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Abstract. We formalize the use of Bitcoin as a source of publicly-
verifiable randomness. As a side-effect of Bitcoin’s proof-of-work-based
consensus system, random values are broadcast every time new blocks
are mined. We can derive strong lower bounds on the computational
min-entropy in each block: currently, at least 68 bits of min-entropy are
produced every 10 minutes, from which one can derive over 32 near-
uniform bits using standard extractor techniques. We show that any
attack on this beacon would form an attack on Bitcoin itself and hence
have a monetary cost that we can bound, unlike any other construc-
tion for a public randomness beacon in the literature. In our simplest
construction, we show that a lottery producing a single unbiased bit is
manipulation-resistant against an attacker with a stake of less than 50
bitcoins in the output, or about US$12,000 today. Finally, we propose
making the beacon output available to smart contracts and demonstrate
that this simple tool enables a number of interesting applications.

1 Introduction

The ability to generate randomness is the foundation of many security protocols.
Often random numbers are used to keep information secret and are kept private.
However, a number of interesting applications require random values that cannot
be predicted prior to being generated, but are made public after generation.

Such public randomness can be used to build random protocols with account-
ability. Historically, many organizations have attempted to publicize the physical
generation of randomness to establish credibility in a process which is claimed
to be random. For example, the National Basketball Association holds an an-
nual draft lottery to award teams exclusive rights to sign top amateur players.
Though the league commissioner draws ping-pong balls on camera from a hop-
per to establish the draft order, fans have claimed for years that the process is
rigged and it has proved difficult to dispel that notion. A more somber example
is the 1969 US conscription lottery, in which several politicians mixed capsules
containing days of the year in a rotating drum and then drew them randomly
by hand. Statisticians have since determined the process was botched, with an
improbably high number of late-year dates selected due to insufficient mixing.

Generating public randomness is a common problem, supporting the desire
to build a dedicated service which can be more efficient and (potentially) offer
higher security against manipulation. This was first formalized by Rabin [32]
who proposed a trusted service called a beacon that broadcasts fresh random
numbers at regular intervals which any party can sample. Beacons have many



potential applications outside of cryptographic protocols, including verifiably
selecting lottery winners or choosing precincts to audit after an election.

The use-cases are compelling enough that NIST has developed and hosts a
beacon service which currently generates and publishes 512-bits of randomness
every minute [29]. Commercial beacons also exist, such as Random.org, which
have been audited and approved for use by gambling regulators. While these
services undergo auditing and NIST has published extensive documentation of
their apparatus for extracting randomness from quantum-mechanical effects, ul-
timately these services are trusted third-parties with good reasons to avoid.
Random.org openly states that they “buffer” their randomness before publish-
ing it and hence could be in a position to profit from advance knowledge of the
beacon output. NIST’s reputation has been significantly tarnished by its role
in the publication of the Dual Elliptic Curve PRNG standard [4], which it has
now admitted contained a backdoor [19, 34]. Proprietary beacons may also be
unreliable: NIST’s beacon was offline during the 2013 US Government shutdown.

For these reasons we would strongly like to construct a decentralized beacon
with no trusted parties. There are several proposals for building a beacon from
a publicly observable natural process such as meteorological events or cosmic
background radiation. Stock market prices are easy to agree on and have been
shown to contain a high amount of entropy [11]. They have even been used to
determine random auditing in real elections, including a municipal election in
Takoma Park, WA, USA [9]. However, it remains unclear to what extent financial
exchanges are in fact trusted parties which could manipulate the beacon output
by subtly altering which prices they announce. Financial data also has limited
availability as most exchanges are closed far more often than not.

In this paper, we propose and analyze the construction of a beacon from
Bitcoin’s central data structure, the block chain [26]. Several applications have
emerged which extract random numbers from Bitcoin, including at least one
website, BitcoinMegaLottery [1] which attempts to implement a verifiable lottery
using Bitcoin blocks.4 Some Bitcoin-based protocols [8, 16, 25] already rely on
the block chain for randomness, although without any precise security model.

Our central contribution is to formalize the use of Bitcoin as a random-
ness source and provide precise security guarantees. A Bitcoin-based beacon
has a number of advantages due to the decentralization of Bitcoin and the large
amount of computational work expended on maintaining the Bitcoin block chain.
Bitcoin’s cryptographic structure lends itself to a concrete analysis of its entropy
and its function as a currency system allows us to directly compute the financial
cost of attempting to manipulate the beacon output.

Our work shows that Bitcoin is indeed suitable as a public randomness beacon
for applications beyond the Bitcoin-focused protocols in which it has so far been
considered. Our primary contribution is defining and analyzing a Bitcoin-based
beacon is the first in the literature which requires no trusted parties. We also for-

4 BitcoinMegaLottery hashes block data as well as IDs assigned to tweets by Twitter.
This does not appear secure as there are no guarantees the tweet IDs are generated
before the block chain data.



mally define a powerful attacker model, capable of bribing all miners in existence
and provide precise manipulation costs in this model. Finally, we demonstrate
some practical examples for incorporating a blockchain-based beacon directly
into smart contracts.

2 Preliminaries

2.1 Extractors

An extractor is a function y = Extk(x) that takes an n-bit input x of “sufficient”
entropy and an `-bit key k and returns anm-bit output y of “high” entropy where
m < n. Here sufficient entropy means the min-entropy H∞(x) is at least m bits
and high entropy means that the statistical distance between the distribution
on y and an m-bit uniform distribution is a negligible. The key k is not a secret,
but is used to randomly select from a family of extractors.

While much of the literature focuses on combinatorial extractors [27, 33, 35,
36]; in practice constructions for extractors based on HMACs and block ciphers
in CBC-MAC mode are most commonly used. These cryptographic extractors
have been proven secure when the input has at least 2m bits of min-entropy [13].

2.2 Beacon

A beacon is a function r = Beacon(t) which returns an m-bit near-uniformly
random value r at each time interval t. Typically the beacon samples from some
source of randomness Dt upon which we make no assumptions beyond a lower-
bound on min-entropy. Given a sample Dt the uniformly random output r is
computed using an extractor:

r ← Beacon(t) = Extk(Dt)

Beacons should satisfy a few security properties:

– unpredictable: any adversary’s ability to predict any information about r
prior to time t is negligible.

– unbiased : r is statistically close to an m-bit uniformly random string.

– universally sampleable: after time t any party can efficiently compute Beacon(t).

– universally verifiable: the sample Dt can be verified to be unknown to any
party prior to time t.

Note that there is no formal property stating the beacon cannot be manipu-
lated. This property is covered by unpredictability: if a beacon can be manipu-
lated, then it can be predicted with non-negligible accuracy.



2.3 Bitcoin consensus

Bitcoin [26] is an extremely complex system (for a more detailed description
see [6]). Here we only provide a brief overview of the consensus protocol, some-
times referred to as Nakamoto consensus. Bitcoin miners maintain the block
chain, a public data structure serving as a global ledger of all transactions in the
history of the system. New batches of transactions are published in a block ap-
proximately every 10 minutes. Any party can work as a Bitcoin miner attempting
to publish the next valid block of transactions, but doing so is computationally
difficult due to the proof-of-work system in Bitcoin. A valid block B must have a
hash value starting with d consecutive zeroes. The difficulty parameter d is con-
tinually adjusted to maintain the average mining rate of 1 block per 10 minutes.
At the time of this writing d ≈ 66.4. Each block contains a hash of the previous
valid block as determined by the block’s miner. The set of all purported blocks
thus forms a tree, with the longest chain deemed as the one valid block chain
defining current ownership of all bitcoins.

Miners are incentivized to publish only valid blocks (consistent with the
rules of the Bitcoin protocol) and to always extend the longest chain as they
earn newly minted coins if they successfully publish a valid block. A block’s
validity is established by decentralized consensus; if a quorum of miners with
the majority of computational power accept a given block as valid by mining
on top of it then eventually it will stay embedded in the longest chain and the
miner will get to keep their mining reward.

For our purposes, the only critical properties are that finding blocks is compu-
tationally difficult and that miners receive a substantial reward for finding them.
We note that our beacon construction is equally applicable to many Bitcoin-
derived currencies (e.g. LiteCoin) which utilize a similar block chain structure.

3 Beacon construction

Our basic construction applies an extractor to the the header of one or more
blocks in the Bitcoin block chain. Each block header is a 640-bit data structure
consisting of the fields listed in Table 1, as well as the block hash. The amount
of nominal entropy in the Merkle tree of transactions alone is likely thousands
of bits, as it incorporates hundreds of Bitcoin transactions, nearly all containing
ECDSA signatures which rely on strong randomness for security. However, for
the purposes of a beacon which is unpredictable we care only about entropy
conditional on all public information just prior to the moment the block is first
announced. This eliminates most of the entropy from transactions, as they are
nearly all published in transaction pools prior to being included in a block.
Instead, we rely only on unpredictability inherent to the mining process itself.

3.1 Min-entropy in normal operation

If Bitcoin miners are disinterested, then there exists a strong lower bound of d
bits of min-entropy in a valid block header due to Bitcoin’s proof-of-work puzzles.



field size (bits) min-entropy

version number 32 0
previous block hash 256 0
Merkle hash of transactions 256 > d− µ
timestamp (seconds) 32 ≈ 10
current difficulty level 32 0
nonce 32 µ

Table 1. Fields in a Bitcoin block header and lower bounds of their min-entropy.
Currently d > 68. Technically we might have 0 < µ < 32 but in practice µ ≈ 32.

Anybody can create a block with a random nonce which will have a probability
2−d of being valid. It is widely believed that there is no faster way to check a
block’s validity (even probabilistically) than computing the hash. Similarly, it
is believed that there is no feasible way of choosing a block (including a nonce)
such that it has a probability of validity > 2−d prior to computing the hash. If
there were an efficient algorithm for producing such blocks, this would lead to
arbitrage as this would be a more efficient way to mine Bitcoins. Indeed, even
if such an algorithm were ever discovered, d would increase due to the increased
rate of blocks being found and the system would revert to the same security level
assuming miners continue to dedicate the same amount of computational power
to mining. Thus, it is strongly believed that no party is capable of predicting the
next published block header with probability > 2−d. This gives the distribution
of blocks a computational min-entropy of at least d.

In practice that this entropy is split between the nonce value (which contains
µ ≤ 32 bits of entropy) and the Merkle root of transactions which contains the
rest, as noted in Table 1. Because nonces are limited to 32 bits, most attempted
transaction Merkle roots to have no possible nonce which yields a valid block,
meaning miners must vary both the nonce and the transaction tree while search-
ing for a valid block. The transaction tree also includes an explicit extraNonce

parameter specifically for this purpose. In theory, miners could ignore the nonce
field and only try modifications of the transaction set, though in practice effi-
cient miners will always exhaust the nonce-space before modifying the transac-
tion tree because this requires only computing the final block hash and not the
more expensive recomputation of the transaction set’s Merkle root. In any case,
for our construction we hash both the nonce and the transaction tree to ensure
we extract all available entropy from the mining process.

3.2 Malicious miners

If miners are malicious and attempting to influence the value output by the
beacon, they might attempt to only mine blocks which would produce a certain
beacon output. However, we can make this financially expensive by including
both the block header and its hash in our extractor:

Beacon(t) = Extk(Bt||H(Bt))



This ensures that evaluating any property of the beacon output requires com-
puting the hash of the block header and learning whether or not the block is
valid. Hence there can be no better malicious mining strategy for finding blocks
leading to a desired beacon output than normal mining followed by computing
the extractor function and potentially withholding an otherwise-valid block by
neglecting to publish it. However this is very costly as it means forgoing the
block reward, as we now analyze.

4 Manipulation-resistant lotteries (MRLs)

Because miners are capable of withholding valid blocks to manipulate the bea-
con, we introduce the concept of a manipulation-resistant lottery built on top of
a Bitcoin-based beacon. This need not be a lottery in the sense of a random cash
sweepstakes, but any random event in which an attacker may have a significant
interest in the outcome. The interesting property of this game which sets it apart
from previously studied concepts is the explicit attacker cost for manipulating
a beacon output by paying the cost of withheld blocks (defined in Section 4.4).
While a Bitcoin beacon-based lottery cannot provide unconditional security, we
can argue precisely about when it would not be economically rational to manip-
ulate the lottery based on what financial stake any party has in its result. Our
goal is to design a lottery which allows participants with as high of stakes as
possible to participate without incentivizing any party to manipulate the lottery.

4.1 Formal definition

Formally, we define a manipulation-resistant lottery scheme as a finite Markov
process which samples from a beacon to compute its state transitions. Many
different formulations would allow equivalent analysis, such as a probabilistic
finite automaton, but this one is probably the simplest:

Definition 1. A lottery scheme L is a tuple {S, P, s0}:

– S is a set of states
– P is an |S|×|S| transition matrix where Pi,j is the probability of transitioning

from state Si to state Sj. The values in each column vector Pi sum to 1.
– s0 ∈ S is the start state

In practice, we can restrict our attention to lotteries which are Markov trees.
Formally this means that each state has a level denoted `(s) and a non-zero
transition probability Pi,j > 0 =⇒ `(i) + 1 = `(j). The start state has level
`(s0) = 0 and the maximum level of any state is the depth of the lottery d(L).
We will also call this the number of stages. Using the tree restriction we can
define ps for all states s ∈ S in the tree as the probability that s will be reached
from the start state using the transition matrix P .

A lottery participant is a principal who receives a reward function based on
the final output of the lottery:



Definition 2. A participant in a lottery L is a function A : S → Z, where A(s)
is the reward received if the lottery terminates in state s.

The participant’s expected outcome in the lottery is:

EAL =
∑

s∈S|`(s)=d(L)

ps ·A(s)

4.2 Block withholding attacks

Assuming the beacon construction is secure, the only computationally feasible
method for biasing the lottery is to discard otherwise-valid blocks. This has a
direct financial cost because valid blocks earn a substantial reward we will denote
B. The current5 value of B is at least6 B25 reward worth roughly US$6,000 at
today’s prices. For simplicity, we can fix B = 1 and simply denote our value in
units of the block reward.

We model a strong bribing attacker who is able to pay any miner exactly B
to suppress a valid block whenever the attacker desires. In practice, this might
mean the adversary arranges with miners to pay them B + ε in exchange for
not publishing a block. There doesn’t appear to be a means within Bitcoin to
enforce such a contract, but we assume our adversary has overcome the “honor
among thieves” problem.

This attacker model is strictly stronger than an attacker who is a miner
themselves and can only withhold blocks (but not bribe other miners). Assuming
transaction fees are significantly lower than fixed block rewards (see Appendix E
for further discussion), such an attacker still faces an opportunity cost of B to
withhold blocks (in the form of lost rewards), but may no longer be able to
withhold a block if it is found by another miner. Likewise, even an attacker
controlling a mining pool is strictly weaker than an attacker able to bribe all
miners. If the mining pool contains 100% of the network’s hashing power, their
ability to manipulate the beacon would be equivalent to our bribing attacker.

This strong attack model also encapsulates forking attacks, where an attacker
introduces a fork in the block chain in the event of an undesirable beacon output
based on multiple mined blocks. We assume the attacker can announce a desired
fork, pay miners in exchange for their now-orphaned blocks, and the mining
community will fork at a point of the attacker’s choosing.

4.3 Denial-of-service attacks

Attackers may also attempt to control the beacon result by attacking Bitcoin’s
P2P network, specifically by trying to prevent a block from propagating if it
produces an undesirable beacon output. Bitcoin’s P2P network is a largely un-
controlled and poorly-studied aspect of the network but is subject to numerous

5 The block reward halves every 4 years, next scheduled for 2017.
6 The full reward is slightly higher because miners also collect transaction fees.



potential attacks [7, 12, 14]. In a worst case scenario we could imagine a Dolev-
Yao attacker who controls the entire network and propagation is only possible
through this attacker. Such an attacker, if it existed, appears able to fix the
beacon results by merely refusing to propagate blocks it doesn’t like.

However, even this attacker would theoretically face the same opportunity
cost as a block-withholding attacker described above: such a powerful attacker
would be able to extract regular bribes from all miners to publish any blocks
at all. In the limit this would be an ultimatum game [17] which suggests the
network controller could extract a bribe of B− ε for any ε > 0. Thus, refusing to
propagate blocks which produced a bad network outcome would still cost this
attacker ∼ B in lost rent. This analysis equally applies to any attacker standing
between some miners and the network; this attacker would be able to extract
large bribes for propagating blocks but could only do so from some participants.

A second attack scenario is when a “natural” collision occurs as two miners
find blocks near-simultaneously (this happens in just less than 1% of all blocks).
An attacker controlling many network nodes could choose to propagate blocks
based on the resulting beacon output. However, this attacker would still face
an opportunity cost because they could theoretically extract a bribe from the
miners who had found blocks proportional to the percentage of mining power
controlled by the attacker.

While we omit a formal proof, there is a theoretical equivalence between
a denial-of-service attacker and a block-withholding attacker in that both face
opportunity costs approaching the block reward for keeping a block from being
broadcast to the network. Our transition pruning attack model, introduced in
the next section, captures both equally.

In practice, denial-of-service attacks may be easier to execute, as they do not
require money to change hands while bribing a miner to withhold blocks would.
However, this form of attack would constitute an attack on Bitcoin’s viability as
a currency and hence likely cause re-structuring of the network. In practice, most
large miners have already ceased relying solely on the public Bitcoin network and
instead communicate on a shadow network of known, trusted peers [7], making
the risk of denial of service attacks considerably lower.

4.4 Transition pruning

The critical capability for an attacker is the ability to prune any transitions from
the lottery’s transition matrix through block-withholding attacks. This attack
comes at a cost, of course, which increases as probability of the pruned transition
increases. Formally, an attacker may choose a transition Pi,j to prune, at which
point Pi,j is set to zero and the column vector Pi is re-normalized by raising all
other transition probabilities from state si.

This definition requires transitions to be pruned completely or not at all and
does not allow the attacker to merely reduce the probability of a transition, which
would correspond to an attacker being willing to suppress blocks leading to a
transition with some probability α < 1. This may appear limiting, but we prove
in Appendix B.1 that it is always in the attackers’ interest to prune completely



or not at all.7 The intuition is that pruning becomes cheaper as a transition’s
probability increases, so if an attacker is ever incentivized to suppress a block,
they will always do so from that state.

When pruning a transition which has probability p, each potential Bitcoin
beacon output produced by miners is a Bernoulli trial with a probability 1−p of
success for the attacker and a cost of B = 1 (the block reward) for each failure.
The number of blocks the attacker will have to pay off will be geometrically
distributed, with an expected value:

c (1− p) =
1− (1− p)

(1− p)
=

p

1− p
(pruning cost) (1)

4.5 Lottery manipulation

Finally, we can define a lottery manipulation attack and the security property
of manipulation-resistance.

Definition 3. A lottery manipulation algorithm is a function A which takes
a lottery L = {S, P, s0} as input and outputs a lottery L′ = {S, P ′, s0} with
modified state transition P ′ after pruning some transitions.

We can denote as P∅
i the set of all transitions pruned from state si by the

attacker, that is, the set of all states sj such that Pi,j > 0 and P ′i,j = 0. Defining∣∣P∅
i

∣∣ as the sum of the probabilities of each of these pruned transitions from
state si, we can define the attack algorithm’s expected cost:

Definition 4. The cost C(A) of a lottery manipulation algorithm is:

C(A) =
∑
i∈S

p′i · c
(
1−

∣∣P∅
i

∣∣)
where p′i is the probability of reaching state si from the start state under the
modified transition matrix P ′ and |P∅

i | is the cumulative probability of all pruned
transitions from si.

Finally, we can define the security property we seek to ensure for a manipulation-
resistant lottery:

Definition 5. For a lottery L and a participant A, we say that L is manipulation-
resistant with respect to A if there is no attack algorithm such that:

EAA(L) − C(A) > EAL

Note that manipulation-resistance is defined with respect to a specific adver-
sary. No finite lottery scheme in our model can be manipulation-resistant against

7 A real attacker may not be able to prune completely if it cannot guarantee miners
will accept its payment to withhold blocks, but we are modeling a strong attacker
who is always able to bribe as desired.



an adversary with unbounded reward functions for reachable states, as they can
pay an unbounded amount in block-withholding costs in order to increase their
chances of reaching those states. We will also see in Section A.2 that very simple
lotteries may be highly manipulation-resistant against a specific attacker but not
against an attacker with opposing goals.

5 Single-stage lotteries

We apply our model here to the case of a lottery with a single level of state
transitions; we analyze more complex multi-stage lotteries in Appendix A. A
single-stage lottery produces output directly based on a single beacon output.
We consider any participant with a binary reward function:

A(s) =

{
W : s ∈ S∗
0 : s /∈ S∗

Denoting p = |S∗|, equivalent to the participant’s chance of winning in an
unmanipulated lottery, we have:

EAL = p ·W (2)

The obvious manipulation strategy is to prune all transitions to states s /∈ S∗,
which has expected cost:

C(A) = c (p) =
1− p
p

(3)

The expected reward is increased to EAA(L) = W as this strategy ensures a
win every time.

5.1 Security

Combining Equations 2 and 3, the attack algorithm is advantageous whenever:

EAA(L) − C(A) > EAL

W − 1− p
p

> p ·W

W (1− p) > 1− p
p

W >
1

p
(4)

Thus, a single stage lottery is manipulation-resistant against any binary attacker
who has a stake less than 1

p in an event with probability p. Recall that this is
expressed in units of the block reward. Thus, a single unbiased bit generated
from one block is manipulation-resistant against an adversary who has less than
2B at stake, or over B50.



6 Enhanced security

6.1 Delayed output via slow hash functions

Another desirable countermeasure is to make computing the beacon output
intentionally very slow. This could be achieved, for example, by an iterated
hash [22,31], a memory-hard function [15,30]. There are also proposals for asym-
metric slow functions [2, 20, 23] which are inherently serial (and therefore high-
latency) but can be easily checked once complete. Now, a malicious miner who
finds a valid block cannot quickly decide whether or not to withhold it. During
this time, any other miner may find and publish a valid block before them, po-
tentially causing the miner to lose the financial reward as well as any influence
on the beacon. Additionally, the function takes on the order of tens of minutes
to compute, the attack cost is increased significantly as changing the block at
that point requires a deeper fork of the network.

For a simple iterated hash function, this construction may offer a poor secu-
rity trade-off if it pits honest parties wishing to sample from a secure beacon, who
may not control any significant financial resources, against professional miners.
For example, a 240 computation may be sufficiently costly to prevent legitimate
parties from using the beacon, whereas many miners can compute this in a matter
of seconds.8 Thus we believe an asymmetric construction is necessary [2,20,23],
which remains an active area of research.

6.2 Random inputs from trusted delegates

For a beacon run by one or more semi-trusted delegates, such as election ad-
ministrators the beacon output can be supplemented by requesting a random
input from each of the delegates D0, D1 . . . . Each delegate must commit to their
random nonce when the beacon’s parameters are published. That is, each Di

published commits(xi) for a random nonce xi. The beacon result is then:

Beacon(t) = Extk (Bt||x0||x1|| . . . )

This means that the result cannot be computed until all delegates share their
nonce. If at least one delegate keeps their nonce private until well after block
Bt has been committed to the block chain, it will then be too late for miners
to attempt to manipulate the beacon result. In an election scenario, delegates
might include the election authorities and representatives from each candidate.

Of course, this requires that all delegates faithfully reveal their commitment-
failure to do so will consist of a denial of service attack on the beacon as the
result will not be computable. This may be feasible with a single delegate (the
beacon authority itself) or a small number whose reputation will be irreparably
harmed if they fail to reveal their nonce. Alternately, it is possible for them to
post funds in escrow in Bitcoin which will be lost if they don’t reveal their nonce
in a timely manner [3] as we will discuss further in Section 8.1, but this requires
posting a large amount of capital which we would like to avoid.

8 This may not hold true for all miners, as this construction requires a sequential hash
whereas miners optimize to compute parallel hashes.



7 Practical considerations

The number of potential applications of beacons is huge, as we alluded to in
the introduction. Beacons are are also useful for defining public coin client puz-
zles for DoS and spam mitigation [18, 37] and for enabling efficient Byzantine
agreement protocols in large-scale distributed systems [28], among many diverse
applications. A canonical application is election auditing, where a beacon is used
to choose specific precincts and/or ballots for auditing. A secure beacon is re-
quired to ensure that election officials do not attempt to steer the audit away
from known discrepancies in the tally (which happened in 2004 in Cuyahoga
County, Ohio [21]). In this section we will discuss some practical considerations
based on the experience of deploying beacons for election protocols.

7.1 Min-entropy requirements

While no current jurisdiction directly specifies a required amount of min-entropy
required from a beacon used for auditing, many jurisdictions do mandate that
a random selection of ballots are recounted post-election to statistically confirm
the published tally. For example, the State of California requires an audit of
1% of precincts, while Colorado requires a risk-limiting audit that sustains the
recount until statistical confidence is established. In practice, even 32 bits of
min-entropy as provided by the Bitcoin beacon, would be vastly more than is
needed to ensure that all precincts have a close to 1% chance of being audited.

7.2 Public confidence

Any beacon construction must be able to garner public belief in its fairness.
While this is difficult to judge and using Bitcoin may seem outlandish due to
the protocol’s novelty, there is actually a precedent for using Bitcoin in crypto-
graphically verifiable elections. In the 2011 municipal election at Takoma Park,
MA, the block chain was used to provide unforgeable proof that pre-election
commitments were actually made prior to the election even when the verifier
only sees the values after the election is complete [10].

7.3 Time uncertainty

Bitcoin blocks are not published at fixed time intervals, but are randomly found
in a Poisson process. For scenarios such as election auditing, the authorities
would have to commit to beacon parameters in advance of the election with
confidence that the beacon results would not be available until voting is closed.

The time until the next block is found is exponentially distributed while the
amount of time to find n blocks follows an Erlang distribution (a special case of
the Gamma distribution). Thus if a beacon output is needed in the real world
after time t, a suitable Bitcoin block index i to sample the beacon from must be
chosen such that block i won’t be found until after time t with high confidence.
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Fig. 1. Required time delay as a function of how far in advance the beacon parameters
are published. We assume 99% confidence is required that the beacon results will not be
available early and a standard 6 block waiting time to confirm the results is required.

We plot the expected latency added for p = 99% confidence in Figure 1. Com-
pared to other decentralized constructions, such as the stock-market data which
imposes an entire trading day’s delay, this is relatively modest.

For an election, if a beacon parameters must be published by the authorities
24 hours before the beacon results, then to maintain 99% confidence that the
beacon result will not be available early requires adding an additional ≈ 3 hour
delay to the mean time the block will be found. Given the auditing will probably
commence the day after the election, we consider this acceptable.

8 Integration into smart contracts

In addition to using the Beacon as a source of randomness for arbitrary ap-
plications, there are also applications within the Bitcoin protocol itself which
could benefit from the availability of a beacon. Bitcoin transactions are imple-
mented using a simple scripting language which specifies the conditions under
which funds can be moved. Currently, there is no opcode in the Bitcoin scripting
language which allows for any type of random execution, as this would require
miners to provide randomness themselves when evaluating the script and this
would unverifiable. This is even true for more cryptocurrencies with more power-
ful scripting languages, such as Ethereum [38]. As a result, many applications re-
quire a multi-stage randomness protocol with participants committing to nonces
and revealing them, requiring bonds to ensure completion of the protocol.

We propose instead using our blockchain-based randomness protocol to make
public randomness available through a simple call. In Bitcoin, this could take
the form of a new script opcode which we propose as OP BEACON.The technical
details of our proposal and an example script are included in Appendix C. We



stress that the creation of OP BEACON is only necessary for the creation of smart
contracts. Our core Beacon construction can be computed immediately without
any modification to the block chain.

We highlight several applications of an OP BEACON instruction. In each case,
the mechanics of Bitcoin script allow us to build transactions which serve as
smart contracts in the sense that the security properties are self-enforcing.

8.1 Multi-player lotteries

Andrychowicz et al. [3] demonstrated a method to create a multiparty lottery in
Bitcoin without using trusted authorities. In their solution, all parties publish
a commitment to a random number and a bond consisting of funds which are
frozen in escrow until that random number is revealed. These escrow bonds must
be greater than the prize money which is also held in escrow. Their protocol also
requires publishing multiple complex transactions in multiple stages.

Using OP BEACON, we can perform a secure lottery with a much simpler
construction and without putting any additional funds in escrow. In the two-
party case, Alice proposes to Bob a wager transaction which will (eventually) be
claimable by one of them at random based on a beacon output. The redemption
script for the wager redeems funds from each of Alice and Bob, samples from
the beacon and, based on the beacon output, will allow either a signature from
Alice or Bob to redeem the transaction and claim the entire amount wagered.
The key which is selected to be able to redeem the transaction is effectively the
winner. If the wager transaction is mutually agreeable, Alice and Bob may each
sign it at which point their funds will be effectively held in escrow until the
beacon has been sampled. The odds of the wager can be set by comparing the
beacon output to any arbitrary threshold and the protocol is easily extensible
to multiple parties. We provide an example implementation of our protocol in
Bitcoin script with our proposed new opcode in Appendix C.1.

Our protocol is efficient, requiring only one short transaction, and requires no
money in escrow beyond that being wagered. While the techniques of Andrychow-
icz et al. are more powerful and support general multi-party-computations, for
multi-party lotteries our protocol utilizing an explicit beacon instruction is sig-
nificantly simpler and more efficient.

8.2 Non-interactive cut-and-choose

Another protocol enabled by OP BEACON is secure, non-interactive cut-and-choose.
Suppose Peggy wants to prove that she knows a specific random hash preim-
age. Peggy can publish a special Bitcoin transaction containing bond money
and k values {H(x1), . . . ,H(xk)} which, using randomness obtained through
OP BEACON, requires a random subset of k − 1 of the xi values to be revealed in
order to be redeemed. After the beacon output, if Peggy wants to reclaim her
bond money she must publish the randomly-chosen xi values in her transaction
reclaiming her bond. For sufficiently large k (perhaps using multiple hierarchical



rounds), this provides high confidence that Peggy knows xi for the value not
required to be revealed by the cut-and-choose protocol.

It has already been argued that the Fiat-Shamir heuristic is generally not
suitable to making cut-and-choose protocols non-interactive due to the relatively
small space of outcomes [11], making a beacon the only known construction for
non-interactive cut-and-choose. Using Bitcoin we can also make this protocol
self-enforcing in that an arbitrary penalty can be paid if the prover aborts the
protocol. We believe this is the first proposal for a cut-and-choose scheme that
is both self-enforcing and non-interactive.

8.3 Randomized mixing fees

The use of Bitcoin blocks for randomness was proposed in Mixcoin [8], a protocol
for building an accountable mix which uses randomized all-or-nothing mixing fees
by hashing future values of the block chain. Essentially, this is a beacon construc-
tion. Mixcoin would not benefit from OP BEACON directly, since Mixcoin contracts
are not implemented in Bitcoin script, but we can analyze the scale of randomized
mixing fees which could be securely collected using a one-stage lottery. Mixcoin
suggests mixing fee rates on the order of τ = 1%, which would be manipulation-
resistant (from Equation 4) whenever the chunk size c > 1

1−τ ≈ 1.01B, or over

B25. This is orders of magnitude higher than what is typically used for mixing,
implying that a Bitcoin-based beacon can be easily made manipulation-resistant
for randomized mixing fees. Mixes should of course use a different extractor key
(nonce) for each outstanding contract to ensure they can’t efficiently manipulate
the outcome for multiple clients simultaneously.

Using OP BEACON, we can also extend this idea to incorporate randomized
mixing fees in CoinSwap [24], a “trustless” mixing protocol which mixes funds
through a third-party using multiple transactions to eliminate the possibility
of theft. A simple modification to the CoinSwap protocol would add a call to
OP BEACON which, with probability τ , would allow the mix to retain the user’s
funds. This would encourage for-profit, high availability mixing services to oper-
ate while retaining the anonymity benefits of consistent transaction sizes, solving
an important problem with CoinSwap.

9 Concluding remarks

Bitcoin is facilitating of a remarkable number of interesting security protocols,
such as secure timestamping [10] and multi-party computation [3]. To this we
add a public randomness beacon, for which Bitcoin provides an unprecedented
opportunity to build a highly available beacon which has a convincing crypto-
graphic argument of security with no trusted third parties.

We hope our work will renew interest in cryptographic beacons, for which
there are a vast number of applications. In the long run, we consider it an im-
portant concept to promote to the general public, given that it has considerable
potential to increase transparency and accountability for a number of processes



that today rely on difficult-to-audit physical generation of randomness or make
no attempt to establish accountability at all. The social utility of public random-
ness also may be an interesting counterpoint to arguments against the “wasteful”
hashing underlying Nakamoto consensus.
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A Multi-stage lotteries
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metric, that is, it is equivalently manipulation-resistant against an attacker in-
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terested in any outcome with probability p. In general, this will not be true for
multi-stage lotteries as we will show. We can formalize this as:

Definition 6. Consider a lottery L with two players A,A′ having binary stakes
W,W ′ on outcomes with probabilities p, p′. We call L symmetric with respect
to A,A′ if, whenever W · p = W ′ · p′, L is manipulation-resistant against A if
and only if it is manipulation-resistant against A′.

Intuitively, this shows that if two attackers have the same expected value in
an honest lottery, there should be equivalent security against both. The single-
stage lottery is in fact symmetric against any two possible adversaries, which we
can define as a strong property:

Definition 7. We call L completely symmetric if is symmetric with respect
to any pair of players with binary outcomes on events o, o′ ∈ O, the space of
possible labeled outputs of the lottery.

A.2 Asymmetric lotteries

In designing a multi-stage lottery, we first consider the case of designing for
manipulation-resistance only against a single possible binary attacker with a
stake in some outcome with probability p. We are explicitly not designing against
any other attacker, enabling an asymmetric design. In Appendix D, we provide
a natural example of where an asymmetric lottery is useful, namely Ben-Or et
al.’s fair-contract signing protocol [5].

The key insight is to minimize the chance of outputting a winning outcome
for the attacker from any any individual state, since this would be the easiest
state to prune transitions from. To achieve this, building a lottery with depth N ,
we will guarantee a winning outcome for the attacker (and effectively terminate
early) after state si with probability qi (drawn based on the randomness from
that block), otherwise we will move to the next state sj . Only from state sN ,
with probability (1 − qN ), will we output a losing outcome. This enables each
state to have as large of a transition as possible that the attacker would prefer to
prune, making manipulation as expensive as possible. While we generally speak
of a tree of states, here there are exactly N states in a linear sequence, each
corresponding to a single beacon output.

Transition probabilities The second important insight is to balance the lot-
tery. That is, at any moment the attacker should be exactly ambivalent between
attacking during the current state or waiting until the next state. If this were not
the case, this would mean one of the two states is more profitable for the attacker
and hence the construction would not be optimal. Denoting the probability of
outputting a winning outcome from state si as qi (with a (1− qi) probability of



transitioning to state si+1, we can derive the constraint that:

c (qi) = (1− qi)c (qi+1)

1− qi
qi

= (1− qi)
1− qi+1

qi+1

1

qi
=

1− qi+1

qi+1

qi =
qi+1

1− qi+1
(5)

We can also re-arrange this to obtain:

1

qi
=

1− qi+1

qi+1

1 + qi
qi

=
1

qi+1

qi+1 =
qi

1 + qi
(6)

In Lemma 1 we obtain a simple closed-form for every qi in terms of q1.

Lemma 1. In a balanced asymmetric lottery, the probability of outputting a
winning result in state si is qi = q1

1+(i−1)q1 for all i ≥ 1, where q1 is the probability

of outputting a winning result in the first block.

Proof. We can prove this by weak induction on i. In the base case of i = 1, this
is true by identity:

qi =
q1

1 + (i− 1)q1

q1 =
q1

1 + (1− 1)q1

q1 = q1

In the inductive case, assuming the formula is correct for (i− 1) we can prove it
is true for i using Equation 6:

qi =
qi−1

1 + qi−1

qi =

q1
1+(i−2)q1

1 + q1
1+(i−2)q1

(using ind. hypothesis)

qi =
q1

1 + (i− 2)q1 + q1

qi =
q1

1 + (i− 1)q1

Therefore the result is true for all i ≥ 1.



Choosing q1 Given the above formula, we only need to find the value of q1 such
that the overall probability of a winning output is p. This imposes the constraint
that:

ptotal = q1 + (1− q1)q2 + (1− q1)(1− q2)q3 + . . .

=

N∑
i=1

qi · i−1∏
j=1

(1− q1)


=

N∑
i=1

qi · i−1∏
j=1

(
1− q1

1 + (j − 1)q1

)
=

N∑
i=1

qi · i−1∏
j=1

(
1 + (j − 2)q1
1 + (j − 1)q1

)
=

N∑
i=1

(
qi ·

1− q1
1 + (i− 2)q1

)

=

N∑
i=1

q1
1 + (i− 1)q1

· 1− q1
1 + (i− 2)q1

= q1(1− q1)

N∑
i=1

1

(1 + (i− 1)q1) · (1 + (i− 2)q1)
(7)

At this point, the summation on the right side appears intractable, but it actually
reduces to a simple closed-form:

Lemma 2. For all integers N ≥ 3, we have:

N∑
i=3

1

(1 + (i− 1)x) (1 + (i− 2)x)
=

N − 2

(1 + x) (1 + (N − 1)x)

Proof. We can prove this by weak induction on N . This is easy to show for the
base case of N = 3:

3∑
i=3

1

(1 + (i− 1)x) · (1 + (i− 2)x)

=
1

(1 + (3− 1)x) · (1 + (3− 2)x)

=
3− 2

(1 + x) · (1 + (3− 1)x)

In the inductive case, assuming the property is true for N − 1, we can show it is
true for N :

N∑
i=3

1

(1 + (i− 1)x) · (1 + (i− 2)x)



=

(
N−1∑
i=3

1

(1 + (i− 1)x) · (1 + (i− 2)x)

)
+ . . .

=
N − 3

(1 + x) (1 + (N − 2)x)
+

1

(1 + (N − 1)x) (1 + (N − 2)x)

=
(N − 3) (1 + (N − 1)x) + 1 + x

(1 + x) · (1 + (N − 1) · x) · (1 + (N − 2) · x)

=
(N − 2) (1 + (N − 1)x)− (1 + (N − 1)x) + 1 + x

(1 + x) · (1 + (N − 1) · x) · (1 + (N − 2) · x)

=
(N − 2) (1 + (N − 1)x)−Nx+ 2x

(1 + x) · (1 + (N − 1) · x) · (1 + (N − 2) · x)

=
(N − 2) (1 + (N − 1)x)− (N − 2)x

(1 + x) · (1 + (N − 1) · x) · (1 + (N − 2) · x)

=
(N − 2) (1 + (N − 2)x)

(1 + x) · (1 + (N − 1) · x) · (1 + (N − 2) · x)

=
(N − 2)

(1 + x) · (1 + (N − 1) · x)

Therefore the result is true for all N ≥ 3.

We can plug this formula into Equation 7 and reduce to:

ptotal = q1(1− q1)

N∑
i=1

1

(1 + (i− 1)q1) · (1 + (i− 2)q1)

= q1 +
q1(1− q1)

1 + q1
+

N∑
i=3

1

(1 + (i− 1)q1) (1 + (i− 2)q1)

= q1 +
q1(1− q1)

1 + q1
+

q1(1− q1)(N − 2)

(1 + q1) · (1 + (N − 1) · q1)

=
2q1

1 + q1
+

q1(1− q1)(N − 2)

(1 + q1) · (1 + (N − 1) · q1)

=
2q1 · (1 + (N − 1) · q1) + q1(1− q1)(N − 2)

(1 + q1) · (1 + (N − 1) · q1)

=
2q1 · (1 + (N − 1) · q1) + q1(1− q1)(N − 2)

(1 + q1) · (1 + (N − 1) · q1)

=
2q1 + 2Nq21 − 2q21 +Nq1 −Nq21 − 2q1 + 2q21

(1 + q1) · (1 + (N − 1) · q1)

=
Nq21 +Nq1

(1 + q1) · (1 + (N − 1) · q1)

=
Nq1

(1 + (N − 1) · q1)
(8)



Given constraints ptotal = p and N , we can solve for q1:

p =
Nq1

(1 + (N − 1) · q1)

p (1 + (N − 1) · q1) = Nq1

p+ pNq1 − pq1 −Nq1 = 0

q1(pN − p−N) = −p

q1 =
p

N + p− pN
q1 =

p

(1− p)N + p
(9)

We can also derive a general equation for each qi using our formula from Lemma 1:

qi =
q1

1 + (i− 1)q1
(Lemma 1)

qi =

p
(1−p)N+p

1 + (i− 1) p
(1−p)N+p

(Eq. 9)

qi =
p

(1− p)N + p+ (i− 1)p

qi =
p

(1− p)N + ip
(10)

Security Given our formula for the optimal q1 in Equation 9, we can now
compute the cost of manipulation. Recall that our design ensured that pruning
any transition is equivalently beneficial as pruning any other. Thus, we can
analyze the cost of the simplest manipulation algorithm which forces a winning
output from the very first state:

C(A) = c (q1)

=
1− q1
q1

=
1− p

N+p−pN
p

N+p−pN

=
N + p− pN − p

p

=
N − pN

p

= N · 1− p
p

= N · c (p) (11)

This result shows that, regardless of p, we can get an exactly N -fold increase
in manipulation-resistance by building a lottery with N stages. An intuitive



explanation for this is to consider a slightly stronger attacker model who can
not only pay miners to withhold blocks, but can retroactively pay to eliminate
published blocks. Such an attacker, for any N -stage construction, could simply
allow N blocks to be mined as usual and then pay to retract all of them if they
result in a losing lottery outcome. The cost of this manipulation would also be
N · c (p), as each failed lottery run would now require paying the cost of all N
blocks used. This suggests that N · c (p) is a natural limit and indicates that our
asymmetric construction is optimal.

Security against inverse attacker Unfortunately, this design only provides
increased security against manipulation by one party. If we design for security
against an attacker trying to force a 1-bit outcome of 0, the construction provides
no additional security against an attacker motivated to force an outcome of 1. In
fact the construction is slightly weaker than a single-stage lottery against such
an inverse attacker A′. Though this attacker is paying to prune a transition from
every state, these transitions are all low-probability and hence the total number
of expected blocks to pay off is very low:

C(A′) =

N∑
i

c (1− qi)

=

N∑
i

c

(
1− p

(1− p)N + ip

)

=

N∑
i

c

(
(1− p)N + (i− 1)p

(1− p)N + ip

)

=

N∑
i

1− (1−p)N+(i−1)p
(1−p)N+ip

(1−p)N+(i−1)p
(1−p)N+ip

=

N∑
i

(1− p)N + ip− ((1− p)N + (i− 1)p)

(1− p)N + (i− 1)p

=

N∑
i

p

(1− p)N + (i− 1)p
(12)

We can show by inequality that this is worse than the expected cost of an attack
against a 1-stage lottery:

C(A′) =

N∑
i

p

(1− p)N + (i− 1)p

= p ·
N∑
i

1

(1− p)N + (i− 1)p



< p ·
N∑
i

1

(1− p)N

=
p

1− p
·
N∑
i

1

N

=
1− (1− p)

1− p
= c (1− p) (13)

Combined with a lower bound from Equation 12 we have:

p < C(A′) < p

1− p
= c (1− p) (14)

A.3 Extended symmetric lotteries

Next we explore optimal multi-stage lottery constructions that are symmetric.
We will demonstrate a 2-stage lottery that is optimal and symmetric against a
set of k attackers who each win a binary reward with a set of mutually exclusive
outcomes of probability 1

k .

To do this, we introduce a general theorem about when an optimal at-
tack algorithm should prune (or not prune) transitions, which we prove in Ap-
pendix B.2.

Theorem 1. Consider a lottery manipulation algorithm A which has expected
value Ei from state si in a lottery. For a state transition Pi,j which A doesn’t
prune, a modified algorithm A′ which does prune Pi,j will produce a higher ex-
pected value if and only if:

Ei + 1 > Ej

By symmetry, A′ will be superior if it doesn’t prune a transition Pi,k which A
does prune if and only if:

Ei + 1 < Ek

Now we can design our two-stage, k-player lottery. The insight is to motivate
any attacker to prune branches in both stages. By setting each of k transitions
from the start state to have P∗,j = 1

k , we can ensure the construction is at least
as manipulation-resistant as a one-stage lottery.

Thus we want k transitions in from the start state, each to a state that
is slightly more favorable to one player and less favorable to all others, with
probability q > 1

k to output symbol o and 1−q
k−1 to output each of k − 1 other

symbols. We want to set q as high as possible to require pruning in the first round,
but no higher to keep pruning in the second round as expensive as possible.



Theorem 1 lets us enumerate this constraint precisely. If we call the expected
value for player A in one of the k − 1 stages not favorable to A as EA−, we have:

EA∗ = EA− + 1

W − c
(

1

k

)
− c (q) + 1 = W − c

(
1− q
k − 1

)
1− 1

k
1
k

+
1− q
q

+ 1 =
1− 1−q

k−1
1−q
k−1

k − 1 +
1

q
=
k + q − 2

1− q

k +
1

q
=
k − 1

1− q
kq + 1

q
=
k − 1

1− q
kq + 1− kq2 − q = kq − q

kq2 = 1

q =
1√
k

(15)

Security Using the optimal value of q derived in Equation 15, we can compute
the expected attack cost, recalling that the optimal manipulation strategy for
all attackers is to prune in both stages:

C(A) = c

(
1

k

)
+ c

(
1√
k

)
=

1− 1
k

1
k

+
1− 1√

k
1√
k

= k +
√
k − 2 (16)

For a single-stage lottery, the cost is simply k − 1. Thus we can definitively
increase security with additional stages even in a symmetric lottery, albeit we
can’t obtain a linear increase as was possible with an asymmetric construction.

Extension to additional stages We can use this design strategy to extend the
construction to N > 2 stages, adding transitions from the second-stage states
into states with higher and higher probabilities of outputting one outcome com-
pared to all others. Unfortunately, there does not appear to be a simple closed-
form solution for the transition probabilities beyond 2-stages, as Equation 15
is replaced with a quadratic equation with a non-square discriminant. We have
implemented and solved this equation by numerical approximation and observed
empirically that an N stage lottery can be implemented, albeit with a cost of
manipulation C(A) ∈ O(lgN).



Limits against an unknown attacker Given the above construction, it may
seem wise to simply choose a very large k, such as k = 2128, making it equally
difficult to manipulate the lottery to produce any bit string. The goal would be
to render any attacker, regardless of their goal, unable to manipulate the beacon
cost-effectively.

Unfortunately this approach doesn’t work and ends up producing a lottery
that it is only as manipulation-resistant as a one-stage lottery. Specifically, it
fails as k → ∞ against any attacker who has a binary reward in any outcome
with non-negligible probability p. We can see this by considering the cost to an
attacker who simply waits until the last round of the above construction before
attacking:

lim
k→∞

C(A) =

= p · c

(
1√
k

+ (pk − 1)
1− 1√

k

k − 1

)
+ (1− p)c

(
(pk)

1− 1√
k

k − 1

)
= p · c (p) + (1− p)c (p)

= c (p)

An intuitive explanation is that if we have no way of determining what the
attacker’s goal function is then surely they will almost always reach a penulti-
mate state with a roughly p chance of outputting a winning result; therefore the
attacker can simply wait and attack in the last block. This is an important lim-
itation to multi-stage lotteries: we are only able to obtain greater security than
a 1-stage lottery by ensuring the attacker always reaches a final state which
has a probability higher or lower than p of outputting a winning result, which
on expectation is costlier to manipulate than single-stage lottery. This becomes
impossible as the number of potential attacker goals grows infinite.

This result highlights that while multi-stage lotteries are possible, they must
be carefully designed for a specific threat model and are not a panacea.

B Additional proofs

B.1 Proof that partial pruning is sub-optimal

In Section 4.5 we claimed the following theorem:

Theorem 2. An optimal lottery manipulation algorithm will always either re-
duce the probability of a transition Pi,j to 0 or not reduce it at all.

Proof. Denote the algorithm’s expected value upon reaching state sj as Ej and
the expected value upon taking any other transition from state si as E′j . Now as-
sume that an optimal attack algorithm were to reduce the transition probability



Pi,j to α · Pi,j for α > 0. This would imply that:

Eprune < Epartial

E′j − c (1− Pi,j) < (1− α · Pi,j)E′j + α · Pi,j · Ej − c (1− αPi,j)
−c (1− Pi,j) < α · Pi,j

(
Ej − E′j

)
− c (1− α · Pi,j)

−1− (1− Pi,j)
(1− Pi,j)

< α · Pi,j
(
Ej − E′j

)
− 1− (1− α · Pi,j)

(1− α · Pi,j)

− 1

(1− Pi,j)
< α

(
Ej − E′j

)
− α

(1− α · Pi,j)

− 1

(1− αPi,j)
< α

(
Ej − E′j

)
− α

(1− α · Pi,j)

0 < α
(
Ej − E′j

)
− 1− α

(1− α · Pi,j)

However, we must have Ej < E′j , or else the attacker would not be pruning Pi,j
at all, and therefore Ej − E′j < 0 The term on the right, 1−α

(1−α·Pi,j)
, must be

positive because Pi,j and α are both in the range (0, 1). Therefore this term is
positive and the inequality cannot possibly hold, meaning it is impossible for
partial pruning of a transition to be more beneficial than complete pruning.

B.2 Proof of Theorem 1

In Section A.3, we introduced Theorem 1 stating that for a lottery manipulation
algorithm A which has expected value Ei from state si, pruning transition Pi,j
will lead to an improved algorithm A′ if Ei + 1 > Ej .

Proof. To prove this, we’ll assume consider the conditions in which the two
algorithms are exactly equivalent and pruning makes no difference:

EAi = EA
′

i
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0 = EAi + (1− EAj )

EAi = EAj − 1

As EAj , pruning the transition Pi,j only becomes less beneficial, thus proving the
theorem.

This theorem also implies as a corollary that an algorithm A′ not pruning a
transition EAj satisfying the same inequality will be superior to an algorithm A
that does prune it.

C Technical details of beacon opcode

The OP BEACON opcode will read several beacon parameters from the stack and
pushes a 32-bit beacon-derived random value onto the stack.9 If more random
data is needed, OP BEACON could be called multiple times with different nonces.
The parameters passed to OP BEACON (technically popped off of the stack) are:

1. A 64-bit nonce that will be included in the hash during the beacon compu-
tation. This will allow distinct beacon outputs to be obtained by different
parties.

2. A 32-bit number specifying the number of blocks to be included in the beacon
computation. Note that we are not proposing a multi-stage lottery, only a
single beacon computation that may hash multiple blocks.

3. An offset from the current block to begin gathering blocks for the Bitcoin
computation. The opcode will result in an exception if executed in a block
prior to the block index in which the transaction is included, plus this offset,
plus the number of blocks needed, so this effectively functions as a time-lock
on the transaction.

Overall, this is a relatively small change to Bitcoin which is suitable for adop-
tion as a “soft-fork.”10 The beacon computation, consisting solely of hashing, is
very cheap compared to the signature verification which miners already perform,
and the only data referenced is block headers which must already be cached to
perform block chain verification. The new op code should have no effect on trans-
action validation caches, as once a transaction can be validated the beacon value
will be fixed.11

The use of a relative offset is perhaps the most unusual aspect of our pro-
posal compared to other Bitcoin opcodes, but it serves an important security
function over the alternative of specifying a fixed index from which to calculate

9 Currently arithmetic opcodes in Bitcoin only operate on signed 32-bit integers, so we
work within this limit because modifying it would be a far larger change to Bitcoin.

10 The soft-fork approach has been used, for example, to add the popular “pay-to-
script-hash” feature.

11 Of course, in the event of a deep block chain fork the beacon value might change.
However, this case requires invaliding the transaction cache for all types of transac-
tions.



the beacon, which we will describe in Appendix C.2. A similar feature which is
already implemented is that coinbase transactions cannot be redeemed until 100
blocks after they are included in the block chain, suggesting that this logic is
not prohibitively complicated to implement.

C.1 Example lottery script

The following Bitcoin transaction script demonstrates how to make use of our
proposed OP BEACON opcode to implement a two-player lottery, as described in
Section 8.1:

// Beacon parameters:

0x41e053d8 // nonce

1 // number of blocks to include

1 // number of blocks to wait

// before computing beacon

OP_BEACON

// Threshold to determine winner.

// Since integers are signed, an even

// two-party lottery has a threshold of 0

0

OP_LESSTHANOREQUAL

// Check for Alice’s signature, if Alice won

OP_IF

OP_DUP

OP_HASH160

<alicePubKeyHash>

OP_EQUALVERIFY

OP_CHECKSIG

// Check for Bob’s signature, if Bob won

OP_ELSE

OP_DUP

OP_HASH160

<bobPubKeyHash>

OP_EQUALVERIFY

OP_CHECKSIG

OP_ENDIF

C.2 The advantage of relative offsets

Our example lottery script demonstrates the advantage of using a relative offset
in OP BEACON to specify when the beacon is to be sampled prevents either party
from ever gaining an advantage. Even if Alice has signed the wager transaction
but Bob hasn’t, her funds are not yet committed and she may sign them to a
different transaction if she chooses to abort before Bob signs and the block is
published. Neither party can gain any insight into the value of the beacon by



delaying, since it will always be sampled a fixed amount of time in the future
after the transaction is signed and published in the block chain.

An alternative design in which OP BEACON specified an absolute block index
from which to sample the beacon might be vulnerable in this scenario if one party
signed the transaction first and the other was able to delay until the beacon
output was known. To prevent this, we would need a validation rule that that
the block index used in a beacon calculation must occur after the block in which
that transaction was public. Because the absolute index might be computed
dynamically, however, we expect this will be more difficult to detect and prevent
and hence lead to more dead transactions on the block chain, motivating us to
propose relative offsets for our Bitcoin Improvement Proposal.

D Fair contract signing protocols

We can demonstrate the utility of asymmetric lotteries though the example of
fair contract signing protocols, the original application of beacons [32]. Alice
and Bob agree want to sign the same contract, but neither wants to sign first as
they don’t trust that the other will sign in return. Rabin proposed an elegant
protocol involving a beacon that outputs a random integer in the range [1, k].
Alice begins by signing a message of the form, “I commit myself to the contract
if the beacon outputs 1.” Bob responds by signing the same message. For all
i ∈ [1, k], Alice and Bob exchange messages of this form, with neither party ever
signing more than one contract which the other party hasn’t signed.

If both parties are honest, they will sign contracts for all i ∈ [1, k] and the
contract will be signed regardless of the beacon output. If Bob tries to cheat
by not sending Alice his ith message after receiving her ith message, his attack
will only succeed with probability 1

k as Alice will not sign subsequent messages.
Bob might attempt to force the Beacon to output i for the contract Alice has
signed that he has not. This could be solved using a multi-stage MRL based on
a Bitcoin beacon, since all k outcomes are equally likely, making Bob’s attack
cost O(k · lgN) for N stages (or k for a single stage). Cheating can be made to
be arbitrarily expensive by choosing an appropriately large values for k and N .

A later variant of the protocol proposed by Ben-Or et al. [5] demonstrates
a natural application of asymmetric MRLs. In this version of the protocol, each
party responds in each round with a contract of the form “I commit myself
to the contract with probability p” where p is incremented by β from the last
contract signed by the other party. Each party has an advantage of β in any
given round. However, using our asymmetric MRL, we can create a lottery with
three outcomes with probabilities p, β, and 1 − p − β. We only need to defend
against manipulation to produce the outcome with probability β (that the most
recent signer is committed but not the other party), therefore we could write
each contract to specify a an asymmetric multi-stage MRL which makes forcing
the β event as expensive as possible.



These two example protocols, designed to solve the sample problem, provide
a compelling example for asymmetric MRLs and the need to specifically design
a secure lottery based on the larger protocol it is being used in.

E Impact of transaction fees on attacker model

Embedded in our attacker model in Section 4.2 is the assumption that block
rewards are much larger than transaction fees. This affects the opportunity cost
for a mining attacker to hold a block because transaction fees will (likely) still
be available if the miner withholds a block and is able to find another before
competing miners. Assuming the block reward is B and the transaction fees
in a block are worth a total of τ , a miner with a proportion p of the total
mining power in the network will suffer an expected loss of B + (1 − p)τ when
withholding a block based on the chance that they can still gain the transaction
fees they are forgoing in a subsequent block. Currently, in the average block we
have B ≈ 1, 000 · τ and hence we can safely approximate B + (1 − p)τ ≈ B
regardless of p.

In the future, it is possible for transaction fees may significantly increase
and block reward fees are scheduled to slowly decline, halving again in 2017 and
every 4 years thereafter. While this situation is likely at least a decade off, we can
quickly reason about the case where B → 0 and transaction fees provide the only
motivation for mining. Security in this model will require a further assumption
that p < 1

2 , meaning there is no majority miner or mining pool, as is customarily
considered a requirement for Bitcoin mining to be secure. In this case, the cost
of withholding a block is still at least τ

2 . Hence, the cost of bribery to withhold
blocks will always be at least half of the average value earned by a block. All
of our results apply equally in this model, although the cost of manipulation is
potentially divided in half in the worst case.
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