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Abstract. In this paper, we analyze the security of cryptosystems using
short generators over ideal lattices such as candidate multilinear maps
by Garg, Gentry and Halevi and fully homomorphic encryption by Smart
and Vercauteren. Our approach is based on a recent work by Cramer,
Ducas, Peikert and Regev on analysis of recovering a short generator of
an ideal of the q-th cyclotomic field from any generator of the ideal for
a prime power q. Unfortunately, the main result of Cramer et al. has
some flaws since they use an incorrect lower bound of the special values
of Dirichlet L-functions at 1.
Our main contribution is to correct Cramer et al.’s main result by esti-

mating explicit lower and upper bounds of the special values of Dirichlet
L-functions at 1 for any non-trivial Dirichlet characters modulo a prime
power. Moreover, we give various experimental evidence that recovering
a short generator is succeeded with high probability. As a consequence,
our analysis suggests that the security of the above cryptosystems based
on the difficulty of recovering a short generator is reduced to solving the
principal ideal problem under the number theoretical conjecture so-called
Weber’s class number problem.

Key words: Short generators, Cyclotomic fields, Log-unit lattices, Dirich-
let L-functions.

1 Introduction

In recent years, lattice-based cryptography has been paid much attention to
as a candidate of post-quantum cryptography. Ideal lattices are in a special
class of lattices corresponding to ideals in rings of the form Z[x]/(f(x)) for
some irreducible polynomial f(x), such as f(x) = xn + 1 for a 2-power integer
n > 1 (e.g. see [35] for details). In cryptography, ideal lattices have been used
as powerful tools to construct a number of efficient and secure cryptosystems,
mainly including public key encryption schemes [45, 46], hash functions [33, 37,
41] and digital signatures [32, 34]. Recently, ideal lattices have been applied to
construct encryption schemes with high functionality. In 2009, Gentry [21] first
proposed a construction of fully homomorphic encryption (FHE) using ideal
lattices. After Gentry’s breakthrough, a number of variants of Gentry’s original
FHE scheme have been proposed (in particular, variants of [22, 47] are based on



ideal lattices). In 2013, Garg, Gentry and Halevi [20] first proposed a candidate of
multilinear maps from ideal lattices, called the GGH scheme. In 2014, Langlois,
Stehlé and Steinfeld [27] improved the GGH scheme for both efficiency and
security, and their scheme is called GGHLite (see also [3] for implementation of
GGHLite).

For a 2-power integer n > 1, let K = Q(ζ2n) be the 2n-th cyclotomic field
and OK = Z[ζ2n] ≃ Z[x]/(xn +1) its ring of integers, where ζm denotes a primi-
tive m-th root of unity for an integer m > 2. In the cryptographic constructions
of [20, 27, 47], a certain ‘short’ element g ∈ OK is used as a secret key. In con-
trast, some Z-basis of the principal ideal (g), such as the Hermite normal form
HNF(g), is used as a public key (e.g. see [13, Section 4] for the definition of
HNF(g)). Therefore a part of the security of schemes of [20, 27, 47] relies on the
computational hardness of the following problem, introduced in [15, Section 1]:

Problem 1 (Short Generator of a Principal Ideal Problem, SG-PIP) Let K be
a number field and OK its ring of integers. Let g be a short element of OK .
Given a Z-basis of the principal ideal (g), the problem is to find g itself or a
sufficiently short element g′ ∈ OK satisfying (g′) = (g).

This problem can be divided into the following two problems:

– Principal Ideal Problem (PIP): Given a Z-basis of the principal ideal I = (g),
find a generator h of I.

– Short Generator Problem (SGP): Given a generator h of I, recover g itself
or a sufficiently short generator g′ of I.

1.1 Recent Progress for PIP and SGP

There are several classes of efficient algorithms for PIP over number fields of
large degree in both classical and quantum computing models [7–10, 12, 24]. In
[24], Hallgren proposed a polynomial-time quantum algorithm for PIP over num-
ber fields of small degree. Biasse and Fieker [7] first proposed a subexponential
algorithm for an arbitrary class of number fields under the generalized Riemann
hypothesis (see also [8]). For security analysis of cryptosystems of [20, 27, 47],
we focus on PIP over cyclotomic fields. For 2k-th cyclotomic fields, Campbell,
Groves and Shepherd [12] claimed that there is a polynomial-time quantum al-
gorithm for PIP, although their claim has not been proved yet. Recently, Biasse
[9] announced the same claim as Campbell et al.’s one. In a classical computing
model, Biasse [10] also presented a heuristic algorithm to solve PIP over 2k-th

cyclotomic fields in time 2N
2/3+ϵ

for N = 2k and arbitrarily small ϵ > 0.
As for SGP, Bernstein [6] first pointed out that SGP over (2k-th) cyclotomic

fields is reduced to a closest vector problem (CVP) over the log-unit lattice, which
is obtained by the logarithmic embedding. Similar attacks are also sketched by
Campbell et al. [12]. Recently, Cramer, Ducas, Peikert and Regev [15] studied
the geometry of a sublattice of a log-unit lattice, spanned by the image of the
canonical generators of the group of cyclotomic units under the logarithmic
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embedding. They claimed in [15, Theorem 3.1] that the basis of the sublattice
has good properties. They also proposed an algorithm [15, Theorem 4.1] for SGP
over 2k-th cyclotomic fields, under the assumption that Weber’s class number
problem holds true (the problem is the conjecture that the class number of
Q(ζq + ζq) is equal to 1 for any 2-power integer q > 2).

Outline of [15] Here let us review Cramer et al.’s analysis for SGP in more
detail. Given a prime power q = pk, let K = Q(ζq) be the q-th cyclotomic
field and OK = Z[ζq] its ring of integers. Consider the logarithmic embedding
Log : K× −→ Rφ(q)/2, where φ(q) = #(Z/qZ)× (see Subsection 2.2 below for
the definition of the embedding). Let O×

K denote the group of units in OK . Then
Λ := Log(O×

K) defines a lattice of rank φ(q)/2− 1, called the log-unit lattice. Set
G = (Z/qZ)×/{±1}. Let Λ′ be the sublattice of Λ spanned by the basis

B := {bj := Log((ζjq − 1)/(ζq − 1)) | j ∈ G∖ {1}}.

Cramer et al. reduced SGP over K to CVP over Λ′, and they gave a condition for
succeeding in solving CVP over Λ′. The success of their attack depends on the
size of ∥b∨

j ∥ for j ∈ G∖{1}, where b∨
j ’s are the dual basis of B in Rφ(q)/2. They

claimed in [15, Theorem 3.1] that all ∥b∨
j ∥ for j ∈ G∖ {1} are mutually equal,

and gave an upper bound of ∥b∨
j ∥ (their attack is implemented over PARI/GP

by Schank [43]).

Flaws in [15] To estimate the size of ∥b∨
j ∥ is important to analyze the success

probability of Cramer et al.’s attack for SGP. They gave a relation between the
size of ∥b∨

j ∥2 and L(1, χ) for any non-trivial even Dirichlet character χ, where
L(s, χ) denotes the Dirichlet L-function associated with χ (see Subsection 2.3 for
definitions of Dirichlet characters and Dirichlet L-functions, and see Proposition
1 in Section 5 for the relation). They gave an upper bound of ∥b∨

j ∥ up to constant
by using the incorrect lower bound

|L(1, χ)| ≫ 1

log fχ

for any non-trivial Dirichlet character χ of conductor fχ [15, Theorem 2.6] (see
Subsection 2.3 for the definition of the conductor of a Dirichlet character). How-
ever, this lower bound is valid only for non-quadratic primitive character χ at
present. As for quadratic characters, the currently known best lower bound is

|L(1, χ)| ≫ϵ
1

qϵ
, (1)

for quadratic characters χ with the implied constant depending only on any
ϵ > 0 but ineffective. We refer to Siegel’s theorem [44] (see also [16, §21]). The
possibility of existence of a Siegel zero causes the ineffectiveness of the implied
constant in (1). A Siegel zero is a special zero β ∈ (1/2, 1) of L(s, χ), which may
occur only when χ is quadratic.
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1.2 Our Contributions

Our contributions of this paper are as follows:

• Upper and Lower Bounds of L(1, χ): We give explicit upper and lower
bounds of L(1, χ) for each even Dirichlet character χ modulo a prime power
q = pk (Section 6 below). Our analysis is based on the following facts: For
each non-trivial Dirichlet character χ modulo q, we have the functional equa-
tion L(s, χ) = L(s, χ∗), where χ∗ is the primitive Dirichlet character inducing
χ. By the functional equation, an estimate of L(s, χ) is deduced to that of
L(s, χ∗). Then we use results on upper and lower bounds of L(1, χ) by [17,
29, 31, 42]. Another key point is that we give a lower bound of L(1, χ) for
any even quadratic Dirichlet character χ modulo q with the aid of the class
number formula. Moreover, our bounds are easily computable, namely we
can evaluate the size L(1, χ) for any fixed k ≥ 1 and χ.

• Theoretical Estimation of ∥b∨
j ∥: We give correct upper and lower bounds

of the size of ∥b∨
j ∥ by using our bounds of L(1, χ) (Sections 7 and 8 be-

low). Our strategy is to count the exact number of even Dirichlet characters
modulo q having any given conductor fχ, while Cramer et al. used a rough
estimate of the number of such characters. The asymptotic evaluation of our
upper bounds of ∥b∨

j ∥ has the same order as Cramer et al.’s one, in other
words, we first give a correct proof of their result. In particular, we have
∥b∨

j ∥ → 0 as k → ∞ for any prime number p and q = pk. Different from
Cramer et al.’s evaluation, our bounds of ∥b∨

j ∥ are explicit for any fixed k.
Specifically, our bounds imply that the success probability of their attack
becomes much higher for q = 2k with k ≥ 11.

• Experimental Verification: By experiments, we verify the effectiveness of
Cramer et al.’s attack against cryptosystems of [20, 27, 47] for q = 2k and
6 ≤ k ≤ 10 (Section 9 below). In particular, Cramer et al.’s attack can
recover the secret key g with about 50 % (resp. 85 % and 100 %) probability
when k = 6 (resp. k = 8 and k = 10). Our experiments also show that
the success probability of their attack is independent of the distributions for
generating keys in cryptosystems of [20, 27, 47] (e.g. uniformly random and
discrete Gaussian distributions).

Recall that the security of cryptosystems of [20, 27, 47] is based on the dif-
ficulty of Problem 1 (SG-PIP), which can be divided into two problems PIP
and SGP. By combining our theoretical and experimental results, we expect
that SGP over 2k-th cyclotomic fields in cryptosystems of [20, 27, 47] could be
solved by Cramer et al.’s attack if k ≥ 10, under the assumption that Weber’s
class number problem holds true. Note that k ≥ 10 is required for high secu-
rity (e.g. 80-bit security) of these cryptosystems. Thereby, the security of these
cryptosystems relies only on the difficulty of PIP.

2 Mathematical Background

In this section, we review mathematical notation for our later discussion. Let N,
Z, R, and C be the set of positive integers, the ring of integers, the field of real
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numbers, and the field of complex numbers, respectively. We denote by ⟨·, ·⟩ and
∥ · ∥ the natural inner product and the Euclidean norm on Cn, respectively. We
also denote column vectors by lower-case bold letters (e.g. b) and matrices by
upper-case bold letters (e.g. B). The symbol #S stands for the cardinality of a
set S. For non-negative functions f and g on a set X, we write f(x)≪ g(x) (or
f(x) = O(g(x))) if there exists a constant C > 0 such that f(x) ≤ Cg(x) for all
x ∈ X. For ϵ > 0, we write f(x)≪ϵ g(x) if the implied constant depends on ϵ.

2.1 Lattices and CVP

A lattice L is a discrete additive subgroup of a finite dimensional R-vector space
Rn for some n ∈ N. The rank of L is defined as dimR L ⊗Z R. Given any lattice
L ⊂ Rn of rank m ≤ n, there exists a set of R-linearly independent vectors
B = {b1, . . . ,bm} such that L = L(B) :=

∑
1≤i≤m Zbi. We identify B as an

n × m-matrix, and the matrix is called a basis of L. For any lattice L with
basis B = {b1, . . . ,bm}, there exists a set of R-linearly independent vectors
B∨ = {b∨

1 , . . . ,b
∨
m} ⊂ span(B) :=

∑
1≤i≤m Rbi such that ⟨bi,b

∨
j ⟩ = δij , where

δij is the Kronecker delta given by δij = 1 (resp. δij = 0) if i = j (resp.

otherwise). In other words, Bt ·B∨ = (B∨)
t ·B is equal to the identity matrix.

Then L∨ := L(B∨) defines a lattice, called the dual lattice of L with the dual
basis B∨ of B.

Given a lattice L ⊂ Rn with basis B and a target vector t ∈ Rn ∖ L, the
closest vector problem (CVP) is to find a lattice vector v ∈ L closest to t. An
efficient approach for CVP is the round-off algorithm proposed by Babai [4]. The
round-off algorithm for B and t outputs B · ⌊(B∨)

t · t⌉ ∈ L, where the rounding
function ⌊c⌉ := ⌊c + 1

2⌋ is applied to each entry of (B∨)
t · t independently.

The following lemma suggests a condition for solving CVP by Babai’s round-off
algorithm.

Lemma 1. ([15, Claim 2.1]) Let L ⊂ Rn be a lattice with basis B. Let t = v+e
with v ∈ L and e ∈ Rn. If ⟨b∨

j , e⟩ ∈
[
−1

2 ,
1
2

)
for all b∨

j ∈ B∨, then v can be
recovered by Babai’s round-off algorithm for B and t.

This lemma is a key for solving SGP by Cramer et al.’s attack (see Section 4).

2.2 Log-Unit Lattice and Cyclotomic Units

For an integer q > 2, let ζq ∈ C be a primitive q-th root of unity. Then the field
K = Q(ζq) is called the q-th cyclotomic field. The field K is a Galois extension of
Q of degree [K : Q] = φ(q), where φ denotes the Euler totient function defined
by φ(n) = #(Z/nZ)× for n ∈ N. Then OK = Z[ζq] is the ring of integers of K.
For any σ ∈ Gal(K/Q), we have σ(ζq) = ζjq for some j ∈ Z with gcd(j, q) = 1
since σ(ζq) is also a primitive root of unity. In other words, we have

Gal(K/Q) = {σj | j ∈ (Z/qZ)×} ∼= (Z/qZ)×
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with σj(ζq) = ζjq . Set G := (Z/qZ)× /{±1}. From now on we fix an enumeration
G ∼= {1, · · · , φ(q)/2} and define the logarithmic embedding of K× by

Log : K× −→ Rφ(q)/2, a 7→ (log |σj(a)|)j∈G .

We have Log(a · b) = Log(a) + Log(b) for any a, b ∈ K×. Let O×
K denotes

the group of units in OK . By the Dirichlet Unit Theorem (e.g. see [40]), Λ :=

Log(O×
K) gives a lattice of rank φ(q)

2 − 1, and the kernel of Log|O×
K

is µ(K),

where µ(K) denotes the group of all roots of unity in K. The lattice Λ is called
the log-unit lattice of K. It is easy to see that all vectors in Λ are orthogonal
to 1 := (1, 1, . . . , 1) ∈ Rφ(q)/2 since NK/Q(ϵ) =

∏
j∈(Z/qZ)× σj(ϵ) = ±1 for any

ϵ ∈ O×
K , where NK/Q denotes the norm map from K× to Q×.

Let A be the multiplicative subgroup ofK× generated by ±ζq and zj := ζjq−1
for j ∈ G. We have Log(zj) = Log(z−j) since zj = −ζjqz−j , that is, zj ≡ z−j

(mod µ(K)). The group of cyclotomic units C is defined as

C := A ∩O×
K .

In general, it may not be easy to compute generators of C. However, when q = pk

for some prime number p, generators of C are obtained by the following lemma:

Lemma 2. ([49, Lemma 8.1]) Let q = pk be a prime power and C the group of
cyclotomic units of q-th cyclotomic field. Set G := (Z/qZ)× /{±1}, zj := ζjq − 1
and bj := zj/z1 for j ∈ G∖ {1}. Then the group C is generated by ±ζq and the
bj ’s for j ∈ G∖ {1}.

We call the bj ’s for j ∈ G∖{1} the canonical generators of C. Note that Log(C)
is a sublattice of Λ of finite index. More precisely, we have [Λ : Log(C)] = h+(q)
for a prime power q, where h+(q) is the class number of K+ := Q(ζq + ζq) (see
[49, Exercise 8.5] for details).

2.3 Dirichlet Characters and Dirichlet L-functions

Let G be a finite abelian group. The character group of G, denoted by Ĝ, is the
set of group homomorphisms from G to C×. It is easy to see that Ĝ becomes a
group with the pointwise product. There is a non-canonical group isomorphism
between G and Ĝ, and hence #G = #Ĝ.

Let us introduce Dirichlet characters and Dirichlet L-functions (e.g. see [16]).

For q ∈ N, we consider the group (Z/qZ)×. An element χ ∈ ̂(Z/qZ)× is called
a Dirichlet character (or character) modulo q. The character χ is naturally
extended to a multiplicative function χ̃ on N by

χ̃(n) =

{
χ(n mod q) (gcd(n, q) = 1),

0 (gcd(n, q) > 1).
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We denote the extended function χ̃ by χ for simplicity. The conductor fχ of χ is
defined as the minimal positive divisor d of q such that χ factors through some
Dirichlet character χ′ modulo d, that is, we have

χ : (Z/qZ)× ↠ (Z/dZ)× χ′

−→ C×.

We denote by χ∗ the Dirichlet character modulo fχ inducing χ. We call χ prim-
itive if fχ is exactly equal to q. Notice that χ∗ is primitive. The character χ
is called even (resp. odd) if χ(−1) = 1 (resp. χ(−1) = −1), and χ is called
quadratic if χ2 is trivial but χ is non-trivial.

Let L(s, χ) denote the Dirichlet L-function associated with χ, defined by

L(s, χ) =
∞∑

n=1

χ(n)

ns
(Re(s) > 1).

The defining series converges absolutely on the region Re(s) > 1. If χ is non-
trivial, the series L(s, χ) converges on the region Re(s) > 0. It is well-known that
L(s, χ) has a meromorphic continuation to the whole plane C, its only possible
pole s = 1 is simple and occurs only when χ is trivial. We have the relation

L(s, χ) = {
∏
p|q
p∤fχ

(1− χ∗(p)p−s)}L(s, χ∗) (2)

for non-trivial character χ, where p runs over all prime divisors of q such that
p ∤ fχ.

3 Cryptosystems Using Short Generators

As mentioned in Section 1, the security of some cryptosystems [20, 27, 47] relies
on the computational hardness of finding a short generator of a principal ideal
of a number field from a Z-basis of the ideal. This problem is called the Short
Generator of a Principal Ideal Problem (SG-PIP). In this section, we briefly give
a relation between these cryptosystems and SG-PIP. These cryptosystems are
constructed over the ring R = Z[x]/(xn + 1) for give a degree parameter n of
2-power.

3.1 Smart-Vercauteren FHE Scheme

We explain the somewhat homomorphic encryption (SHE) proposed by Smart
and Vercautern [47], which is integrated to the fully homomorphic encryption
(FHE) using the bootstrapping. The key generation of the SHE scheme over R
is as follows:

1. Given a parameter η > 0, choose a random polynomial G(x) =
∑n−1

i=0 gix
i ∈

Z[x], such that ∥G(x)∥∞ := maxi |gi| is η-bit, G(x) ≡ 1 (mod 2), and p =
det(Rot(G(x))) is prime, where Rot(G(x)) denotes the rotation matrix.
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2. Compute D(x) = gcd(G(x), xn + 1) over Fp[x], and take the unique root
α ∈ Fp of D(x).

3. Apply the XGCD-algorithm over Q[x] to obtain Z(x) =
∑n−1

i=0 zix
i ∈ Z[x]

satisfying Z(x) · G(x) ≡ p (mod xn + 1). Set B = z0 (mod 2). Then the
public key is pk = (p, α), and the secret key is sk = (p,B).

The ideal p = (p, x − α) of R is constructed from pk, and its Hermite normal
form (HNF) is given by 

p −α · · · −αn−1

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

By the construction, p is a principal ideal generated by G(x) ∈ R. As mentioned
in [47], sk can be recovered from the inverse of a small generator of p (since
η ≪ p). Hence, recovering sk from pk is an instance of SG-PIP.

3.2 GGH and GGHLite Schemes

We explain the miltilinear map (GGH scheme) proposed by Garg et al. [20] and
its improved version called GGHLite [27]. Let DZ,σ denote the discrete Gaussian
distribution over Z with standard deviation σ > 0. In the GGH scheme, a secret
short element g =

∑n−1
i=0 gix

i ∈ R is randomly chosen with gi ← DZ,σ for
0 ≤ i ≤ n − 1 such that ∥g−1∥ ≤ n2 and I = (g) is a prime ideal in R,
where g−1 ∈ R ⊗Z Q ≃ Q(ζ2n) and ∥g−1∥ is its Euclidean norm. The condition
∥g∥ ≤

√
n·σ is additionally required for the construction of the GGHLite scheme

[27]. Moreover, given a modulus parameter q > 0, a secret element z is randomly
sampled from Rq = R/qR. In both the GGH and the GGHLite schemes, the pair
(g, z) gives a secret key.

The zeroizing attack, which was first introduced in [20] tries to recover a basis
B of the ideal I = (g) from given public parameters such as several encoding
of zero and one (See [13, Section 5.1] for details). Therefore, recovering g or a
short element g′ from the basis B is an instance of SG-PIP (as mentioned in [13,
Section 5.3], recovering g′ ∈ R with ∥g′∥ < q3/8/(2n)4 is sufficient to attack the
GGH scheme).

4 Overview of Cramer et al.’s Attack for SGP

In this section, we briefly review Cramer et al.’s attack for SGP (defined in
Section 1) and give some remarks on their attack.

4.1 Attack Algorithm

For a prime power q = pk, we use the same notation such as G = (Z/qZ)×/{±1},
the log-unit lattice Λ and the group of cyclotomic units C of the q-th cyclo-
tomic field K = Q(ζq) described in Subsection 2.2. For the canonical generator
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{bj}j∈G∖{1} of C, set

bj := Log(bj) ∈ Log(C) (3)

for j ∈ G ∖ {1}. Note that {bj}j∈G∖{1} is a basis of Log(C) by Lemma 2.
Let g ∈ OK be a short element as in Problem 1. Given a generator h of the
principal ideal I = (g), SGP is to find g itself or a sufficiently short generator
of I. Since both g and h are generators of I, we have h = ug for some u ∈ O×

K ,
and Log(h) = Log(g)+Log(u) with Log(u) ∈ Λ = Log(O×

K). In order to recover
Log(u) from Log(h), Cramer et al.’s attack aims to represent

Log(u) =
∑

j∈G∖{1}

ajbj for some aj ∈ Z (4)

by using the basis {bj}j∈G∖{1} of Log(C).
For the representation (4), Cramer et al. first assume that the Log(C) is

exactly equal to the log-unit lattice Λ:

Assumption 1 We assume Log(C) = Λ.

Moreover, Cramer et al.’s attack algorithm assumes the following (see [15,
Theorem 4.1] for details):

Assumption 2 There is a probabilistic distribution D over K satisfying the
following condition: For any unit vectors v1, . . . ,vφ(q)/2−1 ∈ Rφ(q)/2 satisfying

⟨vi,1⟩ = 0, we have |⟨Log(g),vi⟩| < dq1/2(log q)−3/2 for all i with probability at
least α > 0, where g is chosen from D and d is a universal constant.

Under Assumptions 1 and 2, Cramer et al’s attack algorithm for SGP is as
follows (see [15, Theorem 4.1] for details):

Algorithm 1

Input : h = ug (g ← D, u← C)

Output : g′ = ug/u′ for some u′ ∈ C or “false”

1. Apply Babai’s round-off algorithm to B := {bj}j∈G∖{1} and t := Log(h) =

Log(u) + Log(g). Let v ∈ Rφ(q)/2 be its output (i.e. v = B · ⌊(B∨)
t · t⌉).

2. Compute integers aj ∈ Z for j ∈ G ∖ {1} such that v =
∑

j∈G∖{1} ajbj . If
there are no such integers aj , then return “false”.

3. Compute u′ :=
∏

j∈G∖{1} b
aj

j ∈ C and output g′ = ug/u′.

Cramer et al. claimed in [15, Theorem 4.1] that the above algorithm outputs
g′ = ±ζjq · g for some 0 ≤ j < q with probability at least α, under Assumptions
1 and 2.

Note that Assumption 2 comes from the result [15, Theorem 3.1]. More specif-
ically, if the result [15, Theorem 3.1] is correct (we will point out a flaw in Section
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5), then there is a constant d′ such that ∥b∨
j ∥ ≤ d′q−1/2(log q)3/2. Thus, if the

universal constant d satisfies d ≤ 1
2d′ , then we have

α ≤ Pr
[
|⟨Log(g),b∨

i /∥b∨
i ∥⟩| < dq1/2(log q)−2/3

]
= Pr

[
|⟨Log(g),b∨

i ⟩| < dq1/2(log q)−2/3∥b∨
i ∥ ≤

1

2

]
.

This implies that the success probability, that is Pr
[
|⟨Log(g),b∨

i ⟩| < 1
2 ,∀j

]
, is

at least α for the distribution D satisfying Assumption 2.

Remark 1. Since [Λ : Log(C)] = h+(q), Assumption 1 is related to mathematical
problems on h+(q). In particular, when q is 2-power, Assumption 1 is equivalent
to Weber’s class number problem (i.e. h+(q) = 1 for all 2-power q). In Appendix
A below, we will give several results related to Weber’s class number problem.

4.2 Some Remarks

In the first step of Algorithm 1, we are able to compute v = Log(u) by Lemma
1 if the condition⟨

Log(g),b∨
j

⟩
∈
[
−1

2
,
1

2

)
for all j ∈ G∖ {1} (5)

is satisfied. In this case, we have u′ ∈ C satisfying Log(u′) = Log(u) in the
second step of Algorithm 1. This implies that u′ has the form ±ζjq · u for some j
since the kernel of Log|O×

K
is equal to µ(K). In other words, under condition (5),

Algorithm 1 outputs our desired element g′ = ±ζjq ·g (note that we can recover g

from g′ by exhaustive search of the elements ±ζjq ’s, whose computational cost is
negligible). From Cauchy-Schwarz’s inequality |⟨Log(g),b∨

j ⟩| ≤ ∥Log(g)∥ · ∥b∨
j ∥,

the success of the attack deeply depends on the size of ∥b∨
j ∥, which will be

estimated in Section 7 below.

5 Detailed Description of Flaws in [15]

In this section, we describe two flaws in attack on SGP [15] in more detail.

Flaw 1 ([15, Theorem 2.6]) For any Dirichlet character χmodulo q of conductor
fχ > 1, we have

1

log fχ
≪ |L(1, χ)| ≪ log fχ. (6)

Cramer et al. mistakenly cited the upper and lower bounds of L(1, χ) from [26].
First, the estimate as above is valid only when χ is a non-quadratic primitive
character. We state more detail as follows. The upper bound should be replaced
with |L(1, χ)| ≪ log q for any non-trivial Dirichlet character (e.g. [16, (13) in
p.96]). As for lower bounds, we need to consider the influence of a possible real
zero of L(s, χ) near to 1.

10



Theorem 1. ([16, p.93])

(1) There exists a constant C > 0 such that for any non-trivial Dirichlet charac-
ter χ modulo q, L(s, χ) does not vanish if s = σ + it (σ, t ∈ R) is contained
in the region

σ > 1− C

log{q(1 + |t|)}

except for at most one real β = βχ ∈ (1− C
log{q(1+|t|)} , 1). We call the region

a zero-free region of L(s, χ).
(2) The exceptional real zero β does not occur when χ is not quadratic. Such a

possible β for L(s, χ) is called a Siegel zero (cf. [39, Chapter 2]).

Siegel zeros are not on the vertical strip Re(s) = 1/2 contrary to the general-
ized Riemann hypothesis. The Siegel zero of L(s, χ) are related to lower bounds
of L(1, χ) as follows.

Theorem 2. ([26]) For any non-trivial Dirichlet character χ modulo q, we have

|L(1, χ)| ≫ 1

log q

unless L(s, χ) has a Siegel zero. Here the implied constant is independent of χ
and q. In particular, the inequality as above holds if χ is not quadratic.

Existence of Siegel zeros is a deep problem in number theory as it influences a
distribution of zeros of L(s, χ) and lower bounds of L(1, χ). We have not reached
the non-existence of Siegel zeros for Dirichlet L-functions yet. As for quadratic
characters, the best lower bound of L(1, χ) for quadratic characters χ is currently
known as Siegel’s theorem [44]. We refer to [16, Chapter 21] and [39, Chapter
2].

Theorem 3. (Siegel’s theorem [44]) For any ϵ > 0, there exists an ineffective
constant Cϵ > 0 such that the inequality

L(1, χ) ≥ Cϵ

qϵ

holds for any primitive quadratic character χ modulo q. Here recall that L(1, χ) >
0 if χ is quadratic.

The primitivity of χ in Siegel’s theorem can be easily dropped out by

L(1, χ) ≥ {
∏
p|q

(1− p−1)}L(1, χ∗)≫ϵ
1

qϵ
L(1, χ∗).

We remark that the constant Cϵ is ineffective since it may depend on a possible
Siegel zero of β ∈ (1− ϵ, 1).

Siegel’s theorem can be applied to the following two number theoretical prob-
lems. First, the class number hK of an imaginary quadratic field K goes to infin-
ity as the absolute value dK of the discriminant of K/Q tends to infinity. Second,

11



the asymptotics hK ∼ 1
2

√
dK holds as dK →∞ keeping K imaginary quadratic.

It is a spacial case of the Brauer-Siegel theorem (cf. [30]). By this asymptotics,
there exist finitely many imaginary quadratic fields K such that hK = n for any
given n ∈ N.

Later, an effective version of Siegel’s theorem was given by Tatuzawa [48]
with the implied constant effective for any quadratic character χ except for
at most one ineffective quadratic character. Although Tatuzawa’s theorem was
made explicit by [30] except for one quadratic character, the exceptional one is
still ineffective.

Flaw 1 leads the following flaw:

Flaw 2 ([15, Theorem 3.1]) For a prime power q = pk set G = (Z/qZ)×/{±1}.
Let bj for j ∈ G be the vector as in (3) and let {b∨

j }j∈G∖{1} be the dual basis
of {bj}j∈G∖{1}. Then, we have ||b∨

i || = ||b∨
j || for all i, j and

||b∨
j ||2 ≤ 2k(#G)−1(c log fχ)

2 = O(q−1(log q)3), (7)

where c is the implied constant in Flaw 1.

This upper bound of ||b∨
i ||2 is based on the equalities [15, Lemma 3.2 and Corol-

lary 3.4] and the lower bound of L(1, χ) for χ ∈ Ĝ in Flaw 1.
In Sections 6 and 7, we correct Flaws 1 and 2. As a consequence, this correc-

tion guarantees [15, Theorem 4.1].

6 Upper and Lower Bounds of L(1, χ); correction of Flaw
1

Let q = pk be a prime power and set G = (Z/qZ)×/{±1}. Then Ĝ is identified
with the group of all even Dirichlet characters modulo q. Set

E(q) :=
1

#G

∑
χ∈Ĝ∖{1}

4

fχ|L(1, χ)|2
. (8)

Proposition 1. ([15, Lemma 3.2 and Corollary 3.4]) We have

||b∨
j ||2 = E(q).

In particular, ||b∨
j || is independent of j ∈ G∖ {1}.

In this section, by using explicit estimates of L(1, χ) (Propositions 2, 3 and
4), we give explicitly computable estimates of E(q), avoiding the use of Siegel’s
theorem (Theorem 3). Our estimates correct Flaw 1 and are better than the
estimate (7) in Flaw 2. From our result, we can easily compute upper and lower
bounds of E(q) for the very short time. Experimental results will be shown in
Sections 8.1.
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6.1 Explicit Lower Bound of L(1, χ)

We give explicit lower bounds of L(1, χ) for any non-trivial even Dirichlet char-
acters χ modulo q = pk. The evenness of χ is needed for attacks for SGP. First
we show propositions for the case p = 2 and then two propositions for the case
of p ≡ 3 (mod 4) and p ≡ 1 (mod 4).

Proposition 2 (Case p = 2). Let q = 2k with k ≥ 3. Let χ be a non-trivial
character modulo q. If χ is not quadratic, we have

|L(1, χ)| ≥ 1

10 log(fχ/π)
.

If χ is even and quadratic, we have

L(1, χ) =
log(1 +

√
2)√

2
.

Proof. As q is a prime power, we have L(s, χ) = L(s, χ∗) by (2). Thus we may
assume that χ is primitive. Then, the first assertion is obvious from [31, Corollary
2]. The second assertion is also obvious since χ is the unique even quadratic
character with fχ = 8. □

For any odd prime number p, let χp be the primitive quadratic character
modulo p. Then, there exists a unique quadratic character modulo pk. Further-
more such a unique quadratic character is induced by χp. Notice that χp is even
if and only if p ≡ 1 (mod 4).

Proposition 3 (Case p ≡ 3 (mod 4)). Let p be a prime number such that
p ≡ 3 (mod 4) and let q = pk with k ≥ 1. Then, for any non-trivial even
character χ modulo q, we have

|L(1, χ)| ≥ 1

10 log(fχ/π)
.

Proof. We note L(s, χ) = L(s, χ∗) by (2). Since the unique quadratic character
modulo pk is odd, we obtain the assertion by [31, Corollary 2]. □

Proposition 4 (Case p ≡ 1 (mod 4)). Let p be a prime number such that
p ≡ 1 (mod 4) and let q = pk with k ≥ 1. Let χ be a non-trivial character
modulo q. If χ is not quadratic, we have

|L(1, χ)| ≥ 1

10 log(fχ/π)
.

In particular, the esimtate above holds for any quadratic χ if kχ ≥ m(p) with

m(p) =
1

log p

(
1

10L(1, χp)
+ log π

)
,
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where kχ is the number such that fχ = pkχ .
Furthermore, we have

L(1, χp) ≥
2
√
p
log

(√
p− 4 +

√
p

2

)
.

Proof. As we see L(s, χ) = L(s, χ∗) by (2), the assertion is obvious from [31,
Corollary 2] in the case where χ is not quadratic.

Consider the case χ = χp. Let hp and ϵp be the class number and the fun-

damental unit of Q(
√
p), respectively. By hp ≥ 1, ϵp ≥

√
p−4+

√
p

2 and the class
number formula for Q(

√
p), we have the trivial lower bound

L(1, χp) =
22 hp log ϵp

2
√
p

≥ 2
√
p
log

(√
p− 4 +

√
p

2

)
.

This completes the proof. □

The second assertion of Proposition 4 is not conditional if m(p) ≤ 1. Here is
a table of L(1, χp) and m(p) for p ≤ 100.

p L(1, χp) m(p)

5 2√
5
log( 1+

√
5

2 ) 0.856

13 2√
13

log( 3+
√
13

2 ) 0.505

17 2√
17

log(4 +
√
17) 0.439

29 2√
29

log( 5+
√
29

2 ) 0.388

37 2√
37

log(6 +
√
37) 0.351

41 2√
41

log(32 + 5
√
41) 0.329

53 2√
53

log( 7+
√
53

2 ) 0.335

61 2√
61

log( 39+5
√
61

2 ) 0.304

73 2√
73

log(1068 + 125
√
73) 0.280

89 2√
89

log(500 + 53
√
89) 0.270

97 2√
97

log(5604 + 569
√
97) 0.262

We can generally calculate the value L(1, χp) with the aid of the expression

L(1, χp) =
−1
√
p

p−1∑
a=1

χp(a) log
(
2 sin

πa

p

)
if we determine all values of χp (cf. [16, p.9, (9)]).

6.2 Explicit Upper Bound of L(1, χ) (Flaw 1)

We have explicit upper bounds of L(1, χ) for non-trivial even Dirichlet characters
χ. On the contrary to the lower bound, we can state the proposition for any prime
power as follows.
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Proposition 5. Let χ be a non-trivial even Dirichlet character modulo a prime
power q = pk. When p = 2 and k ≥ 3, we have

|L(1, χ)| ≤ log fχ + 2 log 2

4
.

When p = 3, we have

|L(1, χ)| ≤


1

2
log fχ (kχ = 2),

log fχ + 1.104888

3
(kχ ≥ 3),

where kχ is the number such that fχ = pkχ . When p ≥ 5, we have

|L(1, χ)| ≤ 1

2
log fχ.

Proof. As we see L(s, χ) = L(s, χ∗) by (2), the assertion for p = 2 follows from
[42, Corollary 3] or [29, Corollary 1.2]. The assertion for p = 3 is given by
[42, Corollary 1] and [17, Theorem 1.1]. Remark that (log 3m)/3 + 0.368296 ≤
(log 3m)/2 if and only if m ≤ 2. For p ≥ 5, use [42, Corollary 1]. □

6.3 Summary of this section

Our contribution of this section is to prove correct upper and lower bounds of
L(1, χ) for any non-trivial even Dirichlet characters χ, as in Propositions 2, 3,
4 and 5. Moreover, we remark that our upper and lower bounds of L(1, χ) are
computable. As for lower bounds, we give the trivial lower bound of L(1, χ)
for quadratic Dirichlet characters χ because of the ineffectiveness of Siegel’s
theorem. The upper and lower bounds of L(1, χ) as above will be used in Section
7.

7 Theoretical Estimation of ∥b∨
j ∥; correction of Flaw 2

For any prime number p and k ∈ N, set q = pk and G = (Z/qZ)×/{±1}. In
this section we give theoretical upper and lower bounds of ||b∨

j ||2 = E(q) (see
Proposition 1). In order to divide the sum E(q) in terms of the conductor fχ,
we count the number of even Dirichlet characters of conductor pj .

In the case p = 2, since any element of (Z/2kZ)× can be expressed uniquely as
5a(−1)b with a ∈ Z/2k−2Z and b ∈ Z/2Z, we have the isomorphism (Z/2kZ)× ∼=
(Z/2k−2Z)×Z/2Z for k ≥ 3. In the group (Z/2kZ)×, the elements 5 and −1 are
of order 2k−2 and 2, respectively.

Lemma 3 (Case p = 2). For any k ≥ 3, the number of characters of Z/2k−2Z
of order 2j is equal to φ(2j) for 1 ≤ j ≤ k − 2. The conductor of any even
Dirichlet character modulo 2k of order 2j is equal to 2j+2 for 1 ≤ j ≤ k − 2.
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Proof. Let ψ be a character of Z/2k−2Z of order 2j . Then ψ induces the iso-
morphism (Z/2k−2Z)/Ker(ψ) ∼= Im(ψ). The kernel of ψ depends only on j but
not on ψ since a cyclic group is at most one subgroup with index m for a given
m ∈ N. From this, noting that the number of injections of Z/2jZ into C× is
φ(2j), the number of characters of Z/2k−2Z of order 2j is also equal to φ(2j).

Let χ be an even Dirichlet character of modulo 2k of order 2j . Then, we have
the isomorphism (Z/2kZ)×/Ker(χ) ∼= Im(χ) ∼= Z/2jZ, and hence χ is induced
from a primitive even Dirichlet character of (Z/2j+2Z)× ∼= Z/2jZ× Z/2Z. This
completes the proof. □

In the case where p is odd, we have the following.

Lemma 4 (Case p ̸= 2). Let p be an odd prime number. Let k ∈ N and j
be integers such that 0 ≤ j ≤ k − 1 and let d be a positive divisor of p − 1.
Then, the number of Dirichlet characters modulo pk of order dpj is φ(dpj). The
conductor of any Dirichlet character modulo pk of order dpj is equal to pj+1,
unless (j, d) = (0, 1).

In particular, for j ≥ 1, the number of even Dirichlet characters modulo pk

of conductor pj+1 is equal to p−1
2 φ(pj). The number of even Dirichlet characters

modulo pk of conductor p is equal to (p− 3)/2.

Proof. Note (Z/pkZ)× ∼= Z/(p − 1)Z × Z/pk−1Z and G ∼= Z/p−1
2 Z × Z/pk−1Z.

Since (Z/pkZ)× is cyclic, the first assertion is proved in the same way as in
Lemma 3. As for the second assertion for j > 0, the number of even Dirich-
let characters modulo pk of conductor pj is equal to

∑
d|(p−1)/2 φ(d)φ(p

j) =
p−1
2 φ(pj). Here we use

∑
d|n φ(d) = n for any n ∈ N. As the case j = 0 is proved

in a similar fashion, we are done. □

Explicit upper bounds of E(q) are given as follows.

Theorem 4. 1. When p = 2, we have

E(q) ≤ 400

2k+1

[
k(k + 1)(2k + 1)− 84

6
(log 2)2 − (log 2)(log π){k(k + 1)− 12}

+ (log π)2(k − 3)

]
+

1

2k−2{log(1 +
√
2)}2

.

2. When p ≡ 3 (mod 4), we have

E(q) ≤ 400(p− 1)

pk+1

[
k(k + 1)(2k + 1)− 6

6
(log p)2

− {k(k + 1)− 2}(log p)(log π) + (k − 1)(log π)2
]

+
400(p− 3)

(p− 1)pk
{log(p/π)}2.
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3. When p ≡ 1 (mod 4), we have

E(q) ≤ 400(p− 1)

pk+1

[
k(k + 1)(2k + 1)− 6

6
(log p)2

− {k(k + 1)− 2}(log p)(log π) + (k − 1)(log π)2
]

+
400(p− 5)

(p− 1)pk
{log(p/π)}2 + 8

(p− 1)pkL(1, χp)2
.

and the following computable estimate

E(q) ≤ 400(p− 1)

pk+1

[
k(k + 1)(2k + 1)− 6

6
(log p)2

− {k(k + 1)− 2}(log p)(log π) + (k − 1)(log π)2
]

+
400(p− 5)

(p− 1)pk
{log(p/π)}2 + 2p

(p− 1)pk
1

{log(
√
p−4+

√
p

2 )}2
.

Proof. When p = 2 and k ≥ 3, we have

E(q) ≤ 1

2k−2

 ∑
χ∈Ĝ−{1},χ2 ̸=1

4

fχ|L(1, χ)|2
+

4

8 { 1√
2
log(1 +

√
2)}2

 .

Combining this with Lemma 3, the right-hand side is majorized by

1

2k−2

k−2∑
j=2

φ(2j)× 4

2j+2|L(1, χ)|2
+

1

2k−2
× 4

8 { 1√
2
log(1 +

√
2)}2

,

which is evaluated as

400

2k+1

k−2∑
j=2

{log(2j+2/π)}2 + 1

2k−2{log(1 +
√
2)}2

by Proposition 2. This completes the proof for p = 2.
The second, third and the fourth inequalities are proved in the same way as in

the case of p = 2, using Propositions 3, 4 and Lemma 4 in place of Proposition
2 and Lemma 3; we note that there is no even quadratic Dirichlet character
modulo pk when p ≡ 3 (mod 4). □

Explicit lower bounds of E(q) are given as follows.

Theorem 5. Let p be a prime number and q = pk with k ∈ N. When p = 2 with
k ≥ 3, we have

E(q) ≥ 8

2k−2(log 2)2

k−2∑
j=1

1

(j + 4)2
.
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When p = 3, we have

E(q) ≥ 8

3k−1

k∑
j=3

1

(j log 3 + 1.104888)2
+

8

3k+1(log 3)2
.

When p ≥ 5, we have

E(q) ≥ 16

pk(log p)2

p− 1

p

k∑
j=2

1

j2
+
p− 3

p− 1

 .

Proof. Consider the case p = 2. By Lemma 3 and Proposition 5, we have

E(q) ≥ 1

2k−2

k−2∑
j=1

φ(2j)× 16

2j+2(log(2j+2) + 2 log 2)2
,

and hence the assertion for p = 2 follows. We obtain the assertions for odd p in
a similar fashion by virtue of Proposition 5 and Lemma 4. □

The explicit estimate in Flaw 2 was no longer justified in [15]. However,
our explicit estimates in Theorems 4 and 5 justifies the estimate ||b∨

j ||2 =

O(q−1(log q)3) in Flaw 2 by the following corollary.

Corollary 1. Let q = pk be a prime power. Then, we have

1

q(log p)2
≪ E(q)≪ k(log q)2

q
,

where the implied constant is effective and independent of p and k.

Remark 2. Note that the implied constant in the upper bound as above is effec-
tive. By Corollary 1, we see that E(q)→ 0 as k →∞ for any prime number p. It
suggests that the success condition of Algorithm 1 tends to hold as k is larger.

8 Table and Figure of ∥b∨
j ∥ for q = 2k

Since our estimate of ||b∨
j || in Section 7 is effective for all k and prime numbers

p, we can show examples of behaviors of ||b∨
j ||. In this section, we consider the

case p = 2.

8.1 Case of q = 2k

By applying Proposition 1, Theorems 4 and 5 to the case p = 2, we have the
upper and lower bounds of ∥b∨

j ∥ as follows:

Elower(k) ≤
√
E(2k) = ||b∨

j || ≤ Eupper(k).
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Here, we set

Eupper(k) =

{
400

2k+1

[
k(k + 1)(2k + 1)− 84

6
(log 2)2 − (log 2)(log π){k(k + 1)− 12}

+ (log π)2(k − 3)

]
+

1

2k−2{log(1 +
√
2)}2

}1/2

and

Elower(k) =

 8

2k−2(log 2)2

k−2∑
j=1

1

(j + 4)2


1/2

.

Here are Table 1 and Figure 1 of Elower(k),
√
E(2k) and Eupper(k) for 3 ≤ k ≤ 25.

To obtain values of
√
E(2k), we mainly used a computer with 2.80 GHz CPU

(Intel(R) Core(TM) i7-3840QM) and 8GB memory. The OS is Windows 8.1 Pro
64 bit, implementing in Magma V2.19-7. “Time” in Table 1 means the time
which it took to obtain the approximate value of

√
E(2k) for each 3 ≤ k ≤ 25.

We note that, by applying Corollary 1 to the case p = 2, we have√
1

2k
≪ ||b∨

j || =
√
E(2k)≪

√
k3

2k
.

It is easy to compute exact values of Elower(k) and Eupper(k) contrary to ap-

proximate values of
√
E(2k). We calculated the approximate values of

√
E(2k)

up to k = 15 because of the limitations of our computer performance. For ex-
ample, it took ten days to compute the approximate value of

√
E(215) by our

implementation in Magma. We stopped to draw values in Figure 1 for k ≥ 26
since the difference Eupper(k)− Elower(k) is getting small for k ≥ 26.

8.2 Feedback to Hardness of SGP

By Cauchy-Schwalz’s inequality

|⟨log(g),b∨
j ⟩| ≤ |Log(g)| ||b∨

j ||,

the success of the attack deeply depends on the size of ∥b∨
j ∥ as in Section 4.2.

Now by Figure 1, we get that all Elower(k), ||bj || =
√
E(2k) and Eupper(k)

decrease monotoneously in k ∈ [6,∞). In particular, the upper bound Eupper(k)
is rapidly decreasing, so is ∥b∨

j ∥. Therefore, the success probability of Algorithm
1 for SGP is getting higher as k ≥ 6 increases. We will show our experimental
results in Section 9, which suggest that it is sufficient for the success of Algorithm
1 to take k ≥ 10 for p = 2. The attack for the cryptosystems described in Section
3 is succeeded with probability being almost 1 for k ≥ 10.
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Table 1. Upper and lower bounds of ∥b∨
j ∥, and actual value of ∥b∨

j ∥ for q = 2k with
3 ≤ k ≤ 25 (upper and lower bounds are given by Eupper(k) and Elower(k) respectively,
“Time” means that the time which it took to compute the actual value of ∥b∨

j ∥)

k Elower(k) ||b∨
j || =

√
E(2k) Eupper(k) Time

3 0.577 0.802 0.802 0.000 sec.

4 0.531 0.709 5.78 0.000 sec.

5 0.428 0.568 7.10 0.000 sec.

6 0.329 0.445 7.32 0.000 sec.

7 0.246 0.342 6.95 0.015 sec.

8 0.181 0.261 6.27 0.219 sec.

9 0.132 0.197 5.46 1.312 sec.

10 0.0959 0.148 4.63 10.203 sec.

11 0.0692 0.110 3.85 74.918 sec.

12 0.0498 0.0815 3.15 555.170 sec.

13 0.0357 0.0601 2.54 7552.266 sec.

14 0.0256 0.0442 2.03 13.4583 hr.

15 0.0183 0.0324 1.61 310.137 hr.

16 0.0130 N/A 1.26 N/A

17 0.00930 N/A 0.985 N/A

18 0.00662 N/A 0.764 N/A

19 0.00471 N/A 0.589 N/A

20 0.00335 N/A 0.452 N/A

21 0.00238 N/A 0.345 N/A

22 0.00169 N/A 0.263 N/A

23 0.00120 N/A 0.199 N/A

24 0.000854 N/A 0.151 N/A

25 0.000606 N/A 0.114 N/A

0
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8

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Upper Bound of

Lower Bound of

Actual Value of

(given by )

(given by )

Fig. 1. Upper and lower bounds of ∥b∨
j ∥, and actual value of ∥b∨

j ∥ for q = 2k with
3 ≤ k ≤ 25 (note that the size ∥b∨

j ∥ is independent of j ∈ G∖ {1} by Proposition 1)
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9 Experimental Verification

In this section, we give our experimental results to verify whether or not Algo-
rithm 1 succeeds in recovering short elements g (or sufficiently small g’s which
can break cryptosystems described in Section 3).

We deal with the case of q = 2k since our targeted cryptosystems [20, 27, 47]
are basically constructed over 2k-th cyclotomic fields. From the viewpoint of the
efficiency of a key generation, encoding and decoding process in cryptosystems of
[20, 27, 47], we usually use k with 8 ≤ k ≤ 25 in practice. Our theoretical bounds
in Subsection 8 allow us to infer that the success probability of Algorithm 1
gets higher as k is greater than 6. Thus, we show our experimental results of
the success probability for each k with 6 ≤ k ≤ 10. Set q := 2k, n := 2k−1,
G := (Z/qZ)×/{±1} and R := Z[x]/(xn + 1).

9.1 Parameter Setting for Our Experiments

In order to analyze the security of our targeted cryptosystems [20, 27, 47], we
consider the following setting of the secret key g:

Choice of Distribution of Secret Key g We consider the case where g is
randomly chosen from a discrete Gaussian distribution or a uniform distri-
bution. Recall that g is chosen from a discrete Gaussian distribution in GGH
and GGHLite schemes, and g is uniformly chosen from a finite subset of Z[x]
in FHE scheme (see Section 3).

Size of Variance In GGH and GGHLite schemes, the spaces of secret keys,
that is discrete Gaussian distributions of the mean 0, depend only on its
variances and n. (By contrast, in FHE scheme, the space of secret keys de-
pends only on n). Thus, we consider whether the success probability of Al-
gorithm 1 depends on variances of discrete Gaussian distributions by several
experiments.

Type of Principal Ideals I = (g) (Prime or Non-Prime) In GGH, GGH-
Lite and FHE schemes, a secret key g ∈ R should be a prime element in
R satisfying R/(g) ≃ Fp for some prime number p. However, as we will
note below, this condition can be relaxed in the case of GGH and GGHLite.
(In addition, it may be also possible that the primality condition of g can
be relaxed for FHE). Thus, we consider whether the success probability of
Algorithm 1 depends on the primality of secret keys.

9.2 Effects of Primality and Variance

First, we consider effects of the primality of secret keys and variances of discrete
Gaussian distributions. We divide into the case of discrete Gaussian distributions
and uniformly distributions.
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Case of Discrete Gaussian Distribution

First, we consider the case where a secret key g is chosen from a discrete Gaussian
distribution of the mean 0 and a given standard deviation σ, which is the space
of secret keys of GGH and GGHLite schemes.

In these cryptosystems, a secret key g is a prime element in R such that
N (g) := Res(g′(x), xn + 1) is a prime number, where g′ is a polynomial in Z[x]
representing g in R and Res(g′(x), xn+1) is the resultant of g′ and xn+1. (This
condition is not a necessary condition but a sufficient condition that g is a prime
element in R). The primality of g was used in the proof of [20, Lemma 3 and
Lemma 4]. In general, it is not efficient to obtain such g for large k, e.g. k ≥ 10
([47, Section 7], [3, Section 4]). Fortunately, it is proved in [3] that the primality
of g is not necessary to prove these lemmas, and thus the condition on g can be
relaxed. Note that in [3], it is suggested that the primality of g is still necessary
for some cryptographic applications and it may be possible to attack by using
the non-primality of g. Thus, we should experiment whether Algorithm 1 is one
of such attacks.

Moreover, from Cramer et al.’s analysis for discrete Gaussian distributions
[15, Lemma 5.6], the success probability of Algorithm 1 seems to depend heav-
ily on variances of discrete Gaussian distributions. From this, we should also
experiment for several variances.

Before we show our experimental results, we recall from Sections 2 and 4 that

the canonical generators of the group of cyclotomic units are bj :=
ζj
q−1

ζq−1 (j ∈
G∖{1}). and that we set bj := Log(bj) as in (3). The vectors 1 := (1, 1, . . . , 1) ∈
Rφ(q)/2 and bj ’s are R-linearly independent, and thus they constitute an R-basis
of Rφ(q)/2. Thus, for any g ∈ R, we have the following unique representation:

Log(g) = a
(g)
1 1+

∑
j∈G∖{1}

a
(g)
j bj .

Note that we identify g ∈ R with the element in Z[ζq] by using the natural
isomorphism R ≃ Z[ζq] in the above equation. It is easy to see{

a
(g)
1 = ⟨Log(g),1⟩

φ(q)/2 ,

a
(g)
j = ⟨Log(g),b∨

j ⟩ (j ∈ G∖ {1}).

It implies that if we have |aj | < 1
2 for all j ∈ G ∖ {1}, then we can compute g

by Algorithm 1.
The procedure for our experiment is as follows:

1. Construct the following three finite subsets of R

SK1 := {g ∈ R | g ← DZn,σ and N (g) is a prime number},
SK2 := {g ∈ R | g ← DZn,σ and the ideal (g) is not a prime ideal},
SK3 := {g ∈ R | g ← DZn,σ},

such that #SKi = 1000 for i = 1, 2, 3.
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Table 2. Values of aave(SKi) for 6 ≤ k ≤ 10 and i = 1, 2, 3. The value aave(SK1) is
shown on the left side and the value aave(SK2) is shown on the right side for k = 6, 7, 8.
The value aave(SK3) is shown on the left side for k = 9, 10.

PPPPPPPk
log10(σ) 1 1.477 1.699 2 3 4

6 0.542 / 0.544 0.539 / 0.546 0.547 / 0.547 0.539 / 0.556 0.546 / 0.549 0.548 / 0.541

7 0.474 / 0.481 0.471 / 0.483 0.479 / 0.485 0.476 / 0.472 0.481 / 0.468 0.472 / 0.477

8 0.406 / 0.403 0.404 / 0.404 0.405 / 0.402 0.403 / 0.404 0.399 / 0.405 0.400 / 0.399

9 0.33 / - 0.328 / - 0.331 / - 0.331/ - 0.33 / - 0.32 / 0.33

10 0.267 / - 0.265 / - 0.268 / - 0.268 / - 0.267 / - 0.268 / -

2. Compute bj and b∨
j for j ∈ G∖ {1}, where G := (Z/qZ)×/{±1}.

3. Compute a
(gi)
j satisfying Log(gi) = a

(gi)
1 1+

∑
j∈G∖{1} a

(gi)
j bj for j ∈ G∖{1},

g1 ∈ SK1, g2 ∈ SK2 and g3 ∈ SK3.

We use the same computer as in Section 8. We use the discrete Gaussian dis-
tribution sampler [2], which is implemented in Sage by Martin Albrecht (also
see [23]). We implemented in Sage for the first step and implemented in Magma
V2.19-7 for the second and the third steps.

We put

a(gi)max := max{|a(gi)j | | j ∈ G∖ {1}} gi ∈ SKi,

aave(SKi) :=
1

#SKi

∑
gi∈SKi

∣∣∣a(gi)max

∣∣∣ ,
for i = 1, 2, 3. When i = 1 and i = 2, we computed the value of aave(SKi) only
for k = 6, 7, 8, because of the difficulty of choosing many prime elements g ∈ R.
In addition, we computed the value of aave(SK3) only for k = 9, 10. In Table 2,
we showed our experimental results on the value of aave(SKi) for i = 1, 2, 3.

From Table 2, we can infer that the difficulty of SGP is independent of the
primality of secret keys and variances of discrete Gaussian distributions since
the difference of aave(SK1) is almost the same as aave(SK2) and aave(SK3) for
each k and σ. In other words, the value of aave(SKi) seems to depend only on k
for i = 1, 2, 3. Thus, we conclude that the security of cryptosystems constructed
over 2k-th cyclotomic fields by using short generators such as GGH and GGHLite
schemes do not depend on the primality of their secret keys and variances of
their spaces of secret keys. Our observation above also implies that we can use
a non-prime element g as secret keys in those cryptosystems except for some
applications.

Case of Uniform Distribution

Next, we consider the case where the secret keys are chosen uniformly from a
finite subset of Z[x] described below, since this is the same as the key generation
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Table 3. Values of aave(SKi) for 6 ≤ k ≤ 10 and i = 1, 2, 3. The value aave(SK1) is
shown on the left side and the value aave(SK2) is shown on the right side for k = 6, 7, 8.

k aave(SK1) / aave(SK2) aave(SK)

6 0.229 / 0.224 -

7 0.177 / 0.172 -

8 0.132 / 0.134 -

9 - 0.334

10 - 0.267

process of FHE. Set N := 2n and η := 2
√
N . We recall that in [47], a secret key

g is uniformly chosen from the set

B(η) :=

{
f = 2

(
N−1∑
i=0

aix
i

)
+ 1 ∈ Z[x]

∣∣∣∣ |ai| ≤ η/2 (i = 1, 2, . . . , N − 1)

}

until N (g mod (xn + 1)) becomes a prime number. In our experiment, we use
this method of [47].

In this case, we also experiment whether the primality of g affects the success
probability of Algorithm 1. Let SK1 be the set of polynomials chosen by the above
method. Let SK2 be the set of polynomials f uniformly chosen from B(η) such
that f mod (xn+1) does not generate a prime ideal for k = 6, 7, 8. We also choose
g ∈ B(η) uniformly without testing the primality of g for k = 9, 10. Let SK3 be
the set of such polynomials. We choose g untill #SK1 = #SK2 = #SK3 = 1000.

For i = 1, 2, 3, set aave(SKi) as above. In Table 3, we showed our experimental
results on the value of aave(SKi) for i = 1, 2, 3.

From Table 3, we conclude that Algorithm 1 is also effective for FHE scheme
as in the case of GGH and GGHLite schemes because of the same reason as in
the case of discrete Gaussian distributions.

9.3 Success Probability of Algorithm 1

In the last of this section, we show our experimental results on the experi-
mental success probability of Algorithm 1 for k = 6, 8, 10 and σ = 10 in
both cases of discrete Gaussian distributions and uniformly distributions, where
σ is the standard deviation of a discrete Gaussian distribution. We experi-
mented 1000 times for each parameter. In Figures 2 and 3, we show the value of
max{|⟨Log(g),b∨

j ⟩| | j ∈ G∖ {1}} for each g.
From 2 and 3, we infer that Algorithm 1 will succeed in recovering secret keys

of FHE, GGH and GGHLite schemes with about 50 % (resp. 85 % and 100 %)
probability when k = 6 (resp. k = 8 and k = 10). In other words, the number
of successes increases, as k is larger. We believe that it is true for k > 10. Thus,
our experimental results suggest that the security of FHE, GGH and GGHLite
schemes depend heavily on the difficulty of the principal ideal problem.
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Fig. 2. Values of max
j∈G∖{1}

|⟨Log(g),b∨
j ⟩| for q = 2k with k = 6, 8, 10. Note that Cramer

et al.’s attack for SGP is succeeded (resp. failed) if max |⟨Log(g),b∨
j ⟩| ≤ 1

2
(resp. > 1

2
).

For each k, the secret key g is randomly generated by a discrete Gaussian distribution
at 1, 000 times
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Fig. 3. Same as Figure 2, but g is generated by a uniformly random distribution
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10 Conclusion

In this paper, we analyzed the security of cryptosystems using short genera-
tors over ideal lattices against Cramer et al.’s attack. We corrected the flaws in
Cramer et al.’s main result which is important to verify their attack, and thus we
first gave theoretical evidence verifying their attack. We also gave various exper-
imental results. Our theoretical and experimental results suggest that breaking
those cryptosystems can be reduced to solving the principal ideal problem, which
is considered to be solved in quantum polynomial time.
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27. A. Langlois, D. Stehlé and R. Steinfeld, “GGHLite: More efficient multilinear maps
from ideal lattices”, Advances in Cryptology–EUROCRYPT 2014, Springer LNCS
8441, pp. 239–256, 2014.

28. F. J. van der Linden, Class number computations of real abelian number fields,
Math. Comput. 39, pp. 693–707, 1982.

29. S. Louboutin, Majorations explicites de |L(1, χ)| (quatrième partie), C. R. Acad.
Sci. Paris 334, pp. 625–628, 2002.

30. S. Louboutin, Simple proofs of the Siegel-Tatuzawa and Brauer-Siegel theorems,
Colloq. Math. 108, pp. 277–283, 2007.

31. S. Louboutin, An explicit lower bound on moduli of Dirichlet L-functions at s = 1,
J. Ramanujan Math Soc. 30(1), pp. 101–113, 2015.

32. V. Lyubashevsky, “Lattice-based identification schemes secure under active at-
tacks”, Public Key Cryptography–PKC 2008, Springer LNCS 4939, pp. 162–179,
2008.

33. V. Lyubashevsky and D. Micciancio, “Generalized compact knapsacks are collision
resistant”, Automata, Languages and Programming–ICALP 2006, Springer LNCS
4052, pp. 144–155, 2006.

34. V. Lyubashevsky and D. Micciancio, “Asymptotically efficient lattice-based digital
signatures”, In Theory of Cryptography, Springer LNCS 4948, pp. 37–54, 2008.

35. V. Lyubashevsky, C. Peikert and O. Regev, On ideal lattices and learning with
errors over rings, Journal of the ACM 60(3), no. 43, 2013.

36. J.M. Masley, Class numbers of real cyclic number fields with small conductor,
Compos. Math. 37 pp. 297–319.

37. D. Micciancio, Generalized compact knapsacks, cyclic lattices, and efficient oneway
functions, Computational Complexity 16(4), pp. 365–411, 2007.

28



38. J. C. Miller, Class numbers of totally real fields and applications to the Weber class
number problem, to appear in Acta Arith.Acta Arith. 164, no. 4, pp. 381–397,
2014.

39. G. Molteni, L-functions: Siegel-type theorems and structure theorems, Ph.D. the-
sis, University of Milan, Milan, 1999.

40. J. Neukirch, Algebraic Number Theory, Grundlehren der mathematischen Wis-
senschaften 322, Springer-Verlag Berlin Heidelberg, 1999.

41. C. Peikert and A. Rosen, “Efficient collision-resistant hashing from worst-case as-
sumptions on cyclic lattices”, Theory of Cryptography–TCC 2006, Springer LNCS
3876, pp. 145–166, 2006.
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44. C.L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1, pp.

83–86, 1935.
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A Weber’s class number problem

In this appendix, we give some known results on Weber’s class number problem.
Let ζq ∈ C be a q-th primitive root of unity for q ∈ N. Then Q(ζq + ζq) is
the unique maximal real subfield of the q-th cyclotomic field Q(ζq). The class
number h+(q) of Q(ζq + ζq) is one of active themes in number theory, inspired
by Weber. He proposed the so-called Weber’s class number problem that h+(2n)
equals 1 for all n ∈ N. This problem is related to Cramer et al.’s attack for
SGP as we saw [Λ : Log(C)] = h+(2k) in Remark 1. In [50], Weber proved that
h+(23) = h+(24) = h+(25) = 1 and that h+(2n) is odd for all n ∈ N.

Theorem 6. (Cohn [14]) Let ζ2n ∈ C be a 2n-th primitive root of unity and
K+ := Q(ζ2n + ζ2n). We denote the class number of K+ by h+(2n). We have
the following:

(1) h+(26) = 1 or 1601 ≤ h+(26) ≤ 83921. In the latter case, h+(26) is a prime
number.

(2) h+(27) = 1 or 1601 ≤ h+(27).
(3) h+(28) = 1 or 1409 ≤ h+(28).
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(4) For any n ≥ 9, h+(2n) = 1 or 257 ≤ h+(2n).

Theorem 7. (Bauer [5]) Let p be a prime number. For any n ∈ N such that
pn < 53, we have h+(pn) = 1. We have also h+(26) = 1 although 26 is greater
than 53.

Theorem 8. (Masley [36]) Suppose that pn < 70. Then we have h+(pn) = 1.
In particular, we have h+(26) = 1.

Theorem 9. (Linden [28]) Let K be a totally real abelian extension of Q. Sup-
pose that the conductor f of K is a prime power. We denote the class number
K by hK . Let HK be the Hilbert class field of K, i.e. the maximal unramified
abelian extension of K. Then, we have the following:

(1) If φ(f) ≤ 66, then hK = 1.
(2) Assume the generalized Riemman hypothesis (GRH) for the Dedekind zeta

function of HK . Then,

hK =

{
4 if f = 163,
1 if f ̸= 163 and φ(f) ≤ 162.

In particular, we have h+(27) = 1 by Theorem 9 (1) since the conductor of
Q(ζ27 + ζ27) is φ(27) = 26 < 66. Moreover, h+(28) = 1 holds true by virtue
of Theorem 9 (2) under GRH for the Dedekind zeta function of HK with K =
Q(ζ28 + ζ28).

Theorem 10. (Miller [38]) We have h+(28) = 1. Moreover, we have h+(29) = 1
under GRH for the Dedekind zeta function of HK with K = Q(ζ29 + ζ29).

By all theorems described as above, it is well-known that h+(2n) = 1 holds
true only for n ≤ 8.

The three results below are concerned with the divisibility of h+(2n).

Theorem 11. (Horie [25]) If a prime number ℓ satisfies ℓ ≡ ±5 (mod 8), then
ℓ ∤ h+(2n).

Theorem 12. (Fukuda, Komatsu [18]) If a prime number ℓ satisfies ℓ ≡ ±9
(mod 16), then ℓ ∤ h+(2n). Moreover, ℓ ∤ h+(2n) holds for all prime numbers
ℓ < 1.2× 108.

Theorem 13. (Fukuda, Komatsu [19]) If a prime number ℓ satisfies ℓ ≡ ±1
(mod 32), then ℓ ∤ h+(2n). Moreover, ℓ ∤ h+(2n) holds for all prime numbers
ℓ < 109.

All results as above give us that h+(2n) is huge for n ≥ 9 unless h+(2n) = 1.
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