column entitled Alg. of Table 2 represent the following algorithms: 1 is the school-

book, 2 is the Karatsuba with Bernstein’s improvement, 2.1 is the Karatsuba with Bernstein’s improvement

with input size 2n − 1, 2.2 is the Karatsuba with Bernstein’s improvement with input size 2n − 2, 2.3

is the Karatsuba with Bernstein’s improvement with input size 2n − 3, 3 is Karatsuba-like 3-way split,

5 is Bernstein’s 3-way split, 5.1 is modified Bernstein’s 3-way split algorithm with input size 3n, 5.2 is

modified Bernstein’s 3-way split algorithm with input size 3n− 2, 6 is Bernstein’s 4-way split with input

size 4n, 6.1 is Bernstein’s 4-way split with input size 4n− 1, 6.2 is for Bernstein’s 4-way split with input

size 4n − 2, 7 is for the improved 5-way split for input size 5n, 7.1 is improved 5-way split for input

size 5n − 1, 8 is for the method referring in [6], 9 is the general method described in Section 4, 10 is

the Karatsuba algorithm with Bernstein’s improvements for F4, 14 is the improved CNH 3-way split

algorithm over F4 in Section 2, 15 is Bernstein’s 4-way for polynomials over F4, and finally 16 is the the

improved 5-way split for polynomials over F4.

For example, for n = 15 in column B, it can be seen that the new 5-way algorithm is used, and the

new size of the polynomials becomes five. To verify the complexity, one should then use the M2(5). It

must also be noted that special care should be given in those cases in which the size of the polynomials

after splitting may be different, as in the case of M2(17), which contains a multiplication of size nine and

a multiplication of size eight. An additional remark is related to the modified Bernstein’s algorithm. If

the size is a multiple of three, say 3n, then the sizes of the polynomials after splitting are n, n+ 1, and
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n− 1; if the size is 3n− 2, then the new sizes are n and n− 1. For example, for 3n− 2 = 67, the size of

the new polynomial is 23 given in Table 2 and the other sizes are then both 22.

6 CONCLUSION

This paper has presented improvements in the bounds reported in [3] and [6] for binary polynomial

multiplication through two new proposed algorithms along with the optimization and modification of

previous algorithms. The use of the new 3-way and 5-way split algorithms together with the modification

of Bernstein’s 3-way split algorithm produces improved results. These results for values of n that are

of interest for cryptographic applications are presented in the appendix. The latter also presents the

algorithms for n = 9 and n = 15.
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APPENDIX

We give the new bounds for certain values of n that are of interests for cryptographic applications.

Note that the improvements can be further enhanced by obtaining the explicit algorithm and eliminating

common operations as in [2], [3]. The results are in Table 2.

For n = 9, A =
∑8

i=0 b[i]X
i, B =

∑8
i=0 b[i]X

i and C = AB =
∑16

i=0 c[i]X
i. The coefficients of C are

computed by using the following algorithm:
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Algorithm for n = 9

t1 = a[6] + a[3] t22 = a[0] ∗ b[2] t43 = a[7] ∗ b[8] t64 = t15 ∗ t18 t85 = t34 + t35 t106 = t105 + t57 c0 = t19

t2 = a[7] + a[4] t23 = a[1] ∗ b[1] t44 = a[8] ∗ b[7] t65 = t1 ∗ t5 t86 = t85 + t36 t107 = t106 + t90 c1 = t73

t3 = a[8] + a[5] t24 = a[2] ∗ b[0] t45 = a[8] ∗ b[8] t66 = t2 ∗ t4 t87 = t43 + t44 t108 = t107 + t82 c2 = t25

t4 = b[6] + b[3] t25 = a[3] ∗ b[3] t46 = t7 ∗ t10 t67 = t1 ∗ t6 t88 = t87 + t86 t109 = t58 + t59 c3 = t79

t5 = b[7] + b[4] t26 = a[1] ∗ b[2] t47 = t7 ∗ t11 t68 = t2 ∗ t5 t89 = t37 + t38 t110 = t109 + t60 c4 = t96

t6 = b[8] + b[5] t27 = a[2] ∗ b[1] t48 = t8 ∗ t10 t69 = t3 ∗ t4 t90 = t89 + t39 t111 = t110 + t75 c5 = t100

t7 = a[3] + a[0] t28 = a[3] ∗ b[4] t49 = t7 ∗ t12 t70 = t2 ∗ t6 t91 = t45 + t90 t112 = t61 + t62 c6 = t104

t8 = a[4] + a[1] t29 = a[4] ∗ b[3] t50 = t8 ∗ t11 t71 = t3 ∗ t5 t92 = t40 + t41 t113 = t112 + t63 c7 = t108

t9 = a[5] + a[2] t30 = a[2] ∗ b[2] t51 = t9 ∗ t10 t72 = t3 ∗ t6 t93 = t92 + t42 t114 = t113 + t25 c8 = t111

t10 = b[3] + b[0] t31 = a[3] ∗ b[5] t52 = t13 ∗ t16 t73 = t20 + t21 t94 = t84 + t93 t115 = t114 + t77 c9 = t116

t11 = b[4] + b[1] t32 = a[4] ∗ b[4] t53 = t8 ∗ t12 t74 = t22 + t23 t95 = t47 + t48 t116 = t115 + t88 c10 = t120

t12 = b[5] + b[2] t33 = a[5] ∗ b[3] t54 = t9 ∗ t11 t75 = t74 + t24 t96 = t95 + t82 t117 = t64 + t65 c11 = t123

t13 = a[6] + a[0] t34 = a[6] ∗ b[6] t55 = t13 ∗ t17 t76 = t19 + t25 t97 = t49 + t50 t118 = t117 + t66 c12 = t125

t14 = a[7] + a[1] t35 = a[4] ∗ b[5] t56 = t14 ∗ t16 t77 = t26 + t27 t98 = t97 + t51 t119 = t118 + t81 c13 = t126

t15 = a[8] + a[2] t36 = a[5] ∗ b[4] t57 = t9 ∗ t12 t78 = t76 + t77 t99 = t98 + t75 t120 = t119 + t91 c14 = t93

t16 = b[6] + b[0] t37 = a[6] ∗ b[7] t58 = t13 ∗ t18 t79 = t46 + t78 t100 = t99 + t84 t121 = t67 + t68 c15 = t87

t17 = b[7] + b[1] t38 = a[7] ∗ b[6] t59 = t14 ∗ t17 t80 = t28 + t29 t101 = t52 + t53 t122 = t121 + t69 c16 = t45

t18 = b[8] + b[2] t39 = a[5] ∗ b[5] t60 = t15 ∗ t16 t81 = t80 + t30 t102 = t101 + t54 t123 = t122 + t94

t19 = a[0] ∗ b[0] t40 = a[6] ∗ b[8] t61 = t14 ∗ t18 t82 = t73 + t81 t103 = t102 + t86 t124 = t70 + t71

t20 = a[0] ∗ b[1] t41 = a[7] ∗ b[7] t62 = t15 ∗ t17 t83 = t31 + t32 t104 = t103 + t78 t125 = t124 + t88

t21 = a[1] ∗ b[0] t42 = a[8] ∗ b[6] t63 = t1 ∗ t4 t84 = t83 + t33 t105 = t55 + t56 t126 = t72 + t91

For n = 15, A =
∑14

i=0 a[i]X
i, B =

∑14
i=0 a[i]X

i and C = AB =
∑28

i=0 c[i]X
i. The coefficients of C are

computed by using the following algorithm:
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Algorithm for n = 15

t1 = a[0] ∗ b[0] t59 = a[14] ∗ b[12] t117 = t114 + t115 t175 = t174 + t173 t233 = t230 + t220 t291 = t276 + t288

t2 = a[0] ∗ b[1] t60 = t57 + t58 t118 = t117 + t116 t176 = t162 ∗ t166 t234 = t231 + t221 t292 = t277 + t289

t3 = a[1] ∗ b[0] t61 = t60 + t59 t119 = t105 ∗ t109 t177 = t163 ∗ t165 t235 = t232 + t222 t293 = t233 + t265

t4 = t2 + t3 t62 = a[13] ∗ b[14] t120 = t106 ∗ t108 t178 = t176 + t177 t236 = t226 + t218 t294 = t234 + t266

t5 = a[0] ∗ b[2] t63 = a[14] ∗ b[13] t121 = t119 + t120 t179 = t163 ∗ t166 t237 = t227 + t219 t295 = t235 + t61

t6 = a[1] ∗ b[1] t64 = t62 + t63 t122 = t106 ∗ t109 t180 = t123 + t66 t238 = t35 + t9 t296 = t284 + t293

t7 = a[2] ∗ b[0] t65 = a[14] ∗ b[14] t123 = a[12] + a[9] t181 = t124 + t67 t239 = t40 + t38 t297 = t285 + t294

t8 = t5 + t6 t66 = a[3] + a[0] t124 = a[13] + a[10] t182 = t125 + t68 t240 = t43 + t39 t298 = t286 + t295

t9 = t8 + t7 t67 = a[4] + a[1] t125 = a[14] + a[11] t183 = t126 + t69 t241 = t239 + t236 t299 = t178 + t186

t10 = a[1] ∗ b[2] t68 = a[5] + a[2] t126 = b[12] + b[9] t184 = t127 + t70 t242 = t240 + t237 t300 = t179 + t189

t11 = a[2] ∗ b[1] t69 = b[3] + b[0] t127 = b[13] + b[10] t185 = t128 + t71 t243 = t48 + t238 t301 = t296 + t299

t12 = t10 + t11 t70 = b[4] + b[1] t128 = b[14] + b[11] t186 = t180 ∗ t183 t244 = t53 + t241 t302 = t297 + t300

t13 = a[2] ∗ b[2] t71 = b[5] + b[2] t129 = t123 ∗ t126 t187 = t180 ∗ t184 t245 = t56 + t242 t303 = t298 + t194

t14 = a[3] ∗ b[3] t72 = t66 ∗ t69 t130 = t123 ∗ t127 t188 = t181 ∗ t183 t246 = t61 + t243 t304 = t1 + t244

t15 = a[3] ∗ b[4] t73 = t66 ∗ t70 t131 = t124 ∗ t126 t189 = t187 + t188 t247 = t110 + t102 t305 = t4 + t245

t16 = a[4] ∗ b[3] t74 = t67 ∗ t69 t132 = t130 + t131 t190 = t180 ∗ t185 t248 = t113 + t103 t306 = t9 + t246

t17 = t15 + t16 t75 = t73 + t74 t133 = t123 ∗ t128 t191 = t181 ∗ t184 t249 = t247 + t244 t307 = t64 + t304

t18 = a[3] ∗ b[5] t76 = t66 ∗ t71 t134 = t124 ∗ t127 t192 = t182 ∗ t183 t250 = t248 + t245 t308 = t65 + t305

t19 = a[4] ∗ b[4] t77 = t67 ∗ t70 t135 = t125 ∗ t126 t193 = t190 + t191 t251 = t118 + t246 t309 = t247 + t307

t20 = a[5] ∗ b[3] t78 = t68 ∗ t69 t136 = t133 + t134 t194 = t193 + t192 t252 = t186 + t148 t310 = t248 + t308

t21 = t18 + t19 t79 = t76 + t77 t137 = t136 + t135 t195 = t181 ∗ t185 t253 = t189 + t151 t311 = t118 + t306

t22 = t21 + t20 t80 = t79 + t78 t138 = t124 ∗ t128 t196 = t182 ∗ t184 t254 = t194 + t156 t312 = t178 + t309

t23 = a[4] ∗ b[5] t81 = t67 ∗ t71 t139 = t125 ∗ t127 t197 = t195 + t196 t255 = t252 + t205 t313 = t179 + t310

t24 = a[5] ∗ b[4] t82 = t68 ∗ t70 t140 = t125 ∗ t128 t198 = t182 ∗ t185 t256 = t253 + t208 t314 = t197 + t312

t25 = t23 + t24 t83 = t81 + t82 t141 = t138 + t139 t199 = t180 + a[6] t257 = t254 + t213 t315 = t198 + t313

t26 = a[5] ∗ b[5] t84 = t68 ∗ t71 t142 = a[9] + t85 t200 = t181 + a[7] t258 = t249 + t255 t316 = t216 + t314

t27 = a[6] ∗ b[6] t85 = a[6] + a[0] t143 = a[10] + t86 t201 = t182 + a[8] t259 = t250 + t256 t317 = t217 + t315

t28 = a[6] ∗ b[7] t86 = a[7] + a[1] t144 = a[11] + t87 t202 = t183 + b[6] t260 = t251 + t257 c0 = t1

t29 = a[7] ∗ b[6] t87 = a[8] + a[2] t145 = b[9] + t88 t203 = t184 + b[7] t261 = t53 + t51 c1 = t4

t30 = t28 + t29 t88 = b[6] + b[0] t146 = b[10] + t89 t204 = t185 + b[8] t262 = t56 + t52 c2 = t9

t31 = a[6] ∗ b[8] t89 = b[7] + b[1] t147 = b[11] + t90 t205 = t199 ∗ t202 t263 = t261 + t64 c3 = t223

t32 = a[7] ∗ b[7] t90 = b[8] + b[2] t148 = t142 ∗ t145 t206 = t199 ∗ t203 t264 = t262 + t65 c4 = t224

t33 = a[8] ∗ b[6] t91 = t85 ∗ t88 t149 = t142 ∗ t146 t207 = t200 ∗ t202 t265 = t263 + t141 c5 = t225

t34 = t31 + t32 t92 = t85 ∗ t89 t150 = t143 ∗ t145 t208 = t206 + t207 t266 = t264 + t140 c6 = t233

t35 = t34 + t33 t93 = t86 ∗ t88 t151 = t149 + t150 t209 = t199 ∗ t204 t267 = t263 + t239 c7 = t234

t36 = a[7] ∗ b[8] t94 = t92 + t93 t152 = t142 ∗ t147 t210 = t200 ∗ t203 t268 = t264 + t240 c8 = t235

t37 = a[8] ∗ b[7] t95 = t85 ∗ t90 t153 = t143 ∗ t146 t211 = t201 ∗ t202 t269 = t61 + t48 c9 = t258

t38 = t36 + t37 t96 = t86 ∗ t89 t154 = t144 ∗ t145 t212 = t209 + t210 t270 = t121 + t129 c10 = t259

t39 = a[8] ∗ b[8] t97 = t87 ∗ t88 t155 = t152 + t153 t213 = t212 + t211 t271 = t122 + t132 c11 = t260

t40 = a[9] ∗ b[9] t98 = t95 + t96 t156 = t155 + t154 t214 = t200 ∗ t204 t272 = t267 + t270 c12 = t290

t41 = a[9] ∗ b[10] t99 = t98 + t97 t157 = t143 ∗ t147 t215 = t201 ∗ t203 t273 = t268 + t271 c13 = 291

t42 = a[10] ∗ b[9] t100 = t86 ∗ t90 t158 = t144 ∗ t146 t216 = t214 + t215 t274 = t269 + t137 c14 = t292

t43 = t41 + t42 t101 = t87 ∗ t89 t159 = t157 + t158 t217 = t201 ∗ t204 t275 = t272 + t223 c15 = t301

t44 = a[9] ∗ b[11] t102 = t100 + t101 t160 = t144 ∗ t147 t218 = t12 + t1 t276 = t273 + t224 c16 = t302

t45 = a[10] ∗ b[10] t103 = t87 ∗ t90 t161 = t104 + a[3] t219 = t13 + t4 t277 = t274 + t225 c17 = t303

t46 = a[11] ∗ b[9] t104 = a[12] + a[6] t162 = t105 + a[4] t220 = t14 + t218 t278 = t159 + t167 c18 = t316

t47 = t44 + t45 t105 = a[13] + a[7] t163 = t106 + a[5] t221 = t17 + t219 t279 = t160 + t170 c19 = t317

t48 = t47 + t46 t106 = a[14] + a[8] t164 = t107 + b[3] t222 = t22 + t9 t280 = t205 + t216 c20 = t311

t49 = a[10] ∗ b[11] t107 = b[12] + b[6] t165 = t108 + b[4] t223 = t72 + t220 t281 = t208 + t217 c21 = t272

t50 = a[11] ∗ b[10] t108 = b[13] + b[7] t166 = t109 + b[5] t224 = t75 + t221 t282 = t148 + t197 c22 = t273

t51 = t49 + t50 t109 = b[14] + b[8] t167 = t161 ∗ t164 t225 = t80 + t222 t283 = t151 + t198 c23 = t274

t52 = a[11] ∗ b[11] t110 = t104 ∗ t107 t168 = t161 ∗ t165 t226 = t27 + t25 t284 = t278 + t280 c24 = t265

t53 = a[12] ∗ b[12] t111 = t104 ∗ t108 t169 = t162 ∗ t164 t227 = t30 + t26 t285 = t279 + t281 c25 = t266

t54 = a[12] ∗ b[13] t112 = t105 ∗ t107 t170 = t168 + t169 t228 = t91 + t83 t286 = t175 + t213 c26 = t61

t55 = a[13] ∗ b[12] t113 = t111 + t112 t171 = t161 ∗ t166 t229 = t94 + t84 t287 = t282 + t284 c27 = 64

t56 = t54 + t55 t114 = t104 ∗ t109 t172 = t162 ∗ t165 t230 = t228 + t226 t288 = t283 + t285 c28 = t65

t57 = a[12] ∗ b[14] t115 = t105 ∗ t108 t173 = t163 ∗ t164 t231 = t229 + t227 t289 = t156 + t286

t58 = a[13] ∗ b[13] t116 = t106 ∗ t107 t174 = t171 + t172 t232 = t99 + t35 t290 = t275 + t287
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TABLE 2: New upper bounds on M2(n), D2(n), M4(n) and D4(n) where A, B and

C present minimum number of bit operations; and D presents minimum number of bit

operations with logarithmic delay. In A, the values of n = 11, 12, 15, 16, 18, 19, 20 are

from [6] and the other values are from [3]. The algorithm names are explained in Section 5.

n
A B C D

M2(n) M2(n) D2(n) Alg. Split M4(n) D4(n) Alg. Split M2(n) D2(n) Alg. Split

2 5 5 2 1 1 25 4 9 2 5 2 1 1

3 13 13 3 1 2 55 5 9 3 13 3 1 2

4 25 25 4 1 3 97 6 9 4 25 4 1 3

5 41 41 5 1 4 151 7 9 5 41 5 1 4

6 57 57 6 2 3 201 8 10 3 57 6 2 3

7 81 81 7 1 6 283 9 9 7 81 7 1 6

8 100 100 7 2 4 339 11 15 2 100 7 2 4

9 132 126 7 3 3 424 15 14 3 126 7 3 3

10 155 155 8 2 5 513 17 16 2 155 8 2 5

11 186 186 7 8 0 616 11 10 6 186 7 8 0

12 207 207 7 8 0 677 13 15 3 207 7 8 0

13 255 255 8 8 0 841 10 9 13 255 8 8 0

14 289 289 10 2 7 941 12 10 7 289 10 2 7

15 326 317 16 7 3 1015 18 16 3 317 16 7 3

16 349 349 8 8 0 1121 16 15 4 349 8 8 0

17 413 407 10 2.1 9 1264 18 14 6 407 10 2.1 9

18 454 438 10 2 9 1322 18 14 6 438 10 2 9

19 498 498 11 2.1 10 1569 20 10 10 498 11 2.1 10

20 527 527 8 8 0 1673 20 10 10 527 8 8 0

21 602 596 11 2.1 11 1788 19 14 7 596 11 2.1 11

22 641 632 10 2 11 1970 21 14 8 632 10 2 11

23 678 676 10 2.1 12 2060 21 14 8 676 10 2.1 12

24 704 702 10 2 12 2124 21 14 8 702 10 2 12

25 800 791 18 7 5 2448 25 14 9 791 18 7 5

26 856 853 11 2 13 2512 25 14 9 853 11 2 13

27 922 912 11 3 9 2605 25 14 9 912 11 3 9

28 956 956 15 6 7 2916 27 14 10 956 15 6 7

29 1044 1020 19 2.1 15 3009 27 14 10 1020 19 2.1 15

30 1085 1053 19 2 15 3106 27 14 10 1053 19 2 15

31 1129 1119 19 2.1 16 3460 21 10 16 1119 19 2.1 16

32 1158 1156 11 2 16 3566 27 14 11 1156 11 2 16

33 1286 1274 13 2.1 17 3677 21 14 11 1274 13 2.1 17

34 1358 1335 13 2.2 18 3858 27 14 12 1335 13 2.2 18

35 1441 1393 15 6.1 9 3969 23 14 12 1393 15 6.1 9

36 1483 1429 15 6 9 4038 23 14 12 1429 15 6 9

37 1585 1559 14 2.1 19 4673 21 14 13 1559 14 2.1 19

38 1636 1616 13 2.2 20 4742 23 14 13 1616 13 2.2 20

39 1687 1680 13 6.1 10 4914 20 14 13 1680 13 6.1 10

40 1720 1718 11 2 20 5190 23 14 14 1718 11 2 20

41 1871 1858 14 2.1 21 5362 22 14 14 1858 14 2.1 21

42 1950 1929 13 2.2 22 5470 22 14 14 1929 13 2.2 22

43 2020 1996 15 6.1 11 5706 28 14 15 1996 15 6.1 11

44 2064 2037 15 6 11 5814 28 14 15 2037 15 6 11

45 2150 2116 20 7 9 5896 28 14 15 2116 20 7 9
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TABLE 2 – continued from previous page

n
A B C D

M2(n) M2(n) D2(n) Alg. Split M4(n) D4(n) Alg. Split M2(n) D2(n) Alg. Split

46 2192 2182 15 6.2 12 6286 26 14 16 2182 15 6.2 12

47 2239 2229 15 6.1 12 6368 28 14 16 2229 15 6.1 12

48 2268 2260 15 6 12 6482 26 14 16 2260 15 6 12

49 2460 2451 21 2.1 25 6988 28 14 17 2451 21 2.1 25

50 2572 2545 21 2 25 7102 28 14 17 2545 21 2 25

51 2677 2668 16 6.1 13 7253 28 14 17 2668 16 6.1 13

52 2735 2726 16 6 13 7382 28 14 18 2726 16 6 13

53 2881 2858 14 2.1 27 7533 28 14 18 2858 14 2.1 27

54 2948 2922 14 2 27 7599 28 14 18 2922 14 2 27

55 3017 3006 20 7 11 8569 30 14 19 3006 20 7 11

56 3060 3060 20 6 14 8635 30 14 19 3060 20 6 14

57 3239 3191 22 2.1 29 8890 30 14 19 3191 22 2.1 29

58 3320 3256 22 2.2 30 9099 30 14 20 3256 22 2.2 30

59 3406 3304 20 7.1 12 9354 30 14 20 3304 20 7.1 12

60 3456 3334 20 7 12 9466 30 14 20 3334 20 7 12

61 3552 3500 22 2.1 31 9862 30 14 21 3500 22 2.1 31

62 3595 3571 22 2 31 9974 30 14 21 3571 22 2 31

63 3651 3632 21 6.1 16 10097 29 14 21 3632 21 6.1 16

64 3682 3674 16 6 16 10750 31 14 22 3674 16 6 16

65 3938 3927 16 2.1 33 10873 31 14 22 3927 16 2.1 33

66 4050 4040 86 5.1 22 11063 31 14 22 4048 16 2.2 34

67 4134 4110 88 5.2 23 11281 31 14 23 4159 18 2.3 35

68 4183 4167 88 5 23 11462 31 14 24 4228 18 6 17

69 4403 4296 97 5.1 23 11569 31 14 23 4356 18 2.3 36

70 4452 4374 99 5.2 24 11775 31 14 24 4420 20 6.2 18

71 4499 4476 99 5 24 11873 31 14 24 4494 20 6.1 18

72 4642 4535 20 6 18 11945 31 14 24 4535 20 6 18

73 4828 4701 101 5.2 25 13217 35 14 25 4798 18 2.1 37

74 4864 4839 101 5 25 13289 35 14 25 4892 29 7.1 15

75 5097 4929 29 7 15 13521 35 14 26 4929 29 7 15

76 5133 5097 103 5.2 26 13593 35 14 26 5109 18 6 19

77 5239 5205 101 5 26 13925 35 14 26 5241 16 2.1 39

78 5322 5297 16 6.2 20 13997 35 14 26 5297 16 6.2 20

79 5384 5359 29 7.1 16 14345 35 14 27 5359 29 7.1 16

80 5420 5400 21 7 16 14417 35 14 27 5400 21 7 16

81 5740 5630 110 5.1 27 14518 35 14 27 5713 17 2.1 41

82 5799 5723 112 5.2 28 15709 37 14 28 5854 16 2.2 42

83 5875 5818 112 5 28 15810 37 14 28 5983 18 2.3 43

84 5996 5929 113 5.1 28 16129 37 14 29 6064 18 6 21

85 6158 6007 115 5.2 29 16230 37 14 29 6209 23 7 17

86 6202 6091 115 5 29 16549 37 14 29 6284 20 6.2 22

87 6353 6204 116 5.1 29 16650 37 14 29 6369 20 6.1 22

88 6397 6302 118 5.2 30 16985 37 14 30 6415 20 6 22

89 6495 6388 118 5 30 17086 37 14 30 6576 23 2.1 45

90 6568 6500 117 5 30 17191 37 14 30 6660 23 2 45

91 6666 6572 120 5.2 31 18550 37 14 31 6794 23 2.1 46

92 6717 6662 120 5 31 18655 37 14 31 6851 20 6 23

93 6991 6831 120 5.1 31 19017 31 14 31 6944 23 2.3 48
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TABLE 2 – continued from previous page

n
A B C D

M2(n) M2(n) D2(n) Alg. Split M4(n) D4(n) Alg. Split M2(n) D2(n) Alg. Split

94 7043 6931 122 5.2 32 19127 37 14 32 7013 18 2 47

95 7096 7073 120 5 32 19489 37 14 32 7076 20 6.1 24

96 7132 7112 20 6 24 19603 37 14 32 7112 20 6 24

97 7516 7337 121 5.2 33 19981 31 14 33 7496 21 1 96

98 7574 7503 121 5 33 20095 37 14 33 7684 24 2.2 50

99 7870 7636 124 5.1 33 20214 31 14 33 7859 26 6.1 25

100 7909 7766 126 5 34 20867 37 14 34 7934 21 7 20

101 8047 7894 126 5 34 20986 37 14 34 8230 24 2.1 51

102 8184 7979 129 5 35 21175 37 14 34 8345 24 2.2 52

103 8322 8097 129 5.2 35 21478 33 14 35 8466 23 6.1 26

104 8404 8178 129 5 35 21667 37 14 35 8538 21 6 26

105 8635 8358 129 5.1 35 21786 33 14 35 8805 19 2.1 53

106 8717 8450 131 5.2 36 21991 37 14 36 8932 19 2.2 54

107 8810 8603 131 5 36 22110 33 14 36 8998 31 4 36

108 8959 8758 131 5 36 22187 33 14 36 9040 31 4 36

109 9141 8874 133 5.2 37 24154 34 17 108 9311 23 2.1 55

128 11486 11466 21 6 32 30675 38 14 43 11466 21 6 32

135 12453 12309 163 5.1 45 31981 38 14 45 13077 23 6.1 34

136 12499 12422 165 5.2 46 33499 38 14 46 13148 23 6 34

137 12595 12522 163 5 46 33589 38 14 46 13415 21 2.1 69

163 16923 16828 194 5.2 55 43939 39 17 162 17919 24 2.3 83

189 20985 20671 218 5.1 63 53994 39 14 63 21766 25 6.3 48

191 21104 21048 218 5 64 56654 41 14 64 21919 25 6.1 48

233 29354 29156 274 5 79 74254 45 14 78 31381 43 4 78

251 33096 32604 376 5 84 84147 47 14 85 34748 29 6.1 63

256 34079 33397 383 5.2 86 87106 47 14 86 35230 26 6 64

269 36086 35656 399 5 90 90863 47 14 90 38876 45 4 90

270 36266 35832 400 5.1 90 90976 47 14 90 38966 45 4 90

271 36409 35978 402 5.2 91 95859 48 17 270 40046 46 1 270

272 36492 36127 402 5 91 96460 47 14 91 40344 28 6 68

273 37084 36400 403 5.1 91 96815 47 14 92 40747 45 4 91

274 37167 36506 405 5.2 92 96928 47 14 92 40840 45 4 92

283 38735 38432 414 5.2 95 102258 47 14 95 42468 45 4 95

407 67374 66931 581 5 136 173566 48 14 136 75581 46 4 136

408 67582 67137 583 5.1 136 173876 48 14 137 75658 46 4 136

409 67753 67284 585 5.2 137 173974 48 14 137 76219 46 4 137

571 112569 111621 870 5.2 191 291271 51 14 191 126061 49 4 191


