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Abstract

Functional encryption provides fine-grained access control for encrypted data, allowing each
user to learn only specific functions of the encrypted data. We study the notion of hierarchical
functional encryption, which augments functional encryption with delegation capabilities, offering
significantly more expressive access control.

We present a generic transformation that converts any general-purpose public-key functional
encryption scheme into a hierarchical one without relying on any additional assumptions. This
significantly refines our understanding of the power of functional encryption, showing (somewhat
surprisingly) that the existence of functional encryption is equivalent to that of its hierarchical
generalization.

Instantiating our transformation with the existing functional encryption schemes yields a va-
riety of hierarchical schemes offering various trade-offs between their delegation capabilities (i.e.,
the depth and width of their hierarchical structures) and underlying assumptions. When start-
ing with a scheme secure against an unbounded number of collusions, we can support arbitrary
hierarchical structures. In addition, even when starting with schemes that are secure against a
bounded number of collusions (which are known to exist under rather minimal assumptions such
as the existence of public-key encryption and shallow pseudorandom generators), we can support
hierarchical structures of bounded depth and width.

1 Introduction

The rapidly evolving vision of functional encryption [SW08, BSW11, O’N10] offers tremendous flex-
ibility when accessing encrypted data. Specifically, functional encryption schemes support restricted
decryption keys that allow users to learn specific functions of the encrypted data and nothing else.
Motivated by the early examples of functional encryption schemes for specific functionalities (such
as identity-based encryption [Sha84, BF03, Coc01]), extensive research has recently been devoted
to the study of functional encryption (see, for example, [SW08, BSW11, O’N10, GVW12, AGV+13,
BO13, BCP14, GGH+13, GKP+13, ABS+15, Wat15, GGH+14, AS15, BS15, KSY15, BKS15] and
the references therein).

In a functional encryption scheme, a trusted authority holds a master secret key known only
to the authority. When the authority is given the description of some function f as input, it uses
its master secret key to generate a functional key skf associated with the function f . Now, anyone
holding the functional key skf and an encryption of any message x, can compute f(x) but cannot
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learn any additional information about the message x. Such fine-grained access to encrypted data
is extremely useful for a wide variety of applications, including expressive access control, spam
filtering, mining encrypted databases, and more (we refer the reader to the survey by Boneh, Sahai
and Waters [BSW12] for an in-depth discussion of these applications).

Hierarchical functional encryption. Motivated by the applicability of functional encryption
to expressive access-control systems, in this paper we study the notion of hierarchical functional
encryption, which was introduced by Ananth, Boneh, Garg, Sahai and Zhandry [ABG+13]. The
hierarchical notion augments standard functional encryption with delegation capabilities, enabling
significantly more expressive access control.

Specifically, recall that in a functional encryption scheme, the holder of the master secret key msk
can generate a functional key skf corresponding to any given function f . In a hierarchical functional
encryption scheme, the holder of any such functional key skf can in turn generate a functional
key skg◦f corresponding to the function g ◦ f for any given function g. Now, anyone holding the
delegated functional key skg◦f and an encryption of any message x, can compute (g◦f)(x) = g(f(x))
but cannot learn any additional information about the message x. Such expressive delegation
capabilities give rise to hierarchical access control, which is a sought-after ingredient in modern
access control systems. In particular, the notion of hierarchical functional encryption generalizes
those of hierarchical attribute-based encryption, hierarchical identity-based encryption and more
(see the discussion at the end of Section 3 on the delegation capabilities of functional encryption).

Ananth et al. formalized a notion of security for hierarchical functional encryption schemes, and
sketched how the functional encryption scheme of Garg et al. [GGH+13] can be transformed into
a hierarchical one by using a general-purpose indistinguishability obfuscator [BGI+12, GGH+13].1

Their approach, however, is both tailored to the specific functional encryption scheme of Garg et al.
[GGH+13], and can only support hierarchical structures of constant depth (i.e., can only support a
constant number of successive delegations).2

1.1 Our Contributions

We present a generic transformation that converts any general-purpose public-key functional en-
cryption scheme into a hierarchical one without relying on any additional assumptions (and, in
particular, without relying on indistinguishability obfuscation). Our transformation allows instanti-
ations based both on unbounded-collusion functional encryption schemes and on bounded-collusion
ones. This level of generality yields a variety of hierarchical schemes based on various assumptions
in the standard model. These include strong assumptions such as indistinguishability obfuscation
[GGH+13, Wat15] or multilinear maps [GGH+14], and much milder assumptions such as learning
with errors [GKP+13], and even the existence of any public-key encryption scheme and low-depth
pseudorandom generator [GVW12].

The variety of resulting schemes offer different trade-offs between their underlying assumptions
and their delegation capabilities (i.e., the depth and width of the hierarchical structures that they
support). For example, instantiating our transformation with the schemes of Garg et al. [GGH+13]
and Waters [Wat15] results in hierarchical schemes that support hierarchical structures of any poly-
nomial depth and any polynomial width (where these polynomials do not have to be specified

1It was recently shown by Ananth and Jain [AJ15] and by Bitansky and Vaikuntanathan [BV15] that indistinguisha-
bility obfuscation can be constructed from some flavors of functional encryption. Specifically, from succinct functional
encryption with sub-exponential security. Our approach is both more direct and requires no such properties.

2In the hierarchical scheme of Ananth et al. [ABG+13], a delegated functional key skg◦f for the function g ◦ f is
computed from skf by applying the obfuscator to a program that contains skf as part of its description. Thus, since
skf itself consists of such an obfuscated program, this allows for only a constant number of successive delegations.
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in advance). In addition, instantiating our transformation with the schemes of Goldwasser et al.
[GKP+13] or Gorbunov et al. [GVW12] results in hierarchical schemes that support hierarchical
structures of any constant depth and any pre-determined polynomial width. This should be com-
pared to the hierarchical scheme of Ananth et al. [ABG+13] that is constructed from the specific
functional encryption scheme of Garg et al. [GGH+13], and can only support hierarchical structures
of constant depth, as discussed above. We refer the reader to Table 1 for a comparison of the as-
sumptions underlying the known hierarchical functional encryption schemes and of their supported
hierarchical structures.

Our approach also results in keys and ciphertexts with a rather low overhead compared to the
efficiency of the underlying functional encryption scheme. A ciphertext in our scheme is essentially
a ciphertext of the underlying scheme. A delegated functional key for g ◦ f contains two functional
keys for functions that essentially compute f and g, respectively, in addition to some cryptographic
computation (an evaluation of a PRF, and an encryption of a ciphertext of the underlying scheme).
See the overview below for more details on our approach.

Assumption
Hierarchical Structure

Depth Width

Indistinguishability obfuscation [ABG+13] Constant Unbounded

Unbounded-collusion FE (our work) Unbounded Unbounded

Bounded-collusion FE (our work) Constant Any fixed polynomial

Table 1: A comparison of the assumptions underlying the known hierarchical functional encryption schemes
and of their supported hierarchical structures. We note that indistinguishability obfuscation is known to imply
unbounded-collusion functional encryption [Wat15], which in turn clearly implies bounded-collusion functional
encryption. In addition, bounded-collusion functional encryption is implied by much milder assumptions such
as learning with errors [GKP+13], and even the existence of any public-key encryption scheme and low-depth
pseudorandom generator [GVW12].

1.2 Overview of Our Approach

Formally, a hierarchical FE scheme contains the standard (Setup,KG,Enc,Dec) algorithms, in addi-
tion to a new delegation algorithm Delegate. The delegation algorithm Delegate(hskf , g) is identical
in syntax to the KG algorithm, except that it takes a functional key hskf (which can itself be the
output of a previous delegation) instead of the master secret key msk. Its output is a key hskg◦f
corresponding to the composed function g ◦ f .

Indeed, the way we implement this functionality is by associating a unique master secret key
with any delegable functional key. Namely, a delegable key hskf (with respect to the master key pair
(msk,mpk)) will contain a fresh master secret key msk′ in addition to a “standard” functional key for
a re-encryption function skReEncf,mpk′ (the key pair (msk′,mpk′) is generated using the standard setup
procedure). The function ReEncf,mpk′(x), intuitively, takes an input x and outputs a functional
encryption of f(x) under the new key mpk′. It is obvious that since msk′ is a part of hskf , then the
owner of hskf = (skReEncf,mpk′ ,msk′) can derive f(x) itself if it so desires. The beauty of this procedure
is that it can then be repeated. If hskf needs to be delegated via Delegate(hskf , g), then one only
needs to generate a new pair (msk′′,mpk′′), use msk′ to obtain sk′ReEncg,mpk′′

and output hskg◦f =

(skReEncf,mpk′ , sk
′
ReEncg,mpk′′

,msk′′). In the decryption process, we start with some ct = FE.Encmpk(x),

use the first component of the key to obtain ct′ = FE.Encmpk′(f(x)), and then using the second
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component to obtain ct′′ = FE.Encmpk′′(g(f(x))). Finally, msk′′ is used to decrypt ct′′ and thus learn
the value g(f(x)).

Care needs to be taken in order to securely realize the above intuition. In particular, one
has to come up with a source of randomness for the re-encryption process. This is done by
slightly modifying the encryption algorithm of the hierarchical scheme such that Enc(mpk, x) =
FE.Enc(mpk, (x,K,⊥)), where K is a key to a puncturable pseudorandom function PRF, and ⊥ is
a placeholder that will only be used in the proof. Similarly, we will generate functional keys of
the form skReEncf,t,mpk′,c , where t is a random tag and c is a random string that will be used in the
proof. The function ReEncf,t,mpk′,c(x,K,⊥) will compute f(x) and encrypt the tuple (f(x),K ′,⊥)
under msk′ using randomness r′. The randomness for the generation of K ′ and r′ is produced by
evaluating PRFK(t).

For the sake of our security proof, one last addition is made to the description of ReEncf,t,mpk′,c.
If its input is of the form (·, ·, k), where k is a key for a symmetric encryption scheme, then the first
two arguments are ignored and SKE.Deck(c) is output. Thus we implement a “trapdoor circuit” (or
a “Trojan”) as per [DIJ+13, ABS+15].

Security notion. The notions of security that we consider in this work are those formalized by
Ananth et al. [ABG+13]. Specifically, we consider adversaries that obtain functional keys for various
functions of their choice by issuing key-generation queries and delegation queries. We require that
such adversaries have only a negligible advantage in distinguishing the encryptions of two challenge
messages, x∗0 and x∗1, of their choice as long as for any function f for which they obtain a functional
key it holds that f(x∗0) = f(x∗1), where such a key may be produced either as a result of a key-
generation query or a delegation query (we refer the reader to Section 3 for more details).

We prove that if the underlying scheme FE is selectively secure then the resulting hierarchical
scheme is selectively secure, and if FE is semi-adaptively secure then the resulting hierarchical
scheme is semi-adaptively secure.3 We leave it as an intriguing open problem to design a hierarchical
functional encryption scheme that guarantees adaptive security. We note that already in the less-
expressive setting of identity-based encryption, designing adaptively-secure hierarchical schemes is
extremely challenging. In particular, Lewko and Waters [LW14] recently showed why known proof
methods fall short of proving adaptive security even for adaptively-secure hierarchical identity-
based encryption (which is a special case of hierarchical FE) without degrading exponentially with
the number of delegation levels.

Proof overview. Let us focus on the case of selective security, semi-adaptive security follows by a
practically identical argument. In the selective security game, the adversary first specifies challenge
messages x∗0 and x∗1, receives mpk, and then makes a sequence of key-generation and delegation
queries. One could visualize the structure that is generated by these queries as a tree, whose root is
(msk,mpk) and whose nodes are the key pairs that are generated upon each call to KG or Delegate.
Each such call generates a new child for one of the nodes in the tree, as per the adversary’s choice.
Each node is associated with a function f which was input to KG/Delegate in its creation, and
also with a function f̃ , which is the composition of all functions from the root to that node. If
f̃(x∗0) = f̃(x∗1) then we say that the node is observable, since the adversary is allowed to see the
functional key hskf̃ associated with that node. We can assume w.l.o.g that all the leaves of the tree

3We briefly remind the reader the differences between selective, semi-adaptive, and adaptive security. Selective
security considers adversaries that specify their challenge messages before seeing the public parameters or making
any key queries. Semi-adaptive security, as recently defined by Chen and Wee [CW14], considers adversaries that
specify their challenge messages after seeing the public parameters but before making any key queries. Finally,
adaptive security considers adversaries that specify their challenge messages even after seeing the public parameters
and making key queries.
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are observable.
The high-level intuition of the proof is the following. Let us pretend that ReEnc is actually

capable of outputting a re-encrypted ciphertext which is encrypted with true randomness, rather
than with pseudorandomness. Now, consider an unobservable node i (i.e., a node corresponding to
fi and f̃i for which f̃i(x

∗
0) 6= f̃i(x

∗
1)) that only has observable children. This means that all functions

ReEncf,t,mpk′,c that are generated relative to this node’s mski will output the same value whether
the challenge ciphertext is an encryption of x∗0 or of x∗1. The security of the underlying scheme will
guarantee that the re-encrypted ciphertext cannot be used to distinguish x∗0 from x∗1. Let us take
another leap of faith and pretend that not only the re-encrypted ciphertext cannot distinguish x∗0
from x∗1 but it is in fact identical in both cases. Then the above process can propagate towards the
root of the tree, where at every step we increase the number of nodes whose output is the same
regardless of whether the challenge ciphertext encrypts x∗0 or x∗1. Once this process gets all the way
to the root and applied to the challenge ciphertext itself, the proof is complete.

This intuition is implemented using the mechanisms of punctured programming [SW14] and
“trapdoor circuits” [DIJ+13] (or “Trojans” [ABS+15]). We will replace the c values in ReEncf,t,mpk′,c

with symmetric encryptions of our “fantasy ciphertexts” (ones that are encrypted with true ran-
domness), and append the challenge ciphertext with the appropriate symmetric decryption key (in
fact, multiple symmetric keys will be needed, one for every level of the hierarchy, and one has to
carefully control their propagation along the tree). Puncturable PRFs will be used to argue that
the use of fantasy ciphertexts is indistinguishable from the actual output of ReEncf,t,mpk′,c, which
will allow the proof idea from above to go through. This requires a careful and delicate argument
since we can only puncture a PRF key that had been generated with fresh randomness, hence one
has to also consider fantasy PRF keys and propagate them along the tree as well together with the
fantasy ciphertexts. The formal proof thus contains many fine points and a large number of steps,
and is provided in Section 4.

1.3 Related Work

Hierarchical encryption schemes. Encryption schemes supporting a hierarchical structure have
been extensively studied in the setting of identity-based encryption, and have been recently studied
in the more general setting of attribute-based encryption and functional encryption.

The line of research on hierarchical identity-based encryption has been extremely successful,
starting with schemes in the random oracle model, evolving through selectively-secure schemes in
the standard model and graduating to adaptively secure schemes for polynomially many levels. It is
far beyond the scope of this paper to provide an extensive overview of this line of research, and we
refer the reader to [GS02, HL02, BB04, BBG05, BW06, GH09, Wat09, ABB10a, ABB10b, LOS+10,
LW10, LW11, CHK+12, LW14] and the references therein.

Recently, Boneh et al. [BGG+14] constructed an attribute-based encryption scheme that supports
delegation of keys. This scheme enables anyone holding a key skP corresponding to a predicate P to
generate a key skP∧Q corresponding to the predicate P ∧Q for any given predicate Q. Now, given
the key skP∧Q and an encryption of any pair (x,m), one can recover m if and only if (P ∧Q)(x) = 1.
Although the setting of attribute-based encryption is significantly more expressive than the identity-
base one, it does not seem to come close to the general setting of functional encryption that we
consider in this paper.

Finally, as discussed above, Ananth et al. [ABG+13] sketched how the functional encryption
scheme of Garg et al. [GGH+13] can be transformed into a hierarchical one by using a general-
purpose indistinguishability obfuscator. When compared to their scheme our approach offers two
main advantages. First, whereas Ananth et al. rely on a specific scheme and on indistinguishability

5



obfuscation, we can rely on any underlying general-purpose scheme. This enables us to rely on
a variety of underlying assumptions, including learning with errors and even the existence of any
public-key encryption scheme and low-depth pseudorandom generators, as discussed in Section 1.1.
Furthermore, as new functional encryption schemes are presented, they can immediately be plugged
in to our construction. Second, the schemes resulting from our transformation guarantee semi-
adaptive security, whereas the scheme of Ananth et al. guarantees only the somewhat less realistic
notion of selective security.

Encapsulation techniques in functional encryption. Key encapsulation is a very useful ap-
proach for improving both the efficiency and the security of encryption schemes. Specifically, key
encapsulation typically means that instead of encrypting a message x under a fixed key sk, one can
instead sample a fresh key k, encrypt x under k, and then encrypt k under sk. Recently, Ananth et
al. [ABS+15], followed by Brakerski et al. [BKS15], showed that key encapsulation is useful also for
functional encryption, and can be used for generically enhancing the functionality and the security
of such schemes. Their approaches suggest that encapsulation techniques may in fact be a general
tool that is useful in the design of functional encryption schemes. As discussed in Section 1.2,
our construction relies on encapsulation techniques as a key ingredient, significantly extending the
initial ideas of Ananth et al. Brakerski et al. from encapsulating keys to realizing a re-encryption
mechanism that generates a hierarchical structure.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we provide an overview of the
notation, definitions, and tools underlying our constructions. In Section 3 we present the notion
of a hierarchical functional encryption scheme and define its security. In Section 4 we present our
generic construction of a hierarchical functional encryption scheme.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. Throughout the
paper, we denote by λ the security parameter. A function neg : N → R is negligible if for every
constant c > 0 there exists an integer Nc such that neg(λ) < λ−c for all λ > Nc. Two sequences
of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if for
any probabilistic polynomial-time algorithm A there exists a negligible function neg(·) such that∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]

∣∣ ≤ neg(λ) for all sufficiently large λ ∈ N.

2.1 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval) be a function family
with the following syntax:

• PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the unary represen-
tation of the security parameter λ, and outputs a key K ∈ Kλ.

• PRF.Eval is a deterministic polynomial-time algorithm that takes as input a key K ∈ Kλ and
a value x ∈ Xλ, and outputs a value y ∈ Yλ.
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The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range of the function
family, respectively. For K ∈ Kλ, we use the notation PRF.Eval(K, ·), PRF.EvalK(·) and PRFK(·)
interchangeably. The following is the standard definition of a pseudorandom function family.

Definition 2.1 (Pseudorandomness). A function family PRF = (PRF.Gen,PRF.Eval) is pseudoran-
dom if for every probabilistic polynomial-time algorithm A there exits a negligible function neg(·)
such that

AdvPRF ,A(λ)

def
=

∣∣∣∣ Pr
K←PRF.Gen(1λ)

[
APRF.EvalK(·)(1λ) = 1

]
− Pr
f←Fλ

[
Af(·)(1λ) = 1

]∣∣∣∣
≤ neg(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of all functions that map Xλ into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely on the seem-
ingly stronger (yet existentially equivalent) notion of a puncturable pseudorandom function family
[KPT+13, BW13, SW14, BGI14]. In terms of syntax, this notion asks for an additional probabilistic
polynomial-time algorithm, PRF.Punc, that takes as input a key K ∈ Kλ and a set S ⊆ Xλ and out-
puts a “punctured” key KS . The properties required by such a puncturing algorithm are captured
by the following definition.

Definition 2.2 (Puncturable PRF). A pseudorandom function family PRF = (PRF.Gen,PRF.Eval,
PRF.Punc) is puncturable if the following properties are satisfied:

1. Functionality: For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and for every x ∈ Xλ \S
it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K,S)

[PRF.EvalK(x) = PRF.EvalKS (x)] = 1.

2. Pseudorandomness at punctured points: Let A = (A1,A2) be any probabilistic poly-
nomial-time algorithm such that A1(1λ) outputs a set S ⊆ Xλ, a value x ∈ S, and state
information state. Then, for any such A there exists a negligible function neg(·) such that

AdvPRF ,A(λ)

def
= |Pr [A2(KS ,PRF.EvalK(x), state) = 1]− Pr [A2(KS , y, state) = 1]|
≤ neg(λ)

for all sufficiently large λ ∈ N, where K ← PRF.Gen(1λ), (S, x, state) ← A1(1λ), KS =
PRF.Punc(K,S), and y ← Yλ.

For our constructions we rely on pseudorandom functions that need to be punctured only at a
single point (i.e., in both parts of Definition 2.2 it holds that S = {x∗} for some x∗ ∈ Xλ). As
observed by [KPT+13, BW13, SW14, BGI14] the GGM construction [GGM86] of PRFs from any
one-way function can be easily altered to yield such a puncturable pseudorandom function family.

Augmented evaluation. When dealing with pseudorandom functions that need to be punctured
only at a single point, we find it natural to consider an “augmented” evaluation algorithm that
outputs a pre-determined value y∗ at the punctured point. That is, we extend the functionality of
PRF.Eval such that given an augmented key of the form (Kx∗ , (x

∗, y∗)), it holds that

PRF.Eval(Kx∗ ,(x∗,y∗))(x) =

{
y∗, if x = x∗

PRF.EvalKx∗ (x), if x 6= x∗
.
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2.2 Private-Key Encryption with Pseudorandom Ciphertexts

A private-key encryption scheme over a message space X = {Xλ}λ∈N is a triplet Π = (KG,Enc,Dec)
of probabilistic polynomial-time algorithms. The key-generation algorithm KG takes as input the
unary representation 1λ of the security parameter λ ∈ N and outputs a secret key k. The encryption
algorithm Enc takes as input a secret key k and a message x ∈ Xλ, and outputs a ciphertext c.
The decryption algorithm Dec takes as input a secret key k and a ciphertext c, and outputs a
message x ∈ Xλ or the dedicated symbol ⊥. In terms of correctness we require that for any key k
that is produced by KG(1λ) and for every message x ∈ Xλ it holds that Dec(k,Enc(k, x)) = x with
probability 1 over the internal randomness of the algorithms Enc and Dec. We also require that a
random string does not decrypt to a valid message with overwhelming probability, i.e. Dec(k, ρ) = ⊥
with probability (1 − neg(λ)) over the randomness of the key k and a random string ρ of the
same length as the ciphertext. In terms of security, we rely on the following standard notion of
pseudorandom ciphertexts which can be based on any one-way function (see, for example, [Gol04]).

Definition 2.3 (Pseudorandom ciphertexts). A private-key encryption scheme Π = (KG,Enc,Dec)
has pseudorandom ciphertexts if for any probabilistic polynomial-time adversary A = (A1,A2), there
exists a negligible function neg(·) such that

AdvPCΠ,A(λ)
def
=

∣∣∣∣Pr
[
ExpPCΠ,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExpPCΠ,A(λ) is defined via the following
experiment:

1. k← KG(1λ), b← {0, 1}.
2. (x∗, state)← AEnc(k,·)

1 (1λ), where x∗ ∈ Xλ.

3. c∗0 ← Enc(k, x∗), c∗1 ← {0, 1}|c
∗
0|.

4. b′ ← AEnc(k,·)
2 (c∗b , state).

5. If b′ = b then output 1, and otherwise output 0.

2.3 Public-Key Functional Encryption

A public-key functional encryption scheme over a message space X = {Xλ}λ∈N and a function space
F = {Fλ}λ∈N is a quadruple Π = (Setup,KG,Enc,Dec) of probabilistic polynomial-time algorithms.
The setup algorithm Setup takes as input the unary representation 1λ of the security parameter λ ∈ N
and outputs a master-secret key msk and a master-public key mpk. The key-generation algorithm
KG takes as input a master-secret key msk and a function f ∈ Fλ, and outputs a functional key skf .
The encryption algorithm Enc takes as input a master-public key mpk and a message x ∈ Xλ, and
outputs a ciphertext ct. In terms of correctness we require that for all sufficiently large λ ∈ N, for
every function f ∈ Fλ and message x ∈ Xλ it holds that Dec(KG(msk, f),Enc(mpk, x)) = f(x) with
all but a negligible probability over the internal randomness of the algorithms Setup, KG, and Enc.

We rely on the standard indistinguishability-based notion of adaptive security for public-key
functional encryption (see, for example, [BSW11, O’N10, BO13, ABS+15]), asking that encryptions
of any two messages, x0 and x1, are computationally indistinguishable given access to functional
keys for any function f such that f(x0) = f(x1).

Definition 2.4 (Adaptive security). A functional encryption scheme Π = (Setup,KG,Enc,Dec) over
a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is adaptively secure if for any
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probabilistic polynomial-time adversary A = (A1,A2) there exists a negligible function neg(·) such
that

AdvFEΠ,A(λ)
def
=

∣∣∣∣Pr
[
ExpFEΠ,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExpFEΠ,A(λ) is defined via the following
experiment:

1. (msk,mpk)← Setup(1λ), b← {0, 1}.
2. (x∗0, x

∗
1, state) ← A

KG(msk,·)
1 (1λ,mpk), where x∗0, x

∗
1 ∈ Xλ, and for each function f ∈ Fλ with

which A1 queries KG(msk, ·) it holds that f(x∗0) = f(x∗1).

3. ct∗ ← Enc(mpk, x∗b).

4. b′ ← AKG(msk,·)
2 (ct∗, state), where for each function f ∈ Fλ with which A2 queries KG(msk, ·)

it holds that f(x∗0) = f(x∗1).

5. If b′ = b then output 1, and otherwise output 0.

In addition to the above notion of adaptive security we consider two natural relaxations: semi-
adaptive security, and selective security. Semi-adaptive security is defined via an experiment
ExpsemiFE

Π,A (λ) that is obtained from the experiment ExpFEΠ,A(λ) by asking the adversary to determine
the challenge messages before making any key-generation queries (but after receiving the public
key). Selective security is defined via an experiment ExpselFEΠ,A (λ) that is obtained from the experi-

ment ExpFEΠ,A(λ) by asking the adversary to determine the challenge messages in advance (i.e., before
receiving the public key).

Known constructions. General-purpose functional encryption schemes that satisfy the above
notion of adaptive security are known to exist based on a variety of assumptions. Ananth et
al. [ABS+15] gave a generic transformation from selective security to adaptive security, implying
that schemes that are adaptively secure for any number of key-generation queries can be based on
indistinguishability obfuscation [GGH+13, Wat15], differing-input obfuscation [BCP14, ABG+13],
and multilinear maps [GGH+14]. In addition, schemes that are adaptively secure for a bounded
number B = B(λ) of key-generation queries can be based on the Learning with Errors (LWE)
assumption (where the length of ciphertexts grows with B and with a bound on the depth of allowed
functions) [GKP+13], based on any public-key encryption scheme and pseudorandom generators
computable by small-depth circuits (where the length of ciphertexts grows with B and with an
upper bound on the circuit size of the functions) [GVW12], and even based on any public-key
encryption scheme (for B = 1) [GVW12].

3 Hierarchical Functional Encryption

In this section we define the notion of a hierarchical functional encryption scheme and formalize
several notions of security for such schemes (based on [ABG+13]). A hierarchical functional encryp-
tion scheme is a functional encryption scheme that supports delegation of functional keys: Given a
functional key skf corresponding to a function f , and given a function g, it is possible to efficiently
compute a functional key skg◦f corresponding to the function g◦f (i.e., the function that first applies
f and then applies g). This capability is provided via a delegation algorithm denote Delegate.

Formally, a hierarchical functional encryption scheme over a message space X = {Xλ}λ∈N
and a function space F = {Fλ}λ∈N is a tuple Π = (Setup,KG,Enc,Dec,Delegate) of probabilis-
tic polynomial-time algorithms, where (Setup,KG,Enc,Dec) is a functional encryption scheme (see
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Section 2.3), and Delegate is a delegation algorithm that operates as follows: It takes as input a
functional key skf (which had been produced either by the key-generation algorithm or by the del-
egation algorithm itself) corresponding to a function f ∈ Fλ, and a function g ∈ Fλ, and outputs a
functional key skg◦f .

Correctness. In terms of correctness we require that for every λ ∈ N, for every polynomial ` = `(λ)
and , for every sequence of functions f1, . . . , f` ∈ Fλ, and for every message x ∈ Xλ, it holds that

Dec(skf`◦···◦f1 ,Enc(mpk, x)) = (f` ◦ · · · ◦ f1)(x)

with all but a negligible probability over the internal randomness of the algorithms Setup, KG,
Enc and Delegate, where skf1 ← KG(msk, f1) and skfi+1◦···◦f1 ← Delegate(skfi◦···◦f1 , fi+1) for every
i ∈ [`− 1]. One can also consider schemes that support ` delegation levels for some fixed polynomial
` = `(λ), although we note that our scheme in this paper supports any polynomial number of
delegation levels.

Security. As in the work of Ananth et al. [ABG+13, Appendix E] we consider the natural extensions
of the existing indistinguishability-based definitions of functional encryption [BSW11, O’N10] to the
hierarchical setting. Specifically, we consider adversaries that obtain functional keys for various
functions of their choice by issuing key-generation queries and delegation queries. We require that
such adversaries have only a negligible advantage in distinguishing the encryptions of two challenge
messages, x∗0 and x∗1, of their choice as long as for any function f for which they obtain a functional
key it holds that f(x∗0) = f(x∗1).

The experiment ExpHFE
Π,A(λ). Let Π = (Setup,KG,Enc,Dec,Delegate) be a hierarchical public-key

functional encryption scheme over a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N,
and let A be a probabilistic polynomial-time adversary. For each λ ∈ N we denote by ExpHFEΠ,A(λ) the
random variable that is defined via the following experiment involving the scheme Π, the adversary
A, and a challenger:

1. Setup phase: The challenger samples (msk,mpk)← Setup(1λ) and b← {0, 1}.
2. Pre-challenge phase: A on input (1λ,mpk) adaptively issues queries of the form (f, parent,

mode), where f ∈ Fλ, parent ∈ N ∪ {0} and mode ∈ {OutputKey,StoreKey}. The ith query
(fi, parenti,modei) is answered by the challenger as follows:

(a) If parent = 0 then the challenger generates hski ← KG(msk, f).

(b) Else, if hskparenti had already been generated (and is not ⊥), then the challenger generates
hski ← Delegate(hskparenti , f). Otherwise set hski = ⊥.

(c) Finally, if modei = OutputKey then the challenger outputs hski, and if mode = StoreKey
then the challenger outputs ⊥.

3. Challenge phase: A outputs (x∗0, x
∗
1) ∈ Xλ × Xλ, and then the challenger computes ct∗ ←

Enc(mpk, x∗b) and sends it to A.

4. Post-challenge phase: A adaptively issues queries as in the pre-challenge phase.

5. Output phase: A outputs b′, and the output of the experiment is 1 if and only if b′ = b.

Valid adversaries. As standard in functional encryption, we rule out adversaries that can easily
distinguish between the two challenge messages, x∗0 and x∗1, using their queries. Specifically, we say
that an adversary is valid if for any query (fi, parenti,modei) where modei = OutputKey, it holds
that f̃i(x

∗
0) = f̃i(x

∗
1), where f̃ is defined recursively by f̃i = fi ◦ f̃parenti and f0(x) = x (if any of

these values is not well defined then f̃i(x) ≡ ⊥ for all x). Having defined the experiment ExpHFE
Π,A(λ)

and the notion of a valid adversary, we are now ready to present our notion of adaptive security for
hierarchical functional encryption schemes.
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Definition 3.1. A hierarchical functional encryption scheme Π = (Setup,KG,Enc,Dec,Delegate)
over a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is adaptively secure if for any
probabilistic polynomial-time valid adversary A there exists a negligible function neg(·) such that

AdvHFEΠ,A(λ)
def
=

∣∣∣∣Pr
[
ExpHFEΠ,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N.

In addition to our notion of adaptive security we consider two natural relaxations: semi-adaptive
security, and selective security. Semi-adaptive security is defined via an experiment ExpsemiHFE

Π,A (λ)

that is obtained from the experiment ExpHFEΠ,A(λ) by eliminating the pre-challenge query phase (note
that the adversary determines the challenge messages after receiving the public key). Selective
security is defined via an experiment ExpselHFEΠ,A (λ) that is obtained from the experiment ExpHFE

Π,A(λ)
by asking the adversary to determine the challenge messages in advance (i.e., before receiving the
public key).

Discussion: The delegation capabilities of functional encryption. It is important to point
out that given a functional key skf , one cannot hope to delegate anything beyond the set of functions
g ◦f while maintaining the security properties of functional encryption. To see this, assume towards
contradiction that there exists a function h such that h cannot be expressed as g ◦ f , but skh can
be derived from skf . Since the value of h(x) cannot be inferred just by examining the value of f(x),
there must exist two inputs, x0 and x1 such that f(x0) = f(x1) but h(x0) 6= h(x1). Given skf ,
therefore, one should not be able to distinguish encryptions of x0 and x1, but by delegating to skh,
this becomes possible, hence the contradiction.

The above optimality claim may seem a little confusing when we think about special cases such
as attribute-based encryption (ABE) or even identity-based encryption (IBE). In ABE for example,
each ciphertext contains an attribute x and a message m, and skf reveals m if and only if f(x) = 1.
In hierarchical ABE (HABE) [GVW13, BGG+14], given skf , one should be able to derive skf∧f ′

for all f ′. At first glance, this seems to not be covered by our definition. Since f ∧ f ′ cannot be
expressed as g ◦ f . However, we notice that in fact when thinking about HABE as a special case
of functional encryption, it must be the case that what we call skf , is in fact a functional key for
the function f+(x,m) = ((f(x) = 1)?(x,m) : ⊥) (i.e., the function that takes (x,m) as input, and
if f(x) = 1 it returns (x,m) and otherwise it returns ⊥). This is because if f(x) = 1 then x can
always be recovered by considering delegated keys that fix the value of each bit of x to 0 or 1, and
check if decryption still works. It is clear from this viewpoint that (f ∧ f ′)+ can be seen as g ◦ f+

for an appropriate g. Therefore, our definition and construction are fully compatible also with the
more restricted settings of HABE and HIBE.

4 Our Generic Transformation

In this section we show how to transform any general-purpose public-key functional encryption
scheme into a hierarchical one. Our construction relies on the following building blocks:

1. A general-purpose public-key functional encryption scheme FE = (FE.Setup,FE.KG,FE.Enc,
FE.Dec).

2. A private-key encryption scheme SKE = (SKE.KG, SKE.Enc,SKE.Dec).

3. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval,PRF.Punc).

Our hierarchical scheme HFE = (Setup,KG,Enc,Dec,Delegate) is defined as follows.
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• The setup algorithm. On input the security parameter 1λ the setup algorithm samples and
outputs (msk,mpk)← FE.Setup(1λ).

• The encryption algorithm. On input the public key mpk and a message x, the encryption
algorithm first samples a PRF key K ← PRF.Gen(1λ). Then, it computes and outputs ct ←
FE.Enc(mpk, (x,K,⊥)). (Note that the message space of the resulting scheme is thus smaller
than that of the original scheme.)

• The key-generation algorithm. On input the master secret key msk and a function f ,
the key-generation algorithm first generates a fresh key pair (msk′,mpk′)← FE.Setup(1λ) and
uniformly samples a tag t← {0, 1}λ. Then, it uniformly samples c← {0, 1}` where ` = `(λ) is
the length of an SKE encryption of an FE ciphertext.4 Finally, it computes skf ← FE.KG(msk,
ReEncf,t,mpk′,c), where ReEnc is defined in Figure 1, and outputs hskf = (skf ,msk′).

• The delegation algorithm. On input a (possibly delegated) functional key of the form
hskfi◦···◦f1 = (skf1 , . . . , skfi ,msk′) for some integer i ≥ 1, and a function fi+1, the delegation
algorithm uses the key-generation algorithm described above to compute (skfi+1

,msk′′) ←
HFE .KG(msk′, fi+1), and outputs hskfi+1◦···◦f1 = (skf1 , . . . , skfi , skfi+1

,msk′′).

• The decryption algorithm. On input a functional key hskfi◦···◦f1 = (skf1 , . . . , skfi ,msk′)
for some integer i ≥ 1, and a ciphertext ct, the decryption algorithm first sets ct0 = ct and
computes ctj ← FE.Dec(skfj , ctj−1) for j = 1, . . . , i. Then, cti is decrypted by using msk′ for
generating a functional key for the identity function ID ∈ F :

w ← FE.Dec(FE.KG(msk′, ID), cti).

Finally, w is parsed as a triplet w = (y, ·, ·), of which the first element y is returned as output.

ReEncf,t,mpk′,c(x,K, k)

1. Compute ct← SKE.Dec(k, c), (s, r) = PRF.Eval (K, t), and K ′ = PRF.Gen
(
1λ; s

)
.

2. If ct 6= ⊥ then output ct, and otherwise output FE.Enc
(
mpk′, (f(x),K ′,⊥) ; r

)
.

Figure 1: The function ReEncf,t,mpk′,c.
In what follows we first discuss the correctness of our resulting scheme, then discuss its param-

eters and overhead, and then state and prove its security based on that of its underlying building
blocks.

Correctness. The correctness of our scheme follows easily by induction on the delegation depth i.
Let (msk,mpk)← Setup(1λ), and fix a message x ∈ Xλ and a sequence of functions f1, . . . , fi ∈ Fλ.

For i = 1 the correctness of decrypting a ciphertext ct0 ← FE.Enc(mpk, (x,K0,⊥)) using a key
hskf1 = (skf1 ,msk1) ← KG(msk, f1) follows from that of the underlying scheme FE . Specifically,
the decryption algorithm first computes ct1 ← FE.Dec(skf1 , ct0), and by the correctness of FE with
an overwhelming probability it holds that ct1 = FE.Enc(mpk1, (f1(x),K1,⊥); r1), where (s1, r1) =
PRF.Eval (K0, t) for some t chosen during the key generation, K1 = PRF.Gen

(
1λ; s1

)
, and mpk1 is

a master public key that is sampled together with msk1. Next, the decryption algorithm decrypts
ct1 with msk1, and noting that r1 is pseudorandom given the triplet (mpk1, f1(x),K1) we can once

4To be accurate, ` is also a function of the message space of the scheme and of the specific properties of the master
secret key. We refrain from mentioning these implicit parameters to avoid cluttering of notation. We note however
that this imposes an a-priori bound on the length of the ciphertext and thus also on the message space of our resulting
scheme. Lifting this restriction is an interesting research direction.
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again rely on the correctness of the underlying scheme FE and argue that the decryption algorithm
outputs f1(x) with an overwhelming probability.5

Assume that the scheme is correct for up to i − 1 levels of delegation, and consider decrypt-
ing a ciphertext ct0 ← FE.Enc(mpk, (x,K0,⊥)) using a key hskfi◦···◦f1 = (skf1 , . . . , skfi ,mski) ←
Delegate(hskfi−1

, fi) that is generated using i levels of delegation. Then, the correctness for up to
i− 1 levels guarantees that by repeatedly applying the keys skf1 , . . . , skfi−1

starting with the initial
ciphertext ct0 as prescribed by the decryption algorithm, we obtain with an overwhelming probabil-
ity a ciphertext cti−1 = FE.Enc(mpki−1, ((fi−1 ◦ · · · ◦ f1)(x),Ki−1,⊥); ri−1) for some mpki−1, Ki−1

and ri−1, where ri−1 is pseudorandom given the triplet (mpki−1, (fi−1 ◦ · · · ◦ f1)(x),Ki−1). Next,
the decryption algorithm computes cti ← FE.Dec(skfi , cti−1), and by the correctness of FE with
an overwhelming probability it holds that cti = FE.Enc(mpki, ((fi ◦ · · · ◦ f1)(x),Ki,⊥); r′), where
(si, ri) = PRF.Eval (Ki−1, t) for some t chosen during the key generation, Ki = PRF.Gen

(
1λ; si−1

)
,

and mpki is a master public key that is sampled together with mski. Note that again ri is pseu-
dorandom given the triplet (mpki, (fi ◦ · · · ◦ f1)(x),Ki). Therefore, when the decryption algorithm
decrypts cti with mski, it outputs (fi ◦ · · · ◦ f1)(x) with an overwhelming probability.

Parameters and overhead. We now discuss the parameters that govern the properties that
are required of the underlying scheme and thus the overhead of our construction. We address
two parameters of the hierarchy: The width which is the maximal number of delegated keys that
are derived from each key at the previous level, and the depth which is the maximal number of
successive derivations.6 The functionality and security of our scheme hold for arbitrary and a-
priori unbounded width and depth. However, if the underlying scheme is restricted in some way,
then this restriction could propagate through our reduction. For example, if the underlying scheme
only supports bounded collusion, then the maximal width will be restricted. Furthermore, since
the ReEnc function produces a functional ciphertext w.r.t the next level of the hierarchy, certain
instantiations could produce a cascading effect that will increase the overhead. We analyze these
restrictions below and show that in some cases they can be overcome completely and in others they
can be managed.

Define the compactness parameter of a (standard) FE scheme, denoted C(λ, S), as the compu-
tational complexity of encrypting a message of length λ (or some other fixed length which does not
depend on S), while allowing to produce functional keys for size S functions. Note that C is also
a bound on the length of the ciphertext, and in known schemes it also governs the complexity of
key generation. Then in our construction, the ciphertext encryption complexity at depth i, which
we denote by Ci is at most Ci ≤ C(λ,Ci+1 · poly(λ)). This relation follows immediately from the
description of the scheme.

For a scheme which only allows bounded collusion, the compactness is C(λ, S,B), where B is
the bound on the number of collusions. In this case, the width factors in as well such that for a
scheme with width w it holds that Ci ≤ C(λ,Ci+1 · poly(λ), w).

In particular, in the known schemes with unbounded collusion [GGH+13, GGH+14, Wat15],
the encryption complexity is independent of S and therefore instantiating our construction with
such a scheme will support arbitrary polynomial depth and width while keeping the encryption
complexity polynomial. In fact, one can show, via a little modification of [ABS+15], that any
scheme that supports unbounded collusions can be modified using randomized encodings to one
where the compactness is independent of S.

5If we further assume that either the underlying functional encryption scheme is perfectly correct, or that the
underlying pseudorandom function produces outputs whose marginal distribution is uniform, the argument significantly
simplifies and there is no need to argue that r1 is pseudorandom given the triplet (mpk1, f1(x),K1).

6One could consider a more fine-grained view of the parameters, e.g. that the maximal width itself depends on the
depth of the key. Such analyses follow the same principles presented here.
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For known schemes with bounded collusion, such that those based on public-key encryption
[GVW12] or on LWE [GKP+13], the compactness is C(λ, S,B) ≤ poly(λ) ·S ·B, which implies that
Ci is bounded by Ci+1 · poly(λ) · w. If we intend to support a total depth d, then unfolding the
reduction, the bound we have is C0 ≤ wd · λO(d). This means that if we wish to keep the encryption
complexity polynomial in λ, we can only allow d = O(1) and w = poly(λ). Furthermore, we must
know w ahead of time in order to instantiate the parameters of the scheme.

Security. The following theorem captures the security of our resulting scheme. We note that the
assumptions stated in the theorem are all known to be implied by the existence of any (selectively-
secure) general-purpose public-key functional encryption scheme (see Section 2 for formal descrip-
tions of our building blocks and their known instantiations).

Theorem 4.1. Assuming that (1) FE is semi-adaptively (resp., selectively) secure (2) SKE has
pseudorandom ciphertexts, and (3) PRF is a puncturable pseudorandom function family, then HFE
is a semi-adaptively-secure (resp., selectively-secure) hierarchical functional encryption scheme.

Proof. For ease of exposition we focus here on the case where the underlying scheme FE is semi-
adaptively secure. The proof for the case where FE is only selectively secure is identical, except for
requiring the adversary to provide the challenge messages prior to receiving the public parameters.
Let A be a valid probabilistic polynomial-time adversary (as defined in Section 3). We present a
sequence of experiments and upper bound A’s advantage in distinguishing each two consecutive
experiments. The first experiment is the experiment ExpsemiHFE

HFE,A (λ) and the last experiment is com-
pletely independent of the bit b. This enables us to prove that there exists a negligible function
neg(·) such that

AdvsemiHFE
HFE,A (λ)

def
=

∣∣∣∣Pr
[
ExpsemiHFE

HFE,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ neg(λ)

for all sufficiently large λ ∈ N.

How to read this proof. Our proof contains a large number of hybrids and is quite involved.
In many cases we need to perform a sequence of experiments/hybrids over all, e.g., adversarial key
queries, just to be able to make a small change in a single response. Furthermore, the hierarchical
structure of the primitive requires us to use this technique in a nested manner. We therefore structure
the flow of experiments in our proof similarly to the flow of control in a computer program. Our
proof contains a number of nested “for” loops that define the distributions generated in the different
experiments.

To read our proof, one starts from the first hybrid and proceeds in order to the next, each
adjacent hybrid is shown to be computationally indistinguishable from its predecessor. When a loop
is encountered, this means that a sequence of hybrids is now being defined, one hybrid for each
“iteration” of the loop. The hybrid defined in the first iteration needs to be indistinguishable from
the last hybrid before the loop, and all hybrids except the first need to be indistinguishable from
the hybrid of the previous iteration. In a nested loop, each iteration of the external loop represents
a generation of many hybrids, as many as the internal loop generates. In such case, in the first
iteration of the external loop, and the first iteration of the internal loop, the hybrid being defined
needs to be indistinguishable from the one preceding the loop. However, in the next execution
of the external loop, the first iteration of the internal needs to be indistinguishable with the last
iteration of the internal loop that have been carried out in the previous iteration of the external
loop. For example, say that the external loop iterates for i = 1, . . . , S and the internal loop iterates
for j = 1, . . . , T . Then what we prove for H(i,j) is that: H(1,1) is indistinguishable from the last
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hybrid before the loop, H(i,1) for i > 1 is indistinguishable from H(i−1,T ), and for i, j > 1 that H(i,j)

is indistinguishable from H(i,j−1).
In order to explain the purpose of the different steps in the proof, we also include invariants

which are properties of the distribution of the current experiment. The invariant holds only at that
point in the proof where it appears and does not necessarily hold in following hybrids. An invariant
inside a loop holds whenever the flow of the proof reaches that point in the loop. Namely, going
back to our nested loop example from above, an invariant that appears after the “for i = 1, . . . , S”
statement, holds for the experiment immediately preceding the loop, and for all hybrids H(i,T ),
except H(S,T ). An invariant that appears after the “for j = 1, . . . , T” statement, should hold for the
hybrid immediately preceding the loop, as well as for all H(i,T ), except H(S,T ).

We advise the reader to read our proof as if it was an execution of a computer program. We
believe that while this proof writing method is still not very widely used, it is quite beneficial in
writing complicated proofs, and will find additional uses. In what follows we first describe the
notation used throughout the proof, and then describe the experiments.

Notation. Let Q = Q(λ) denote a polynomial upper bound on the number of queries that are
made by A in the experiment ExpsemiHFE

HFE,A (λ). We denote these queries by {(fi, parenti,modei)}i∈[Q]

and we also consider an implicit “zeroth” query which generates the master key pair (msk,mpk) of
the scheme. This allows us to define the depth of the ith query, denoted d(i), s.t. d(0) = 0 and
d(i) = d(p(i)) + 1 for i > 0, where we use p(i) as shorthand for parenti. Thus we can view A’s
queries as a tree rooted by the zeroth query, where each query (fi, parenti,modei) is the child of the
query p(i) and has depth d(i) in the tree.

For any query i ∈ {0, . . . , Q}, we define a function f̃i as follows: f̃0 is the identity function, and
for all i > 0 we define f̃i = fi ◦ f̃p(i). In other words, the ith query (fi, parenti,modei) generates a

delegated key that allows to compute the function f̃i(x) given an encryption of x. We say that the
ith query is observable if f̃i(x

∗
0) = f̃i(x

∗
1), and unobservable otherwise. We note that if the ith query

is unobservable then necessarily modei = StoreKey.
We let (mski,mpki) denote the key pair generated by the challenger while answering the ith query,

and let (msk0,mpk0) be the master key pair (msk,mpk) that is generated by the setup algorithm.
Similarly, we let ti denote the tag that is sampled while answering the ith query.

We denote by x∗0 and x∗1 the challenge messages that are chosen by A, and by K∗ the PRF
key that is used for computing the challenge ciphertext. We further define K∗0 = K∗, and for all
i > 0 we define K∗i , s∗i , and r∗i as follows: (s∗i , r

∗
i ) = PRF.Eval(K∗p(i), ti), and K∗i = PRF.Gen(1λ; s∗i ).

Note that these are exactly the values that are computed by the ReEnc function produced in the
ith query, when evaluated on the challenge ciphertext.

Finally, throughout the proof we find it convenient to denote by $ a fresh value that is sampled
uniformly and independently of all other existing values.

Experiment H0. This is the experiment ExpsemiHFE
HFE,A (λ) (see Section 3).

Experiment H1. This experiment is obtained from the experiment H0 by having the challenger
sample in advance the tags and the key pairs that are used for replying to A’s queries. In fact, we
will sample these values in a redundant manner so that we prepare several such triplets for each
query, and the choice of which triplet to use is determined by the depth of the query. We thus have
the following claim:

Specifically, at the beginning of the experiment, for all i, d ∈ Q the challenger samples t(o)i,d, t
(u)

i,d ←
{0, 1}λ and (mski,d,mpki,d) ← FE.Setup(1λ). Then, the experiment proceeds exactly as in H1,
and whenever the challenger needs to sample ti and (mski,mpki) for replying to the ith query,
it will use ti = t(o)i,d(i) if i is an observable query, and ti = t(u)i,d(i) otherwise. It will further use
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(mski,mpki) = (mski,d(i),mpki,d(i)).
looking ahead, this experiment allows the challenger to know in advance, for every possible

depth, a polynomial superset of the tags and key pairs that will be produced for replying to queries
of this depth. The view of the adversary in this experiment is distributed identically to its view in
the experiment H0, yielding the following observation:

Observation 4.2. For all λ ∈ N it holds that

Pr[H0(λ) = 1] = Pr[H1(λ) = 1] .

Experiment H2. This experiment is obtained from the experiment H1 as follows. After the
generation of the tags t(o)i,d and t(u)i,d, and before interacting with the adversary, the challenger checks

if any of the values t(o)i,d or t(u)i,d for some (i, d) ∈ [Q]2 appears more than once. In such case the output
of the experiment is defined as ⊥, and otherwise the experiment is identical to the experiment H1.
A standard union bound implies that the experiments H1 and H2 differ with probability at most
2(Q+ 1)2 · 2−λ = neg(λ), yielding the following observation:

Observation 4.3. For all λ ∈ N it holds that

|Pr[H1(λ) = 1]− Pr[H2(λ) = 1]| ≤ 2(Q+ 1)2

2λ
.

Experiment H3. This experiment is obtained from the experiment H2 by sampling a sequence
k1, . . . , kQ ← SKE.KG(1λ) of symmetric keys (one for each possible depth – recall that Q is always
an upper bound on the maximal depth), and modifying the symmetric ciphertext c that is generated
by the key-generation algorithm when replying to each query as follows: When replying to the ith
query (fi, parenti,modei), instead of sampling c uniformly, the key-generation algorithm computes

ci = SKE.Enc
(
kd(i), cti; $

)
where cti = FE.Enc(mpki, (f̃i(x

∗
b),K

∗
i ,⊥); r∗i ) (recall that throughout the proof we find it convenient

to denote by $ a fresh value that is sampled uniformly and independently of all other existing values).
Note that cti is exactly the same as the “cti” value that is computed in the process of decrypting

the challenge ciphertext using the ith functional key (and is also computed as an intermediate value
when decrypting the challenge ciphertext with any descendant of the ith key). See the decryption
algorithm above.

It thus makes sense to extend our notation and denote the challenge ciphertext by ct0 (as in
the decryption algorithm). Note that while ct0 is encrypted with true randomness and includes a
properly generated PRF key, all other cti’s are encrypted using pseudorandomness and contain PRF
keys that were generated pseudorandomly. We further say that cti is observable if the ith query is
an observable query and unobservable otherwise.

To see why the adversary’s view in H3 is indistinguishable from H2, we note that in H3, the
symmetric keys k1, . . . , kQ are used only for generating the ci’s. In other words, this experiment can
be carried out given only access to an encryption oracle SKE.Enc(kd, ·) for each d ∈ [Q] (instead of
explicit access to the actual keys k1, . . . , kQ). This enables us to use the ciphertext pseudorandomness
of SKE to prove computational indistinguishability from H2, yielding the following claim in a rather
straightforward manner:
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Claim 4.4. Assuming that SKE has pseudorandom ciphertexts, there exists a negligible function
neg(·) such that

|Pr[H2(λ) = 1]− Pr[H3(λ) = 1]| ≤ neg(λ)

for all sufficiently large λ ∈ N.

For d = 0, . . . , Q:

Invariant 4.5. In the previous experiment, it should hold that all ciphertexts cti that correspond
to unobservable queries (i.e., queries for which f̃i(x

∗
0) 6= f̃i(x

∗
1)) such that d(i) < d are of the

form FE.Enc(mpki, (⊥,K∗i , kd(i)); $ ), and all such ciphertext such that d(i) = d are of the form

cti = FE.Enc(mpki, (f̃i(x
∗
b),K

∗
i ,⊥); $ ). Further, if d(i) ≤ d then K∗i = PRF.Gen(1λ; $ ). More

specifically:

• If i is such that d(i) < d and f̃i(x
∗
0) 6= f̃i(x

∗
1), then it holds that cti = FE.Enc

(
mpki,

(
⊥,K∗i , kd(i)

)
; $
)

and K∗i = PRF.Gen(1λ; $ ).

• If i is such that d(i) = d and f̃i(x
∗
0) 6= f̃i(x

∗
1), then it holds that cti = FE.Enc

(
mpki,

(
f̃i(x

∗
b),K

∗
i ,⊥

)
; $

)
and K∗i = PRF.Gen(1λ; $ ).

• If i is such that d(i) > d or f̃i(x
∗
0) = f̃i(x

∗
1), then it holds that cti = FE.Enc

(
mpki,

(
f̃i(x

∗
b),K

∗
i ,⊥

)
; r∗i

)
and K∗i = PRF.Gen(1λ; s∗i ).

We note that this indeed holds for d = 0 in experiment H3.

For i = 0, . . . , Q:

Experiment H(i,d)
4 . In this experiment, the challenger changes the way cti is computed as follows.

Before generating cti, the challenger checks if both d(i) = d and cti is unobservable (f̃i(x
∗
0) 6= f̃i(x

∗
1)).

If both conditions hold then it sets

cti = FE.Enc(mpki, (⊥,K∗i , kd); $ ) .

Otherwise cti is computed as in the previous experiment.
To see why the adversary’s view in this experiment is indistinguishable from the previous hybrid,

we note that for any child of i, i.e., j such that p(j) = i,

ReEncfj ,tj ,mpkj ,cj (f̃i(x
∗
b),K

∗
i ,⊥) = ReEncfj ,tj ,mpkj ,cj (⊥,K

∗
i , kd) = ctj .

This is because necessarily d(j) = d + 1 > d and due to Invariant 4.5. Thus, the security of the
(mski,d,mpki,d) key pair guarantees that this hybrid is indistinguishable from the previous one: Since
cti is unobservable, then necessarily the adversary cannot access mski,d directly, but rather only via
further delegation (i.e., via functional keys to ReEncfj ,tj ,mpkj ,cj ). This yields the following claim in
rather straightforward manner:

Claim 4.6. Assuming that FE is semi-adaptively secure, there exists a negligible function neg(·)
such that ∣∣∣Pr

[
H(0,0)

4 (λ) = 1
]
− Pr[H3(λ) = 1]

∣∣∣ ≤ neg(λ)

and ∣∣∣Pr
[
H(i,d)

4 (λ) = 1
]
− Pr

[
H(i−1,d)

4 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d ∈ {0, . . . , Q} and i ∈ {1, . . . , Q}, and for all sufficiently large λ ∈ N.

17



End For i.

Invariant 4.7. In the previous experiment, it should hold that all ciphertexts cti corresponding to
unobservable queries such that d(i) ≤ d are of the form FE.Enc(mpki, (⊥,K∗i , kd(i)); $ ) and further

K∗i = PRF.Gen(1λ, $ ).

Recall that our goal is to restore Invariant 4.5 for value (d + 1). To this end, we next need to
replace r∗j and s∗j for all j such that d(j) = d+ 1, with random values (rather than values that are
generated from K∗p(j)).

For j = 0, . . . , Q:

Invariant 4.8. This is similar to Invariant 4.7, but for all ciphertexts ctj′ corresponding to unob-
servable queries such that j′ < j and d(j′) = d+1 it holds that r∗j′ and s∗j′ had already been replaced
with random.

For i = 0, . . . , Q:

Experiment H(i,j,d)
5 . In this hybrid, we again change cti as follows. If cti is unobservable and

d(i) = d, then define K∗i = PRF.Gen(1λ, $ ) (as before), K~
i = PRF.Punc(K∗i , t

(u)

j,d+1), yi,j,d+1 =

PRF.Eval(K∗i , t
(u)

j,d+1). We now set:

cti = FE.Enc
(
mpki,

(
⊥,
(
K~
i , (t

(u)

j,d+1, yi,j,d+1)
)
, kd(i)

)
; $

)
.

Namely, we replace the PRF key with a punctured key at the point t(u)j,d+1, and supply the value

at that point7. We note that the functionality of PRF.Eval((K~
i , (t

(u)

j,d+1, yi,j,d+1)), ·) is identical to
PRF.Eval(K∗i , ·). The security of the key pair (mski,d,mpki,d) guarantees the indistinguishability of
this hybrid (again relying on cti being unobservable and thus mpki,d is not given to the adversary).
This yields the following claim in rather straightforward manner:

Claim 4.9. Assuming that FE is semi-adaptively secure, there exists a negligible function neg(·)
such that ∣∣∣Pr

[
H(0,0,d)

5 (λ) = 1
]
− Pr

[
HQ,d4 (λ) = 1

]∣∣∣ ≤ neg(λ)

for all d ∈ {0, . . . , Q}, and∣∣∣Pr
[
H(i,j,d)

5 (λ) = 1
]
− Pr

[
H(i−1,j,d)

5 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d, j ∈ {0, . . . , Q} and i ∈ {1, . . . , Q}, and for all sufficiently large λ ∈ N.

End For i.

Invariant 4.10. In the current experiment, it holds that the PRF key for all depth-d ciphertexts
which are unobservable had been punctured at point t(u)j,d+1, namely at the point on which it will be
evaluated if indeed ctj is of level d+ 1.

7As discussed in Section 2.1, we find it natural to consider an “augmented” evaluation algorithm that outputs a
pre-determined value at the punctured point. That is, the augmented evaluation algorithm is given an augmented key
(K~

i , (t
(u)
j,d+1, yi,j,d+1)), where K~

i is punctured at t
(u)
j,d+1, and given an input t it outputs PRF.Eval

K~
i

(t) if t 6= t
(u)
j,d+1,

and it outputs yi,j,d+1 if t = t
(u)
j,d+1.
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For i = 0, . . . , Q:

Experiment H(i,j,d)
6 . In this hybrid, we again change cti in the case where cti is unobservable and

d(i) = d. The change from the previous experiment is only that now yi,j,d+1 ← $ , namely sampled
randomly. The pseudorandomness at a punctured point of the PRF guarantees that this hybrid
is indistinguishable from the previous. This yields the following claim in rather straightforward
manner:

Claim 4.11. Assuming that PRF is a puncturable pseudorandom function, there exists a negligible
function neg(·) such that∣∣∣Pr

[
H(0,j,d)

6 (λ) = 1
]
− Pr

[
HQ,j,d5 (λ) = 1

]∣∣∣ ≤ neg(λ)

and ∣∣∣Pr
[
H(i,j,d)

6 (λ) = 1
]
− Pr

[
H(i−1,j,d)

6 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d, j ∈ {0, . . . , Q} and i ∈ {1, . . . , Q}, and for all sufficiently large λ ∈ N.

End For i.

Invariant 4.12. In the current experiment, it holds that the PRF key for all depth-d ciphertexts
which are unobservable had been punctured at point tj,d+1, and further that the punctured value
had been substituted with random.

Experiment H(j,d)
7 . In this hybrid, we (finally) change the way ctj is generated in the case where

ctj is unobservable and d(j) = d + 1 (if these conditions don’t hold then we proceed as in the
previous experiment). In particular, we change the way the randomness for ctj and K∗j is generated.
Note that if ctj is unobservable then it must be the case that ctp(j) is also unobservable (since

f̃j = fj ◦ f̃p(j)). In the previous experiment, we had

(s∗j , r
∗
j ) = PRF.Eval

((
K~

p(j), (t
(u)

j,d+1, yp(j),j,d+1)
)
, t(u)j,d+1

)
.

We now define instead (s′j , r
′
j) = yp(j),j,d+1. We set K∗j = PRF.Gen(1λ, s′j) and

ctj = FE.Enc
(
mpkj ,

(
f̃j(x

∗
b),K

∗
j ,⊥

)
; r′j

)
.

The view of the adversary here remains exactly the same, since (s′j , r
′
j) = (s∗j , r

∗
j ). However, concep-

tually this means that (s∗j , r
∗
j ) are detached from the value that is embedded in ctp(i). As we will see

in the next experiment, we will remove yi,j,d+1 from cti, but (s′j , r
′
j) will still be well defined. This

yields the following observation:

Observation 4.13. For all λ ∈ N it holds that

Pr
[
H(j,d)

7 (λ) = 1
]

= Pr
[
HQ,j,d6 (λ) = 1

]
for all d, j ∈ {0, . . . , Q}.
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For i = 0, . . . , Q:

Experiment H(i,j,d)
8 . In this hybrid, we again change cti in the case where cti is unobservable and

d(i) = d. We will now undo the puncturing of the PRF keys.

cti = FE.Enc
(
mpki,

(
⊥,K∗i , kd(i)

)
; $
)
.

Indistinguishability holds since in all positions except t(u)j,d+1 the new and old keys, K∗i and(
K~
i , (tj,d+1, yi,j,d+1)

)
are functionally equivalent. Furthermore, the function PRF.Eval is never eval-

uated at t(u)j,d+1 (since if ctj is unobservable then (r′j , s
′
j) are used instead of (r∗j , s

∗
j )). The functional

encryption security of (mski,d,mpki,d) therefore implies indistinguishability. This yields the following
claim in rather straightforward manner:

Claim 4.14. Assuming that FE is semi-adaptively secure, there exists a negligible function neg(·)
such that ∣∣∣Pr

[
H(0,j,d)

8 (λ) = 1
]
− Pr

[
Hj,d7 (λ) = 1

]∣∣∣ ≤ neg(λ)

for all d, j ∈ {0, . . . , Q}, and∣∣∣Pr
[
H(i,j,d)

8 (λ) = 1
]
− Pr

[
H(i−1,j,d)

8 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d, j ∈ {0, . . . , Q} and i ∈ {1, . . . , Q}, and for all sufficiently large λ ∈ N.

End For i.

The proof of the following claim is almost identical to that of Claim 4.9 and is therefore omitted:

Claim 4.15. Assuming that FE is semi-adaptively secure, there exists a negligible function neg(·)
such that ∣∣∣Pr

[
H(Q,j,d)

8 (λ) = 1
]
− Pr

[
H(0,j+1,d)

5 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d ∈ {0, . . . , Q} and j ∈ {0, . . . , Q− 1}, and for all sufficiently large λ ∈ N.

End For j.

The proof of the following claim is almost identical to that of Claim 4.6 and is therefore omitted:

Claim 4.16. Assuming that FE is semi-adaptively secure, there exists a negligible function neg(·)
such that ∣∣∣Pr

[
H(Q,Q,d)

8 (λ) = 1
]
− Pr

[
H(0,d+1)

4 (λ) = 1
]∣∣∣ ≤ neg(λ)

for all d ∈ {0, . . . , Q− 1}, and for all sufficiently large λ ∈ N.

End For d.

We now notice that the proof is practically finished, since the last hybrid H(Q,Q,Q)
8 is completely

independent of the bit b. To see this, note that the only values that depend on b in the experiment are
the values f̃i(x

∗
b) that appear inside the ciphertexts cti (in particular inside the challenge ciphertext

ct∗ = ct0). We first point out that the value f̃i(x
∗
b) is in fact independent of b in observable

ciphertexts, since by definition f̃i(x
∗
0) = f̃i(x

∗
1). As for observable ciphertexts, in H(Q,Q,Q)

8 none
of them contains f̃i(x

∗
b) at all, as this value had been replaced by ⊥. This yields the following

observation:
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Observation 4.17. For all λ ∈ N it holds that

Pr
[
H(Q,Q,Q)

8 (λ) = 1
]

=
1

2
.

We presented a sequence of polynomially-many experiments starting with the experiment H0 =

ExpsemiHFE
HFE,A and ending with the experiment H(Q,Q,Q)

8 which is completely independent of the bit b.
We showed that the output distributions of each two consecutive experiments are negligibly close,
which implies that there exists a negligible function neg(·) such that

AdvsemiHFE
HFE,A (λ)

def
=

∣∣∣∣Pr
[
ExpsemiHFE

HFE,A (λ) = 1
]
− 1

2

∣∣∣∣
=
∣∣∣Pr [H0(λ) = 1]− Pr

[
H(Q,Q,Q)

8 (λ) = 1
]∣∣∣

≤ neg(λ)

for all sufficiently large λ ∈ N, as required.
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