
Cryptanalysis of Yasuda, Takagi and Sakurai’s
Signature Scheme Using Invariant Subspaces

Wenbin Zhang and Chik How Tan

Temasek Laboratories
National University of Singapore

tslzw@nus.edu.sg and tsltch@nus.edu.sg

Abstract. In PQCrypto 2013 Yasuda, Takagi and Sakurai proposed an interesting
signature scheme of efficiency O(n2) with parameter (q = 6781, n = 121) claimed
to have 140-bit security level. Later on almost at the same time two independent
and different attacks were then proposed by Y. Hashimoto in PQCrypto 2014 and
by the authors in ICISC 2014. Hashimoto’s attack has complexity O(n4) and breaks
(q = 6781, n = 121) in several minutes. In this paper, we make an essential extension
of our work in ICISC 2014. We develop for the our previous method a thorough
and rigorous mathematical theory by applying intensively the theory of invariant
subspaces, then work out a much better attack with complexity O(n4), and especially
implement it successfully. Our new attack efficiently recovers equivalent private keys
of many randomly generated instances, especially breaking (q = 6781, n = 121) in
only about 14.77 seconds, much faster than Y. Hashimoto’s attack. The approach
developed here might have further applications.

Keywords: post-quantum cryptography, multivariate public key cryptosystem, in-
variant subspace

1 Introduction

The threat of quantum computers has forced great efforts to search for new cryp-
tosystems that could survive in the future quantum era. One of those candidates is
multivariate public key cryptography (MPKC) whose public key is represented by
multivariate polynomial maps. Current standard construction for the public key of
MPKC is to compose a polynomial map F : Fnq → Fmq at the two ends with two invert-
ible affine maps L : Fnq → Fnq and R : Fmq → Fmq , i.e., F̄ = L ◦ F ◦R : Fnq → Fmq . The
theoretical foundation of the security of MPKC is the well known fact that solving a
system of general polynomial equations (even with degree two only) over finite fields
is NP-hard. A specific multivariate cryptosystem may also have certain weaknesses
on its structure so that it could be attacked using special methods. Since 1980’ the
development of MPKC has been active and fast, and various interesting schemes as
well as attacking methods have been developed. Overview of this area may be found
in [WP05b, DGS06, DY09].
Recently a new interesting multivariate signature scheme was proposed by Yasuda,
Takagi and Sakurai in PQCrypto 2013 [YTS13]. Their scheme has a special structure
different from all previous schemes. They construct the public key from the classi-
fication of quadratic forms over finite fields of odd characteristic which claims that
there are only two equivalence classes of quadratic forms

f : Frq → Fq, f(x1, . . . , xr) =
∑

1≤i≤j≤r

aijxixj ,

cf. Theorem 3.8 of Chapter 2 of [Sch85]. Correspondingly their public key consists of
two polynomial maps

F1, F2 : Fnq → Fmq , n = r2,m = r(r + 1)/2,

rather than one as other schemes. A great advantage of their scheme is on the effi-
ciency of generating a signature which was claimed to be eight to nine times faster
than Rainbow signature scheme [DS05] under certain parameters. On the security
side, they claim that the best attack (at the time of PQCrypto 2013) is the Min-

Rank attack with complexity O(qr) = O(q
√
n). In addition, two sets of parameters,

(q = 2053, n = 64) and (q = 6781, n = 121) are proposed and claimed to be of at least
88-bit and 140-bit security respectively against MinRank attack. However a disad-
vantage of their scheme is that the public key size may be big; for instance, the above
two sets of parameters have public key size 224.6kB and 1,583.2kB respectively.

However, the specific structure of Yasuda, Takagi and Sakurai’s (YTS’ for short)
scheme is soon found to have strong weaknesses. Later on two independent and dif-
ferent attacks are then proposed to break YTS’ scheme by Y. Hashimoto in PQCrypto
2014 [Has14] and by the authors in ICISC 2014 [ZT15]. The two attacks both explore
weaknesses of the specific structure of YTS’ scheme but in different ways. In [Has14],
the public key of YTS’ scheme is first expressed in terms of certain extension of ma-
trices and then a complicated algebraic approach is worked out to recover the private
key, which is somehow similar to the diagonalization process of a matrix. His attack
is claimed to have complexity O(n4) only and implemented to recover the private key
of YTS’ scheme with parameter (q = 6781, n = 121) in several minutes with running
time varies from 240 to 450 seconds.

In [ZT15], a simple matrix expression, different from Hashimoto’s, of the public key
is given by the authors in terms of the private key. Then motivated by Kipnis and
Shamir’s attack [KS98, KPG99, CHDY11] to the (unbalanced) oil-vinegar signature
scheme [Pat97, KPG99], this expression is converted to another one which clearly
exposes the hidden geometric structure of YTS’ scheme. Consequently the problem
of finding an equivalent private key [WP05a] of YTS’ scheme becomes a geometric
problem, i.e. decomposing the whole space into a direct sum of certain invariant
subspaces and finding an appropriate basis for each of them. Two closely related
algorithms are then sketched using the theory of invariant subspaces [Cla] to solve this
geometric problem and compute an equivalent key. Complexity of the two algorithms

is estimated to be bounded by O(n
11
2 qd) where d is expected generally to be 1.

Implementation result is not given in [ZT15] as it was still in progress when the
paper was published.

This paper is an essential extension of the authors’ work [ZT15] introduced above.
It carries over most basic settings, the matrix expression of the public key and the
key idea in [ZT15], but the core part of this paper is a significant improvement and
enhancement of [ZT15] on three important aspects. Firstly a thorough and rigorous
theory is developed to completely uncover the structures of YTS’ scheme and then
to recover the secret information from the public key. Secondly based on this theory,
a better algorithm is proposed with lower complexity O(n4), same as Hashimoto’s,
which is only square of the efficiency of signature generation. Thirdly this new algo-
rithm is implemented successfully and recovers equivalent keys for various parameter
sets. Especially, it breaks the parameter set (q = 6781, n = 121) mentioned above in
only about 14.77 seconds with running time varies from 7.91 to 26.73 seconds which
is much faster than Hashimoto’s result. Therefore this paper contributes a powerful
approach to efficiently break Yasuda, Takagi and Sakurai’s scheme. This approach
might also have applications to the cryptanalysis of some other cryptosystems.

2

This paper is organized as follows. Section 2 is a brief review of YTS’ scheme mostly
following the setting in [ZT15]. Section 3 is an overview of our attack and it includes
the matrix expression of the public key and the key idea in [ZT15] as its first two
subsections but its third subsection is new and is an essential enhancement. Section
4 is detailed analysis of the technical issues and is also essential enhancement of
the technical analysis in [ZT15]. In Section 5 our new algorithm is proposed and its
complexity is estimated. This section is significant improvement of the corresponding
part of [ZT15]. Section 6 is the presentation and discussion of implementation result
which is lacked in [ZT15]. Section 7 is a comparison with Hashimoto’s work and
extends the corresponding part in [ZT15]. Section 8 is the concluding section. In
addition, a brief introduction of the theory of invariant subspaces is included in
Appendix A for easy reference. Appendix B shows how to attack the affine parts if
the central map is quadratic homogeneous which should be already known to many
experts in MPKC.

2 Yasuda, Takagi and Sakurai’s Signature Scheme

In this section, we shall review Yasuda, Takagi and Sakurai’s signature scheme fol-
lowing their paper [YTS13] but in a clearer way.
Let q be a power of an odd prime p and δ a non-square element in Fq. Moreover let

In,δ =

(
In−1

δ

)
, and In−1 the (n− 1)× (n− 1) identity matrix. Then there is the

following two possible decompositions of a symmetric matrix over Fq, corresponding
to the well known classification of quadratic forms over Fq, cf. Theorem 3.8 in Chapter
2 of [Sch85].

Theorem 1. For any n×n symmetric matrix A over Fq, there exists an n×n matrix
X over Fq satisfying either A = XTX or A = XT In,δX.

It is known how to compute such a matrix X in linear algebra and an algorithm is
sketched in [YTS13]. This result can be applied to construct a signature scheme in
the following way.
Let n = r2 and m = r(r + 1)/2. Choose two one-one correspondences

φ1 : the set of r × r matrices over Fq
1−1←→ Fnq ,

φ2 : the set of r × r symmetric matrices over Fq
1−1←→ Fmq .

Then a vector x ∈ Fnq corresponds to the r × r matrix X = φ−1
1 (x), and XTX is a

symmetric matrix corresponding to the vector φ2(XTX) ∈ Fmq . Roughly speaking,
φ2(XTX) is formed by the entries of the upper triangular part of XTX according to
the specified order φ2. Define two maps

F, Fδ : Fnq → Fmq , F (x) = φ2(XTX), Fδ(x) = φ2(XT Ir,δX).

Then F, Fδ are two multivariate quadratic polynomial maps. Neither F nor Fδ is
surjective but the union of their images can cover Fmq . The pair (F, Fδ) can serve as
the central map of a multivariate signature scheme.
Let R1, R2 : Fnq → Fnq and L : Fmq → Fmq be three randomly chosen invertible affine
transformations and

F̄ = L ◦ F ◦R1, F̄δ = L ◦ Fδ ◦R2.

Yasuda, Takagi and Sakurai’s (YTS’ for short) scheme can be described as follows.

3

Public Key F̄ , F̄δ.

Private Key R1, R2, L.

Signature Generation For a message y ∈ Fmq , first compute y′ = L−1(y) and the
corresponding symmetric matrix Y = φ−1

2 (y′), then compute an r × r matrix X
such that Y = XTX or Y = XT Ir,δX, and the corresponding vector x′ = φ1(X),
finally compute x = R−1

1 (x′) or x = R−1
2 (x′) correspondingly.

Verification A signature x is accepted if F̄ (x) = y or F̄δ(x) = y, otherwise rejected.

We remark that the chosen non-square element δ is unnecessary to keep secret as any
non-square element can also work. In addition, we list some features of YTS’ scheme
in the following assuming that R1, R2, L are all linear.

Public Key Size By representing the quadratic parts of F̄ , F̄δ in terms of symmet-
ric matrices, there are 1

2
r3(r+1)(r2 +1) elements of Fq in total. Noting that each

Fq element has 1
8
(logp q)dlog2 pe Bytes, thus the public key size may be calculated

as 1
16
r3(r + 1)(r2 + 1)(logp q)dlog2 pe Bytes.

Efficiency of Signature Generation Generation of a signature needs O(r4) =
O(n2) Fq multiplications [YTS13].

Security The security level against Min-Rank attack is at least O(qr) = O(q
√
n)

[YTS13] or more accurately O(n3q
√
n) [Has14] for recovering L.

3 Attacking YTS’ Scheme Using Invariant Subspaces

In this section we shall first give a simple and elegant matrix expression for YTS’
public map in terms of the private key. This expression is important for our attack
as it leads to a geometric interpretation by invariant subspaces. The starting point
of our attack is motivated by Kipnis and Shamir’s idea of attacking the oil-vinegar
signature scheme [KS98]. Namely we shall apply their trick

Ak = RT (· · ·)R =⇒ A−1
l Ak = R−1(· · ·)R =⇒ (A−1

l Ak)R−1 = R−1(· · ·)

to convert our matrix expression into another form. We find that this new form has
clear geometric meaning in terms of invariant subspaces and converts the problem of
finding a correct key into a geometric problem of finding certain invariant subspaces.
We then propose a method to solve this resulted geometric problem by applying the
theory of invariant subspaces, and thus break YTS’ signature scheme.

To help understanding, we explain here why it is helpful in principle to use invariant
subspaces. Invariant subspaces have nice structures and may be computed easily by
the well studied theory of invariant subspaces. For example,

1. An invariant subspace which is invariant under a few linear maps F1, . . . , Fk may
be generated by very few or even only one vector and may be computed easily
by computing the linear subspace spanned by some vectors of these forms Fi(v),
Fi(Fj(v)), etc.

2. Some typical invariant subspaces of a linear map can be computed from its char-
acteristic polynomials.

In other words, if the problem to be solved involves some invariant subspaces, then
there may be practical methods to compute them and thus help solve the problem.
For easy reference, we include an appendix, see Appendix A, briefly introducing the
theory of invariant subspaces, referring to [Cla] for a more complete theory.

Recall that n = r2, m = r(r + 1)/2.

4

3.1 Our Expression of YTS’ Public Map

We consider only the first map of the public key

F̄ = L ◦ F ◦R.

Here we simply assume that both L,R are linear in the following as their affine
parts can be recovered or illuminated easily, cf. Appendix B. Write F̄ = (f̄1, . . . , f̄m).
Since F is quadratic homogeneous and both L,R are assumed linear, f̄k is quadratic
homogeneous and can be written as

f̄k(x) = xTAkx, x ∈ Fnq

where Ak is an n× n symmetric matrix publicly known.
We next compute these f̄k in terms L,R. Choose for φ1, φ2 the following two one-one
correspondences

x = φ1(X) = (x11, . . . , x1r, x21, . . . , x2r, . . . , xr1, . . . , xrr) ∈ Fnq , (1)

y = φ2(Y) = (y11, y12, y22, . . . , y1r, . . . , yrr) ∈ Fmq , (2)

where X = (xij)r×r is an r× r matrix and Y = (yij)r×r an r× r symmetric matrix.
Let x′ = Rx and X ′ = (x′ij)r×r = φ−1

1 (x′). Then

φ−1
2 (F (x′)) = X ′TX ′ = (fij)r×r

=

x′211 + · · ·+ x′2r1 x′11x

′
12 + · · ·+ x′r1x

′
r2 . . . x

′
11x
′
1r + · · ·+ x′r1x

′
rr

x′11x
′
12 + · · ·+ x′r1x

′
r2 x′212 + · · ·+ x′2r2 . . . x′12x

′
1r + · · ·+ x′r2x

′
rr

...
...

. . .
...

x′11x
′
1r + · · ·+ x′r1x

′
rr x

′
12x
′
1r + · · ·+ x′r2x

′
rr . . . x′21r + · · ·+ x′2rr

where fij = x′1ix

′
1j + · · ·+ x′rix

′
rj , and thus

F (x′) = (f11, f12, f22, . . . , f1r, . . . , frr).

Accordingly write the m×m matrix L in the following form l1;1,1 l1;1,2 l1;2,2 . . . l1;1,r . . . l1;r,r
...

...
...

...
...

lm;1,1 lm;1,2 lm;2,2 . . . lm;1,r . . . lm;r,r

 .

For each 1 ≤ k ≤ m, the kth component of L ◦ F is

(L ◦ F)k(x′) =
∑

1≤i≤j≤r

lk;i,jfij =
∑

1≤s≤r

∑
1≤i≤j≤r

lk;i,jx
′
six
′
sj

which can be written in the following matrix form

(L ◦ F)k(x′) = x′T

Lk
. . .

Lk

x′

with r Lk on the diagonal, where Lk is the following symmetric matrix corresponding
to the kth row of L,

Lk =

lk;1,1

1
2
lk;1,2 · · · 1

2
lk;1,r

1
2
lk;1,2 lk;2,2 · · · 1

2
lk;2,r

...
...

. . .
...

1
2
lk;1,r

1
2
lk;2,r · · · lk;r,r

 .

5

Substitute x′ = Rx, then we have the following simple matrix representation for the
public map

f̄k(x) = (L ◦ F ◦R)k(x) = xTRT

Lk
. . .

Lk

Rx.

In particular, the representing matrix Ak of f̄k(x) = xTAkx has the following simple
expression

Ak = RT

Lk
. . .

Lk

R, for 1 ≤ k ≤ m. (3)

For convenience, write A⊕B =

(
A
B

)
and A⊕r =

r︷ ︸︸ ︷
A⊕ · · · ⊕A, for matrices A,B.

We thus rewrite equation (3) as

Ak = RTL⊕rk R.

If an invertible m ×m matrix L and an invertible n × n matrix R together satisfy
equation (3), then they give the public map F̄ and thus the pair (L,R) is a correct
key, i.e., equivalent to the original private key which is kept secret.

3.2 Geometric Interpretation by Invariant Subspaces

Here we show how our expression (3) for the public map leads to a geometric inter-
pretation by invariant subspaces which uncovers the underlying geometric structure
of YTS’ scheme.
First of all we need to consider the invertibility of Ak and Lk. Among all Lk, 1 ≤ k ≤
m, the probability that at least one of them is invertible, is obviously higher than the
probability of a random symmetric matrix being invertible. The latter probability
is known to be almost one [Car54, Mac69] so that the probability that no Lk is
invertible is negligible. In addition, Ak and Lk obviously share the same invertibility
by equation 3. We hence make the following assumption from now on.

Assumption 1 There is an l such that Al is invertible.

Remark 1. It should be noted that this assumption is not compulsory. Even if all Ak
(Lk), 1 ≤ k ≤ m, are singular, there is always a nonsingular linear combination of
Ak (Lk) due to the following reason. Since L is invertible, its m rows are linearly
independent, so are the corresponding Lk, 1 ≤ k ≤ m. Notice that each Lk is an
r × r symmetric matrix and m = r(r + 1)/2. Thus Lk, 1 ≤ k ≤ m, form a basis for
the space of r × r symmetric matrices. Hence there is always a nonsingular linear
combination of Lk, 1 ≤ k ≤ m, and thus of Ak, 1 ≤ k ≤ m. Therefore if all Ak are
singular, we can just pick a nonsingular linear combination of them, and the attack
in this paper still works.

By Assumption 1, we have inverses A−1
l , L−1

l . Then write Alk = A−1
l Ak and Llk =

L−1
l Lk. Then by equation (3),

Alk = (R−1(L−1
l)⊕rR−T)(RTL⊕rk R) = R−1((L−1

l)⊕rL⊕rk)R = R−1L⊕rlk R,

6

AlkR
−1 = R−1L⊕rlk = R−1

Llk
. . .

Llk

 .

We observe that this has the following geometric meaning in terms of invariant sub-
spaces, referring to Appendix A for a brief introduction of the theory of invariant sub-
spaces. For 1 ≤ s ≤ r, let Vs denote the linear subspace of Fnq spanned by Rr(s−1)+1,
. . ., Rrs where Ri the ith column vector of R−1.

Theorem 2. If (L,R) is a correct key, then Vs is an r-dim invariant subspace of
Alk for all k 6= l, and

Alk(Rr(s−1)+1, . . . , Rrs) = (Rr(s−1)+1, . . . , Rrs)Llk.

Moreover, Fnq is a direct sum of these r invariant subspaces,

Fnq = V1 ⊕ · · · ⊕ Vr.

Proof. This follows obviously from AlkR
−1 = R−1L⊕rlk .

This observation suggests that, to find a correct key (L,R), we may decompose in-
ductively Fnq into a direct sum of r-dim invariant subspaces Fnq = V1 ⊕ · · · ⊕ Vr such
that each Vs is of dimension n and invariant under all Alk, and compute a basis of Vs
such that the representing matrix of Alk to Vs is Llk with respect to this basis. Then
the matrix of these bases may give R−1, and thus all Lk from R−TAkR

−1 = L⊕rk by
equation (3), hence R,L.

3.3 Strategy of Finding a Correct Key

We find, however, that Theorem 2 is not sufficient to guarantee a correct key; satisfac-
tion of equation (3) indeed has more subtle restrictions to these invariant subspaces
Vs as given below.

Proposition 1. If (L,R) is a correct key, then the basis (Rr(s−1)+1, . . . , Rrs) of Vs
satisfies

(Rr(s−1)+1, . . . , Rrs)
TAk(Rr(s−1)+1, . . . , Rrs) = Lk (4)

for 1 ≤ k ≤ m. In addition, if s 6= s′, Vs and Vs′ are orthogonal to each other with
respect to Ak, i.e. uTAkv = 0 for u ∈ Vs, v ∈ Vs′ and 1 ≤ k ≤ m.

Proof. By equation (3), we haveR−TAkR
−1 = L⊕rk . Then the claim follows obviously.

These additional restrictions make the situation much complicated. Fortunately we
find that it is unnecessary to consider so many restrictions but only a few of them
will do.

Lemma 1. (L,R) is a correct key, i.e., satisfying

R−TAkR
−1 = L⊕rk , for 1 ≤ k ≤ m,

if and only if

AlkR
−1 = R−1L⊕rlk for k 6= l and R−TAlR

−1 = L⊕rl .

7

Proof. The “only if” direction is already given above. For the “if” direction,AlkR
−1 =

R−1L⊕rlk implies AkR
−1 = AlR

−1L⊕rlk , thus

R−TAkR
−1 = R−T (AlR

−1L⊕rlk) = (R−TAlR
−1)L⊕rlk = L⊕rl L⊕rlk = L⊕rk

since R−TAlR
−1 = L⊕rl .

Translating the above sufficient and necessary conditions into geometric language, we
have:

Theorem 3. (L,R) is a correct key if and only if the following three conditions are
all satisfied:

1. Each Vs is an r-dim invariant subspace of Alk with its basis satisfying

Alk(Rr(s−1)+1, . . . , Rrs) = (Rr(s−1)+1, . . . , Rrs)Llk, for k 6= l. (5)

2. If s 6= s′, Vs and Vs′ are orthogonal to each other with respect to Al, i.e. uTAlv =
0 for u ∈ Vs, v ∈ Vs′ .

3. The basis of Vs satisfies

(Rr(s−1)+1, . . . , Rrs)
TAl(Rr(s−1)+1, . . . , Rrs) = Ll. (6)

Proof. The claim is true because AlkR
−1 = R−1L⊕rlk is equivalent the first condition

and R−TAlR
−1 = L⊕rl is equivalent to the second and third conditions.

Based on this theorem, our strategy of finding a correct key is to find inductively
invariant subspaces V1, . . . , Vr which are mutually orthogonal with respect to Al and
whose bases satisfy equations (5) and (6). The first step is to practically find invariant
subspaces of dimension r. We might randomly pick a vector v and compute the
invariant subspace generated by v under all Alk; repeat doing so until one with
dimension r is found. We then need to test if an r-dim invariant subspace generated
is a correct invariant subspace according to Theorem 3. If it is not a correct one, we
need to try another random vector again. Once the first correct invariant subspace
V1 is found, its basis will determine not only Ll by equation (6) but also other Lk
by equation (4), and thus all Llk. All these Lk then give one part of the private key,
i.e., L. Next, to find the second correct invariant subspace, we search from vectors
orthogonal to V1 to generate an r-dim invariant subspace and then compute its basis
by equation (5). We repeat doing so until this basis satisfies equation (6), then this
invariant subspace will be V2. The rest may be found similarly and inductively. Finally
the matrix of all the bases computed will be R−1 and thus R is found.

4 Technical Analysis

In this section, we shall execute the strategy described in the preceding section,
elaborate all the technical details and resolve the technical issues. There will be three
major parts:

1. Practical method to search for r-dim invariant subspaces.

2. Finding criteria for an r-dim invariant subspace to be the first correct invariant
subspace V1 according to Theorem 3.

3. Generating the rest correct r-dim invariant subspaces according to Theorem 3.

8

4.1 Practical Method of Searching for r-dim Invariant
Subspaces

When generating an r-dim invariant subspace from a random vector, the first natural
searching range is Fnq , but this is too big making it impractical. In this subsection,
we shall find a practical method to significantly reduce the searching range of r-dim
invariant subspaces from the whole space Fnq to a much smaller subspace. This is
the key to make our attack very efficient. We shall first consider generating proper
invariant subspaces and then r-dim invariant subspaces.

To find a proper invariant subspace of Fnq , we may pick a nonzero vector u ∈ Fnq , and
then compute the invariant subspace 〈u|Alk, k 6= l〉 generated by u under all Alk,
k 6= l, cf. Appendix A for the notation. For convenience, we simplify the notation
〈u|Alk, k 6= l〉 as 〈〈u〉〉. There will be two cases: 1) dim〈〈u〉〉 = n, i.e. 〈〈u〉〉 = Fnq , and 2)
dim〈〈u〉〉 < n. In the second case we shall call u a proper vector. If it is the first case,
then we pick another nonzero vector and repeat this process until a proper invariant
subspace is obtained.

If only one linear map is considered, the chance to get a proper vector would be large,
but here we are considering m− 1 linear maps together. We give the following rough
estimation on the chance.

Proposition 2. The probability of a random vector in Fnq being proper is greater
than q−r.

Proof. Given an invariant decomposition Fnq = V1⊕· · ·⊕Vr with dimVi = r, picking
randomly a vector v ∈ Fnq is equivalently to picking randomly r vectors vi ∈ Vi. If
there is one vi = 0, then v is proper. The probability that at least one vi = 0 is
1 − (1 − q−r)r. Thus the probability that a random vector is proper is no less than
1− (1− q−r)r. Then the claim follows from the following inequality

q−r < 1− (1− q−r)r = q−r[1 + (1− q−r) + · · ·+ (1− q−r)r−1] < rq−r.

We remark that if there is no vi = 0 for a decomposition Fnq = V1 ⊕ · · · ⊕ Vr, there
may be other such decomposition having it. Or even if there is no decomposition with
some vi = 0, v may still be proper. Hence the probability that a random vector being
proper is expected much higher than 1 − (1 − q−r)r. Nevertheless, this probability
may still be too small if qr is too large. To increase the chance of getting proper
vectors, we propose the following method to reduce the searching range significantly.

From the theory of invariant subspaces, referring to Appendix A or [Cla], invariant
subspaces are essentially related with the characteristic polynomial of a linear map.
By Alk = R−1L⊕lkR, Alk and Llk share the same minimum polynomial and the charac-
teristic polynomial of Alk is the rth power of the one of Llk. Denote the characteristic
polynomial of Llk by φlk. From Appendix A, for each prime i.e., irreducible factor ψ
of φlk, kerψ(Alk) is a prime invariant subspace of Alk and any nonzero vector of it
has the irreducible ψ as its local minimal polynomial. In addition, it has the following
important decomposition.

Theorem 4. All Vs ∩ kerψ(Alk), 1 ≤ s ≤ r, are isomorphic and

kerψ(Alk) =

r⊕
s=1

(Vs ∩ kerψ(Alk)).

Consequently r| dim kerψ(Alk).

9

Proof. Recall for all s,

Alk(Rr(s−1)+1, . . . , Rrs) = (Rr(s−1)+1, . . . , Rrs)Llk.

Namely the restriction Alk|Vs of Alk to Vs is given by Llk, and thus all Alk|Vs ,
1 ≤ s ≤ r, are equivalent and share the same properties. Hence all kerψ(Alk|Vs),
1 ≤ s ≤ r, are isomorphic. Since ψ(Alk|Vs)(v) = ψ(Alk)(v) for v ∈ Vs, we have

kerψ(Alk|Vs) = Vs ∩ kerψ(Alk).

Thus all Vs ∩ kerψ(Alk), 1 ≤ s ≤ r, are isomorphic.
It is obvious that

kerψ(Alk) ⊇
r⊕
s=1

(Vs ∩ kerψ(Alk)).

On the other hand, since Fnq =
⊕r

s=1 Vs, each nonzero v ∈ kerψ(Alk) has a unique
decomposition

v = v1 + · · ·+ vr, vs ∈ Vs.
Applying ψ(Alk) to both sides, we have ψ(Alk)(vs) ∈ Vs since Vs is invariant under
Alk, and

0 = ψ(Alk)(v) = ψ(Alk)(v1) + · · ·+ ψ(Alk)(vr).

By the uniqueness of the decomposition, ψ(Alk)(vs) = 0, i.e., vs ∈ Vs ∩ kerψ(Alk).
Hence

kerψ(Alk) ⊆
r⊕
s=1

(Vs ∩ kerψ(Alk)).

Therefore both sides are equal.

As kerψ(Alk) is much smaller than Fnq , it is a better space to search for proper
vectors. Among all kerψ(Alk) for all k 6= l and irreducible factors ψ, we can choose
one of them which is of minimum dimension and denote it V0. Since r| dimV0, write
dimV0 = dr. Using V0 to search for proper vectors, the chance of getting a proper
vector increases significantly as estimated below.

Proposition 3. The probability of a random vector in V0 being proper is greater than
q−d.

We further consider the probability distribution of d and the probability of generating
an r-dim invariant subspace from a random vector in V0. It seems that there is no
obvious mathematical method to deduce them. So we tested 1,500 instances covering
various primes and dimensions to see what would happen. From our test result we
have the following surprising findings:
1. If r > 2, it is almost always d = 1 and a random nonzero vector in V0 almost

always generate an r-dim invariant subspace. In fact each of them does not appear
only 5 times among a thousand instances.

2. If r = 2, d = 1 appears 364 times among 500 instances, as well as that a random
nonzero vector in V0 generates an r-dim invariant subspace.

3. Wherever r > 2 or r = 2, d = 1 appears or does not appear simultaneously with
that a random nonzero vector in V0 generates an r-dim invariant subspace among
all 1,500 instances.

From these findings, we make the following assumption.

Assumption 2 1) If d = 1, then a random nonzero vector u ∈ V0 almost always
generates an r-dim invariant subspace. 2) When r > 2, the probability of d = 1 is
almost 1, as well as the probability of dim〈〈u〉〉 = r; in other words, the probabilities of
d > 1 and of dim〈〈u〉〉 6= r both are negligible. 3) If r = 2, both probabilities of d = 1
and of dim〈〈u〉〉 = r are generally no less than 1

2
.

10

4.2 Finding the First Correct Invariant Subspace

In this subsection, we shall find the first correct invariant subspace V1 in Fnq =⊕r
s=1 Vs.

After reducing the searching range from Fnq to V0, we may search for an r-dim invariant
subspace by picking randomly a nonzero vector u ∈ V0, and then computing the
invariant subspace 〈〈u〉〉, generated by u under all Alk, k 6= l. To compute 〈〈u〉〉, we
may compute the linear subspace spanned by u, Alku, . . ., Anlku for all k 6= l, and
some AilkA

j
lk′u — if necessary, add more vectors of this form AilkA

i′
lk′A

i′′
lk′′u etc. By

Assumption 2, only one or two trials will generally give an r-dim invariant subspace
〈〈u〉〉.
After finding an r-dim invariant subspace U , we find that it may not be a correct
invariant subspace. We analyze the situation and resolve this issue in the following.
We note that by Theorem 3 an r-dim invariant subspace should have a basis b1, . . . ,br
such that

(b1, . . . ,br)
TAl(b1, . . . ,br) = Ll.

Note that the left hand side should be nonsingular according to Assumption 1. We re-
mark that this condition is not dispensable as there exist linearly independent vectors
a1, . . . ,ar in Fnq such that (a1, . . . ,ar)

TAl(a1, . . . ,ar) is singular in our implemen-
tation. In addition, according to Theorem 1, there are two types of square matrices
over Fnq with q odd:

1) with determinant a square, and

2) with determinant a non-square.

For convenience, we call them square type and non-square type respectively. Note that
Al = RTL⊕rl R. So if r is odd, Al keeps the type of Ll, but if r is even, Al is always
of square type. Therefore, we should add this type condition to 〈〈u〉〉.
To summarize, the criteria for searching the first desired invariant subspace are:

1. u ∈ V0 and if a vector has been tried previously then discard the linear subspace
spanned by it.

2. dim〈〈u〉〉 = r.

3. 〈〈u〉〉 has a basis b1, . . . ,br such that (b1, . . . ,br)
TAl(b1, . . . ,br) is nonsingular.

4. If r is odd, 〈〈u〉〉 has a basis b1, . . . ,br such that det((b1, . . . ,br)
TAl(b1, . . . ,br))

is a square if detAl is a square and non-square if detAl non-square. If r is even,
there is no such restriction on the type.

We will see in our experiments that only several trials or even only one will give such
a 〈〈u〉〉. After finding one, let V1 = 〈〈u〉〉 and denote its basis u11, . . . ,u1r (in fact any
basis will do). Compute

Lk = (u11, . . . ,u1r)
TAk(u11, . . . ,u1r), 1 ≤ k ≤ m

and Llk = L−1
l Lk for k 6= l. These Lk may not equal to the original ones, but they

will be equivalent.

4.3 Finding the Rest Correct Invariant Subspaces

We next show how to inductively find all the rest correct invariant subspaces V2, . . . , Vr.
Suppose we have found V1, . . . , Vi, we find in the following those conditions that Vi+1

should satisfy. Firstly dimVi+1 = r. By the second condition of Theorem 3, Vi+1 is
orthogonal to V1, . . . , Vi in the following sense:

uTAkv = 0, ∀u ∈ Vi+1,v ∈ Vj , 1 ≤ j ≤ i, k 6= l.

11

By Theorem 2, Vi+1 has a basis b1, . . . ,br such that

Alk(b1, . . . ,br) = (b1, . . . ,br)Llk.

Conversely, such a basis can be solved from this equation. Then by Equation 6 of
Theorem 3, we test if this basis satisfies

(b1, . . . ,br)
TAl(b1, . . . ,br) = t2Ll

for some t ∈ Fq. There is t2 on the right hand side since the type of Ll need to be
taken into account.
To Summarize, we shall search for a vector u to generate Vi+1 according to the
following criteria:
1. u ∈ V0 and if a vector has been tried previously then discard the linear subspace

spanned by it.
2. uTAkv = 0, ∀v ∈ Vj , 1 ≤ j ≤ i, k 6= l.
3. dim〈〈u〉〉 = r.
4. The basis b1, . . . ,br of 〈〈u〉〉 solved from Alk(b1, . . . ,br) = (b1, . . . ,br)Llk sat-

isfies (b1, . . . ,br)
TAl(b1, . . . ,br) = t2Ll for some t ∈ Fq.

With only several trials or even only one as shown in our experiments, we will find
such a u. Then let Vi+1 = 〈〈u〉〉 and ui+1,j = tbj , 1 ≤ j ≤ r. Continue this process
until we find Vr. Then let

R−1 = (u11, . . . ,u1r, . . . ,ur1, . . . ,urr),

and compute R from R−1 and L from all Lk. Finally verify Equation 3 to check if
(L,R) is a correct key.

5 Algorithm and Complexity

In this section we shall first give our algorithm of attacking YTS’ scheme based on
the theory in preceding sections and analyze its complexity.

5.1 Algorithm

In preceding sections, we have developed a detailed theory of attacking YTS’ scheme
using invariant subspaces. We now summarize it as an algorithm of recovering a
correct private key of YTS’ scheme from its public map.

Algorithm 1 Given the matrices A1, . . . , Am of the first part of the public map F̄ of
YTS’ scheme, a correct private key, i.e., a pair of matrices (L,R) satisfying Equation
3, may be computed from the following steps.
1. Among all Ak, find an invertible Al and then compute Alk = A−1

l Ak.
2. For each Alk, compute its every primary factor ψ, then ψ(Alk) and dim kerψ(Alk)

until dim kerψ(Alk) = r which means d = 1. Denote this kerψ(Alk) as V0 and
continue to next step. If it is always dim kerψ(Alk) 6= r which means d > 1, then
exit and return “This algorithm is not applicable”.

3. Pick a u ∈ V0 following the first criterion in Subsection 4.2, and compute the
invariant subspace 〈〈u〉〉 by computing the linear subspace spanned by u, some

Ailku and some AilkA
i′
lk′u — add some AilkA

i′
lk′A

i′′

lk′′u etc if necessary. Repeat this
process until a 〈〈u〉〉 satisfying all the criteria in Subsection 4.2 is found, and let
it be V1.

12

4. Let u11, . . . ,u1r be a basis of V1. Compute Lk = (u11, . . . ,u1r)
TAk(u11, . . . ,u1r),

1 ≤ k ≤ m, and Llk = L−1
l Lk for k 6= l.

5. Similar to Step 3, compute Vi+1 and basis ui+1,1, . . . ,ui+1,r following the criteria
in Subsection 4.3. Repeat this process until all V2, . . . , Vr are found.

6. Compute R from R−1 = (u11, . . . ,u1r, . . . ,ur1, . . . ,urr) and L from all Lk.

7. Verify Equation 3 to check if (L,R) is a correct key.

Note that the condition dim kerψ(Alk) = r at Step 2 implies that Algorithm 1 applies
only when d = 1. It should be mentioned that the requirement d = 1 is just for
easy implementation. If d > 1, an applicable algorithm can actually be obtained by
modifying Algorithm 1 with not much effort. In that case, what we may get is a proper
invariant subspace whose dimension is a multiple of r, but we can decompose it further
into smaller invariant subspaces. In other words, we can inductively decompose the
whole space into smaller and smaller invariant subspaces until a full decomposition
into r-dim invariant subspaces is obtained. Then the rest are analogous to but more
tedious than Algorithm 1. Nevertheless, Assumption 2 assures that Algorithm 1 is
(almost) always applicable when r > 2 and often so when r = 2 as confirmed in our
implementation.

5.2 Complexity

We shall estimate the complexity of Algorithm 1 by counting the number of Fq
multiplications needed and by experimental method.

We first count the number of Fq multiplications needed for Steps 1, 4, 6 and 7 as
these steps are relatively simple:

Step 1 4 6 7

Fq multiplications O(r8) O(r7) O(r6) O(r6)

In theory the primary factors at Step 2 can be computed using Berlekamp’s algorithm
[Ber67, Ber70, vzGP01] or recent faster algorithms of Kedlaya and Umans [KU11].
Notice that the complexity estimation for these algorithms are for large parameters,
but practical parameters used for YTS’ scheme are rather small compared to them.
Our numerous experiments and implementation show that not only this computation
of primary factors but also the whole Step 2 is almost done immediately, so the
complexity of Step 2 is too little to take into account.

For Steps 3 and 5, the first question is how many Fq multiplications are needed
for the computation of the invariant subspace 〈〈u〉〉 generated by a vector u. Notice
that the dimension of dim〈〈u〉〉 is always r by Assumption 2 since d = 1 from Step
2. So to span 〈〈u〉〉, it should be enough to use these (m − 1)r = O(r3) vectors
u, Alku, . . . , A

r
lku for all k 6= l and some AilkA

j
lk′u. Note that each product Alku

needs r4 Fq multiplications and it is more efficient to compute the triple product
AlkAlk′u in this order Alk(Alk′u). Then computing 〈〈u〉〉 will need O(r3r4) = O(r7)
Fq multiplications.

The second question of Steps 3 and 5 is how many trials are needed to get a correct
u. As there seems no obvious accurate theoretical estimation on the number of trials,
we conduct experiments to estimate the complexity of searching correct u. Our ex-
periment covers various p, q, r and includes 625 random instances in total with each
one attacked twice. The results are presented in Tables 1 and 2, where “# trials”

13

means the number of trials done to get a correct u and “# times” means the num-
ber of times that “# trials” appears among all the tests. From Table 1, we see that
when r > 2 every attack is successful as expected in Assumption 2 and that almost
always at most 5 trials can give a correct u and especially only 1 or 2 trials will be
enough mostly. When r = 2, Table 2 also confirms the expectation in Assumption 2
that the success rate is no less than 1

2
, but it is surprising to find that only 1 trial is

almost enough to get a correct u and no more than 2 trials are needed. From these
experiment results, we thus can conclude that the complexity of searching correct u
is rather small. Additionally recall that there are r correct 〈〈u〉〉 need to be computed
to generate the r invariant subspaces. Therefore the complexity of Steps 3 and 5 is
bounded by O(r7 · r) = O(r8).

Table 1. Searching Complexity (r > 2)

r > 2

instances # attacks # successful attacks # success rate

400 800 800 100%

trials 1 2 3 4 5 6 7 8 9

times 2751 801 415 190 121 69 39 18 10

ratio (%) 62.20 18.11 9.38 4.30 2.74 1.56 0.88 0.41 0.23

trials 10 11 12 13 ≥ 14
times 5 1 2 1 0
ratio (%) 0.11 0.00 0.00 0.00 0.00

Table 2. Searching Complexity (r = 2)

r = 2

instances # attacks # successful attacks # success rate

225 450 330 73.33%

trials 1 2 ≥ 3

times 655 5 0

ratio (%) 99.24 0.76 0.00

To summarize, we have the following estimation on the complexity.

Proposition 4. The complexity of Algorithm 1 is O(r8) = O(n4) Fq multiplications.

Recall that the efficiency of signature generation is O(r4) = O(n2) Fq multiplications
[YTS13]. Namely the complexity of our attack is only square of the efficiency of
signature generation. Therefore it is safe to claim that YTS’ scheme is generally
broken efficiently by our attack.

6 Implementation Results

In this section we shall present and discuss our implementation results. Our algorithm
is implemented under the following computation environment:

14

– RAM: 24.0 GB
– Processor: Dual XEON Quad Core 2.27 GHz
– Operating System: RedHat Enterprise Linux 5.9 (64-bit)
– Magma V2.19-10

Due to the restriction of our computing power, we set the following limit: if the
average computation time reaches around 500 seconds for a set of parameters, then
we will stop testing bigger parameters.
Recall that all the parameters of YTS’ scheme are p a prime, q a power of p, n the
number of variables, r =

√
n and m = r(r+1)/2, but (p, q, r) are the major ones. We

shall present the average computation time and success rate of a few tests of a set
of parameters (p, q, r). Along with them, we also calculate both the lower bound q

√
n

on security against Min-Rank attack and the public key size as helpful references.
According to Assumption 2, the cases that r > 2 and that r = 2 are different. In
detail, when r > 2, d is expected generally 1 so that Algorithm 1 applies generally
and thus its success rate is expected generally 1; but when r = 2 the probability of
d = 1 is expected generally no less than 1

2
so that the success rate of Algorithm 1 is

expected generally no less than 1
2

as well. Hence we shall separate our implementation
into two parts accordingly.
When r > 2, our implementation always get a correct key; i.e., the success rate of our
attack is 100%, so we shall omit it in the tables below. For the choice of parameters,
we recall that in [YTS13] two sets of parameters (p = 2053, q = p, r = 8) and (p =
6781, q = p, r = 11) are chosen and claimed to have security level higher than 88-bit
and 140-bit respectively. Thus we of course consider these two sets of parameters. In
addition, we also consider other various sets of parameters, including the smallest odd
prime 3 and picking randomly a prime between 3 and 2053 and a prime much bigger
than 6781. For each set of parameters (p, q, r), we generate randomly 5 instances and
attack each instance 5 times, then calculate the average computation time for the
25 attacks to a set of parameters. Our first implementation data are displayed in
Tables 3, 4, 5, 6, 7. From these tables, we see that the computation time is small and
increases slowly as both r and the extension degree logp q increase even if their security
against Min-Rank attack is as high as 140-bit, but the public key size increases very
fast. Especially for the two sets of parameters (2053, 2053, 8) and (6781, 6781, 11) in
[YTS13], they are broken only in 1.50s and 14.77s respectively.

Table 3. p = 3

p = 3 r 8 9 10 11 12

attack (sec) 0.66 1.43 2.74 4.82 8.90
q = p Min-Rank (bit) 12 14 15 17 19

public key (kB) 37.4 74.7 138.9 243.6 404.4

attack (sec) 1.16 2.85 6.67 11.98 24.60
q = p2 Min-Rank (bit) 25 28 31 34 38

public key (kB) 74.9 149.4 277.8 487.1 808.7

attack (sec) 1.35 3.87 7.81 15.24 30.69
q = p3 Min-Rank (bit) 38 42 47 52 57

public key (kB) 112.3 224.2 416.6 730.7 1,213.1

attack (sec) 1.84 4.27 8.45 18.17 36.48
q = p4 Min-Rank (bit) 50 57 63 69 76

public key (kB) 149.8 298.9 555.5 974.3 1,617.4

15

Table 4. p = 311

p = 311 r 8 9 10 11 12

attack (sec) 0.77 1.69 3.37 10.04 16.7
q = p Min-Rank (bit) 66 74 82 91 99

public key (kB) 168.5 336.3 624.9 1,096.1 1,819.6

attack (sec) 26.51 49.84 68.77 108.06 181.73
q = p2 Min-Rank (bit) 132 149 165 182 198

public key (kB) 337.0 672.5 1,249.9 2,192.2 3,639.2

Table 5. p = 2053

p = 2053 r 8 9 10 11 12

attack (sec) 1.50 3.28 6.63 13.01 25.50
q = p Min-Rank (bit) 88 99 110 121 132

public key (kB) 224.6 448.3 833.2 1,461.4 2,426.1

Table 6. p = 6781

p = 6781 r 8 9 10 11 12

attack (sec) 2.55 4.55 9.38 14.77 24.41
q = p Min-Rank (bit) 101 114 127 140 152

public key (kB) 243.4 485.7 902.7 1,583.2 2,628.3

Table 7. p = 300007

p = 300007 r 8 9 10 11 12

attack (sec) 106.89 183.95 227.77 305.52 407.23
q = p Min-Rank (bit) 145 163 182 200 218

public key (kB) 355.7 709.9 1,319.3 2,313.9 3,841.3

16

We further test for what set of parameters, the computation time can reach around
500s. In Table 7, we already see that (p = 300007, q = p, r = 12) is close to reach
the 500s limit. Thus we next test the smallest r > 2 and the smallest odd prime,
i.e., r = 3 and p = 3, see Table 8. Here we see some surprise when logp q exceeds

12. Namely when q = p13, the computation time has a big jump from less than 20s
to more than 300s, but security against Min-Rank is only 61-bit and public key size
1.755kB only. Moreover when q = p14, the computation even jumps to almost 500s
but with security against Min-Rank attack as low as 66-bit only and public key size
1.890kB only. We then further test the smallest extension degrees logp q = 2, 3, 4, see
Table 9 from which we observe similar phenomenon; namely, the computation time
is already more than 500s but the security against Min-Rank attack remains as low
as about 66-bit and public key size remain as small as 1.620kB.

Table 8. r = 3 and p = 3

r = 3 q p10 p11 p12 p13 p14

attack (sec) 0.95 5.99 17.41 311.17 498.37
p = 3 Min-Rank (bit) 47 52 57 61 66

public key (kB) 1.350 1.485 1.620 1.755 1.890

Table 9. r = 3

r = 3 p = 2053, q = p2 p = 149, q = p3 p = 43, q = p4

attack (sec) 798.47 647.40 562.18

Min-Rank (bit) 66 65 65

public key (kB) 1.620 1.620 1.620

When r = 2, the situation is different. As it is expected that Algorithm 1 cannot
always produce a correct key, we test 10, instead of 5, random instances for each
set of parameters with each instance attacked twice. We then calculate the average
computation time of the 20 attacks as well as the success rate, and add the success
rate to the table of implementation data. We first test p = 3 for various extension
degrees, referring to Table 10, and then for extension degree 2, 3, and 4, we find
the primes reaching the 500s limit respectively, referring to Table 14. From the two
tables, it is interesting to see that every success rate is no less than 1

2
as expected

in Assumption 2. Moreover it is surprising to see that when the computation reaches
around 500s, the security against Min-Rank attack remains even lower than 50-bit
and public key size remains much smaller, i.e. around 0.2kB only.

From all the above implementation data, we find that the computation time is very
sensitive on the extension degree logp q of Fq over Fp, but much less sensitive on r,
and least sensitive on p. If logp q = 1, i.e., q = p, the computation time increases
slowly, but it increases very fast as logp q increases. It seems that the best strategy
of choosing parameters is: r = 2 and q large but p small. In addition, p should be
as close as possible to but less than a power of 2. This can have high security level
but also maintain small public key size as the relationship between the public key
size and r is O(r6) = O(n3), referring to Section 2. Nevertheless, this does not mean

17

Table 10. r = 2 and p = 3

r = 2 q p8 p9 p10 p11

attack (sec) 0.02 0.06 0.20 0.78
p = 3 success rate 100% 60% 60% 90%

Min-Rank (bit) 25 28 31 34
public key (kB) 0.120 0.135 0.150 0.165

r = 2 q p12 p13 p14 p15

attack (sec) 2.74 42.64 95.69 376.62
p = 3 success rate 80% 80% 70% 60%

Min-Rank (bit) 38 41 44 47
public key (kB) 0.180 0.195 0.210 0.225

Table 11. r = 2 and p = 5

r = 2 q p6 p7 p8 p9 p10 p11

attack (sec) 0.05 0.28 1.99 42.78 228.04 > 1 hour
p = 5 success rate 80% 60% 90% 100% 80% -

Min-Rank (bit) 28 33 38 42 47 51
public key (kB) 0.135 0.158 0.180 0.203 0.225 0.248

Table 12. r = 2 and p = 7

r = 2 q p5 p6 p7 p8 p9

attack (sec) 0.06 0.45 4.54 136.75 > 1 hour
p = 7 success rate 70% 70% 70% 80% -

Min-Rank (bit) 28 34 40 45 51
public key (kB) 0.113 0.135 0.158 0.180 0.203

Table 13. r = 2 and p = 43

r = 2 q p2 p3 p4 p5

attack (sec) 0.01 0.31 75.34 > 1 hour
p = 43 success rate 80% 80% 80% -

Min-Rank (bit) 22 33 44 55
public key (kB) 0.090 0.135 0.180 0.225

Table 14. r = 2

r = 2 q p2 p3 p4

attack (sec) 0.02 1.41 497.55
p = 67 success rate 90% 90% 90%

Min-Rank (bit) 24 36 48
public key (kB) 0.105 0.158 0.210

attack (sec) 0.20 505.86 -
p = 233 success rate 80% 80% -

Min-Rank (bit) 31 47 -
public key (kB) 0.120 0.180 -

attack (sec) 555.06 - -
p = 4111 success rate 80% - -

Min-Rank (bit) 48 - -
public key (kB) 0.195 - -

18

existence of practical and secure parameters because the complexity of our attack is
only square of the efficiency of signature generation, referring to Proposition 4.

7 Comparison with Y. Hashimoto’s Attack

There is another attack to YTS’ scheme proposed by Y. Hashimoto in PQCrypto
2014 [Has14]. We shall compare his attack and ours on several aspects including
ideas, approaches, complexity and implementation.
The starting difference is the choice of the one-one correspondence φ1 between r × r
matrices and vectors in Fnq = Fr

2

q . Our choice is, see Equation (1),

X ←→ (x11, . . . , x1r, x21, . . . , x2r, . . . , xr1, . . . , xrr)

while Hashimoto’s is

X ←→ (x11, . . . , xr1, x12, . . . , xr2, . . . , x1r, . . . , xrr).

Though this minor difference seems ignorable, it results quite different expressions of
the public map

Ak = RTL⊕rk R and Ak = RT (Lk ⊗ Ir)R
respectively. Here A⊗B denotes the Kronecker product

A⊗B =

a11B · · · a1rB
...

...
ar1B · · · arrB

of two matrices A = (aij)rr and B. The two expressions are of course equivalent but
lead to different approaches. Namely our expression has clear geometric interpretation
after converting to the following form

(A−1
l Ak)R−1 = R−1L⊕rlk ,

and reveals the hidden geometric structures of YTS’ scheme. This leads us to a geo-
metric approach using the theory of invariant subspaces. However, the second expres-
sion does not have such geometric meaning. Hashimoto uses an algebraic approach
to deal with it. He first observes that the private key can be recovered if R is of the
following special form

R = (Q⊗ Ir)(N1 ⊕ · · · ⊕Nr),
where Q,N1, . . . , Nr are r×r matrices, and then for general R, he develops algorithms
to find an invertible P such that RP is of this form and thus recovers the private key
for the general case.
Despite the above difference, both of the two approaches have some parts influenced
by Kipnis and Shamir’s attack to the oil-vinegar signature scheme [KS98]. In our
approach, we are motivated to convert Ak = RT (· · ·)R into A−1

l Ak = R−1(· · ·)R so
that the problem can be converted into a geometric problem and be solved using the
theory of invariant subspaces. In Hashimoto’s attack, his method of finding the P is
also analogous to Kipnis and Shamir’s method to some extent.
The complexity of Hashimoto’s attack is also claimed to be O(n4) Fq multiplications
[Has14]. However implementation results show that our attack seems much faster.
Hashimoto implements his attack under Windows 7, Core-i7 2.67GHz and Magma
ver.2.15-10, and run 20 times to attack YTS’ scheme with parameters (p = 6781, q =
p, r = 11). He claims that he succeeds every time and the running times is between

19

240 to 450 seconds. Our attack to this particular set of parameters is much faster with
only 14.77 seconds on average, referring to Table 6, and the time varies from 7.91 to
26.73 seconds which is not given in the table. Moreover unlike our implementation
including other various parameters, Hashimoto’s paper [Has14] includes only this
particular set of parameters. So to have a more convincible comparison, we need to
implement both attacks under the same computing environment and test the same
sets of various parameters.

8 Conclusion

Yasuda, Takagi and Sakurai’s signature scheme has special structure different from
other MPKC and is very efficient. However, we manage to attack its structure by ap-
plying intensively the theory of invariant subspaces and recover its private key. Our
attack has complexity only O(n4) which is square of the efficiency of signature gener-
ation. We further successfully implemented our algorithm and break in about 14.77
seconds a YTS’ instance whose security level was claimed to be 140bit. Therefore our
attack generally break efficiently Yasuda, Takagi and Sakurai’s signature scheme.

References

[Ber67] Elwyn R. Berlekamp. Factoring polynomials over finite fields. Bell System
Technical Journal, 46:1853C1859, 1967.

[Ber70] Elwyn R. Berlekamp. Factoring polynomials over large finite fields. Math.
Comput., 24:713–735, 1970.

[Car54] L. Carlitz. Representations by quadratic forms in a finite field. Duke
Math J., 21:123–137, 1954.

[CHDY11] Weiwei Cao, Lei Hu, Jintai Ding, and Zhijun Yin. Kipnis-Shamir Attack
on Unbalanced Oil-Vinegar Scheme. In F. Bao and J. Weng, editors, IS-
PEC 2011, volume 6672 of LNCS, pages 168–180. Springer-Verlag Berlin
Heidelberg, 2011.

[Cla] Pete L. Clark. Linear algebra: Invariant subspaces. http://math.uga.

edu/~pete/invariant_subspaces.pdf.
[DGS06] Jintai Ding, Jason E. Gower, and Dieter S. Schmidt. Multivariate pub-

lic key cryptosystems, volume 25 of Advances in Information Security.
Springer, 2006.

[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariate polynomial
signature scheme. In J. Ioannidis, A. Keromytis, and M. Yung, editors,
ACNS 2005, volume 3531 of LNCS, pages 164–175. Springer-verlag Berlin
Heidelberg, 2005.

[DY09] Jintai Ding and Bo-Yin Yang. Multivariate public key cryptography.
In DanielJ. Bernstein, Johannes Buchmann, and Erik Dahmen, editors,
Post-Quantum Cryptography, pages 193–241. Springer Berlin Heidelberg,
2009.

[GS03] Willi Geiselmann and Rainer Steinwandt. A short comment on the affine
parts of SFLASHv3. Cryptology ePrint Archive, Report 2003/220, 2003.
http://eprint.iacr.org/.

[GSB01] Willi Geiselmann, Rainer Steinwandt, and Thomas Beth. Attacking the
Affine Parts of SFLASH. In B. Honary, editor, Cryptography and Cod-
ing 2001, volume 2260 of LNCS, pages 355–359. Springer-Verlag Berlin
Heidelberg, 2001.

20

http://math.uga.edu/~pete/invariant_subspaces.pdf
http://math.uga.edu/~pete/invariant_subspaces.pdf
http://eprint.iacr.org/

[Has14] Yasufumi Hashimoto. Cryptanalysis of the multivariate signature scheme
proposed in pqcrypto 2013. In M. Mosca, editor, PQCrypto 2014, volume
8772 of LNCS, pages 108–125. Springer International Publishing Switzer-
land, 2014.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and
vinegar signature schemes. In J. Stern, editor, EUROCRYPT’99, volume
1592 of LNCS, pages 206–222. Springer, 1999.

[KS98] Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil & vinegar sig-
nature scheme. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of
LNCS, pages 257–267. Springer-Verlag Berlin Heidelberg, 1998.

[KU11] Kiran S Kedlaya and Christopher Umans. Fast polynomial factorization
and modular composition. SIAM Journal on Computing, 40(6):1767–
1802, 2011.

[Mac69] Jessie MacWilliams. Orthogonal matrices over finite fields. The American
Mathematical Monthly, 76(2):152–164, 1969.

[Pat97] Jacques Patarin. The oil and vinegar signature scheme. Presented at the
Dagstuhl Workshop on Cryptography, September 1997.

[Sch85] Winfried Scharlau. Quadratic and Hermitian Forms. Springer, 1985.
[vzGP01] J. von zur Gathen and D. Panario. Factoring polynomials over finite

fields: A survey. J. Symbolic Computation, 31:3–17, 2001.
[WP05a] Christopher Wolf and Bart Preneel. Equivalent Keys in HFE, C∗, and

Variations. In E. Dawson and S. Vaudenay, editors, Mycrypt 2005, volume
3715 of LNCS, pages 33–49. Springer-Verlag Berlin Heidelberg, 2005.

[WP05b] Christopher Wolf and Bart Preneel. Taxonomy of public key schemes
based on the problem of multivariate quadratic equations. Cryptology
ePrint Archive, Report 2005/077, http://eprint.iacr.org/2005/077/, 2005.

[YTS13] Takanori Yasuda, Tsuyoshi Takagi, and Kouichi Sakurai. Multivariate
signature scheme using quadratic forms. In P. Gaborit, editor, PQCrypto
2013, volume 7932 of LNCS, pages 243–258. Springer, 2013.

[ZT15] Wenbin Zhang and Chi How Tan. Algebraic Cryptanalysis of Yasuda,
Takagi and Sakurais Signature Scheme. In J. Lee and J. Kim, editors,
Information Security and Cryptology - ICISC 2014, volume 8949 of LNCS,
pages 53–66. Springer International Publishing, 2015.

A A Brief Introduction of the Theory of Invariant
Subspaces

In this section, we introduce the theory of invariant subspaces. We give here only
a very brief introduction which will be used in the paper, referring to [Cla] for a
complete theory.
Let F be a finite field, V a nontrivial finite dimensional vector space over F, and
T : V → V a linear map. A subspace U ⊆ V is called an invariant subspace of T if
T (U) ⊆ U . And a proper invariant subspace is an invariant subspace which is neither
the zero subspace nor the whole space V .
For a vector v ∈ V , the invariant subspace, denoted 〈v|T 〉, generated by v under T
is the linear subspace spanned by v, Tv, T 2v, It is minimal in the sense that if
U is an invariant subspace containing v, then 〈v|T 〉 ⊆ U . If we have k linear maps
T1, . . . , Tk : V → V , we can obviously define the invariant subspace generated by v
under T1, . . . , Tk, and denote it 〈v|T1, . . . , Tk〉.
There is interesting and deep relationship between invariant subspaces of T and the
characteristic polynomial, denoted fT , of T .

21

http://eprint.iacr.org/2005/077/

Proposition 5. For any polynomial f(x) ∈ F[x], the kernel ker f(T) and the image
f(T)(V) of f(T) both are invariant subspaces of T .

Given a vector v ∈ V , a polynomial fv is called the local minimal polynomial of T
at v, if fv(T)(v) = 0 and for any polynomial g such that g(T)(v) = 0, fv|g. Such fv
exists and fv|fT . v is called a prime vector if fv is irreducible.
For a prime, i.e., irreducible, factor g of fT , we shall call ker g(T) a prime invariant
subspace of T . Prime invariant subspaces have the following property.

Proposition 6. If g is a prime factor of fT , then g = fv for any nonzero v ∈
ker g(T).

For each prime vector v, 〈v|T 〉 contains no proper invariant subspaces, and thus
may be regarded as a minimal invariant subspace. Furthermore the prime invariant
subspace ker g(T) can be decomposed as a direct sum of some such minimal invariant
subspaces, but such decomposition is not unique.
Suppose fT is decomposed as

fT = fs11 · · · f
sr
r

with each fi irreducible and fi 6= fj if i 6= j. Then each ker fsii (T) is called a primary
invariant subspace of V and V can be decomposed as the direct sum of all primary
invariant subspaces

V =

r⊕
i=1

ker fsii (T).

Each primary invariant subspace can be decomposed further, cf. [Cla].
Prime invariant subspaces will be the key in our attack to YTS’ scheme. They have
the property that any proper invariant subspace must contain a prime vector, or
equivalently intersects nontrivially with a prime invariant subspace. So to find vectors
in the desired invariant subspaces, we may search them in prime invariant subspaces
rather than in the whole space. This significantly reduces the searching range and
thus may amount to fast attacks.

B Attacking the Affine Parts

In this section, we show that if the central map of the bipolar construction is quadratic
homogeneous and its variables take value in Fq with q > 2, then the affine parts of
the two secret affine maps L,R can be either recovered or illuminated easily. That
is, they do not enhance the security at all. Such phenomenon has been investigated
for SFLASH in [GSB01, GS03] and also for YTS’ scheme in [Has14]. The method
is indeed just letting the linear part of the public key be zero and then solving the
resulted linear system. It is therefore unnecessary to use affine instead of linear maps
for the two secret maps L,R whenever the central map is quadratic homogeneous.
Let q > 2 be a power of a prime p where p can be 2 or an odd prime. Assume that
F = (f1, . . . , fm) : Fnq → Fmq is quadratic homogeneous, i.e. each fk(x) has nonzero
terms of degree two only. Let L,R be two invertible affine maps and F̄ = L ◦ F ◦R.
Assume R(x) = R0(x+ r) = R0x+R0r, L(y) = L0y + l, then

F̄ (x) = L(F (R(x))) = L0 · F (R0(x+ r)) + l.

Assume we do not know L,R, F but we know F̄ , and we want to find the affine parts
l, r of L,R respectively.
We first write

F̄ (x) = (xTA1x, . . . , x
TAmx)T +Bx+ C,

22

where Ai is an n × n matrix which can be symmetric or not, B is an m × n matrix
and C ∈ Fmq . By assumption, these matrices are known.

F̄ (x− r) =

xTA1x
...

xTAmx

+ (B −

 rT (A1 +AT1)
...

rT (Am +ATm)

)x+ (

 rTA1r
...

rTAmr

−Br + C).

Compare this equation with

F̄ (x− r) = L(F (R(x− r))) = L0 · F (R0x) + l.

Since F is quadratic homogeneous and q > 2, L0 · F (R0x) is quadratic homogeneous
— this may not hold if q = 2 since xTx = x. Hence we must have

L0 · F (R0x) = (xTA1x, . . . , x
TAmx)T ,

B −

 rT (A1 +AT1)
...

rT (Am +ATm)

 = 0,

l = (rTA1r, . . . , r
TAmr)

T −Br + C.

The middle equation is an overdetermined linear system of n unknowns and mn
equations, and r is a solution to it. As there are much more equations than unknowns,
the probability that it has a unique solution is almost one. If it has a unique solution
then the original r is recovered; if there are more than one solutions, we can pick a
solution r′ and calculate correspondingly

l′ = (r′TA1r
′, . . . , r′TAmr

′)T −Br′ + C,

and then we have
F̄ (x− r′)− l′ = L0 · F (R0x)

which involves only the linear parts of L,R and illuminates their affine parts.
We remark that when this approach is applied to higher degree, the resulted system
for r is no longer linear but of high degree, because the coefficients of the linear term
x contain high degree terms of r. So the situation for high degree is more complicated
and needs more sophisticated study.

23

	Cryptanalysis of Yasuda, Takagi and Sakurai's Signature Scheme Using Invariant Subspaces

