
An Efficient Multiple PKG Compatible Identity Based
Authenticated Key Agreement protocol

Harish Karthikeyan3, Suvradip Chakraborty1, Kunwar Singh2 and C. Pandu Rangan1

1 Department of Computer Science and Engineering,
Indian Institute of Technology Madras, India

suvradip@cse.iitm.ac.in, rangan@cse.iitm.ac.in
2 Department of Computer Science and Engineering,
National Institute of Technology,Tiruchirapalli, India,

kunwar@ntt.edu
3 Department of Computer Science (SEAS),

Columbia University in the City of New York, New York, USA
hk2854@columbia.edu

Abstract. In this paper we propose an efficient single-round, two-party identity based authenti-
cated key agreement protocol in the setting of multiple Private Key Generators (PKGs). One of the
major advantages of our construction is that it does not involve any pairing operations. To date,
existing protocols in the Identity Based Key Agreement domain revolves around a single PKG envi-
ronment. Efforts to exploit the multiple PKGs paradigm have placed excessive reliance on Elliptic
Curve Cryptography and bilinear pairings. These are computationally intensive and cannot be used
when computation is premium, specially in applications such as in a Vehicular Ad-Hoc Network
(VANET) where the vehicles in a VANET may need to perform a large number of key agreement
sessions. Previous attempts to model identity based key agreement in multiple PKG scenario by
Chen and Kundla, McCullagh have very limited scope and provide weak security guarantees. We
propose a new security model for identity based key agreement protocols involving multiple PKGs
based on the eCK security model which is much more stronger than the existing models and cap-
tures additional properties like Key Compromise Impersonation and forward secrecy that were not
captured by the previous models. Our protocol is proven secure in this new security model under
the Gap Diffie Hellman (GDH) assumption in the Random Oracle (RO) model.

Keywords: Identity Based Key agreement (IDKA), Identity Based Authenticated Key agreement
(ID-AKE), Provable Security, Random Oracle Model, eCK model, Multiple PKG, Pairing-Free

1 Introduction

Key Exchange Protocols are designed and conceived for the exchange of communication between two
parties in a secure manner in an insecure environment with the help of the established key. The established
key is a key shared between the two parties in question, calculated from the values exchanged between
them. As can be inferred, the security pitfall of this concept is the lack of authentication of the received
messages. This is remedied with the notion of Authenticated Key Exchange (AKE) which allows the
parties to authenticate each other before the key is established.

The first Key Agreement Protocol was proposed in [DH76]. This was a public key based system where
every party has a pair of keys, the public key and the private key. These keys were used to establish
the key. This was the most primitive model with susceptibility to an active adversary for a man-in-the-
middle-attack. Security was guaranteed with the adoption of a certificate based model to authenticate
the two parties marking the advent of Authenticated Key Exchange. Certificates are signed documents
by a trusted party. The parties involved are mandated to obtain and verify certificates whenever key
establishment process happens. This brings in the issue of public key certificate management with re-
gards to revocation and updation. The constant need for communication with the trusted authority to
regenerate certificates could also give room for increased communication cost. These drawbacks were
addressed in the identity-based key agreement model.

Identity based cryptography uses the identity of a party as a certificate which provides the binding
between the key and the party. In this setup, there is no requirement of a centralized certification
authority. The parties need not cross-verify each other. In addition, revocation information need not be
relayed to the parties saving communication costs. To generate a shared key, the parties need to have
in its possession its own secret key, the public parameters of the private key generator (PKG) and the



identity of the peer party with which the key needs to be established. Identity Based Key Agreement thus
have their own relative merits over its Public Key version but is bogged down by a severely crippling cap
on the number of users a PKG can deal with. This limitation curtails the versatility of the protocol and
often diminishes the benefits of an Identity Based model. This stumbling block is remedied by the notion
of multiple PKGs which guarantees scalability with a little additional overhead that might be considered
negligible when compared to the benefits that it offers. For example in applications like Vehicular Ad-Hoc
Networks (VANETs) a car A can inform another car B about an accident, or traffic congestion in an area.
The point of this communication is to effectively manage traffic and at the same time pass on critical
information about life threatening events on the road for speedy recovery attempts. Since vehicles on
the road come from the manufacturing plants of several different companies, for security purposes, these
companies would each want to have a PKG for vehicles from their plants. This is a very valid expectation
and thus we cannot have communication between only vehicles of the same manufacturer. This provides
the impetus for research into the domain of multiple PKGs.

2 Related Works and Our Contribution

Following Shamir’s proposal for the paradigm of identity based cryptography, a number of key agreement
protocols were proposed in the identity based paradigm. Chen et al. present a comparison of these
protocols in [CCS07]. But most of them involved pairing and hence their practical implementation was
not efficient. For applications, where computation is premium, usage of bilinear pairings offers very little
scope. Gunther [Gün90] and Saeednia [Sae00] proposed protocols which did not involve pairing; Fiore
et al. [FG10] proposed a key agreement protocol without pairing which was an improvement over them.
The first two protocols namely [Gün90] and [Sae00] lacked formal proof of security; whereas the protocol
in [FG10] was formally proved in the Canetti-Krawczyk [CK01] model and is also more efficient in terms
of computational complexity than the protocols in [Gün90] and [Sae00]. However the same was analyzed
and vulnerabilities identified in [MM13] and in [CM09]. An improvement on this was done by [VSVR13].
Fujioka et al. [FSXY15] proposed an IDAKE in id-CK+ model which is the ID based analogue of CK+

model using a CCA secure ID based key Encapsulation Mechanism (ID-KEM), a CPA-secure ID-KEM
and a secure Key derivation Function (KDF). The security proof is given in standard model. However
all of these above mentioned protocols catered for single PKG framework.

Though identity based protocols overcome the need for certificate based authentication, reducing
communication overhead and complex key management, they too have their limitations. These limitations
are that single PKG model, by themselves are not scalable. It is unrealistic to expect a single PKG to cater
to the requirements of large organizations which often transcend geographical barriers. This provided
the catalyst for multiple PKG research. One of the pioneering work was undertaken by Chen and Kudla
in [CK03] but it had the issue of assuming all the different PKGs to have the same system parameters
and differ only in their master secret keys. The work undertaken by Lee et al. in [LKKO05] was a
documentation of exclusive research in the multiple PKG domain. However there was no concrete security
proof and the security analysis was done heuristically based on knowledge of existing attacks. Besides
this was also a pairing based protocol. Another pairing-based protocol was proposed by McCullagh et
al. in [MB05]. This provided for communication between different domains and was proven secure in the
BJM Security Model proposed in [BWJM97], a modification of the BR model proposed by Bellare and
Rogaway (which was originally for symmetric key settings) in [BR94]. Yet another heuristically proved
protocol was proposed in [VYK13]. A pairing-free protocol for multiple PKG was proposed by Farash
and Attari in [FAA14] but it stemmed from certain vulnerabilities as demonstrated in [MM13]. The
security of the protocol was also analyzed in the BJM security model which is a much weaker security
model compared to the more advanced security models such as the CK model proposed in [CK01] and
the eCK model proposed in [LLM07]. Existing literature has sought to use Public Key Infrastructure for
Key Agreement for communication. Such protocols suffer from the susceptibility of Man-in-the-Middle
attack. An active adversary could intercept the key communication and tamper with the same, leading
to catastrophic consequences. The solution proposed by Dolev et al. in [DKPS13] was to certify the key
and the attributes together. Even with certificates, out-of-band sensing is needed to ensure that there are
no signed certificate thefts. The paper [DKPS13] requires attribute verification by a camera, microphone
and other devices. The issue with regards to the Certificate based system would be the overhead needed
to reissue certificate post expiry or revocation. Though this is not involved as an overhead during the
actual session-key establishment, this is still an additional overhead.



2.1 Our Contribution

Through this paper, we aim to make contributions along the following lines:

1. New Security Model. We propose a new security model analogous to the eCK model (which is for
the PKI-based authenticated key exchange) exclusively for multiple PKG scenario. Hitherto security
proofs have been based on heuristic proving or are proved under weaker security model analogous
to the BR and BJM model for identity based key agreement. Compared to these models our model
is much more stronger and provides the adversary with lot more capabilities not captured by earlier
models. The security of our protocol is also established under this model.

2. Pairing-Free and Single Round. A major advantage of our protocol is that it is pairing-free.
Bilinear pairings have markedly higher computation cost when compared to regular group arith-
metic computations. In general it is always desirable to have a protocol that involves simple group
theoretic operations than pairing as it is slightly inefficient to find many pairing-friendly curves. The
documentation of MIRACL [Sco13], the cryptography library, discusses the costs associated with
various cryptographic primitives. The values show that the cost associated with point multiplication
in the group G1 of a bilinear map e : G1 × G1 → GT is roughly faster than the pairing operation
by a factor of 3:8. Our protocol is also optimal in the sense that it consists of only single round (a
single message flow per party). This increases the efficiency and maintains its utility in applications
where computation and time is premium. Besides in our protocol both the parties need not wait for
the values sent across by the other party to begin its computation and both can send the messages
simultaneously to each other; hence our protocol is also synchronous. The security of our protocol is
proven under Gap-Diffie Hellman (GDH) assumption in the Random Oracle (RO) model.

3. Secure Against Active Attacks. Some of the standard protocols such as the ones in [FG10] and
[FAA14] are vulnerable to active attacks such as Key-Offset and Forgery. We overcome this limitation
by incorporating appropriate verification mechanisms that would abort the protocol in case of any
change in values to be agreed upon. We ensure this by including a term which is a signature of the
ephemeral keys. This provides enhanced security for minimal extra overhead.

Table 1 compares our scheme with existing protocols. The comparison is based on the number of
exponentiations (Exp), the number of pairing operations, the security model under which the schemes
are proven secure and resistance to active adversary.

Scheme Exp
(each)

Pairing
(each)

Security
Model

Active Ad-
versary

SCK-3 [CK03] 1 2 BJM ×
Lee et al. [LKKO05] 2 2 N.A. ×
Farash and Attari
[FAA14]

7 N.A. BJM ×

Proposed protocol 7 + 3# N.A. eCK
√

#: This cost is for the correctness check.

Table 1 : Comparison with the existing schemes

All of the protocols listed in the table have been designed for the multiple PKG model. From the
table we can see that our protocol has been proven secure in a much stronger model when compared
to existing protocols. It is also noteworthy that our protocol offers resistance to active adversary. This
guarantees origin authentication, a feature missing in the other protocols. Alongside these our protocol
also fixes all the attacks of the scheme presented in [FAA14] as reported in [MM13]. But for this we
have to pay a cost of 3 extra exponentiations compared to [FAA14]. However this extra computation is
justifiable when compared to the advantages our protocol provides.

3 Notations.

In this section we describe the notations we will be using throughout our paper. We denote the security
parameter by κ. We assume that all the algorithms have implicit access to the security parameter written
in unary. The set of integers is denoted by Z. [n] denotes the set {1, . . . , n} for n ≥ 1. We denote by
x ∈R X the fact that x is chosen uniformly at random from the set X. A function ν : N→ R+ is said to
be negligible if ∀c > 0, ∃k′ such that ν(k) < k−c for all k′ < k. G denotes a group of order q (where q is a
prime of length κ) with generator g. G∗ denotes the non-zero elements of G. Z∗q denotes the multiplicative
group of integers modulo q.



4 Our Security Model For Multiple PKG Identity Based Key Exchange

In this section we describe our new security model for Identity based key agreement protocols in the
multiple PKG scenario. We assume that the number of PKGs is fixed at start up. Let us denote the
number of PKGs by n. A protocol with the multiple PKG support is made up of two or more roles for
the parties involved. The most common of these roles being the the initiator I and the responder R. The

parties involved are defined by their identity ID
(k)
i which denotes that the party IDi is registered with

the kth PKG. We further assume that the identifiers of the users are unique globally, i.e., identifiers of
different users registered under different PKGs are also unique among themselves. We assume that there
is a binding between an identifier ID and the PKG under which it is registered with. This information
may come hard-coded along with each identifier. This in turn provides uniqueness among the identities
of the users even if two users in two different PKGs have the same identifier. Each of the protocol may
have several sub protocols which are initiated by the parent protocol and these can happen multiple
times leading to several instances of the protocol running at a party. Each instance of the protocol is
called a session. With each session we associate a owner who initiates the session and the other party
involved in the session is called as a peer. Messages are transmitted between the owner of the session and
a peer of the session in the process of key establishment. These messages are from some message space
µ. These messages are based on local computations with some element of preprocessing. The messages
that form the basis of communication constitutes the the session state. The fundamental requirement of
a key exchange protocol is that the parties involved have to compute the same session key. On successful
completion of a session, each entity outputs the session key and the session state is deleted. If the session
key establishment is unsuccessful, the session is said to be in abort state, meaning that no session key is
generated. Each entity participating in a session assigns a unique identifier to that session. The session

identifier sid is defined by sid =
(
ID

(k)
i , ID

(l)
j , out, in, ζ

)
, where ID

(k)
i begins this session with its peer

ID
(l)
j and out and in are respectively the components or messages sent to ID

(l)
j and received by ID

(k)
i

and ζ indicates the role ,i.e., whether the party is the initiator (I) of the session or responder (R).

In an Identity based Key Agreement (IDKA) protocol in the multiple PKG settings each entity i is
defined by a unique identity, IDi and is registered with a PKG. Each PKG (PKGk say) maintains its
own public parameters paramsk which is available publicly and its own master secret key mskk which
is its own secret, and generates the private key Si for each user i registered under the same PKG. A
protocol consists of the following sub-functions:

ISetup: Each PKG chooses the public parameters and the master secret key. The public parameters are
published and the master secret key is held confidential. The set up algorithm also outputs the number
of PKGs which is fixed at start up.

IKey Generation: The user i submits its identity ID
(k)
i to the PKGk (under which it is registered)

and the PKG uses its own master secret key and public parameters to construct the private key S
(k)
i

corresponding to that user with identity ID
(k)
i .

IKey Agreement: To establish the shared secret key between two users A and B with identities ID
(k)
A

and ID
(l)
B registered with private key generators PKGk and PKGl respectively and possessing secret

keys S
(k)
A and S

(l)
B respectively, the users engage in an interactive protocol by exchanging components and

eventually set up the shared secret key at the end of that session. Either user A or B could initiate the
protocol. In case A starts the protocol it takes as input the identity of the other user (peer) with whom
it wants to communicate. However in multiple PKG scenario we need a minor technical requirement for
each user. In a multiple PKG scenario each user also needs to learn the public parameters of the PKG
under which its peer (with whom it wants to communicate) is registered with. In particular, in our case
A needs to the know the public params of the PKGl. Similarly B also needs to know the public params
of the PKGk. We assume that the public parameters of all the PKGs come hardcoded with each user;
thus requiring each user to store the public parameters of each PKG. However this is quite practical for
most of the applications as the number of PKGs will be quite less. For e.g. in application like VANETs
each car manufacturer will maintain its own PKGs and since the number of car manufacturers will be
typically very less the number of PKGs will also be quite less in number. Party A initiates the protocol

by taking the identity of its peer ,i.e., ID
(l)
B , the public parameters of PKGl and its own secret key S

(k)
A

as input. Party A then outputs a message denoted by out which is computed as a function of all these

components. When the party B with identity ID
(l)
B receives the message out from ID

(k)
A , it responds to



A with a message out′ which in turn is computed as a function of ID
(k)
A , public parameters of PKGk,

S
(l)
B and the message out received from its peer (in this case from A). The out sent by A is considered

to in′ for B and out′ sent by B is considered to as in for A. After this exchange is over both the parties
attempts to compute the session key.

Adversary. We model the adversary as PPTM (Probabilistic Polynomial Turing Machine). In addi-
tion to passive eavesdropping, the adversary can control the communication channel by modifying the
outgoing messages and their sequence too. The modification can be altering, tampering, injecting new
messages, delay the message delivery, reschedule the messages. In order to model more real life attacks
the adversary is allowed to obtain much more information such as the long term secret key of parties (to
model Forward Secrecy) or ephemeral key of parties (to model Key Compromise Impersonation attack)
or session keys of completed sessions between two parties (to model Known Session Key attack). The
amount of information that the adversary gets is modeled by a set of oracle queries as follows:

1. Send(ID
(k)
i ,ID

(l)
j ,m): This query models the ability of an adversary to perform active attacks, i.e., to

intercept all communication, send, receive, alter, delete and reschedule messages. It sends a message

m to ID
(k)
i on behalf of ID

(l)
j and returns ID

(k)
i ’s response to this message to the adversary. If m = 0,

this query makes party ID
(k)
i to start an AKE session with ID

(l)
j and to provide communication

from ID
(l)
j to ID

(k)
i . Else it will send the message m from party ID

(k)
i to party ID

(l)
j and makes

ID
(l)
j respond to the supposed session

(
ID

(lk
i , ID

(l)
j ,m, ?, I

)
.

2. Corrupt(ID
(k)
i ): This query allows an adversary to obtain the long term key of user IDi registered

with private key generator PKGk. Here k ∈ [n] where n is the number of PKGs fixed at setup.

3. EphemeralKeyReveal(sid): This query allows the adversary to get the ephemeral keys of the session
sid.

4. SessionKeyReveal(sid): This query allows an adversary to learn the session key of a completed session
with identifier sid.

5. MasterReveal(k): This query allows the adversary to learn the master secret key of the PKG PKGk.

6. EstablishParty(ID
(k)
i ): This query allows an adversary to register a party with identity ID

(k)
i to the

system. A party against which this query is not issued is said to be honest, otherwise it is at the
complete control of the adversary.

7. Test(sid): The adversary chooses a test session among all the completed and fresh sessions (see
Definition 2 for freshness of a session). The challenger tosses a random bit b ∈R {0, 1}. If b = 0
the challenger will give the adversary the correctly computed session key K0 of the test session.
Otherwise the challenger will select a random shared secret key K1 from the distribution of session
keys and provide the adversary with K1.

We now give the definition for a matching session and what it means for a session to be fresh.

Definition 1 (Matching Sessions). Let Π be a protocol and sid =
(
ID

(k)
i , ID

(l)
j , out, in, ζ

)
and

sid′ =
(
ID(y)

a , ID
(z)
b , out′, in′, ζ ′

)
be the identifier of two sessions. Then sid and sid′ are called matching

sessions if:

• b = i and a = j

• z = k and y = l

• in′ = out and out′ = in and

• ζ ′ 6= ζ

It is prudent to note that k can be equal to l. This would effectively be a single PKG scenario.

Definition 2 (Session Freshness). Let Π be a protocol, and sid = (ID
(k)
i , ID

(l)
j , out, in, ζ) be the

identifier of a completed session. The session sid is said to be locally-exposed if any of the following
conditions holds:

• A issued a SessionKeyReveal(sid) or SessionKeyReveal(sid′) (if the matching session sid′ exists).

• A matching session sid′ exists and A issued both Corrupt(ID
(k)
i ) and EphemeralKeyReveal(sid).



• A matching session sid′ exists and A issued both Corrupt(ID
(l)
j ) and EphemeralKeyReveal(sid′).

• A issued an EstablishParty(ID
(k)
i ) or EstablishParty(ID

(l)
j ).

• A issued a MasterReveal(k) or MasterReveal(l) query.

• A matching session sid′ does not exist and A issued Corrupt(ID
(l)
j ).

• A matching session sid′ does not exist and A issued both Corrupt(ID
(k)
i ) and

EphemeralKeyReveal(sid).

A session sid is said to be exposed if (a) it is locally exposed, or (b) its matching session sid′ exists and
is locally exposed. A session that is not exposed is called fresh.

Definition 3. (IBKA- multiple(m)PKG security). Let Π be a protocol with the property that if two
honest parties complete matching sessions, the two parties compute the same session key. This is defined
as the correctness of the protocol. The protocol Π is said to be IBKA-mPKG-secure, if no polynomially
bounded adversary can distinguish a fresh session key from a random value, chosen from the distribution
of session keys, with probability significantly greater than 1/2.
The formal definition of a test query has been defined above. It is essential to note that only one query of
this form is allowed. After the Test query has been issued, the adversary can adaptively query the oracles
like before provided the test session remains fresh in the sense of Definition 2. Finally, A outputs his
guess b′ in the test session. An adversary wins the game if he guesses the challenge correctly i.e., b′ = b.
The advantage of A against Π in the IBKA-mPKG model is defined as

AdvIBKA−mPKGΠ (A) = |Pr[b′ = b]− 1

2
|

The IBKA-mPKG security of Π is defined as follows:

1. If two honest parties complete matching sessions, then with overwhelming probability they both com-
pute the same session key.

2. For any probabilistic polynomial-time adversary A, AdvΠ,IBKA−mPKGA is negligible.

5 Complexity Assumptions.

In this section we present the complexity assumptions required for our construction.

Definition 4. Computation Diffie-Hellman Problem (CDH) - Given (g, ga, gb) ∈R G3 for un-
known a, b ∈ Z∗q , where G is a cyclic prime order multiplicative group with g as a generator and q the

order of the group, the CDH problem in G is to compute gab.

The advantage of any probabilistic polynomial time algorithm A in solving the CDH problem in G is
defined as

AdvCDHA = Pr
[
A(g, ga, gb) = gab | a, b ∈ Z∗q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCDHA
is negligibly small.

Definition 5. Decisional Diffie-Hellman Problem (DDH) - Given (g, ga, gb, h) ∈ G4 for unknown
a, b ∈ Z∗q , where G is a cyclic prime order multiplicative group with g as a generator and q the order of

the group, the DDH problem in G is to check whether h
?
= gab.

The advantage of any probabilistic polynomial time algorithm A in solving the DDH problem in G is
defined as

AdvDDHA = |Pr
[
A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, h) = 1

]
| | a, b ∈ Z∗q

The DDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvDDHA
is negligibly small.

Definition 6. Gap Diffie Hellman Assumption (GDH). Given (g, ga, gb) ∈R G3 and access to a
Decision Diffie Hellman (DDH) oracle DDH(·, ·, ·) which on input ga, gb and gc outputs True if and



only if c = ab, the Gap Diffie Hellman problem is to compute gab ∈ G.
The advantage of an adversary A in solving the Gap Diffie Hellman problem is defined as

AdvGDHPA = Pr
[
ADDH(·,·,·)(g, ga, gb) = gab

]
The Gap Diffie Hellman assumption holds in G if for all polynomial time adversaries A, AdvGDHPA is
negligible.

6 Our Construction

In this section we present the detailed construction of our protocol. The following protocol is modified
from the protocol proposed in [FAA14]. As demonstrated in [MM13], the protocol proposed by Farash
and Attari suffers from attacks mounted by active adversary who has the power to intercept and modify
the messages being exchanged. Ours construction fixes all these flaws that is pointed out by [MM13].
The intuitive idea of how our protocol avoids all these and other attacks is discussed in section 7.

We now present our protocol. Let ID
(k)
A and ID

(l)
B be the identities of two parties participating in

the ID-AKE protocol. They may be registered under a single PKG or under two different PKGs.

Setup: On input the security parameter 1κ, this algorithm outputs params, a set of system parameters.
Each PKGi (i ∈ [n]) configure its parameters as follows:

• Choose a group G(i) of order q(i) where q(i) is a prime and a generator g(i) ∈ G(i).
• Choose two hash functions, H1

(i) : {0, 1}∗ → Z∗
q(i)

and H2
(i) : {0, 1}∗ → Z∗

q(i)

• Then it picks a random x(i)
$← Z∗

q(i)
and sets y(i) = (g(i))

x(i)

• Publishes the parameters 〈y(i), H(i)
1 , H

(i)
2 ,G, q(i), g(i)〉 and keeps the master secret key msk = x(i)

private to itself.

Key Generation: A party with identifier IDi
U registered under PKGi sends its attributes along with the

hash of the attributes to the PKGi. The PKG verifies if these attributes are indeed bona-fide through
out of band sensing. If the attributes are indeed valid, it checks if the hashed value is correct. After
verifying it proceeds as follows:

• Chooses rU
$← Z∗

q(i)
and compute RU = (g(i))

rU

• Compute SU = rU +H
(i)
1 (IDU , RU ) · x(i)

U ’s long term private key is 〈SU , RU 〉 and is transmitted via a secure channel.

Key Agreement: When a user A with identity ID
(k)
A registered with PKGk wants to communicate

with a user B with identity ID
(l)
B registered with PKGl, it sends a message to B initiating conversation.

To generate this message, A chooses two ephemeral secret keys, one each from the group corresponding
to the public params of PKGk and PKGl. It then generates the message components which are the
ephemeral public keys and computes a Schnorr Signature on the ephemeral public keys (values). This
signature is mainly used to provide safeguard against active adversary. It then performs a Diffie Hellman
(DH) type shared key computation by raising the generator of PKGl to its long term secret key. This
DH shared key is later used as a basis to compute one component of the final shared session key as shown
in Step 5 of the Session Key Generation phase in our protocol. Once the components are in place, A
sends the message to B. B checks for the correctness of the message and responds with a similar message
computed in a similar fashion. Once the message transfer is complete the users compute the session key.
The details are outlined in Algorithm 1.

Key Sanity Check: After receiving the private key from the PKG in the Key Generation phase, the
user performs the following check to ensure the correctness of the components of the private key.(
g(i)
)SU ?

= RU ·
(
y(i)
)H1

(i)(IDU ,RU )
.

This can be verified as:(
g(i)
)SU

=
(
g(i)
)rU+H

(i)
1 (IDU ,RU ).x(i)

· · · · · · · · · · · · (i) and

RU ·
(
y(i)
)H1

(i)(IDU ,RU )
= grU · (g(i))x

(i)·H1
(i)(IDU ,RU )

= grU+x(i)·H1
(i)(IDU ,RU ) · · · (ii)

Hence (i) = (ii) which implies that if the secret key was properly constructed by the PKG the check
should go through.



Party A Party B

1. Chooses a(1) ∈R Z∗
q(1)

and 1. Chooses b(1) ∈R Z∗
q(1)

and

a(2) ∈R Z∗
q(2)

b(2) ∈R Z∗
q(2)

2. Compute: 2. Compute:

(a) T
(1)
A = (g(1))

a(1)

(a) T
(1)
B = (g(1))

b(1)

(b) T
(2)
A = (g(2))

a(2)

(b) T
(2)
B = (g(2))

b(2)

3. Compute: 3. Compute:

(a) V
(1)
A = SA + H

(1)
2

(
IDA, T

(1)
A , T

(2)
A

)
.a(1) (a) V

(1)
B = (g(1))

SB

(b) V
(2)
A = (g(2))

sA
(b) V

(2)
B = SB+ H

(2)
2

(
IDB , T

(1)
B , T

(2)
B

)
.b(2)

〈IDA,T
(1)
A

,T
(2)
A

,RA,V
(1)
A

,V
(2)
A
〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
〈IDB ,T

(1)
B

,T
(2)
B

,RB ,V
(1)
B

,V
(2)
B
〉

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Correctness Check: Correctness Check:

4. Computes and Checks: 4. Computes and Checks:

(a) CB = RB .(y
(2))

H1
(2)(IDB ,RB)

(a) CA = RA.(y
(1))

H1
(1)(IDA,RA)

(b) (g(2))
V

(2)
B ?

= CB .(T
(2)
B )

H
(2)
2 (IDB ,T

(1)
B

,T
(2)
B

)
(b) (g(1))

V
(1)
A ?

= CA.(T
(1)
A )

H
(1)
2 (IDA,T

(1)
A

,T
(2)
A

)

If Check 4 is correct proceed : If Check 4 is correct, proceed :

5. Session Key Generation: 5. Session Key Generation:

(i) K
(1)
A = (V

(1)
B .T

(1)
B )

(a(1)+SA)
(i) K

(1)
B = (CA.T

(1)
A )

(b(1)+SB)

(ii) K
(2)
A = (CB .T

(2)
B )

(a(2)+SA)
(ii) K

(2)
B = (V

(2)
A .T

(2)
B )

(b(2)+SB)

(iii) K
(3)
A =

(
T

(1)
B

)(a(1))
(iii) K

(3)
B =

(
T

(1)
A

)(b(1))

(iv) K
(4)
A = (T

(2)
B )

(a(2))
(iv) K

(4)
B = (T

(2)
A )

(b(2))

Final Session Key Generation

A: KAB = H{IDA, IDB , T
(1)
A , T

(2)
A , T

(1)
B , T

(2)
B ,K

(1)
A ,K

(2)
A ,K

(3)
A ,K

(4)
A }

B: KBA = H{IDA, IDB , T
(1)
A , T

(2)
A , T

(1)
B , T

(2)
B ,K

(1)
B ,K

(2)
B ,K

(3)
B ,K

(4)
B }

Algorithm 1: Description of the Key Agreement protocol

Remark 1. It should be noted that in our protocol each PKG can choose different groups of different
orders independent of the choice of other PKGs. The public parameters of each PKG also depends only
on the group chosen by itself unlike some of the previous solutions like [CK03] which required the system
parameters to be globally same for all PKGs.

Remark 2. The protocol is synchronous and consists of only one send per user per session. There is an
initiator and a peer in this model.

Remark 3. The values of IDi, Ri (i ∈ {A,B}) are time invariant and they need to be sent only once at
the time of first communication between the parties. From the next exchange onwards the parties can
send only Ti and Vi values.

Remark 4. Correctness Check in Step 4 of the protocol ensures safeguard against an active adversary.
An active adversary can tamper with the components exchanged which affects session key generation.
This step essentially verifies the Schnorr signature on the ephemeral public keys.

Lemma 1. The shared secret key computed by both the parties are identical.

Proof. Assuming the correctness check goes through for both the parties, the key components can be
constructed properly and also verified for equality with the shared key of the other party as show below:

K
(1)
A = K

(1)

B =
(
g(1)

)(a(1)+SA)(b(1)+SB)



K
(2)
A = K

(2)

B =
(
g(2)

)(a(2)+SA)(b(2)+SB)

K
(3)
A = K

(3)

B =
(
g(1)

)(a(1))(b(1))
K

(4)
A = K

(4)

B = (g(2))
(a(2))(b(2))

Thus the session keys KAB and KBA are equal.
ut

7 Security Proof

In this section we present the formal security proof for our protocol described in the previous section.

But before proceeding with the formal security proof we provide an informal discussion how our
construction presented in Section 6 counters and fixes all the attacks presented in [MM13] for the protocol
[FAA14].

1. Key Offset Attack: In this attack an adversary modifies the message being sent by multiplying the
Ephemeral Public Key with its own exponent λ. This offsets the agreed session key by the same exponent
unknown to either of the parties. This happens in protocols where key confirmation is absent. In the
protocol proposed by Farash and Attari, the absence of origin authentication causes a vulnerability. The
same is remedied in our protocol by adding an extra term in the message being sent. The extra term is
effectively a Schnorr signature of the original terms being sent. The signature is verified in the correctness
check of Step 4 in Algorithm 1. For an active adversary to successfully mount the attack in this model, it
should have the ability to generate a new signature on the message being sent. This cannot be achieved
as the signature generation involves the long term secret key of the user, which the adversary is unaware
of.

2. Forgery Attack: In this attack, an eavesdropper intercepts the message that a user A broadcasts
through the public channel. The eavesdropper uses the intercepted message to assume the identity of A
and masquerade as A to other users. By a reasoning similar to that for Key Offset Attack, it is clear that
the protocol of Farash and Attari has a vulnerability to this kind of attack and the extra terms being
sent in our protocol remedies this vulnerability.

In addition to these attacks, as demonstrated in [MM13], the protocol in [FAA14] is vulnerable to
Known Session Specific Temporary Information Attack (KSTIA) and Key Compromise Impersonation
Attack (KCI).

3. KSTIA: In this attack the knowledge of the ephemeral secrets of both the parties gives the adversary
the power to compute the session key. Our protocol completely overhauls the key computation aspect
of the protocol proposed in [FAA14] to overcome this susceptibility. This is achieved by ensuring that
the final key value is dependent on CDH(gSA , gSB ) which has been incorporated in key components Kµ

λ

where λ ∈ {A,B} and µ ∈ {1, 2}.

4. KCI: It is an attack where the adversary is able to use the compromised long-term key of a party
A to masquerade as another party B to A. It is obvious that when the long-term secret key of A
is compromised, the adversary can masquerade as A to other users. For the converse to happen, the
adversary intercepts the message that B sends to A. The intercepted message is then modified with
its own chosen values for the ephemeral secrets and the message is sent to A, effectively adversary
masquerades as B to A. It then computes the session key. This attack works in [FAA14] since there is
no correctness check. Our protocol avoids this problem by two ways - adding the signature and then
checking the correctness and by making the key components dependent on SB and SA. For the adversary

to be able to compute the session key it would need to successfully compute the values of K
(1)
A and

K
(2)
A . This requires the knowledge of SB which the adversary is not aware of. This shows our protocol’s

resilience to KCI.

We now present the formal security proof of our protocol. The proof is based on the security model
described for Identity Based Key Agreement in the Multiple PKG paradigm, (IBKA-mPKG) described in
Section 4. The scheme is proved secure under the Gap Diffie-Hellman (GDH) assumption in the random
oracle (RO) model. The security proof is modeled as a game between the challenger and the adversary.

Theorem 1. Under the GDH assumption in G and the RO model,the protocol in section 6 is IBKA−
mPKG-secure.



Proof. As empowered by our security model, the adversary A is allowed to make session activation
queries.

– A query of the form
(
ID

(k)
i , ID

(l)
j

)
makes user ID

(k)
i registered with PKGk to perform Steps 1-3

of our protocol, and create a session with identifier
(
ID

(k)
i , ID

(l)
j , 〈T (1)

i , T
(2)
i , Ri, V

(1)
i , V

(2)
i 〉, ?, I

)
.

– On a query
(
ID

(k)
i , ID

(l)
j , 〈T (1)

i , T
(2)
i , Ri, V

(1)
i , V

(2)
i 〉

)
, user ID

(l)
j performs Steps 1-3 of our protocol

and creates a session with identifier
(
ID

(l)
j , ID

(k)
i , 〈T (1)

j , T
(2)
j , Rj , V

(1)
j , V

(2)
j 〉, 〈T

(1)
i , T

(2)
i , Ri, V

(1)
i , V

(2)
i 〉,R

)
.

– The query
(
ID

(k)
i , ID

(l)
j , 〈T (1)

i , T
(2)
i , Ri, V

(1)
i , V

(2)
i 〉, 〈T

(1)
j , T

(2)
j , Rj , V

(1)
j , V

(2)
j 〉,R

)
makes A update

the session identifier
(
ID

(k)
i , ID

(l)
j , 〈T (1)

i , T
(2)
i , Ri, V

(1)
i , V

(2)
i 〉, ?, I

)
(if any) to(

ID
(k)
i , ID

(l)
j , 〈T (1)

i , T
(2)
i , Ri, V

(1)
i , V

(2)
i 〉, 〈T

(1)
j , T

(2)
j , Rj , V

(1)
j , V

(2)
j 〉, I

)
and perform Step 4 and then

both the parties involve in session key generation phase of our protocol.

The adversary is also allowed to make the following queries: EphemeralKeyReveal, Corrupt, Session-
KeyReveal, EstablishParty, and MasterReveal.

Let us assume that an adversary A can win the game, i.e, distinguish a fresh session key from a random
session key chosen from the distribution of session keys, with probability significantly greater than 1

2 . A
can do this in one of the following ways:

– Guessing attack: A guesses the test session key correctly.

– Key Replication attack: A succeeds in making two non-matching sessions compute the same session
key and then A simply issues a session key reveal query on one of the sessions and uses that key in the
other session.

– Forging attack: A computes the hash digest components correctly and queries the H digest query
to get the session key.

Since are proving in the random oracle model, the probability of success of the first two attacks are
negligible. This is due to the collision resistance property of the hash function H. Thus it is enough to
analyze the event E defined as the event “A succeeds in forging the session key of a fresh session denoted

by sid0 =
(
ID

(k)
i , ID

(l)
j , 〈T (k)

i , T
(l)
i , Ri, V

(k)
i , V

(l)
i 〉, 〈T

(k)
j , T

(l)
j , Rj , V

(k)
j , V

(l)
j 〉, ζ

)
”.

The event E is divided in two subcases – E.1: “A succeeds in forging the session key of a fresh session
that has a matching session” and E.2: “A succeeds in forging the session key of a fresh session without
a matching session”. So if suffices to show that neither E.1 nor E.2 can happen with non-negligible
probability.

Analysis of E.1. If event E.1 occurs with non-negligible probability, using A we can build a GDH
solver that succeeds with non-negligible probability. Event E.1 can be further analyzed in each of these
sub-cases:

– E.1.1: E.1 ∧ A issues Corrupt(ID
(k)
i ) and Corrupt(ID

(l)
j ).

– E.1.2: E.1: ∧ A issues an EphemeralKeyReveal query on both sid0 and sid′0.

– E.1.3: E.1: ∧ A issues Corrupt(ID
(k)
i ) and an EphemeralKeyReveal query on sid′0.

– E.1.4: E.1: ∧ A issues Corrupt(ID
(l)
j ) and an EphemeralKeyReveal query on sid0.

Analysis of E.1.1. Suppose that E.1.1 occurs with non-negligible probability, using A we can build a
polynomial time GDH solver S, which succeeds with non-negligible probability. The solver interacts with
A as follows:
S simulates A’s environment with npkg(κ) separate PKGs, each PKG can support nu(κ) users where κ
is the security parameter. Since A is polynomial (in |q|), we suppose that each party may be involved in

ns(κ) sessions (npkg(κ), nu(κ), ns(κ) ≤ L(|q|) for some polynomial L). We refer to ID
(k)
i registered with

PKGk as P̂i. S chooses P̂l, P̂m , and t ∈R [ns(κ) + 1] (with these choices, S is guessing the test session).
The challenger is given the CDH problem instance 〈G, g, q, p, C = ga, D = gb〉 of the corresponding GDH
instance. The challenger simulates the hash oracles in the following way:

H1 Oracle : The challenger is queried by the adversary for the hash value of the identity ID
(k)
i and Ri.

If the H1 Oracle was already queried with the same input, the challenger returns the value computed



before which is stored in the hash list Lh1 described below. Otherwise chooses ki ∈R Z∗
q(k) , computes

hi =
(
g(i)
)ki

, adds the tuple 〈hi, ID(k)
i , ki, Ri〉 to the Lh1 list.

Similarly, for oracle H2 the solver S looks up its corresponding list Lh2 to see if the hash value corre-
sponding to the query is already listed in the table.

Party corruption: The adversary presents the challenger with an identity ID
(k)
i and the challenger

should return the private key of that entity. The challenger proceeds as follows:

The challenger chooses r
(k)
i ∈R Z∗

q(k) . It then computes Ri = (gi)r
(k)
i .

The challenger checks if the H1 Oracle was already queried for ID
(k)
i and Ri. If yes, it extracts ki, hi

from the list Lh1 and proceeds to the next step. If not queried before, the challenger chooses ki ∈R Z∗
q(k) ,

computes hi =
(
g(i)
)ki

, adds the tuple 〈hi, ID(k)
i , ki, Ri〉 to the Lh1 list.

The challenger proceeds as per protocol to generate the long term keys.

Lemma 2. The private key returned by the challenger S during the party corruption query are consistent
with the system and it passes the Key Sanity Check as it is generated as per the protocol only.

The solver S now interacts with A as follows:

– S takes as input C = T
(1)
i0

and D = T
(1)
j0
∈ G. Here we assume that the paramsK has the group G

and generator as g. Note that S does not know the values of a
(1)
i0

and a
(1)
j0

and the values of a
(1)
i0

and

a
(1)
j0

is implicitly set to a and b respectively (from the GDH instance).

– On a session activation query of the form (P̂l, P̂m), S does the following:
• Choose i1, i2 as the ephemeral secrets.

• Create session identifier sid′ =
(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉, ?, I

)
and

• Provide A with
(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉

)
.

– On a session activation query of the form,
(
P̂m, P̂l, 〈Rj , T (1)

j , T
(2)
j , V

(1)
j , V

(2)
j 〉

)
, S does the following:

• Choose i1, i2 as the ephemeral secrets.

Create session identifier sid′ =
(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉, 〈Rj , T

(1)
j , T

(2)
j , V

(1)
j , V

(2)
j 〉,R

)
– Provide A with

(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉

)
• Completes the session

(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉, 〈Rj , T

(1)
j , T

(2)
j , V

(1)
j , V

(2)
j 〉,R

)
.

– On the session activation query
(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉, 〈Rj , T

(1)
j , T

(2)
j , V

(1)
j , V

(2)
j 〉

)
, S does

the following:

• S updates the session identifier
(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉, ?, I

)
(if any) to

sid =
(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉, 〈Rj , T

(1)
j , T

(2)
j , V

(1)
j , V

(2)
j 〉, I

)
.

• If the sid′ session exists and is already completed, S sets the sid session key to that of sid′.

– Else, if a digest query was previously issued on some

ψ =
(
σ, P̂l, P̂m, Ri, T

(1)
i , T

(2)
i , T

(1)
j , T

(2)
j ,Kλ1,Kλ2,Kλ3,Kλ4,

)
(in this case λ ∈ {l,m}) S sets the

session key to H(ψ).

– Else S chooses Kij from the distribution of session keys and set the sid session key to Kij and
updates Lh (the hash list of H).

– If A issues a Corrupt, an EphemeralKeyReveal, a SessionKeyReveal, or an EstablishParty query at a
party S answers faithfully.

– At the activation of the tth session at at ID
(k)
i0

, if the peer is not ID
(l)
j0

, S aborts; otherwise, it provides

A with (ID
(k)
i0
, ID

(l)
j0
, T

(1)
i0 , T

(2)
i0
, V

(1)
i0
, V

(2)
i0 , Ri0) (recall that the solver takes as input T

(1)
i0

and T
(1)
j0

).

– When A activates the session matching the tth session at (ID
(l)
j0

, S provides A with

(ID
(l)
j0
, ID

(k)
i0
, T

(1)
j0
, T

(2)
j0
, V

(1)
j0
, V

(2)
j0
, Rj0).

– In any of the following situations, S aborts.

• A halts with a test session different from the tth session at ID
(k)
i0

.



• A issues a SessionKeyReveal query or an EphemeralKeyReveal query on ID
(k)
i0

or ID
(l)
j0

.

• A issues an EstablishParty query on ID
(k)
i0

or ID
(l)
j0

.

– If A halts with a guess, S outputs Kλ3 as CDH(C,D). Otherwise S aborts.

The simulation remains perfect, except with negligible probability; the solver S guesses correctly the test

session with probability
(

(npkg · nu)
2
ns

)−1
. If A succeeds under this simulation, and S guesses correctly

the test session, S outputs CDH(T
(1)
i0
, T

(1)
j0

). Hence if A succeeds with nonnegligible probability in E.1.1,

S outputs with nonnegligible probability CDH(T
(1)
i0
, T

(1)
j0

),contradicting the GDH assumption.

Analysis of E.1.2. Suppose that E.1.2 occurs with non-negligible probability, using A we can build a
polynomial time GDH solver S, which succeeds with non-negligible probability. We modify the interaction
of event E.1.1 as follows:

– S takes as input C = Ri0 and D = V
(1)
j0
∈ G. So it doesn’t know the values of ri0 and sj0 . We have

set ri0 and Sj0 implicitly as a and b respectively.

– On a session activation query of the form (P̂m, P̂l, 〈Rj , T (1)
j , T

(2)
j , V

(1)
j , V

(2)
j 〉), with P̂l = ID

(k)
i or

ID
(l)
j , S does the following:

– On a session activation query of the form,
(
P̂m, P̂l, 〈Rj , T (1)

j , T
(2)
j , V

(1)
j , V

(2)
j 〉

)
, S does the following:

• Choose i1, i2 as the ephemeral secrets.

• Create session identifier sid′ =
(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉, 〈Rj , T

(1)
j , T

(2)
j , V

(1)
j , V

(2)
j 〉,R

)
• Provide A with

(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉

)
– On the session activation query

(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉, 〈Rj , T

(1)
j , T

(2)
j , V

(1)
j , V

(2)
j 〉,R

)
, with

P̂l = ID
(k)
i or ID

(l)
j , S does the following:

• S updates the session identifier
(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉, ?, I

)
(if any) to

sid =
(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉, 〈Rj , T

(1)
j , T

(2)
j , V

(1)
j , V

(2)
j 〉, I

)
• If the sid′ session exists and is already completed, S sets the sid session key to that of sid′.

• Else, if a digest query was previously issued on some

ψ =
(
σ, P̂l, P̂m, Ri, T

(1)
i , T

(2)
i , T

(1)
j , T

(2)
j ,Kλ1,Kλ2,Kλ3,Kλ4,

)
(in this case λ ∈ {l,m}) and if Kλ1 =

CDH
(
Ri ·

(
Yk

H1
(k)(IDi,Ri)

)
· T (1)

i , V
(1)
j · T (1)

j

)
and

Kλ2 = CDH
(
V

(2)
i · T (2)

i , Rj ·
(
Yl
H1

(l)(ID
(l)
j ,Rj)

)
· T (2)

j

)
(using the DDH oracle), S sets the session

key to H(ψ).

• Else S chooses Kij from the distribution of session keys and set the sid session key to Kij and
updates Lh.

– At A’s digest query on some ψ =
(
σ, P̂l, P̂m, Ri, T

(1)
i , T

(2)
i , T

(1)
j , T

(2)
j ,Kλ1,Kλ2,Kλ3,Kλ4,

)
(in this

case λ ∈ {l,m}) with P̂l = IDi or IDj or with P̂m = IDi or IDj , S checks whether a value Kij already
exists for the queried ψ, then it returns Kij as the completed session key, else

(i) if there is an already completed session with identifier

sid =
(
P̂l, P̂m, 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉, 〈Rj , T

(1)
j , T

(2)
j , V

(1)
j , V

(2)
j 〉, I

)
or sid′, and and if Kλ1 =

CDH
(
Ri.
(
Yk

H1
(k)(ID

(k)
i ,Ri)

)
· T (1)

i , V
(1)
j · T (1)

j

)
andKλ2 = CDH

(
V

(2)
i .T

(2)
i , Rj .

(
Yl
H1

(l)(ID
(l)
j ,Rj)

)
.T

(2)
j

)
, then S returns the completed session key, else

(ii) It chooses Kij from the distribution of session keys and set the sid session key to Kij and provides
A with Kij .

– At the activation of the tth session at at ID
(k)
i0

, if the peer is not ID
(l)
j0

, S aborts; otherwise, it chooses

i1, i2 as the ephemeral secrets and provide A with
(
ID

(k)
i0
, ID

(l)
j0
, T

(1)
i0
, T

(2)
i0 , V

(1)
i0 , V

(2)
i0 , Ri

)
. Note that

Ri0 is set as C, the input of the CDH problem instance.



– When A activates the session matching the tth session at ID
(l)
j0 , S chooses j1, j2 and provides A

with (ID
(l)
j0
, ID

(k)
i0
, T

(1)
j0
, T

(2)
j0
, V

(1)
j0
, V

(2)
j0
, Rj). Note that V

(1)
j0

is set as D, the input of the CDH problem
instance.

– In any of the following situations, S aborts.

• A halts with a test session different from the tth session at ID
(k)
i0

.

• A issues a SessionKeyReveal at ID
(k)
i0

or its matching session.

• A issues an EstablishParty or Corrupt query on ID
(k)
i0

or ID
(l)
j0

.

– When A halts with a guess σ0 for the test session, S outputs a guess CDH(C,D) from Kλ1, Ti1 , Tj1
among other values known and determined by the challenger.

The simulation remains perfect, except with negligible probability. If A succeeds and S guesses correctly

the test session (this happens with probability
(
(npkg · nu)2ns

)−1· Pr(E.1.2)) S outputs CDH(C,D).
Under the GDH assumption and RO model, this cannot happen, except with negligible probability.

Analysis of E.1.3 and E.1.4 Events E.1.3 and E.1.4 are symmetrical to each other. So it suffices to
analyze event E.1.3. Suppose that E.1.3 occurs with nonnegligible probability, using A we can build a
polynomial time GDH solver S, which succeeds with non-negligible probability. The solver interacts with
A as follows:

– S takes as input C = T
(1)
i0

and D = V
(1)
j0
∈ G. Note that S does not know the private key of j .

– On a session activation query of the form
(
ID

(k)
i , ID

(l)
j , 〈Ri, T (1)

i0
, T

(2)
i0
, V

(1)
i0 , V

(2)
i0 〉

)
, S does the follow-

ing:

• Choose rj ∈R Z∗
p(l)

and compute Rj = (g(l))
rj

.

• Create a session with identifier sid′ =
(
ID

(l)
j , ID

(k)
i , 〈Rj , T (1)

j , T
(2)
j , V

(1)
j , V

(2)
j 〉, 〈Ri, T

(1)
i , T

(2)
i , V

(1)
i , V

(2)
i 〉,R

)
and provide A with

(
ID

(l)
j , ID

(k)
i , 〈Rj , T (1)

j , T
(2)
j , V

(1)
j , V

(2)
j 〉

)
.

– Choose Kij from the distribution of session keys and set the session key to Kij .

– On the query
(
ID

(l)
j , ID

(k)
i , 〈Rj , T (1)

j , T
(2)
j , V

(1)
j , V

(2)
j 〉, 〈Ri, T

(1)
i , T

(2)
i , V

(1)
i , V

(2)
i 〉

)
, S does the follow-

ing:

Update the session identifier
(
ID

(l)
j , ID

(k)
i , 〈Rj , T (1)

j , T
(2)
j , V

(1)
j , V

(2)
j 〉, ?, I

)
(if any) to(

IDj , IDi, 〈Rj , T (1)
j , T

(2)
j , V

(1)
j , V

(2)
j 〉, 〈Ri, T

(1)
i , T

(2)
i , V

(1)
i , V

(2)
i 〉, I

)
.

– If a value is already assigned to the sid′ session key, set the sid session key to that of sid′. Else, if
a digest query was previously issued on some

ψ =
(
σ, P̂l, P̂m, Ri, T

(1)
i , T

(2)
i , T

(1)
j , T

(2)
j ,Kλ1,Kλ2,Kλ3,Kλ4,

)
(in this case λ ∈ {l,m}) and if Kλ1 =

CDH
(
Ri ·

(
Yk

H1
(k)(ID

(k)
i ,Ri)

)
· T (1)

i , V
(1)
j · T (1)

j

)
and

Kλ2 = CDH
(
Vi2 · T (2)

i , Rj ·
(
Yl
H1

(l)(ID
(l)
j ,Rj)

)
· T (2)

j

)
, then set the sid session key to H (ψ).

– Else, Kij from the distribution of session keys and set the sid session key to Kij .

– At A’s digest query on some

ψ =
(
σ, P̂l, P̂m, Ri, T

(1)
i , T

(2)
i , T

(1)
j , T

(2)
j ,Kλ1,Kλ2,Kλ3,Kλ4,

)
(in this case λ ∈ {l,m}) with Pl = IDj

or Pm = IDi, S checks if the same query was made previously, if so it returns the previously returned
value. Else it follows the steps as mentioned above.

– When A activates the t-th session at ID
(k)
i0

, if the peer is not ID
(l)
j0

, S aborts; otherwise, it provides

A with
(
ID

(k)
i , ID

(l)
j , 〈Ri, T (1)

i , T
(2)
i , V

(1)
i , V

(2)
i 〉

)
(recall that the solver takes as input T

(1)
i0

and V
(1)
j0

).

– When A activates the session matching the t-th session at ID
(k)
i0 , S chooses rj ∈R Z∗

p(l)
if not chosen

before and provides A with
(
IDj , IDi, 〈Rj , T (1)

j , T
(2)
j , V

(1)
j , V

(2)
j 〉

)
.

– If A issues an EphemeralKeyReveal query on the session matching the t-th session at ID
(k)
i0 , S

answers faithfully.



– In any of the following situations, S aborts.

• A halts with a test session different from the t-th session at ID
(k)
i0

.

• A issues a Corrupt(ID
(l)
j0

) query or an EstablishParty query on ID
(k)
i0

or ID
(l)
j0

.

• A issues an EphemeralKeyReveal query on the t-th session at ID
(k)
i0

.

– IfA halts with a guess, S produces

(
Ki1 ·

(
T

(1)
i0
·Ri · (y(i))

H1
(k)

(
ID

(k)
i ,Ri

))−j1
·
(
V

(1)
j0

)−si)
as CDH(C,D).

The simulation remains perfect, except with negligible probability; the solver S guesses correctly the test

session with probability
(

(npkg · nu)
2
ns

)−1
. If A succeeds under this simulation, and S guesses correctly

the test session, S outputs CDH(C,D).

So from the analysis none of the events E.1.1, E.1.2, E.1.3,E.1.4 can occur with non-negligible probabil-
ity,and hence we conclude that event E.1.1 cannot occur (except with negligible probability).

Analysis of E.2. Event E.2 can be further analyzed as follows:

– E.2.1: E.2 ∧ A issues a Corrupt query on ID
(k)
i and

– E.2.2: E.2 ∧ A issues a EphemeralKeyReveal query on the test session.

These are the strongest query that A can issue in event E.2.

Event E.2.1: To show that E.2.1 cannot happen with non-negligible probability, the simulation proceeds

similar to the analysis of E.1.3. S takes as input T
(1)
i0 and V

(1)
j0 ∈R G (for ID

(k)
i , S chooses ki ∈R Z∗

q(k) ,

computes hi =
(
g(i)
)ki

). The simulation environment remains perfect except with negligible probability.
If A succeeds with a forgery and S guesses correctly the test session (S guesses correctly the test session

with probability
(

(npkg · nu)
2
ns

)−1
), S outputs CDH(C,D) which contradicts the GDH assumption.

Event E.2.2: We modify the analysis of event E.1.2 by aborting when A activates a session matching the

tth session at ID
(k)
i0

. The simulation environment remains perfect except with negligible probability. If A
succeeds and S guesses correctly the test session then S outputs CDH(Ri0 , V

(1)
j0

). S is polynomial, and
if E.2.2 occurs with non-negligible probability, S yields a polynomial time CDH solver, which succeeds
with non-negligible probability; contradicting the GDH assumption.

8 Conclusion

Traditional notions of key agreement in the identity based paradigm is constrained by a single PKG
with an upward ceiling on the number of users it can serve. The issue has larger ramifications in the
context of organizations which are situated in diverse locations with large number of users. The solution
to overcome the constraint is to embrace the idea of multiple PKG. We have proposed an efficient,
pairing-free, single round identity based key agreement protocol (IDKA) which supports communication
between parties registered with distinct PKGs. The protocol offers scalability and enhanced utility in
several applications like the Vehicular Networks. We have also proposed a new security model based on
the eCK model exclusively for multiple PKGs which is much stronger than the existing security models
for IDKA involving multiple PKG. Our protocol also provides security against active adversary. We
show that our protocol is secure in our new security model under the Gap Diffie-Hellman complexity
assumption in the RO model. We leave open the problem of constructing a single round IDKA protocol
in multiple PKG scenario in standard model.
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