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Abstract

Recent advances in encryption schemes have allowed us to go far beyond point to point
encryption, the scenario typically envisioned in public key encryption. In particular, Functional
Encryption (FE) allows an authority to provide users with keys corresponding to various func-
tions, such that a user with a secret key corresponding to a function f , can compute f(m) (and
only that) from a cipher-text that encrypts m.

While FE is a very powerful primitive, a key downside is the requirement of a central point
of trust. FE requires the assumption of a central trusted authority which performs the system
setup as well as manages the credentials of every party in the system on an ongoing basis. This
is in contrast to public key infrastructure which may have multiple certificate authorities and
allows a party to have different (and varying) level of trust in them.

In this work, we address this issue of trust in two ways:

◦ First, we ask how realistic it is to have a central authority that manages all credentials
and is trusted by everyone? For example, one may need to either obtain the permission
of an income tax official or the permission of the police department and a court judge in
order to be able to obtain specific financial information of a user from encrypted finan-
cial data. Towards that end, we introduce a new primitive that we call Multi-Authority
Functional Encryption (MAFE) as a generalization of both Functional Encryption and
Multi-Authority Attribute-Based Encryption (MABE). We show how to obtain MAFE for
arbitrary polynomial-time computations based on subexponentially secure indistinguisha-
bility obfuscation and injective one-way functions.

◦ Second, we consider the notion of delegatable functional encryption where any user in the
system may independently act as a key generation authority. In delegatable FE, any user
may derive a decryption key for a policy which is “more restrictive” than its own. Thus,
in delegatable functional encryption, keys can be generated in a hierarchical way, instead
of directly by a central authority. In contrast to MAFE, however, in a delegatable FE
scheme, the trust still “flows” outward from the central authority.

Finally, we remark that our techniques are of independent interest: we construct FE in arguably
a more natural way where a decryption key for a function f is simply a signature on f . Such a
direct approach allows us to obtain a construction with interesting properties enabling multiple
authorities as well as delegation.
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1 Introduction

Functional Encryption. Functional encryption (FE) [GGH+13, GKP+13, BSW11], is a pow-
erful form of public-key encryption that allows users to learn a function of the underlying message
from a ciphertext. In FE there is an authority which performs the setup and issues “function keys”
to any decryptor. This decryptor can now learn those functions of the encrypted data for which he
has been issued keys. This differs from the traditional view point of secrecy where an encryption
scheme provides all or nothing confidentiality of data.

As an example, suppose Alice wants to allow users to encrypt and store data x, meant for her, on a
cloud provider. Now, suppose she wants the cloud provider to learn the output of some function f
on the data. FE provides a solution to this problem. Whenever Alice wants the cloud provider to
learn f(x), she “authorizes” the release of function f to the cloud provider, who can then “decrypt”
the cipher-text to obtain only f(x). The security of the FE scheme requires that the cloud provider
learns only f(x) and no other information.

Some variants of functional encryption include multi-input functional encryption [GGG+14] and
attribute-based encryption [SW05, GPSW06].

Comparison with Public-Key Encryption. Functional encryption (and its variants stated
above) requires the assumption of a central trusted authority which manages all the credentials
for every party. Furthermore, every party is required to place trust in this central authority. In
contrast, public-key encryption allows for the simultaneous co-existence of multiple authorities
(examples include DigiCert, Comodo, etc). Each party may get certificates from any subset of
these authorities, and, each party could trust any subset of these authorities (placing eve varying
levels of trust in different ones). One could argue that this has significantly helped in the adoption
of public-key encryption.

1.1 Multi-Authority Functional Encryption

Inspired by the distributed trust offered by public-key encryption, we consider a similar model for
functional encryption and introduce the notion of Multi-Authority Functional Encryption (MAFE).
In MAFE, we have multiple authorities in the system. Any authority can “certify” a function (or
credential) of its choice for a given user. For example, an authority could provide the key for a
function which can only read and compute on data which is labelled with confidentiality level 3
or lower. A user may choose to get decryption keys (for potentially different functions) from any
subset of the authorities of its choice. Finally, the data owner (or the encrypter) could also choose
which of these authorities to trust, and, to “what extent”. If (and only if) the trust placed by
the data owner in the authorities from which the user got the keys is “sufficient”, the user would
be able to compute on the encrypted data and get the output determined by its credentials (or
decryption keys).

Before we describe MAFE in more detail, let us consider another motivating example. A bank
maintains encrypted financial records of its customers. Some parts of this data may have to be
revealed to law enforcement officials in the event of a criminal or civil investigation. For example,
the total value of cash deposits made by a customer during the last financial year might have to
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be made available to either, an income tax official who has been granted a warrant by the Income
Tax Commission, or to a police officer with a subpoena signed by a Supreme Court Judge. The
question that we ask here is: Can the bank encrypt and store its data in such a way that only
properly authorized individuals (who satisfy an access policy) learn the output of a specific function
f on its data?

One trivial way to solve this problem is to involve the bank in every step of the procedure — the
income tax official can approach the bank with the right credentials to compute the function f on
the bank’s data, and then the bank can simply decrypt the stored data, compute f and return
back the function output to the tax official. However, this procedure is cumbersome and has to
be repeated every time an official wishes to learn some function of the data. Ideally the bank
would like to allow the authorities involved (Income Tax Commission, Police officer, or Judge) to
independently issue “secret function keys” for any decryptor. Anyone who satisfies the right policy,
should, with the help of the stored encrypted data, be able to learn the output of the function
f on the data. The policies could be arbitrary monotone functions (such as “Bank” OR “I.T.
Commission” OR (“Police officer” AND “Supreme Court Judge”)) and the functions f could be
arbitrary polynomial-time computable functions. Naturally, security requires that if two decryptors
do not have the required credentials to decrypt a function individually, then they should also not
be able to compute the function value jointly.

Our notion of MAFE is natural. The multiple authorities can “independently” generate their private
and public keys (note that there is no setup or common reference string required). An encryptor,
should be able to encrypt a message m along with a policy F over the various authorities. Any
authority i, should be able to generate a token for a user with identity UID and property Ui.
A user with identity UID with tokens for Ui from authority i ∈ [n], should be able to decrypt
the cipher-text to recover F (U1, .., Un,m). We require that colluding users, say UID1 and UID2,
(possibly, in collusion with some corrupt authorities) should not jointly learn anything more from
the ciphertext than what they are authorized to.1

1.2 Our Results

In this work, we introduce the notion of Multi-Authority Functional Encryption (MAFE). We
show that MAFE for all polynomial-size circuits can be constructed assuming sub-exponentially
secure indistinguishability obfuscation. More specifically, we use only the following primitives: (1)
sub-exponentially secure indistinguishability obfuscation; and (2) sub-exponentially secure injective
one way function 2. Here “sub-exponential security” refers to the fact that the advantage of any
(efficient) adversary should be sub-exponentially small. For primitive (2), this should furthermore
hold against adversaries running in sub-exponential time.

Examining the question of trust in a different way, we also consider the notion of delegatable
functional encryption where any user in the system may independently act as a key generation
authority. In delegatable FE, any user may derive a decryption key for a policy which is “more

1Note that, while previous works on functional encryption considered security against malicious receivers, no
security was guaranteed if the authority itself is malicious. The definition we propose allows an encryptor to protect
his data with respect to a policy F . Even if the authority is malicious, a receiver will not be able to learn anything
that is not allowed by the policy.

2We however do not require that such injective one way function is efficiently samplable. Its existence suffices for
the construction.
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restrictive” than its own. In other words, delegatable FE allows a user to compute a key for a
function g given a key for a function f if and only if the output of g can be computed given the
output of f . We note that delegatable FE is complementary to MAFE, in that while delegatable FE
allows users to generate restricted versions of their own keys without needing to involve the central
authority, for delegatable FE trust still “flows” down from the central authority. We show how to
construct delegatable FE based on (sub-exponentially secure) indistinguishability obfuscation and
hierarchical identity-based encryption.

We believe our techniques to be of independent interest: we construct FE in arguably a more natural
way where a decryption key for a function f is simply a signature on f . Such a direct approach to
constructing decryption keys allows us to obtain a construction with interesting properties enabling
multiple authorities as well as delegation.

1.3 Challenges and Techniques

At first glance, the rich notions of functional encryption and multi-authority attribute-based en-
cryption may seem to help us solve the problem of MAFE described above. In a Functional
Encryption (FE) [GGH+13, GKP+13, BSW11] scheme, decryption keys are provided by the au-
thority for specific functions. A user, who has obtained skf , can decrypt Encpk(m) and then learn
f(m). However, FE schemes require the existence of a single authority who issues the decryption
keys and hence are not applicable in our scenario. In our example, we cannot have the bank give
its secret keys to all the officials as a corrupted police officer (say) could, without the cooperation
of the Judge, learn arbitrary information about the bank’s financial data! In a Multi-Authority
Attribute-based Encryption (MA-ABE) scheme [Cha07, CC09, LW11], multiple authorities issue
decryption credentials to users and only someone who satisfies the right access policy (that could
depend on attributes specified by different authorities) can learn the contents of the encrypted data.
However, like attribute-based encryption, MA-ABE schemes allow the authorized user to learn the
plain-text data in its entirety (and not some function of the data).

One proposal to combine the two of the above may be the following. Let there be one special
authority that has a functional encryption key (PK,SK). All the authorities have their keys for
the multi-authority ABE scheme. Now the encryptor just encrypts m with PK and then this
ciphertext is encrypted again with respect to the policy A and keys of the MA-ABE scheme. In
order to generate tokens for a function f , all authorities give out tokens for ID = (UID, f) and
the special authority also gives out functional encryption key for f . The decryptor then just uses
the MABE keys to recover the functional encryption ciphertext which is then decrypted using
the functional encryption token for f . Unfortunately, the above approach is flawed and is in fact
insecure. Consider a user who has obtained valid decryption keys for f (that allows him to decrypt
f) but has obtained an invalid set of tokens for g (but has received only the functional encryption
key for g from the special authority). One can easily see that such a user can learn the outputs
of both f and g on the encrypted data. This attack shows that rolling MA-ABE and FE into one
requires significantly new ideas. Another approach that one might take is to consider the use of of
Multi-Input Functional Encryption [GGG+14] (a broader generalization of FE where the function
keys allow to compute on multiple cipher-texts). Again, the main problem that occurs in doing
this, is that there should be a single authority that knows the secret keys corresponding to all
inputs.
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Similar to MIFE, we show that multi-authority functional encryption, even when the user receives
a single token query per authority, implies indistinguishability obfuscation. Additionally, we also
show that a simulation secure variant implies black box obfuscation, and is hence, impossible for
arbitrary functions [BGI+01].

Our Techniques. Let us first analyze the problem in a single authority scenario. The starting
point of our construction is a construction of a functional encryption scheme due to [BCP14]
based on differing-inputs obfuscation, which we now believe is implausible [GGHW14]. In their
construction, a ciphertext was an obfuscated circuit that checks the signature for a function f and
computes f if the signature is valid. The security proof relied on the fact that if the adversary
distinguishes the cipher-text (or rather an obfuscated circuit) encrypting m0 from that of m1, then
one must be able to extract out a signature on a function g such that g(m0) 6= g(m1) thereby
producing a forgery. While techniques based on this idea would work for us if we were willing
to work with differing-inputs obfuscation, obtaining MAFE under indistinguishability obfuscation
[GGH+13] is a much harder problem. One of the crucial ideas in the work of [BCP14], is that
indistinguishability obfuscation behaves like a differing-inputs obfuscator for the setting where the
circuits in question differ on bounded number of points. Unfortunately, even with subexponentially
secure iO, there are simply too many points on which these functions would differ for this strategy
to work.

Our first idea is that we make the “signatures” unique, in the sense, that for every message there
exists only one signature that verifies. In order to achieve this, we initialize it using puncturable
PRF’s, indistinguishability obfuscation and an injective one way function as done in [SW14]. The
main idea of the security proof is that we can build exponentially many hybrids corresponding to the
function space. We index each hybrid with a function x. In hybrid x, the cipher-text takes as input
function and a signature (f, σ) and checks if f < x. If that is the case, it outputs f(m0) otherwise
f(m1). We argue indistinguishability between hybrids x and x+ 1 by intermediate hybrids where
we puncture the PRF at x and plant the PRF evaluations with a random sample. Then we further
note that if the adversary now distinguishes these hybrids then it can be used to invert an injective
one way function in sub-exponential time. This idea now can be scaled in multi-authority scenario.
For technical purposes, that is, in order to handle key corruptions the signing key is an obfuscation
of a circuit that evaluates a PRF on the input. While these are the core ideas in our construction,
proving the construction secure is tricky.

We also show that MAFE immediately implies multi-authority attribute based encryption (without
setup or random oracle; to the best of our knowledge all known constructions [LW11, CC09, Cha07]
either rely on a trusted setup or on random oracles or both). As an interesting observation, we
also show that MAFE (in fact, even MAFE secure against single key query and specific policy
functions) implies (computational) broadcast non interactive functional secret sharing [BBDK00]
for monotone P and polynomial sized circuits in a black box manner, which was previously not
known.

Achieving Delegation. An application of the idea described above is that it can be extended
to allow for delegation of function keys. In what we described above, if the signature scheme is
delegatable (i.e. it allows us to compute a signature on f ||x for any x given a signature on f) then
it allows us to compute keys for x · f given a key for f . For the purpose of this paper by · we mean
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mathematical composition. Precisely, f1 · f2 on input x computes f1(f2(x)).

We call such an encryption scheme as Delegatable Functional Encryption (DFE). In order to con-
struct this primitive, we make use of the exponential hybrid approach and make interesting use of
hierarchical identity based encryption (HIBE). The main idea behind this construction is that the
cipher-text encrypting m is an obfuscated program which on input f computes an HIBE encryp-
tion of f(m) on identity f using randomness generated from a PRF applied on f . Any decryptor
can than decrypt this cipher-text using a HIBE key for identity f or its prefix. While for prov-
ing security any sub-exponential IBE suffices, HIBE however gives delegation for free. So far, in
obfuscation based FE schemes, delegation could have been done by re-obfuscating the key with a
composition function wrapper. Due to efficiency issues this could be done at most log(k) number
of times; however our construction supports delegation up to any (apriori bounded) polynomial
number of times.

1.4 Organization.

The rest of this paper is organized as follows: In Section 2, we recall some definitions and primitives
used in the rest of the paper. In Section 3 we formally define MAFE and DFE. In Section 4, we
provide a construction, proof and applications for MAFE. Section 5 gives a construction for DFE.

2 Preliminaries

In this section we recall various concepts on which the paper is built upon. For the rest of the
paper, we denote by N the set of natural numbers {1, 2, 3, ..}. For the purpose of this paper by
· operator on two functions we mean a mathematical composition. Precisely, f1 · f2 on input x
computes f1(f2(x)). Now we describe some of the primitives used in the paper.

2.1 Injective One Way Function

A one way function with security (s, ε) is an efficiently evaluable function P : {0, 1}∗ → {0, 1}∗ and
Pr

x
$←−{0,1}n [P (A(P (x))) = P (x)] < ε(n) for all circuits A of size bounded by s(n). It is called an

injective one way function if it is injective in the domain {0, 1}n for all sufficiently large n.
In this work we require that there exists3 (s, ε) injective one way function with s(n) = 2n

cowp1
and

ε = 2−n
cowp2

for some constants 0 < cowp1, cowp2 < 1. [Hol06, Wee07] have used (2cn, 1/2cn) secure
one way functions and permutations for some constant c, while here we require our injective one
way function to be (s(n) = 2n

cowp1
, ε = 2−n

cowp2
) secure for some constants 0 < cowp1, cowp2 < 1.

This is a reasonable assumption due to following result from [GGKT05]

Lemma 1. Fix s(n) = 2n/5. For all sufficiently large n, a random permutation π is (s(n), 1/2n/5)

secure with probability at least 1− 2−2
n/2

.

Such assumptions have been made and discussed in works of [Hol06, Wee05, Wee07]. In particular,
we require the following assumption:

3We however do not require that the injective one way function can be sampled efficiently
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Assumption 1: For any adversary A with running time bounded by s(n) = O(2n
cowp1

), for
any apriori bounded polynomial p(n) there exists an injective one way function P such that,

Pr[ri
$←− {0, 1}n∀i ∈ [p],AO(P (r1), .., P (rp)) = (r1, .., rp)] < O(2−n

cowp2
)

for some constant 0 < cowp1 , cowp2 < 1 . Here, oracle O can reveal at most p − 1 values out of
r1, .., rp. Note that this assumption follows from the assumption described above with a loss p in
the security gap.

2.2 Indistinguisability Obfuscation

Below we present the formal definition following the syntax of [GGH+13]:

Definition 1. A uniform PPT machine iO is an indistinguishability obfuscator for a class of
circuits {Cn}n∈N if the following properties are satisfied.
Correctness: For every k ∈ N, for all {Ck}k∈N, we have

Pr[C ′ ← iO(1k, C) : ∀x,C ′(x) = C(x)] = 1

Security: For any pair of functionally equivalent equi-sized circuits C0, C1 ∈ Ck we have that: For
every non uniform PPT adversary A there exists a negligible function ε such that for all k ∈ N,

| Pr[A(1n, iO(1k, C0), C0, C1, z) = 1]− Pr[A(1k, iO(1k, C1), C0, C1, z) = 1] |≤ δ(k)

We additionally say that iO is sub-exponentially secure if there exists some constant α > 0 such
that for every non uniform PPT A the above indistinguishability gap is bounded by δ(k) = O(2−k

α
)

Definition 2 (Indistinguishability obfuscation for P/poly). iO is a secure indistinguishability ob-
fuscator for P/Poly, if it is an indistinguishability obfuscator for the family of circuits {Ck}k∈N
where Ck is the set of all circuits of size k.

2.3 Puncturable Psuedorandom Functions

A PRF F : Kk∈N × X → Yk∈N is a puncturable pseudorandom function if there is an additional
key space Kp and three polynomial time algorithms (F.setup, F.eval,
F.puncture) as follows:

◦ F.setup(1k) a randomized algorithm that takes the security parameter k as input and outputs
a description of the key space K, the punctured key space Kp and the PRF F .

◦ F.puncture(K,x) is a randomized algorithm that takes as input a PRF key K ∈ K and x ∈ X
, and outputs a key K{x} ∈ Kp.

◦ F.Eval(K,x′) is a deterministic algorithm that takes as input a punctured key K{x} ∈ Kp
and x′ ∈ X . Let K ∈ K, x ∈ X and K{x} ← F.puncture(K,x).

The primitive satisfies the following properties:
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1. Functionality is preserved under puncturing: For every x∗ ∈ X ,

Pr[F.eval(K{x∗}, x) = F (K,x)] = 1

here probability is taken over randomness in sampling K and puncturing it.

2. Psuedo-randomness at punctured point: For any poly size distinguisher D, there exists
a negligible function µ(·), such that for all k ∈ N and x∗ ∈ X ,

| Pr[D(x∗,K{x∗}, F (K,x∗)) = 1]− Pr[D(x∗,K{x∗}, u) = 1] |≤ µ(k)

where K ← F.Setup(1k), K{x∗} ← F.puncture(K,x∗) and u
$←− Yk

We say that the primitive is sub-exponentially secure if µ is bounded by O(2−k
cPRF ), for some

constant 0 < cPRF < 1. We also abuse the notation slightly and use F (K, ·) and F.Eval(K, ·) to
mean one and same thing irrespective of whether key is punctured or not. Puncturable PRFs have
been extensively used, such as in the work of [SW14] and were constructed in [BW13]. They can
be based on the existence of a one way function.

2.4 Hierarchical Identity Based Encryption

Hierarchical Identity Based Encryption (HIBE) [BBG05, GH08, GS02] consists of following algo-
rithms: (Setup,KeyGen,Encrypt,Decrypt). Setup takes in the security parameter and produces a
master secret key MSK and a master public key MPK. Identities are vectors. A k dimensional
identity vector is treated as identity at depth k. We refer to the master secret key as the private
key at depth 0 and note that an IBE system is a HIBE where all identities are at depth 1. Algo-
rithm KeyGen takes as input an identity ID = (I1, ..., Ik) at depth k and the private key dID|k−1
of the parent identity IDk−1 = (I1, .., Ik−1) at depth k − 1, and then outputs the private key dID
for identity ID. The encryption algorithm encrypts messages for an identity using MPK and the
decryption algorithm decrypts cipher-texts using the private key.

We now describe the game defining security for any HIBE scheme.
Setup: The challenger runs the Setup algorithm and gives adversary A the resulting system, keep-
ing the master-key MSK to itself.

Phase 1: A adaptively issues queries q1, .., qm where query qi is a private key query for < IDi >.
Challenger responds by running algorithm KeyGen to generate the private key di corresponding to
the identity IDi and sends di to A.

Challenge Phase Once A decides that Phase 1 is over, it outputs an identity ID∗ and two
equal length plain-texts M0,M1 ∈ M on which it wishes to be challenged. The only restriction is
that A did not previously issue a private key query for ID∗ or a prefix of ID∗. Challenger picks a
random bit b ∈ {0, 1} and sets the challenge ciphertext to CT = Encrypt(MPK, ID∗,Mb), which
is sent to A.

Phase 2 A adaptively issues queries qm+1, .., qn where query qi is a private key query for < IDi >
where IDi 6= ID∗ or a prefix of ID∗. Challenger responds by running algorithm KeyGen to generate
the private key di corresponding to the identity IDi and sends di to A
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Guess The attacker submits a guess b
′

for b. The attacker wins if b
′

= b. The attacker’s ad-
vantage in this game is defined to be µ =| Pr[b = b

′
]− 1/2 |

We say that HIBE is secure if µ is a negligible function of the security parameter. Further it
is sub-exponentially secure if there exists a constant cHIBE such that µ < O(2−k

cHIBE ).

2.5 (d, δ) Weak Extractability Obfuscator

The concept of weak extractability obfuscator was first introduced in [BCP14] where they claimed
that if there is an adversary that can distinguish between indistinguishability obfuscations of two
circuits that differ on polynomial number of inputs with noticable probability, then there is a
PPT extractor that extracts a differing input with overwhelming probability. We generalise the
notion to what we call (d, δ) weak extractability obfuscator, where we require that if there is
any PPT adversary that can distinguish between obfuscations of two circuits ( that differ on at
most d inputs ) with atleast ε > δ probability, then there is a extractor that extracts a differing
input with overwhelming probability and runs in time poly(1/ε, d, k) time. Such a primitive can
be constructed from a sub-exponentially secure indistinguishability obfuscation. (1, 2−k) weak
extractability obfuscation will be crucially used in our construction for our MAFE scheme. We
believe that in various applications of differing inputs obfuscation, it may suffice to use this primitive
along with other sub-exponentially secure primitives.

Definition 3. A uniform transformation weO is a (d, δ) weak extractability obfuscator for a class
of circuits C = {Ck} if the following holds. For every PPT adversary A running in time tA and
1 ≥ ε(k) > δ, there exists a algorithm E for which the following holds. For all sufficiently large k,
and every pair of circuits on n bit inputs, C0, C1 ∈ Ck differing on at most d(k) inputs, and every
auxiliary input z,

| Pr[A(1k, weO(1k, C0), C0, C1, z) = 1]− Pr[A(1k, weO(1k, C1), C0, C1, z) = 1] |≥ ε

⇒ Pr[x← E(1k, C0, C1, z) : C0(x) 6= C1(x) ≥ 1− negl(k)

and the expected runtime of E is O(pE(1/ε, d, tA, n, k)) for some fixed polynomial pE. In addition,
we also require the obfuscator to satisfy correctness.
Correctness: For every n ∈ N, for all {Cn}n∈N, we have

Pr[C ′ ← weO(1n, C) : ∀x,C ′(x) = C(x)] = 1

We now construct a (1, 2−k) input weak extractability obfuscator from sub-exponentially secure
indistinguishability obfuscation. Following algorithm describes the obfuscation procedure.

weO(1k, C) : The procedure outputs C ′ ← iO(1k
1/α
, C). Here, α > 0 is a constant chosen such

that any polynomial time adversary against indistinguishability obfuscation has security gap upper
bounded by 2−k/4.

The proof of the following theorem is given in the appendix A.
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Theorem 1. Assuming sub-exponentially secure indistinguishability obfuscation, there exists (1, δ)
weak obfuscator for P/poly for any δ > 2−k, where k is the size of the circuit.

In general, assuming sub-exponential security one can construct (d, δ) extractability obfuscator for
any δ > 2−k. Our construction is as follows:
weO(C) : Let α be the security constant such that iO with parameter 1k

1/α
has security gap upper

bounded by O(2−3k). This can be found due to sub exponential security of indistinguishability

obfuscation. The procedure outputs C ′ ← iO(1k
1/α
, C).

We cite [BCP14] for the proof of the following theorem.

Theorem 2 ([BCP14]). Assuming sub-exponentially secure indistinguishability obfuscation, there
exists (d, δ) weak extractability obfuscator for P/poly for any δ > 2−k.

3 Definitions

In this section, we define syntax and security notions of Multi-Authority Functional Encryption
scheme and a Delgeatable Functional Encryption scheme.

3.1 Multi-Authority Functional Encryption

In this section, we describe syntax and security notions of a Multi-Authority Functional Encryption
(MAFE) scheme. Each authority has its own identity id ∈ I. Our scheme allows addition of a
new authority at any given point of time and each authority can be set up independently and
without any interaction with any other authority. Multi-authority Functional Encryption system
is comprised of following algorithms:

◦ Authority Setup(id, 1k) → (MPKid,MSKid). Each authority id runs the authority setup
algorithm to produce its own public key and secret key pair, (MSKid,MPKid).

◦ KeyGen(MSKid, UID,U)→ KUID,id,U . The key generation takes as input an identity UID,
a property U and secret key MSKid for any authority with identity id and outputs a token
KUID,id,U .

◦ Encrypt({MPKid}i∈S , F, ρ,m) → CT . The encryption algorithm takes in a message M , a
| S | +1 < O(poly(k)) variate policy function F (each component is in {0, 1}k) , a permutation
ρ that maps identities in S to index of the input to F , the set of public keys for authorities
in some set S ⊂ I. It outputs a cipher-text (F,CT ). F takes as input upto | S | properties
and a message and outputs a value.

◦ Decrypt({KUID,id,Uid}id∈S , CT ) → F (< {Uid}id∈S >,M) or ⊥. The decryption algorithm
takes as input a ciphertext CT encrypting a message M and a collection of tokens from
authorities id ∈ S for a identity UID and properties Uid. The algorithms outputs F (<
{Uid}id∈S >,M) or ⊥. <> denoted the permutation that uses ρ and maps Uid to the index
ρ(id) for input to F .
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Definition 4. A Multi-Authority Functional Encryption (MAFE) system is said to be correct if
whenever CT is obtained from the encryption algorithm on the message M and policy F , and
{KUID,id,Uid}i∈S is a set of tokens obtained from the key generation algorithm for the same identity
UID and properties Uid for a set of token issuing authorities id ∈ S ⊂ I,

Decrypt(CT, {KUID,id,Uid}id∈S) = F (< {Uid}id∈S >,M)

Remark: Note, that we require that there is no trusted or global setup algorithm in the syntax.

3.1.1 Security Definition

We now present the security definition for MAFE scheme. Note that, previous works on func-
tional encryption considered security against malicious receivers. No security was guaranteed if the
authority itself is malicious and let’s say completely leaks out the secret key. The definition we
propose allows an encryptor to protect his data with respect to a policy F . Even if the authority is
malicious a receiver will not be able to learn anything that is not allowed by the policy. We define
security notion of the scheme by the following game between a challenger and an attacker. For ease
of notation let us assume the chosen set of authorities by the adversary is [N ] for a polynomial N .

Setup: The adversary outputs [N ]. The challenger does setup for authorities labelled in [N ]
and hands over the public keys of all the authorities to the adversary.

Key Query Phase 1 The attacker makes token queries by submitting tuples (UID, i, Ui,j) to
the challenger where i is a non corrupt authority and UID is an identity and j is the query num-
ber. The challenger responds by giving the attacker the corresponding key KUID,i,Ui,j . Adversary
can also corrupt an authority by asking for MSKi for any i ∈ [N ]. These queries can be made adap-
tively and in any fashion. Let S denote the set of all authorities i for which MSKi has been released.

Challenge Phase The attacker selects two messages M0,M1 and a policy (F, ρ). The policy
and the message queries satisfy the following constraint. Let KUID,i,Ui,ji

denote a token queried by
attacker for i ∈ [N ] \ S for identity UID. Then it must hold that, F (< {Ui,ji}i∈[N ]\S , {xi}i∈S >
,M0) = F (< {Ui,ji}i∈[N ]\S ,
{xi}i∈S >,M1)∀xi∀i ∈ S. Here <> denotes the permutation that maps Ui or xi using ρ to the
index ρ(i) for input to F . The challenger flips a random coin b ∈ {0, 1} and sends an encryption of
Mb under the policy F .

Key Query Phase 2 The attacker may submit additional token queries (UID, i,
Ui,j) and queries for master secret key MSKi as long as they do not violate the constraint on the
challenge messages and the policy F .

Guess The attacker submits a guess b
′

for b. The attacker wins if b
′

= b. The attacker’s ad-
vantage in this game is defined to be | Pr[b = b

′
]− 1/2 |

We call the game described above as IND security game. We say the MAFE scheme is IND se-
cure if the advantage described above is negligible.

Theorem 3. IND secure multi-authority functional encryption for general circuits secure against
corruption of one authority and zero token queries imply indistinguishability obfuscation for P/Poly.
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Proof. We assume that there exists a scheme MAFE with desired properties. Let the size of the
circuit C to be obfuscated be k. Now, we describe our candidate obfuscator that works as follows:

1. Perform MAFE.Authority Setup(1k, 1)→ (PK,SK). This authority is just labelled as 1.

2. Output the obfuscation as iO(C) ← (CT = MAFE.Encrypt(PK,U, id, C), SK). Here, U is
the policy that on input (x,C) computes C(x) and id is the identity permutation.

Evaluation at x, works by using SK to compute a token for (UID, x) for any identity UID and
then decrypting CT using this token.

To argue security, note that when two circuits (C0, C1) are two equivalent circuits, then due to
the security of MAFE scheme it holds that {iO(C0) = (CT = MAFE.Encrypt(PK,U, id, C0), SK)}
and {iO(C1) = (CT = MAFE.Encrypt(PK,U,
id, C1), SK)} are computationally indistinguishable. Correctness of obfuscation follows from the
correctness of the scheme.

It takes similar techniques to prove the following result.

Theorem 4. IND secure multi-authority functional encryption for n authorities, secure against
zero corruptions and two token queries per authority imply indistinguishability obfuscation for n bit
inputs.

Proof. Assume that there exists a scheme MAFE with desired properties. To obfuscate C that takes
n bit inputs, obfuscator iO(C) does the following:

1. Performs setup MAFE.Authority Setup(i, 1k) → (MPKi,MSKi) for i ∈ [n] (authorities la-
belled in [n]).

2. Selects an identity randomly UID, and from each authority gets tokens
{Ki,b ← MAFE.KeyGen(MSKi, UID, b)∀i ∈ [n], b ∈ {0, 1}}.

3. Finally encrypts C as, CT ← MAFE.Encrypt({MPKi}i∈[n], U, id, C). Here U is the policy
that on input (x1, .., xn, C) for xi ∈ {0, 1}∀i ∈ [n] outputs C(x1, .., xn) and id is the identity
permutation.

4. Output as (CT, {Ki,0,Ki,1}i∈[n]).

In order to evaluate the obfuscation on input x, the evaluator outputs C(x) = MAFE.Decrypt({Ki,xi}i∈[n]
, CT ). Note that correctness of obfuscation follows from the correctness of the scheme.

For proving indistinguishability, we note that due to IND security of multi-authority functional
encryption scheme obfuscations of the two circuits are computationally indistinguishable

(O(C0) = {MPKi,Ki,0,Ki,1∀i ∈ [n]},MAFE.Encrypt({MPKi}i∈[n], U, id, C0)) ≈c

(O(C1) = {MPKi,Ki,0,Ki,1∀i ∈ [n]},MAFE.Encrypt({MPKi}i∈[n], U, id, C1))
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3.1.2 Simulation based definition

Previous works on functional encryption have also considered a simulation based definition [GKP+13,
GGG+14] for functional encryption. It was proved in [AGVW13] that it in general it is impossible
to achieve simulation based security for functional encryption for general circuits and arbitrary
many key queries. Our primitive with simulation security even for corruption of one authority and
zero token queries imply black box obfuscation, which has been shown to be impossible to exist
[BGI+01]. The key notion in the security definition is that there exist a p.p.t. simulator Sim that
given the tokens, corrupted authority secret keys and the public keys and access to an oracle that
outputs what is learnable in the “real world” should be able to produce a simulated cipher-text for
any chosen message and policy.
For ease of notation, let us assume that the authorities are labelled in [N ] and the permutation
given to the encryption algorithm is implicitly assumed to be the identity permutation.

ExprealMAFE,A(1k) ExpidealMAFE,A,Sim(1k)

A1(1
k)→ ([N ], [S] ⊂ [N ], z1)

{MAFE.Authority Setup(i, 1k)→ (MPKi,MSKi)}i∈[N ]\[S]

A2(1
k, {MPKi}i∈[N ]\[S], z1)→ ({MPKi,MSKi}i∈[S], z2)

A3(1
k, z2)→ ({(UIDj , Ui,j)}i∈[N ]\S,j∈[q=poly(k)], z3)

{Ki,j ← MAFE.KeyGen(MSKi, UIDj , Ui,j)}i∈[N ]\S,j∈[q]

A4({Ki,j}i∈[N ]\S,j∈[q], z3)→ (F, x, z4)

CT ← MAFE.Encrypt({MPKi}i∈[N ], F, x)

C̃T ← SimO(·)(x,F,{(UIDj ,Ui,j)}i∈[N ]\S,j∈[q=poly(k)])(1k, {MPKi}i∈[N ], {MSKi}i∈[S])
Output (CT, z4) Output (C̃T , z4)

Figure 1: Simulation security

Definition 5. The scheme is said to be (q) SIM-secure against S corruptions if there exists a p.p.t.
simulator Sim such that for all of p.p.t. adversaries (A1,A2,A3,A4), the outcomes of the two
experiments are computationally indistinguishable:

{ExprealMAFE,A(1k)}k∈N ≈c {ExpidealMAFE,A,Sim(1k)}k∈N
The oracle O on a query (U1, .., UN ) checks that there exists some UID ∈ {UIDj}j∈[q] such that
key for (UID,Ui) was issued by all authorities i ∈ [N ] \ [S] in step 5. If this happens the oracle
outputs F (U1, .., UN , x), otherwise it outputs ⊥.

Theorem 5. (0) SIM-secure multi-authority functional encryption for circuits secure against cor-
ruption of one authority imply black box obfuscation.

Proof. In order to prove the theorem we assume that there exists a scheme MAFE with desired
properties. Let the size of the circuit C to be obfuscated be k. We now describe our obfuscator.
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1. Perform MAFE.Authority Setup(1, 1k)→ (PK,SK). This authority is just labelled as 1.

2. Output the obfuscation as O(C)← (CT = MAFE.Encrypt(PK,U, id, C), SK). Here, U is the
policy, that on input x,C computes C(x) and id is the identity permutation.

Evaluation at x, works by using SK to compute a token for UID, x for any identity UID and then
decrypting the encryption using this token.
To argue security, we need to show that there exists a polynomial time simulator S such that for all
polynomial sized strings aux, (O(C), aux) ≈c (SC(·)(1k), aux). We describe our simulator below:

1. Runs MAFE.Authority Setup(1, 1k)→ (PK,SK).

2. Then runs the simulator MAFE.Sim as: C̃T ← MAFE.SimU(·,C)(PK,SK). Queries to the
oracle U(·, C) can be answered by forwarding the query to the oracle C(·) and forwarding its
response as it is.

3. Output (C̃T , SK)

If there is an adversary B that breaks the security of the obfuscation scheme, then there is an
adversary A that attacks the security of the underlying scheme. This reduction is straightforward
hence we omit the details.

Theorem 6. (2) SIM-secure multi-authority functional encryption scheme for n = n(k) authorities
secure against corruption of zero authorities imply black box obfuscation for n bit inputs.

Proof. Assume that there exists a scheme MAFE with desired properties. To obfuscate C, obfuscator
O(C) does the following:

1. Performs setup MAFE.Authority Setup(i, 1k) → (MPKi,MSKi) for i ∈ [n] (authorities la-
belled in [n]).

2. Selects an identity randomly UID, and from each authority gets tokens
{Ki,b ← MAFE.KeyGen(MSKi, UID, b)∀i ∈ [n], b ∈ {0, 1}}.

3. Finally encrypts C as, CT ← MAFE.Encrypt({MPKi}i∈[n], U, id, C). Here U is the policy
that on input (x1, .., xn, C) for x∈{0, 1}∀i ∈ [n] outputs C(x1, .., xn) and id is the identity
permutation.

4. Output obfuscated circuit as (CT, {Ki,0,Ki,1}i∈[n]).

In order to evaluate the obfuscation on input x, evaluator outputs C(x) = MAFE.Decrypt({Ki,xi}i∈[n], CT ).
Note that correctness of obfuscation follows from the correctness of the scheme.

To argue security, we need to show that there exists a polynomial time simulator S such that
for all strings aux, (O(C), aux) ≈c (SC(·)(1k), aux). We describe our simulator as follows:

1. Performs setup MAFE.Authority Setup(i, 1k) → (MPKi,MSKi) for i ∈ [n] (authorities la-
belled in [n]).
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2. Selects an identity randomly UID, and from each authority gets tokens:
{Ki,b ← MAFE.KeyGen(MSKi, UID, b)∀i ∈ [n], b ∈ {0, 1}}.

3. Then runs the simulator of the multi-authority functional encryption scheme and computes:
C̃T ← MAFE.SimU({0,1},{0,1},..,{0,1},C)(MPK1, ..,MPKn). Queries to the oracle U({0, 1}, {0, 1},
.., {0, 1}, C) can be answered by forwarding the query x = (x1, .., xn) to the oracle C(·) and
forwarding its response as it is.

4. Output (C̃T , {Ki,0,Ki,1}i∈[n])

If there is an adversary B that breaks the security of the obfuscation scheme, then there is an
adversary A that attacks the security of the underlying scheme. This reduction is straightforward;
hence we omit the details.

3.2 Delegatable Functional Encryption

In this section we describe the syntax and the security definition of a key delegatable functional
encryption (DFE) scheme. A DFE scheme for a class of function Fk is a tuple of five algorithms:
(Setup,Enc,KeyGen,Del,Dec).

◦ Setup(1k, n) → (MPK,MSK). The setup algorithm takes the security parameter 1k and a
parameter n(k) which is the number of times a function key can be delegated.

◦ Enc(MPK,m) → CT . The encryption algorithm takes in a message in Mk and the master
public key and outputs a cipher-text.

◦ KeyGen(MSK, f)→ SKf . The key generation algorithm takes in the master secret key and
a function f and outputs a key SKf

◦ Del(SKf , f
′) → SKf ′·f . The delegation algorithm takes a key SKf (which may have been

delegated by at most n− 1 times) and a function f ′ and outputs a key for the function f ′ · f
(f composed with f ′).

◦ Dec(SKf , CT ) → f(m). The decryption algorithm takes a cipher-text CT and a function
key for f and outputs f(m).

We require the scheme to satisfy correctness informally defined as follows.
Correctness: We require that for honestly generated setup (MPK,MSK), for keys SKf of a
function f , generated or delegated at most n times, and any honestly generated cipher-text CT
encrypting m, the decryption should return f(m) with over-whelming probability.

3.2.1 Security Notion

We now present the security definition for DFE scheme. We define security notion of the scheme
by the following game between a challenger and an attacker.

Setup: The challenger does setup to compute (MSK,MPK) and hands over the public key
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MPK to the adversary.

Key Query Phase 1 The attacker can submit queries of two kinds

1. Submit f and get back SKf ← KeyGen(MSK, f).

2. Submit a tuple (f1, .., fn+1). In this case the challenger computes a key for f1 and then runs
the delegation algorithm to compute a key for fn+1 · ... ·f1. The adversary can set fi+1, .., fn+1

for some i ≥ 1 as empty in the query, in which case the delegation is done i− 1 times.

Challenge Phase The attacker selects two messages (m0,m1) in which case it should satisfy that
f(m0) = f(m1) and fn+1 · .. · f1(m0) = fn+1 · .. · f1(m1) for function queries of both kinds above.
Challenger encrypts mb as CT where b ∈ {0, 1} is randomly chosen and hands it over to the adver-
sary.

Key Query Phase 2 : The adversary may make queries as in phase 1 as long as they sat-
isfy the constraint with the challenge message as described in the challenge phase description.

Guess The attacker submits a guess b
′

for b. The attacker wins if b
′

= b. The attacker’s ad-
vantage in this game is defined to be | Pr[b = b

′
]− 1/2 |

We call the game described above as IND security game.

Definition 6. A DFE system is (IND) secure if all polynomial time adversaries have at most a
negligible advantage in the (IND) security game.

4 Our Construction for MAFE

Notation: Let k denote the security parameter and n denote the bound on the number of au-
thorities used while encrypting the cipher-text. Let O denote a (1, 2−2(n+1)k) weak extractability
obfuscator for general circuits. F = (setup, puncture, eval) be a sub exponential puncturable psuedo
random function (slightly abusing notation, we refer F (K,x) as evaluation of PRF at x even if
the key is punctured) with constant cPRF . Let P be a sub-exponentially secure injective one way
function with security constants cowp1 and cowp2. In this section, while giving (a1, .., an) as an input
to a circuit or a PRF F , we mean that the input is given as a concatenation of a1||..||an.

◦ MAFE.Authorithy Setup(i, 1k): Each authority i runs F.setup(1µ)→ Ki and obfuscates (using
the obfuscator O) the following circuit as V K. On input (x, σ), the circuit checks that
P (σ) = P (F (Ki, x)), if the check passes it outputs 1 otherwise it outputs 0. Then it sets
MPKi = V K
It generates MSKi as an obfuscation of the circuit (using the obfuscator O) that on input x
outputs F (Ki, x).

Here µ is set such that it is greater than (nk + 2k)1/cPRF and the output length is greater
than max{(nk + 2k)1/cowp2 , (nk + 2k)2/cowp1}.
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◦ MAFE.KeyGen(MSKi, UID,U): KUID,i,U ←MSKid(UID,U). On input user identity UID,
property U and secret key for authority i, KeyGen outputs a PRF evaluation on (UID,U)
using the circuit MSKi.

◦ MAFE.Encrypt({MPKi}i∈I , G, ρ,m): Let C be the circuit described in figure Figure 2 (ini-
tialised with hard-wirings m,G, ρ). Output (G, ρ,O(C)).

◦ MAFE.Decrypt({KUID,i,Ui}i∈I , G,CT ). The decryption algorithm gets a policy, an obfuscated
circuit and some tokens for authorities in I as input (if the decryptor does not receive a
token from an authority its treated as null) and just evaluates the circuit using the tokens.
Specifically it computes and outputs, CT (UID, {Ui}i∈I , {KUID,i,Ui}i∈I).

Remark. Although we instantiate scheme with a sub-exponentially secure injective one way func-
tion P , in practice we can instantiate it with any one-one function. For the security proof, we see
that the input output behaviour of MPKi do not change when it is instantiated with any one-one
function, hence we can switch to a hybrid when it is instantiated by sub-exponentially injective
secure one way function and due to the security of obfuscation these two hybrids are close.
A quick inspection of the algorithms shows that the scheme described above is correct and we omit
details of the proof here.

Constants: m,G, ρ, {MPKi}i∈I .
Input: UID, {Ui}i∈I , {KUID,i,Ui}i∈I . (some of Ui’s can be null in which case KUID,i,Ui is
also empty)
For all i ∈ I perform the following checks and output ⊥ if any of the check fails.

◦ Check that either Ui is null, (in which case KUID,i,Ui is also null), or

◦ Check that MPKi(UID,Ui,KUID,i,Ui) = 1

Output G(< {Ui}i∈I >,m).

Figure 2: Program Encrypt

4.1 Security Proof

Theorem 7. Assuming existence of a subexponentially secure indistinguishability obfuscator and
a subexponentially secure injective one way function there exist a IND secure multi-authority func-
tional encryption.

Proof. We now prove that the construction described in section 4 is a IND secure multi-authority
functional encryption scheme.
Notation: For ease of notation, we label authorities in [n] for some polynomial n(k). We use µ
as the security parameter for the puncturable PRF. cPRF denotes the security constant for the
puncturable PRF and cowp1 and cowp2 denote the security constants for sub-exponential injective
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one way function. For ease of notation, we also assume that ρ i.e. the permutation associated with
the policy function is an identity function on [n]. We now present a sequence of hybrids and prove
indistinguishability.

H0 : The standard IND game for multi-authority functional encryption while encrypting m0.

1. The adversary A receives the security parameter and outputs [n] as the set of authorities.
The challenger does the setup for all authorities in [n].

2. A can adaptively query for tokens and can corrupt authorities. When A asks for the secret
key for authority i, the challenger releases MSKi.

3. A now queries tuples of the form (UID, i, U), interpreting to issue a token for a user with
identity UID and property U by authority i.

4. Challenger generates corresponding tokens KUID,i,U ← MSKi(UID,U) and gives them to
A.

5. Adversary then declares (m0,m1, G), these messages satisfy the constraint as outlined in the
definition.

6. Challenger encrypts m0 with policy G and gives (G,CT ) to the A.

7. A can adaptively query for tokens and can corrupt authorities. When A asks for the secret
key for authority i, the challenger releases MSKi.

8. A now queries tuples of the form (UID, i, U, ), interpreting to issue a token for a user with
identity UID and property U by authority i.

9. A outputs a guess b′

Hx : For x ∈ [1, 2(n+1)k + 1], this hybrid is similar to the previous hybrid except that the challenger
outputs an obfuscation of Figure 3 (initialised with m0,m1, x,G, {MPKi}i∈[n]) along with G as
the challenge cipher-text.

H2(n+1)k+2 : This hybrid corresponds to the actual IND game when the challenger encrypts m1.

Let us now denote by γ the supremum of the quantity | Pr[D(O(C0)) = 1]− Pr[D(O(C1)) = 1] |,
where D is a polynomial time non uniform distinguisher and C0, C1 be polynomially sized arbritary
functionally equivalent circuits. In our instantiation, γ < 2−(n+2)k (Otherwise, there is an extractor
which will be able to extract a differing point with overwhelming probability; a contradiction).

Lemma 2. H0 is indistinguishable from hybrid H1.

Proof. Only thing to show here is that the circuits whose obfuscation is given out in these hy-
brids are equivalent. It is easy to see that the circuit described in Figure 2 when initialised with
(m0, G, {MPKi}i∈[n]) and the circuit in Figure 3 initialised with (m0,m1m0,m1, x,G, {MPKi}i∈[n])
with x = 1 are equivalent. Hence, | Pr[A(H0) = 1]− | Pr[A(H1) = 1] |< γ. The reduction is
straight forward and we omit the details.
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Constants: m0,m1, x,G, {MPKi}i∈[n].
Input: (UID,U1, .., Un, {KUID,i,Ui}i∈[n]). (some of Ui’s can be null in which case KUIDi,Ui

is also empty)
For all i ∈ [n] perform the following checks and output ⊥ if any of the check fails.

◦ Check that either Ui is null, (in which case KUID,i,Ui is also null), or

◦ Check that MPKi(UID,Ui,KUID,i,Ui) = 1

If UID,U1, .., Un < x− 1 output G(U1, .., Un,m1) else G(U1, .., Un,m0).

Figure 3: Program Encryptx

Lemma 3. H2(n+1)k+1 is indistinguishable from hybrid H2(n+1)k+2.

Proof. The proof of this statement is similar to the proof described for lemma 2. Only thing to
show here is that the circuits whose obfuscation is given out in these hybrid are equivalent. It is
easy to see that the circuit described in Figure 2 when initialised with m1, G, {MPKi}i∈[n] and the

circuit described in Figure 3 when initialised with m0,m1, x,G, {MPKi}i∈[n] and x = 2nk+k + 1
are equivalent. Hence, | Pr[D(H2(n+1)k+1) = 1]− | Pr[D(H2(n+1)k+2) = 1] |< γ.

Lemma 4. For any x ∈ [1, 2(n+1)k + 1], | Pr[A(Hx) = 1] − Pr[A(Hx+1) = 1] |< O(n · 2−(n+2)k)
for any polynomial time adversary A.

Proof. For this lemma, let us denote x − 1 = (UID′, U ′1, U
′
2, .., U

′
n) i.e. concatenation of n + 1

strings. We now list down the following sub hybrids:

Hx,1 : This hybrid is similar to hybrid Hx except that MSKi for any authority i is generated
differently. Challenger first samples a PRF key Ki. It parses x− 1 = (UID′, U ′1, U

′
2, .., U

′
n). Then,

it computes a punctured key K ′i ← F.Puncture(Ki, UID
′, U ′i) and αi ← F (Ki, UID

′, U ′i). MSKi

is now given out as a weak extractability obfuscation of circuit described in Figure 4. Informally,
Hx and Hx,1 are indistinguishable due to the security of obfuscation and the correctness of the
puncturable PRF.

Hx,2 : This hybrid is similar to hybrid Hx,1 except that MPKi for any authority i is gener-

Hard-wired: K ′i, αi, UID
′, U ′i .

Input: x

◦ If x 6= (UID′, U ′i) output F (K ′i, x) else output αi

Figure 4: Secret* circuit

ated differently. Challenger first samples a PRF key Ki. It parses x − 1 = (UID′, U ′1, U
′
2, .., U

′
n).

Then, it computes a punctured key K ′i ← F.Puncture(Ki, UID
′, U ′i) and αi ← F (Ki, UID

′, U ′i).
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MSKi is now given out as a weak extractability obfuscation of circuit described in Figure 5. Infor-
mally, Hx,1 and Hx,2 are indistinguishable due to the security of obfuscation and the correctness of
the puncturable PRF.

Hx,3 : This hybrid is the same as the previous hybrid except that for all i ∈ [n], αi is chosen

Hard-wired: K ′i, P (αi), UID
′, U ′i .

Input: x, σ

◦ If x 6= (UID′, U ′i) check that P (F (K ′i, x)) = P (σ) and output 1 if the check passes; 0
otherwise.

◦ Else check that P (αi) = P (σ) and output 1 if the check passes; 0 otherwise.

Figure 5: Verifier* circuit

randomly. Informally, Hx,2 and Hx,3 are indistinguishable due to the security of the puncturable
PRF.

Hx,4 : This hybrid is the same as the previous hybrid except that the challenge cipher-text is
computed as an obfuscation of circuit in 3 hard-wired with x + 1.. Informally, Hx,3 and Hx,4 are
indistinguishable due to the security of the injective one way function P .

Hx,5 : This hybrid is the same as the previous hybrid except that for all i ∈ [n], αi is com-
puted as an actual PRF evaluation. . Informally, Hx,4 and Hx,5 are indistinguishable due to the
security of the puncturable PRF.

Hx,6 : This hybrid is the same as the previous hybrid except that for any authority i, MSKi

is computed as an obfuscation of circuit described in the Authority Setup algorithm. Informally,
Hx,5 and Hx,6 are indistinguishable due to the security of obfuscation and the correctness of the
puncturable PRF.

Hx,7 : This hybrid is the same as the previous hybrid except that for any authority i, MPKi

is computed as an obfuscation of circuit described in Authority Setup algorithm. Informally, Hx,6
and Hx,7 are indistinguishable due to the security of obfuscation and the correctness of the punc-
turable PRF. This hybrid is same as the hybrid Hx+1.

Claim 1. For any p.p.t. distinguisher D, | Pr[D(Hx) = 1]− Pr[D(Hx,1) = 1] |≤ O(n · 2−nk−2k).

Proof. The difference between hybrids Hx and Hx,1 is the generation of public keys MSKi for all
authorities i ∈ [n]. Note that inHx it is generated honestly as described in the Authority Setup using
the PRF key K. In Hx,1 it is generated as an obfuscation of circuit described in Figure 4 (initialised
with punctured key K ′i and F (Ki, UID,Ui)). These two circuits are functionally equivalent. We
can hence define a sequence of | [n] \ S | hybrids where we replace one by one MSKi from being
genuinely constructed to one constructed as in Hx,1. Since O is (1, 2−(2n+2)k) weak extractability
obfuscator the differing advantage between each of these hybrids is less than 2−(n+2)k. Hence,
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overall | Pr[D(Hx) = 1]−Pr[D(Hx,1) = 1] |≤ O(n ·2−nk−2k). The reduction between these hybrids
is straight forward and we omit the details.

Claim 2. For any p.p.t. distinguisher D, | Pr[D(Hx,1) = 1]−Pr[D(Hx,2) = 1] |≤ O(n · 2−nk−2k).

Proof. The difference between hybrids Hx,1 and Hx,2 is the generation of public keys MPKi for all
authorities i ∈ [n]. Note that in Hx,1 it is generated honestly as described in the Authority Setup
using the PRF key K. In Hx,2 it is generated as an obfuscation of circuit described in Figure 5
(initialised with punctured key K ′i and P (F (Ki, UID,Ui))). These two circuits are functionally
equivalent. We can hence define a sequence of | [n] \ S | hybrids where we replace one by one
MPKi from being genuinely constructed to one constructed as in Hx,2. Since O is (1, 2−(2n+2)k)
weak extractability obfuscator the differing advantage between each of these hybrids is less than
2−(n+2)k. Hence, overall | Pr[D(Hx,1) = 1] − Pr[D(Hx,2) = 1] |≤ O(n · 2−nk−2k). The reduction
between these hybrids is straight forward and we omit the details.

Claim 3. For any p.p.t. distinguisher D, | Pr[D(Hx,2) = 1]−Pr[D(Hx,3) = 1] |≤ O(n · 2−nk−2k).

Proof. This lemma follows from the property that puncturable PRF’s output is psuedo-random at
punctured point given the punctured key (sub-exponential security of the puncturable PRF). We
parse x− 1 = (UID′, U ′1, .., U

′
n).

This proof goes through by a sequence of n hybrids where for each authority i ∈ [n], (K ′i, αi ←
F (Ki, UID

′, U ′i)) is replaced with (K ′i, αi
$←− R for all i ∈ [n] (Here Ki is the PRF key and K ′i is

the punctured key at point (UID′, U ′i)). This can be done because in both these hybrids, MSKi

and the encryption keys MPKi use only the punctured keys and a the value of the PRF at the
punctured point. Here, R is the co-domain of the PRF, which is equal to the domain of the injective
one way function P . Since, PRF is sub exponentially secure with parameter cPRF (cPRF be the
security constant of the PRF ) when PRF is initialised with parameter greater than (nk+2k)1/cPRF ,
distinguishing advantage between each intermediate hybrid is bounded byO(2nk−2k). The reduction
is straight forward and we omit the details.

Claim 4. For any p.p.t. distinguisher A, | Pr[A(Hx,3) = 1]− Pr[A(Hx,4) = 1] |≤ O(2−nk−2k).

Proof. Let Q denote a random variable that is defined as follows: Q = 0 when in any hybrid
Hx,2, (m0,m1, G) is given out by the adversary such that G(x− 1,m0) = G(x− 1,m1) and Q = 1
otherwise. We now make two observations:

1. For any PPT A, | Pr[A(Hx,2) = 1/Q = 0]− Pr[A(Hx,3) = 1/Q = 0] |< 2−(n+2)k.
For any adversary A and a hybrid challenger C such that Q = 0, If A has an advantage greater
than 2−(n+2)k, then there exists an algorithm B that breaks indistinguishability obfuscation
property of O with the same advantage.

B interacts with the obfuscation challenger as follows. B invokes A and the challenger of
the hybrid. The hybrid challenger runs the setup for corresponding authorities. Then A
queries for some tokens and the challenger replies to the query by giving out the tokens for
those authorities as done in the hybrid Hx,3. Finally, A outputs (m0,m1, G). Now, obfusca-
tion challenger gives B a string z which is the set of revealed public keys and tokens as well
as all the master secret keys.
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Now, B sets C0 as the program described in Figure 3 initialised with hard-wirings (m0,m1, G, x,
{MPKi}i∈[n]) and C1 as the program described in Figure 3 initialised with (m0,m1, G, x +
1, {MPKi}i∈[n]). Obfuscation challenger randomly picks up b ∈ {0, 1}. If b = 0, it obfuscates
C0 otherwise it obfuscates C1. B directly sends this obfuscation to A as the challenge cipher-
text. If b = 0, view of A is simulated as Hx otherwise it is simulated as Hx+1. B finally
outputs whatever A does. Hence, advantage of B is at least as much as the advantage of A in
distinguishing the hybrids. Since, O is a secure indistinguishability obfuscator with security
upper gap bounded by 2−(nk+2k), the claim holds.

2.
Pr[Q = 1]· | Pr[A(Hx,2) = 1/Q = 1]− Pr[A(Hx,3) = 1/Q = 1] |<

max{O(2−(nk−2k)), O(1/2µ
cowp1−n−1), O(2−µ

cowp2/2+n+1)}

Here cowp1 > 0 and cowp2 > 0 are constants for the sub-exponential injective one way function.

Let us now assume that Pr[Q = 1]εQ=1/2
n+1 > 2−nk−2k/2n+1 as otherwise the claim triv-

ially holds. Now, if such a condition is true then we construct an inverter that inverts
the injective one way function with probability p = Pr[Q = 1]εQ=1/2

n+1 and takes time

t = O(22n/ε2Q=1 · poly(k, n)). Again we assume that, p > Ω(2−µ
cowp2

) or otherwise there is
nothing to prove and the observation trivially holds. If this assumption is true then it must
mean that t > Ω(2µ

cowp1
) (due to the security of injective one way function), which gives us

our desired result on some manipulation.

We now assume Pr[Q = 1]εQ=1/2
n+1 > 2−nk−2k−n−1 and describe our inverter B. B works

as follows:

(a) Invokes A and gets [n]. It sends n to the injective one way function challenger and gets
(P (r1), .., P (rn)) as the challenge.

(b) B samples the punctured PRF keys K ′i for all i ∈ [n] (Punctured at (UID′, U ′i)) and
uses P (ri) along with the key to generate the public key MPKi as per circuit described
in Figure 5.

(c) When A asks for any MSKi it asks the injective one way function challenger for ri and
uses this value along with K ′i to generate MSKi.

(d) When A asks for tokens by querying (UID, i, U) it computes and sends F (K ′i, UID,U)
if UID,U 6= UID′, U ′i , otherwise it asks injective one way function challenger for ri and
sends it over to A.

(e) A declares (m0,m1, G). If G(x− 1,m0) = G(x− 1,m1), B aborts.

(f) Let C0 be the program described in Figure 3 initialised with (m0,m1, x,G,
{MPKi}i∈[n]) and C1 as the program described in Figure 3 initialised with (m0,m1, x+
1, G, {MPKi}i∈[n]). Let S denote the set and i ∈ S for which either MSKi was queried
till this point or (UID′, i, U ′i) was submitted as a token query.

(g) B now selects a set t ( [n] such that t ∪ S 6= [n] and gets ri for all i ∈ t. Our
extractor now computes ri for all i ∈ [n], using these values. B runs an extractor
(r1, .., rn)← E(C0, C1, z) on the following distinguisher L where z is the auxiliary input
set as all the messages given to A till the previous point, keys K ′i for all i ∈ [n] and ri
for all i ∈ t ∪ S.
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i. L uses z to invoke A till the previous point.

ii. A now gets an obfuscation of C0 or C1.

iii. A can query for MSKi and tokens by querying (UID, i, U). These are generated
using z. If the response cannot be generated (when ri needs to be known for i /∈ t∪S
) it outputs 0.

iv. A outputs b′. If for all i ∈ t∪S, ri’s were required by L, output b′ otherwise output
0.

Note that any valid A does not ask to invert all ri∀i ∈ [n]. This is because G(x − 1,m0) 6=
G(x− 1,m1) hence it does not form a valid query set.

Let us now analyse the running time and probability of success for B. B breaks the as-
sumption on the injective one way function with probability at least P [Q = 1]εQ=1/2

n+1.
Following is the argument:
Let τ1 denote the transcript between A (along with K ′i∀i ∈ [n] and queried MSKi’s) and the
hybrid challenger before the cipher-text is given out when Q = 1. We say that τ1 is good
if the advantage conditioned on this transcript, εQ=1,τ1 > εQ=1/2. Then, one can show that
Pr[τ1 is good ] > εQ=1/2. This follows from the fact that, εQ=1 > εQ=1,τ1 is goodPr[τ1 is good]+
εQ=1,τ1 is not goodPr[τ1 is not good]. Assuming, Pr[τ1 is not good] < εQ=1/2 gives us a con-
tradiction.
Now we denote by T the set of ri’s asked by A (either by querying MSKi or querying
(UID′, i, U ′i) for a token).

| Pr[A(Hx,3) = 1/Q = 1, τ1]− Pr[A(Hx,4) = 1/Q = 1, τ1] > εQ=1/2 |

For all t ( [n],

Σt | Pr[A(Hx,3) = 1 ∩ T = t/Q = 1, τ1 − Pr[A(Hx,4) = 1 ∩ T = t/Q = 1, τ1] |

> εQ=1/2

Since number of such subsets is bounded by 2n, there exists a set t∗ such that

| Pr[A(Hx,3) = 1 ∩ T = t∗/Q = 1, τ1 − Pr[A(Hx,4) = 1 ∩ T = t∗/Q = 1, τ1] |

> εQ=1/2
n+1

We note that B runs extractor on distinguisher L using apriori fixed set t. If t is guessed as
t∗ (which occurs with probability at least 1/2n)

| Pr[L(C0, C1,O(C0), z) = 1]− Pr[L(C0, C1,O(C1), z) = 1] |>

| Pr[A(Hx,3 ∩ T = t∗/Q = 1, τ1) = 1]− Pr[A(Hx,4 ∩ T = t∗/Q = 1, τ1) = 1] |

> εQ=1/2
n+1

Hence, probability that B extracts a point (x − 1, r1, .., rn) is at least Pr[Q = 1] · P [t =
t∗] · Pr[τ1 is good] > Pr[Q = 1]εQ=1/2

n+1. Assuming the advantage of L, εQ=1/2
n+1 >

2−2nk−2k (or else the observation trivially holds), we can run the extractor which runs in time
O(22n · poly(k)/ε2Q=1) which is calculated from its distinguishing advantage of L.

22



From the two observations above if µ is set greater than max{(nk + 2k)1/cowp2 , (nk + 2k)2/cowp2},
we prove the claim.

Claim 5. For any p.p.t. distinguisher D, | Pr[D(Hx,4) = 1]− Pr[D(Hx,5) = 1] |≤ O(n.2−nk−2k).

Proof. This claim follows from the property that puncturable PRF’s value is psuedo-random at
punctured point given the punctured key (sub-exponential security of the puncturable PRF). The
proof is similar to the proof of indistinguishability between Hx,2 and Hx,3. Hence, we omit the
details to avoid repetition.

Claim 6. For any p.p.t. distinguisher D, | Pr[D(Hx,5) = 1]− Pr[D(Hx,6) = 1] |≤ O(n.2−nk−2k).

Proof. This claim follows from the security of the obfuscation and correctness of the puncturable
PRF. The proof is similar to the proof of indistinguishability between Hx,1 and Hx,2. Hence, we
omit the details to avoid repetition.

Claim 7. For any p.p.t. distinguisher D, | Pr[D(Hx,6) = 1]− Pr[D(Hx,7) = 1] |≤ O(n.2−nk−2k).

Proof. This claim follows from the security of the obfuscation and correctness of the puncturable
PRF. The proof is similar to the proof of indistinguishability between Hx and Hx,1. Hence, we
omit the details to avoid repetition.

From the claims above we get that for any PPT distinguisher D, Pr[A(Hx) = 1]− Pr[A(Hx+1) =
1] ≤ O(n.2−(n+2)k)

From the lemmas above, we get that, | Pr[A(H0) = 1]−Pr[A(H2(n+1)k+2) = 1] |≤ Σx | Pr[A(Hx) =

1]− Pr[A(Hx+1) = 1] ≤ 2(n+1)k ·O(n · 2−(n+2)k) + negl(k) < O(n · 2−k) + negl(k). This concludes
the proof.

4.2 Applications

In this section, we list a few applications of multi-authority functional encryption.

1. Multi-Authority ABE: [LW11] constructs a multi-authority attribute based encryption
scheme where any authority can be set up independently and without any interaction with
any other authority. Their work was the state of art on this topic and handles access policies
in monotone NC1. It required a global parameter generation and a random oracle.
Our work immediately results in a multi-authority attribute based encryption scheme: En-
cryptor encrypts the message along with a policy F that on input (U1, .., Un) checks that it
satisfies the required access structure A on attributes. If it does, outputs m otherwise ⊥.
Our construction does not require any global parameter generation and a random oracle.
Additionally, it can handle policies in a bigger class of access structures i.e. monotone P .
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2. Functional Secret Sharing for monotone P : [BBDK00] coined a primitive called as func-
tional secret sharing for t-out-of- n access structures. Informally, a dealer can secret share
a secret s among n players. Any subset [B] ⊂ [n] of size greater than t can run a protocol
FB,f using their shares si and some randomness ri for i ∈ B to learn the value f(s). Security
property is with respect so a subset C ⊂ [n] of size less than t and is two fold: before evalu-
ation security and after evaluation security. In before evaluation security, one requires that
given the view of the C (shares of parties in C) an (computationally bounded/information
theoretic) adversary should not be able to distinguish whether it is a sharing of s or s′ 6= s.
In after evaluation security, for a priory chosen f , given the view of C when a set B runs FB,f
(shares and randomness of the parties in C, messages sent to and fro from the parties in C to
parties in B while performing this computation), it should happen that any (computation-
ally/bounded) adversary should not be able to distinguish whether the sharing corresponds
to s or s′ 6= s for which f(s) = f(s′).
[BBDK00] defines both non interactive and interactive functional secret sharing (depending
if the protocol FB,f has one or more rounds). The more interesting case is of achieving
non interactive functional secret sharing using only broadcast channel (assuming no private
channel between parties). They present information theoretic constructions only for linear
functions and t-out-of n threshold access structures. Using a multi-authority functional en-
cryption scheme, one can construct computational functional secret sharing scheme for any
access structure in monotone P that can allow evaluation for any polynomial sized circuit.
For details, refer appendix B.

5 Constructing Delegatable Functional Encryption

Let HIBE be a sub-exponentially secure hierarchical identity based encryption. iO be a sub-
exponentially secure indistinguishability obfuscation and F = (Setup,
Puncture,Eval) (slightly abusing notation, we refer F (K,x) as evaluation of PRF at x even if the
key is punctured) be a sub-exponentially secure puncturable psuedo-random function. We now
describe our construction. Let 0 < cio, cPRF , cHIBE < 1 be the respective security constants. For
syntax and security definition of HIBE refer section 2.4.

◦ Setup(1k, n): On input the security parameter 1k and n the setup algorithm runs HIBE.Setup(1λ,
n, k) → (PK,SK). Here nk + k denote the length of the identity and n denotes the max-
imum level of delegation. The algorithm sets MSK = SK and MPK = PK and outputs
(MPK,MSK). λ is set greater than (nk + 2k)1/cHIBE .

◦ Enc(MPK,m) The algorithm samples a puncturable PRF key F.Setup(1µ) → K and obfus-
cates the circuit described in Figure 6 with security parameter 1γ (γ can be set more than
(nk+2k)1/cio). µ can be set such that it maps to the space of randomness of HIBE encryption
algorithm and greater than (nk + 2k)1/cPRF

◦ KeyGen(MSK, f) : On input a function f of size at most k, the algorithm computes an HIBE
key for identity vector (−, ...,−, f) and outputs it as SKf .

◦ Del(SKf , f
′): The delegation algorithm takes as input an HIBE key for identity f = (−, ..,−, fi

, .., f1) and f ′ and computes an HIBE key for (−, ..,−, f ′, fi, .., f1) and outputs it as SKf ′·f .
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Hard-wired: MPK,K,m.
Input: f ∈ {0, 1}nk+k

– Parse f = (fn+1, .., f1) ∈ ({0, 1}k)n+1 and compute a = fn+1 · ... · f1(m)

– Output HIBE.Enc(MPK, f, a;F (K, f)) (HIBE encryption using the identity vector
(fn+1, .., f1))

Figure 6: Encryption circuit

◦ Dec(SKfi·...·f1 , CT ) : The decryption algorithm first computes CT (id, .., id, fi, .., f1) = c (in-
put to the circuit is the concatenation id||, .., id||fi||...||f1) to recover an HIBE cipher-text
for identity vector (id, id, .., id, fi, .., f1) and then uses SKfi,..,f1 to decrypt it using HIBE de-
cryption algorithm and outputs whatever it outputs. Here id is a k bit representation of the
identity function.

5.1 Security Proof

Theorem 8. Assuming existence of a sub-exponentially secure indistinguishability obfuscator and
a sub-exponential hierarchical identity based encryption there exists a secure delegatable functional
encryption scheme.

Proof. We now prove that the scheme described above is secure. We begin by listing down indistin-
guishable hybrids where the first hybrid corresponds to the challenge game in which the adversary
is given an encryption of m0 and the final hybrid corresponds to the case in which the adversary is
given an encryption of m1.

Hybrid0: In this hybrid the challenger does the setup to compute HIBE keys (MPK,MSK)
as the master setup keys for FE scheme. Any key query and delegation query is responded as done
in the algorithms. Upon receiving the challenge message vector (m0,m1), the challenger encrypts
m0 using the encryption algorithm.

Hybridu∈[1,2nk+k+1] : This hybrid is the same as the previous one except that the cipher-text
is now an encryption of circuit in Figure 7.

Hybrid2nk+k+2 : In this hybrid the challenger does the setup to compute HIBE keys (MPK,MSK)
as the master setup keys for FE scheme. Any key query and delegation query is responded as done
in the algorithms. Upon receiving the challenge message vector (m0,m1), the challenger encrypts
m1 using the encryption algorithm.

Lemma 5. For any ppt algorithm D, | Pr[D(Hybrid0) = 1]−Pr[D(Hybrid1) = 1] |< O(2−nk−2k).

Proof. This lemma follows from the security of indistinguishability obfuscation. Note that the

25



Hard-wired: MPK,K,m0,m1, u.
Input: f ∈ {0, 1}nk+k

◦ Parse f = (fn+1, .., f1). If f ≥ u− 1 compute a = fn+1 · ... · f1(m0) otherwise compute
a = fn+1 · ... · f1(m1).

◦ Output HIBE.Enc(MPK, f, a;F (K, f)) (HIBE encryption using the identity vector
(fn+1, .., f1))

Figure 7: Encryption circuit*

hybrids differ only in the way the cipher-text is produced. In hybrid 0, the cipher-text is produced
as an obfuscation of circuit described in Figure 6 and in hybrid 1 it is produced as an obfuscation
of circuit in Figure 7 initialised with (MPK,K,m0,m1, u = 1). These two circuits are equivalent
hence by the sub-exponential security of indistinguishability obfuscation, the lemma follows.

Lemma 6. For any ppt algorithm D, | Pr[D(Hybrid2nk+k+1) = 1] − Pr[D(Hybrid2nk+k+2) =
1] |< O(2−nk−2k).

Proof. This lemma follows from the security of indistinguishability obfuscation. Note that the
hybrids differ only in the way the cipher-text is produced. In hybrid 2nk+k + 1, the cipher-text is
produced as an obfuscation of circuit in Figure 7 with u = 2nk+k + 1 and in hybrid 2nk+k + 2 it is
produced as an obfuscation of circuit in Figure 6. These two circuits are equivalent hence by the
sub-exponential security of indistinguishability obfuscation, the lemma follows.

Lemma 7. For any u ∈ [1, 2nk+k] ppt algorithm D, | Pr[D(Hybridu) = 1]−Pr[D(Hybridu+1) =
1] |< O(2−nk−2k).

Proof. Let Q denote a random variable that is defined as follows. Q = 0, when in Hybridu or
Hybridu+1, (m0,m1) released is such that for u = (fn+1, .., f1), fn+1 ·...·f1(m0) = fn+1 ·...·f1(m1).
We say that Q = 1 otherwise. Now, we make following claims:

Claim 8. Conditioned to Q = 0, for any ppt algorithm D, | Pr[D(Hybridu) = 1]−Pr[D(Hybridu+1) =
1] |< O(2−nk−2k).

Proof. This claim is straight forward and follows from the security of indistinguishability obfus-
cation. This is because when Q = 0, in hybrid u and u + 1 the cipher-text is generated as an
obfuscation of circuit in Figure 7 initialised with u and u + 1 respectively. These two circuits are
equivalent when Q = 0.

Let us now assume Q = 1. We now define sub hybrids between Hybridu and Hybridu+1 as
follows:
Hybridu,1 : This hybrid is same as Hybridu except that generation of the cipher-text is done as
follows. The challenger samples a puncturable PRF key K and sets α = F (K,u). The PRF key K
is now punctured at u as K ′. It parses u = (fn+1, .., f1) and computes a = fn+1 · .. · f1(m0). Then
it evaluates c = HIBE.Enc(MPK,u, a;α). Encryption is now given out as an obfuscation of circuit
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described in Figure 8.

Hybridu,2 : This hybrid is same as Hybridu,1 except that generation of the cipher-text is

Hard-wired: MPK,K ′,m0,m1, u, c.
Input: f ∈ {0, 1}nk+k

◦ If f = u output c. Otherwise,

◦ Parse f = (fn+1, .., f1). If f ≥ u− 1 compute a = fn+1 · ... · f1(m0) otherwise compute
a = fn+1 · ... · f1(m1).

◦ Output HIBE.Enc(MPK, f, a;F (K ′, f)) (HIBE encryption using the identity vector
(fn+1, .., f1))

Figure 8: Encryption circuit**

done as follows. The challenger samples a puncturable PRF key K and samples α randomly from
the space of randomness for the HIBE encryption scheme. The PRF key K is now punctured
at u as K ′. It parses u = (fn+1, .., f1) and computes a = fn+1 · .. · f1(m0). Then it evaluates
c = HIBE.Enc(MPK,u, a;α). Encryption is given out as an obfuscation of circuit described in
Figure 8.

Hybridu,3 : This hybrid is same as Hybridu,2 except that generation of the cipher-text is done
as follows. The challenger samples a puncturable PRF key K and samples α randomly from
the space of randomness for the HIBE encryption scheme. The PRF key K is now punctured
at u as K ′. It parses u = (fn+1, .., f1) and computes a = fn+1 · .. · f1(m1). Then it evaluates
c = HIBE.Enc(MPK,u, a;α). Encryption is given out as an obfuscation of circuit described in
Figure 8.

Hybridu,4 : This hybrid is same as Hybridu,3 except that generation of the cipher-text is done as
follows. The challenger samples a puncturable PRF key K and computes α = F (K,u). The PRF
key K is now punctured at u as K ′. It parses u = (fn+1, .., f1) and computes a = fn+1 · .. · f1(m1).
Then it evaluates c = HIBE.Enc(MPK,u, a;α). Encryption is given out as an obfuscation of circuit
described in Figure 8.
Few claims are in order.

Claim 9. Conditioned on Q = 1, for any ppt algorithm D, | Pr[D(Hybridu) = 1]−Pr[D(Hybridu,1) =
1] |< O(2−nk−2k).

Proof. This claim follows from the security of the indistinguishability obfuscation scheme and the
correctness of the puncturable PRF. This is because when Q = 1, in hybrid u the cipher-text is
generated as an obfuscation of circuit in Figure 7, initialised with PRF key K. In hybrid u, 1
cipher-text is generated as obfuscation of circuit in Figure 8 initialised with punctured PRF key K ′

and evaluation c at the punctured point. These two circuits are equivalent if the punctured PRF
satisfies correctness. The claim then follows from the security of obfuscation scheme.
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Claim 10. Conditioned on Q = 1, for any ppt algorithm D, | Pr[D(Hybridu,1) = 1]−Pr[D(Hybridu,2) =
1] |< O(2−nk−2k).

Proof. This claim follows from the sub-exponential security of the punctured PRF. This is because
when Q = 1, in hybrid u, 1 the cipher-text is generated as an obfuscation of circuit described
in Figure 8, initialised with punctured PRF key K ′ and c = HIBE.Enc(MPK,u, a;F (K,u)). In
hybrid u, 2 cipher-text is generated as obfuscation of circuit described in Figure 8 initialised with
punctured PRF key K ′ and a random HIBE cipher-text c encrypting a. The claim then follows if
the punctured PRF is psuedo-random at punctured points.

Claim 11. Conditioned on Q = 1, for any ppt algorithm D, | Pr[D(Hybridu,2) = 1]−Pr[D(Hybridu,3) =
1] |< O(2−nk−2k).

Proof. This claim follows from the sub-exponential security of the HIBE scheme. Let u = (fn+1, .., f1)
and ab = fn+1 · ... · f1(mb) for b ∈ {0, 1}. When Q = 1, in hybrid u, 2 the cipher-text is
generated as an obfuscation of circuit in Figure 8, initialised with punctured PRF key K ′ and
c = HIBE.Enc(MPK,u, a0). In hybrid u, 2 cipher-text is generated as obfuscation of circuit de-
scribed in Figure 8 initialised with punctured PRF key K ′ and a random HIBE cipher-text c
encrypting a1. In both hybrids, when Q = 1, the adversary cannot ask for HIBE decryption keys
that allows decryption c. This is because he cannot ask for functional encryption keys for the
function vector u as Q = 1. Hence due to sub-exponential security of HIBE the claim follows.

Claim 12. Conditioned on Q = 1, for any ppt algorithm D, | Pr[D(Hybridu,3) = 1]−Pr[D(Hybridu,4) =
1] |< O(2−nk−2k).

Proof. This claim follows from the sub-exponential security of the punctured PRF. This is because
when Q = 1, in hybrid u, 4 the cipher-text is generated as an obfuscation of circuit in Figure 8,
initialised with punctured PRF key K ′ and c = HIBE.Enc(MPK,u, a;F (K,u)). In hybrid u, 3
cipher-text is generated as obfuscation of circuit in Figure 8 initialised with punctured PRF key
K ′ and a random HIBE cipher-text c encrypting a. The claim then follows if the punctured PRF
is psuedo-random at punctured points.

Claim 13. Conditioned on Q = 1, for any ppt algorithm D, | Pr[D(Hybridu,4) = 1]−Pr[D(Hybridu+1) =
1] |< O(2−nk−2k).

Proof. This claim follows from the security of the indistinguishability obfuscation scheme and the
correctness of the puncturable PRF. This is because when Q = 1, in hybrid u+ 1 the cipher-text is
generated as an obfuscation of circuit in Figure 7, initialised with PRF key K. In hybrid u, 4 cipher-
text is generated as obfuscation of circuit described in Figure 8 initialised with punctured PRF key
K ′ and evaluation c at the punctured point. These two circuits are equivalent if the punctured
PRF satisfies correctness. The claim then follows from the security of obfuscation scheme.

Combining all the claims we get that for any ppt algorithmD, | Pr[D(Hybridu) = 1]−Pr[D(Hybridu+1) =
1] |< O(2−nk−2k).
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Summing up we have that

| Pr[D(Hybrid0) = 1]− Pr[D(Hybrid2nk+k+2) = 1] |

≤ 2negl(k) + Σu | Pr[D(Hybridu) = 1]− Pr[D(Hybridu+1) = 1] |

This implies that,

| Pr[D(Hybrid0) = 1]− Pr[D(Hybrid2nk+k+2) = 1] |≤ 2negl(k) + 2nk+kO(2−nk−2k)
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A Completing proofs of (1, δ) weak extractability obfuscator

Theorem 9. Assuming sub-exponentially secure indistinguishability obfuscation, there exists (1, δ)
weak obfuscator for P/poly for any δ > 2−k, where k is the size of the circuit.
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Proof. We now construct a (1, 2−k) input weak extractability obfuscator from sub-exponentially
secure indistinguishability obfuscation. Following algorithm describes the obfuscation procedure.

weO(1k, C) : The procedure outputs C ′ ← iO(1k
1/α
, C). Here, α > 0 is a constant chosen such

that any polynomial time adversary against indistinguishability obfuscation has security gap upper
bounded by 2−k/4.

Correctness and polynomial slowdown follows from the properties of the indistinguishability ob-
fuscator. Now we formally describe the extractor E. Let us assume that the circuits (C0, C1)
take as n bit inputs and there is an adversary A for which 1 ≥ ε(k) > 2−k. Here, 2−k/4 is the
indistinguishability gap corresponding to weO for equivalent circuits of size k and n = O(k) inputs.

We construct an extractor that runs in O(n.(2tA + poly(k)).k.1/ε2) time and extracts the dif-
fering input with overwhelming probability. The algorithm takes as input two circuits, auxillary
input to the adversary z and distinguishing gap ε and outputs the differing input d. For simplicity,
lets assume that:

Pr[A(1k, weO(1k, C0), C0, C1, z) = 1] < Pr[A(1k, weO(1k, C1), C0, C1, z) = 1]

Otherwise, the extractor can be run twice using the different sign for this advantage.

Our extractor is described in figure 9. For now, assume that there is a single differing input
d. Intuitively, our extractor predicts the differing input bit by bit. For an index i ∈ [n], E defines
a circuit Cmid that on input x computes Cxi(x), where xi is the ith bit of x. One can check that
for b ∈ {0, 1}, when di = b, then Cb and Cmid are equivalent. Our extractor, knows that the
distinguishing advantage of A satisfies that

Pr[A(1k, weO(1k, C0), C0, C1, z) = 1] + ε < Pr[A(1k, weO(1k, C1), C0, C1, z) = 1]

It estimates the advantage of A in distinguishing C0 with Cmid and similarly the advantage of A
in distinguishing Cmid with C1 (by repeating experiments many times). Because the advantage
of adversary in distinguishing obfuscation of two equivalent circuits is smaller than 2−k/4 (due
to security of indistinguishability obfuscation), it compares the the two advantage and if it finds
that advantage of distinguishing obfuscation of Cb from that of Cmid is less than the advantage
advantage of distinguishing obfuscation of C1−b from that of Cmid, it outputs di = b.

Lemma 8. Suppose there exists circuits C0, C1 ∈ Ck (set of circuits with size k) with n = O(k)
input bits and disagreeing on at most single input, and auxiliary input z for which

| Pr[A(1k, weO(1k, C0), C0, C1, z) = 1]− Pr[A(1k, weO(1k, C1), C0, C1, z) = 1] |≥ ε(k)

where 2−k < ε ≤ 1 Then the algorithm E on input (1k, C0, C1, z, ε) terminates within expected time
O(n.(2tA+poly(k)).1/ε2) and it holds that Pr[v ← E(1k, C0, C1, z, ε) : C0(v) 6= C1(v)] ≥ 1−negl(k)

Proof. Lemma follows from the two claims below..

Claim 14. E runs in expected O(n.(2tA + poly(k)).k.1/ε2) time where tA is the expected running
time of the adversary A.
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Input: C0, C1, z, ε

1. initialise d = 0

2. For i = 1 to n

(a) Initialise Li = 0, Ri = 0

(b) For j ∈ [t = k/ε2]

i. Using Figure 10 compute, Li,j = A(weO(CC0,C1,i
Mid ), C0, C1, z) −

A(weO(C0), C0, C1, z)

ii. Using Figure 10 compute, Ri,j = A(weO(C1), C0, C1, z) −
A(weO(CC0,C1,i

Mid ), C0, C1, z)

iii. Li = Li + Li,j

iv. Ri = Ri +Ri,j

(c) If Li < Ri set di = 0 else set di = 1

3. Output d if C0(d) 6= C1(d), ⊥ otherwise.

Figure 9: Extractor E

Constants: C0, C1, i ∈ [n].
Input: x ∈ {0, 1}n

◦ If xi = 0 output C0(x).

◦ If xi = 1 output C1(x).

Figure 10: Program CC0,C1,i
Mid

Proof. Let us analyse expected running time of the algorithm E. The algorithm predicts bit by
bit the differing input d. For each bit i ∈ [n], the extractor repeats inner loop t = k/ε2 times.
Each execution of the inner loop has an expected termination time of 2tA+poly(k) where poly(k)
represents time to compute challenge obfuscation and other computation steps. Hence, time taken
to run E is O(n.(2tA + poly(k)).1/ε2)

Claim 15. E succeeds with an overwhelming probability.

Proof. Let us analyse the success probability of the extractor. If the circuits are equivalent then
differing advantage of the adversary between the obfuscations of the circuits cannot be greater than
or equal to ε, due to the sub-exponential security of indistinguishability obfuscation. In this case
the extractor always outputs ⊥.

Assuming that there is a differing input d, then let Ui denote the event that di is incorrectly
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predicted by the extractor in the ith loop. We need to show that Pr[∪i∈[n]Ui] < negl(k). We claim
this by bounding Pr[Ui] for any i ∈ [n] and applying union bound.

Let us calculate the probability that di is incorrectly calculated given that di = 0 (In this case
CC0,C1,i
Mid and C0 are functionally equivalent). This is probability is equal to Pr[Ri ≤ Li/di = 0],

where Ri − Li is calculated by the program E during loop i (i.e. when the program predicts
di). Zi = Ri − Li = Σj∈[t]Ri,j − Li,j is a random variable that sums the intermediate summands

(Ri,j−Li,j) during the jth execution of the inner loop, while predicting di. Define Zi,j = Ri,j−Li,j .
We need to bound Pr[Zi ≤ 0].

We now use the following chernoff bound for achieving this. Given X = X1 + .. + XN where
each Xi ∀i ∈ [N ] are independent random variables in [0, 1] and µ = E(X). Then, for any α ≥ 0
we have that, Pr[X ≤ (1− α)µ] ≤ e−α2µ/2.

In order to apply this chernoff bound, we define Z ′i,j = (Zi,j + 2)/4 and Z ′i = Σj(Zi,j + 2)/4
and upper bound Pr[Zi < 0] = Pr[Z ′i < t/2]. Let E(Zi) = p.t for some p > 0 (by assumption that
Pr[C̃ ← weO(1k, C0) : A(1k, C̃, C0, C1, z) = 1] < Pr[C̃ ← weO(1k, C1) : A(1k, C̃, C0, C1, z) = 1]).
On some computation we get that Pr[Zi < 0] = e−p

2t/8(p+2). Now we compute p.

For any j ∈ [t], we have that p = E(Ri,j/di = 0)−E(Li,j/di = 0). It is easy to see that E(Ri,j/di = 0)

is the advantage of the adversary in distinguishing the obfuscation of CC0,C1,i
Mid when di = 0 from that

of C1 and similarly E(Li,j/di = 0) is the advantage of the adversary in distinguishing the obfuscation

of CC0,C1,i
Mid from that of C0 when di = 0 . Note that, E(Ri,j/di = 0)+E(Li,j/di = 0) > ε (due to the

assumption that, Pr[A(1k, weO(1k, C0), C0, C1, z) = 1] + ε < Pr[A(1k, weO(1k, C1), C0, C1, z) =
1]).

Since di = 0, | E(Li,j/di = 0) |< 2−k/4 due to subexponential security of the indistinguisha-
bility obfuscation. From these observations, we have that p ≥ ε− 2.2−k/4. Since ε > 2−k, p > ε/2
hence, when t is set as k/ε2, Pr[Zi < 0] ≤ e−k/16.

Similarly when di = 1, we can upper bound probability of incorrect prediction of di as Pr[Ri >
Li] ≤ e−k/16, when t = k/ε2. This proves ∀i ∈ [n], P r(Ui) < negl(k).

B Constructing Functional Secret Sharing

In this section, we describe the connection between MAFE and functional secret sharing as proposed
in [BBDK00]. We now describe formally syntax and properties,

A secret sharing scheme for a family of functions F is a distribution scheme which satisfies the
following two conditions:
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Evaluation. For any set B ⊂ U of size B ∈ A (A is in the set of allowed access structure
e.g. monotone P e.t.c.) and any f ∈ F the parties in B can evaluate f(s). That is, there is a
protocol FB,f which given the shares of B as inputs will always output the correct value of f(s).
The scheme is called non interactive if FB,f is one round, and interactive otherwise. Depending on
the communication model, a broadcast channel or private channels are used.

Security. Let X be a random variable on the set of secrets S and C be a set C /∈ A. For
any two secrets s, s

′ ∈ S, {(V IEWC |X = s) =< si >i∈C} ≈c {(V IEWC |X = s
′
) =< s

′
i >i∈C}.

After evaluation. For any f ∈ F and any B ∈ A, any secrets s, s
′

with f(s) = f(s
′
), any shares

< si >C , any inputs < ri >B∩C , and any messages M(< si >B, < ri >B) from the computation of
f(s) by B received by parties in C.

{(V IEWC |X = s) =< si >C , < ri >B∩C ,M(< si >B, < ri >B)} ≈c
{(V IEWC |X = s

′
) =< si >C , < ri >B∩C ,M(< si >B, < ri >B)}

Theorem 10. IND− 1 secure MAFE secure against query of one token per authority implies the
existence of a computational functional secret sharing scheme.

Proof. Now we describe a non interactive functional secret sharing scheme in a broadcast channel.
Let’s discuss the algorithms.

Share(n,A, s) : To secret share s among n parties according to access policy A dealer does the
following.

1. For j ∈ [n] run MAFE.Authority setup(1k)→ (MPKj ,MSKj).

2. Computes CT ← MAFE.Encrypt(MPK1, ..,MPKn, UA, s). Here UA, on input (x1, .., xn)
checks that there is a subset I ⊂ [n] and xi = f∀i ∈ I and ⊥ otherwise. It also checks that I
satisfies A. If the checks passes, it outputs f(s).

3. Share of player i is MPK1, ..,MPKn, CT,MSKi.

Recon(MPK1, ..,MPKn,CT,MSKj∈B∈A). For reconstruction, each party j computes

Kj ← MAFE.KeyGen(MSKj , 0, id)

(where id is the identity function) and broadcasts it to all parties in B. Each party then recon-
structs secret as s← MAFE.Decrypt({Kj,id}j∈B, CT ).

Evaluation works as follows, Let B ∈ A be a set of players participating in functional evalua-
tion. Each party j ∈ B computes Kj,f ← MAFE.KeyGen(MSKj , 0
, f) and broadcasts this to all players inB. Each player then recovers f(s)← MAFE.Decrypt({Kj,f}j∈B, CT ).

Let us discuss now security of the scheme.
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Before evaluation. For any C /∈ A, view of C consists of (MPK1, ..,MPKn,
MSKj∈C , CT = MAFE.Encrypt(MPK1, ..,MPKn, UA, s)). Since, C /∈ A, by the security of MAFE,

{MPK1, ..,MPKn,MSKj∈C , CT = MAFE.Encrypt(MPK1, ..,MPKn, UA, s)} ≈c

{MPK1, ..,MPKn,MSKj∈C , CT
′

= MAFE.Encrypt(MPK1, ..,MPKn, UA, s
′
)}

for all s
′

After evaluation. For any set B ∈ A and C /∈ A, V IEWC in the evaluation of f ∈ F con-
tains (MPKj∈[n], CT = MAFE.Encrypt(MPK1, ..,MPKn, UA, s),
MSKj∈B∩C ,Kj∈B,f ). By security of multi- authority functional encryption scheme, this view is
computationally indistinguishable from when s

′
was shared where f(s) = f(s

′
) (since f, s, s′ are

known ahead of time).

We stress that we in fact need a multi-authority functional encryption scheme secure against single
token query per authority and for policy functions of the form UA(·) (described in the previous the-
orem). Such schemes can be constructed without using obfuscation from homomorphic encryption,
single key secure functional encryption and one way functions. We describe the construction but
omit the security proof here.

Notation. Let κ be the security parameter. Let FHE denote a compact fully homomorphic
encryption scheme. We are going to construct MAFE for circuits output m(κ) bits. Let FHE
ciphertext corresponding to these many bits be bounded by len = len(κ). We will use a computa-
tional secret sharing scheme for monotone poly sized boolean circuits [VNS+03]. We denote this
scheme by SS. Also, we annotate by FE a single authority functional encryption scheme (IND)
secure against bounded non adaptive function key queries. Such schemes are known to exist under
classical assumptions [GVW12] [GKP+13]. Gb denotes Yao’s circuit garbling scheme. For a given
access structure A, Π(s, i) denotes ith secret share of s according to secret sharing scheme used in
the scheme. To distinguish two independently generated shares of same secret we use subscripts
e.g. Π0(s, i),Π1(s, i) denotes ith shares of secret s in sharing ”0” and sharing ”1”. Whenever a
secret is shared only once this subscript is dropped. Also assume that for authorities are named in
1 through n and access structures A have inputs named in [n].

Authority Setup(1κ): Each authority i runs setup of single key functional encryption scheme len
times, {FE.Setup(1κ) → (PKi,j , SKi,j)}j∈[1,len]. MPKi = {PKi,j}∀j and MSKi = {SKi,j}∀j ∈
[len].

Encrypt({MPKi}i∈[n]), UA,m) :

1. Run FHE.KeyGen(1κ)→ (HPK,HSK). Compute m̂← FHE.Enc(HPK,m).

2. Compute a garbled circuit for decryption circuit for FHE for len inputs.
Gb.Garble(1κ,FHE.DecHSK(·))→ (Γ, Lp,q)p∈[0,1],q∈[1,len].

3. For each label Lp,q, secret share Lp,q according to A using secret sharing scheme SS.

4. Cipher text consists of HPK, Γ and ciphertexts
{CTi,j = FE.Encrypt(PKi,j , HPK, m̂,Π(L0,j , i),Π(L1,j , i))}∀j∈[1,len],i∈[n].
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KeyGen(f,MSKi). Let Gf,j be the following circuit. Gf on input (HPK, m̂, x, y):

1. Compute e = FHE.Eval(HPK, f, m̂)

2. If jth bit of e, ej = 1 output y else output x.

Output Ki,f = {FE.KeyGen(SKi,j , Gf,j)}∀j∈[1,len].

Decrypt(CT, {Ki,f}). Decryptor computes Qi,j = FE.Decrypt((Ki,f )j , CTi,j)∀i ∈ [n], j ∈ [len].
For each j ∈ [len] decryptor reconstructs Lj = SS.RECON({Qi,j}i∈[n]). Then, Decryptor computes
output as f(m)← Gb.Eval(Γ, L1, .., Llen)
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