
Mergeable Functional Encryption

Vincenzo Iovino1 Karol Żebrowski2

1 University of Luxembourg, vincenzo.iovino@uni.lu
2 University of Warsaw, kz277580@students.mimuw.edu.pl

Abstract

In recent years, there has been great interest in Functional Encryption (FE), a generaliza-
tion of traditional encryption where a token enables a user to learn a specific function of the
encrypted data and nothing else. In this paper we put forward a new generalization of FE
that we call M ergeable FE (mFE). In a mFE system, given a ciphertext c1 encrypting m1 and
a ciphertext c2 encrypting m2, it is possible to produce in an oblivious way (i.e., given only
the public-key and without knowledge of the messages, master secret-key or any other aux-
iliary information) a ciphertext encrypting the string m1||m2 under the security constraint
that this new ciphertext does not leak more information about the original messages than
what may be leaked from the new ciphertext using the tokens. For instance, suppose that
the adversary is given the token for the function f(·) defined so that for strings x ∈ {0, 1}n,

f(x)
4
= g(x) for some function g : {0, 1}n → {0, 1} and for strings y = (x1||x2) ∈ {0, 1}2n,

f(x1||x2)
4
= g(x1) ∨ g(x2). Furthermore, suppose that the adversary gets a ciphertext c

encrypting (x1||x2) that is the result of “merging“ some ciphertexts c1 and c2 encrypting re-
spectively x1 and x2, and suppose that the token for f evaluates to 1 on c. Then, the security

of mFE guarantees that the adversary only learns the output f(x1, x2)
4
= g(x1) ∨ g(x2) = 1

and nothing else (e.g., the adversary should not learn whether g(x1) = 1 or g(x2) = 1).
This primitive is in some sense FE with the “best possible“ homomorphic properties and,
besides being interesting in itself, it offers wide applications. For instance, it has as special
case multi-inputs FE and thus indistinguishability obfuscation (iO) and extends the latter to
support more efficiently homomorphic and re-randomizable properties. We construct mFE
schemes supporting a single merging operation, one from indistinguishability obfuscation for
Turing machines and one for messages of unbounded length from public-coin differing-inputs
obfuscation. Finally, we discuss a construction supporting unbounded merging operations
from new assumptions.

Keywords: Functional Encryption, Obfuscation, Homomorphic cryptography.

Contents

1 Introduction 1
1.1 Mergeable functional encryption. 1
1.2 Applications . 1
1.3 mFE: properties and security . 4
1.4 Overview of the construction and of the security reduction. 5
1.5 mFE for multiple merging operations . 7
1.6 Related work. 8

2 Definitions 9
2.1 Functional Encryption . 10
2.2 Mergeable Functional Encryption . 10
2.3 Building blocks . 14

3 Our mFE scheme for one merging operation 14
3.1 Security reduction. 15
3.2 Extension to support messages of unbounded length 18

4 Future research directions and open problems 21

A Standard Notions 25
A.1 Collision-resistant Hash Functions . 25
A.2 IND-CPA secure PKE . 26
A.3 Commitment schemes . 26

B NIWI proof systems 26

C Indistinguishability obfuscation 27

D Public-coin differing-inputs obfuscation 27

E FE and its security 28

1 Introduction

Functional Encryption (FE) [BSW11] is a sophisticated type of encryption that allows to finely
control the amount of information that is revealed by a ciphertext. In a FE scheme, for any
function f allowed by the system, the owner of the master secret key can compute a restricted
key, called token, for f , that enables to compute f(m) on a ciphertext encrypting m, and nothing
else. In recent years, more expressive forms of FE were constructed in a series of works (see,
e.g., [BDOP04, BW07, KSW08, LOS+10, OT12, Wat12]) culminating in the breakthrough of
Garg et al. [GGH+13] who showed the first candidate construction of FE for all polynomial-size
circuits from indistinguishability obfuscation. Another line of research investigated extensions
and generalizations of FE such as multi-inputs FE [GGG+14, BLR+14], FE for randomized
functionalities [GJKS13, KSY14], FE in the private-key model [SSW09, BS14] and in alternative
models [BRS13a, BRS13b, BIP10]. While these works offer unique applications and pose new
insights and challenges, we call for the need for a new and further generalization of FE not
previously discussed in the literature.

1.1 Mergeable functional encryption.

We put forward the concept of mergeable FE (mFE) scheme. A mFE scheme is identical to a FE
scheme but in addition it is endowed with a Merge algorithm that given two ciphertexts c1 and
c2 encrypting respectively m1 and m2 can produce a ciphertext c encrypting m1||m2 where ”’||
represents the concatenation symbol, i.e., can merge the original ciphertexts, in an oblivious way
without knowledge of the underlying plaintexts. As special case, a mFE also allows to update a
ciphertext in an oblivious way. That is, having a ciphertext encrypting an unknown plaintext m,
the system allows to produce a ciphertext c encrypting m||m2 where m2 is any plaintext. Notice
that a mFE system represents in some sense a FE scheme with the best possible homomorphic
properties. Indeed, it is easy to see that a FE scheme can not be in general fully homomorphic:
for instance, the token for the function f(·) such that f(x) = f(y) for some messages x, y but
f(g(x)) 6= f(g(y)) for some function g(·), allows to distinguish whether a ciphertext c encrypts
x or y by homomorphically evaluating the function g(·) on c. Instead, the restricted form of
homomorphism allowed by mFE preserves and does not contradict its functional properties.
Apart from being interesting in itself, the applications of mFE and the settings where it can be
applied are vast and we will illustrate few of them.

1.2 Applications

mFE implies Multi-inputs FE. The works of [GGG+14, GKL+13, GGJS13] introduced the
concept of multi-inputs FE (MI-FE), a generalization of FE where a token corresponds to a
multi-variate function that takes multiple ciphertexts as input. In these works, several settings
were defined. mFE implies MI-FE1: to evaluate a multi-variate token on multiple ciphertexts
it is sufficient to merge the ciphertexts. Furthermore, mFE generalizes previous works on MI-
FE to functions with unbounded arity, i.e., not putting any bound on the arity of the allowed
functions. We stress that as special case mFE ssupporting a single merging operation implies
2-inputs MI-FE.

mFE implies efficient homomorphic, updatable and re-randomizable indistinguisha-
bility obfuscation. Gordon et al. [GGG+14] show that MI-FE (specifically, 2-inputs FE) im-

1This holds for the public-key setting where the adversary is given the public-key that allows to encrypt
messages corresponding to any dimension

1

plies indistinguishability obfuscation (iO) [GGH+13] that thus is implied by mFE. In addition,
it is easy to see that mFE has as byproduct a form of homomorphic obfuscation in the CRS
model where given the obfuscations of two programs P1(·) and P2(·) computed with respect to
the same CRS and any program Q(·), it is possible to derive an obfuscation of the program

P3(x)
4
= Q(P1(x), P2(x)). If, in addition the program P2 is given in clear (i.e., non obfuscated),

the CRS is not needed and we call this primitive updatable obfuscation. These implications
follow from the fact that a program P can be obfuscated with mFE by outputting its encryption

Ct, the public-key, and the token Tok for the universal circuit U(P, x)
4
= P (x), and can be evalu-

ated on any input x by just merging Ct with the encryption of x (computed with the public-key)
and evaluating the resulting ciphertext with Tok. Homomorphic obfuscation can be put in the
construction of FE of Garg et al. [GGH+13] to enable a deleagation feature, specifically the
capability of deriving from a token for a function f a token for a more restricted function f ′.
A similar system was proposed by Boneh et al. [BGG+14] in the context of attribute-based en-
cryption, a restricted form of FE. Moreover, such system allows to merge two tokens to produce
a token for their composition, a feature not shared by the aforementioned work of Boneh et
al.Homomorphic obfuscation also implies a form of re-randomizable iO (riO) (without assuming
the CRS model) where an obfuscated program can be re-randomized as follows: to re-randomize
an obfuscated program P , just derive an iO for the program P ∨ Q where Q is the program
that outputs 0 on any input. A riO can be used for example by a programmer to produce a
new obfuscated program P2 that is functionally equivalent to P1 (but without knowledge of the
original program P1) passing P2 off as a different version of P1.

We stress that the above primitives are implied directly already from iO but less efficiently:
indeed building homomorphic iO from iO in the ”direct” way results in obfuscations of obfus-
cations and thus can be less efficient than the solution based on mFE.

mFE implies CCA1-secure PKE with homomorphic properties. It is well known that
a PKE scheme can not be fully homomorphic (see also Prabhakaran and Rosulek [PR08] for
alternative models). Notwithstanding it is reasonable to ask whether it can be CCA1-secure.
Loft et al. [LMSV12] present a construction of somewhat homomorphic encryption from special
knowledge assumptions. From mFE it is possible to derive CCA1-secure PKE with special
homomorphic properties. Recall that FE (specifically, identity-based encryption) implies CCA1-
secure public-key encryption (PKE) [CHK04, BCHK07]. If the underlying FE scheme used in
the construction of CCA1-secure PKE is in particular a mFE scheme, the resulting PKE scheme
would be a CCA1-secure PKE scheme supporting merging operations. Specifically, similarly to
the transformation of Canetti et al. [CHK04], the CCA1 encryption of message m consists of a
mFE ciphertext that encrypts (id,m) for a random identity id. mFE allows to merge such a
ciphertext with others without the knowledge of the underlying message m.

Applications to searching over encrypted databases in a public-key setting. One
of the most notable applications of FE is to searching over encrypted databases in a cloud
computing setting. In this scenario, Alice, the manager of a company, can distribute a token for
a function f to any of her employees who can use such tokens to perform queries over encrypted
databases located in a cloud server. For instance, one database D1 is produced by Bob and sent
to the cloud server in an encrypted form under the public-key of Alice. Similarly, Eve produced
her database D2 and sent it to the cloud server in the same encrypted form. The two databases
could contain information about products sold, respectively, by the companies of Bob and Eve
and of interest for the company of Alice. Moreover, we assume that the cloud servers own a lot
of computational power and space but are not trusted by Bob and Eve, i.e., Bob and Eve wish
to leak as few information as possible to the servers. For simplicity, suppose that the databases

2

are implemented as lists of elements, let us say D1 = (x1|| . . . ||xn) and D2 = (y1|| . . . ||yn). An
employee of the company of Alice could be interested in searching whether a specific product x
is in one of the two databases but he does not care in which one it is in. Thus, the employee

sends to both servers a token for the function fx(D)
4
= 1 iff the list D contains x. The server

evaluates the token on both encrypted databases one at time and then communicate to the
employee whether the requested product x is or is not in the databases. Suppose that at some
point there is a commercial agreement between the companies of Bob and Eve and as result of
it they decide to merge their respective data without compromising the needs of the company of
Alice and to keep on storing the merged encrypted data in the same cloud server. One solution
could be to reveal to each other their data and re-encrypt anything under the public-key of Alice.
However, this is not a valid solution as they wish to preserve the confidentiality of their own
data. Another approach could be to store on the server just the concatenation of the previous
ciphertexts. That is, if c1 is the encryption of D1 and c2 is the encryption of c2, then the new
encrypted data could just consist of c1||c2. Anyway, recall that Bob and Eve wish to hide to
the cloud server the contents of the new encrypted database. If the new encrypted database
was just the concatenation of the encryptions of D1 and D2, then from a query for a product
x, the server could figure out whether x was in the database of Alice or in the database of Bob
by running the token separately on c1 and c2. Thus, this solution is not satisfactory. Another
approach could to make Alice to create a new FE system and to ask the server to merge the
two encrypted data under the new Alice’s public-key. This solution incurs in a lot of problems
as well. First of all, it requires a work from the Alice’s side. Instead, Bob and Eve would like
to merge their data without involving Alice’s company (after all, recall that the employees of
Alice are interested in searching whether a specific product is or is not in one of the encrypted
databases and not also on which one it is in). That is, in the scenario we envision, Alice consents
the companies with which she collaborates with (using their encrypted data) to merge their own
encrypted data without even informing her, i.e., in a non-interactive way. Furthermore, the size
of the public-keys and parameters would grow (as the new system is based on the old one) and
the main drawback is that Alice would have to re-compute and re-distribute new tokens to each
employee. Instead, mFE offers a valid solution to this problem: if the databases are encrypted
with a mFE system, then Bob and Eve can merge their own encrypted databases in an oblivious
way hiding any information on the original databases to the server.

Applications to updating encrypted data in a private-key setting. In a private-key
setting, Alice delegates her encrypted data D to a powerful cloud server and at any point she can
perform a search or any computation on the data sending to the server a token for the desired
function. Moreover, Alice can compute this token from a device with a low computational power
as a mobile phone in which the original data is not present. Suppose now that Alice needs to
add a file x to her encrypted data. That is, she wishes to update her encrypted data so that
it now should encrypts D||x. As before, Alice does not consider satisfactory a solution where a
new ciphertext encrypting x is added in the server. For concreteness, suppose that Alice wishes
to compute the following function: f(D||x) = g(D) ∨ g(x) on the encrypted data and suppose
that we adopt the trivial approach in which the server stores the two ciphertexts, and suppose
that Alice sends to the server the two tokens, one for g(D) and one for g(x). Then, the server
would learn whether g(D) = 1 or g(x) = 1 whereas Alice wishes the server to only learn f(D||x)
and nothing else. mFE offers a valid solution to this problem: Alice could send the encryption
of the new data to the server asking the server to merge it with the old encrypted data. One
could object that the solutions is not satisfactory because the server could keep on storing both
ciphertexts, the one encrypting D and the one encrypting x in addition to the one encrypting
D||x, so to be able to leak the undesired information (e.g., g(D) and g(x)). This problem is

3

easily fixed in the following way. Alice can update on the server the encrypted data $x, where $
is a special symbol not present in D or x. The functions f ’s for which she will compute tokens
afterwards will be defined so to check (1) whether the input contains the special symbol in the
middle (i.e., the functions will check whether the input y has the form D$x for some strings D
and x) and (2) for inputs not satisfying this condition, the function is defined to output an error
⊥. In this way, the server can only use the new tokens on the updated encrypted data and not
on the previous ones.

Applications to verifiable computation. Using the techniques of Gennaro et al. [GGP10],
it is also possible to add verifiability to the above scenario so that Alice can check whether the
server correctly computed the function. Thus, mFE allows to extend non-interactive verifiable
computation to a setting where different untrusted workers have the capability to merge their
respective encrypted data. In this scenario, suppose that Alice has delegated two different data,
D1 and D2, to two different servers. Moreover, suppose that Alice has completely deleted the
original data that reside only on the servers in encrypted form. mFE allows Alice to request
to the servers to merge their encrypted data in an oblivious way preserving the privacy of the
original data and limiting the amount of information leaked by future queries. Moreover, in the
case of only one worker, mFE allows Alice to update the encrypted data on the server with the
same security guarantees.

1.3 mFE: properties and security

The requirements of a mFE scheme. In view of the above and further applications we
desire mFE systems to satisfy the following properties:

• The operation of merging two ciphertexts c1 and c2 can be performed having just the
public-key of the system, c1 and c2.

• The size of the merged ciphertext should be proportional to the sum of the lengths of
the old ciphertexts plus an additive factor polynomial in the security parameter. That is,
suppose that c1 has size m1 and c2 has size m2 and let k be the security parameter. Then,
the the result of merging c1 and c2 must be a ciphertext of length O(m1 +m2 +k). This is
to rule out solutions where the ciphertext resulting from the merge has for instance length
k · (|m1|+ ·|m2|) that would bound the number of mergings to be logarithmic (or less) in
the security parameter. We call this requirement compactness.

• The systems must be designed for the Turing Machine (TM) model of computation as
the circuit model does not fit well with the mFE setting. In fact, circuits can compute
over a fixed number of bits, and thus, even though the system allowed multiple merging
operations, a token could be used only on ciphertexts resulting from a bounded number
of merging operations.

Our solutions of Sections 3 and Section 3.2 only support a single merging operation. In
Section 1.5 we discuss a construction supporting unbounded messages from new assumptions.
Anyway, we stress that also a mFE supporting single merge is already sufficient for most of
our applications like the implications of MI-FE, iO, and all other applications when limited to
a single operation. Furthermore, it is really trivial to generalize our constructions for single
merging operation to support a bounded number q of merging operations with the drawback
of having parameters growing as q. mFE schemes supporting only q merging operations are
sufficient to build (q− 1)-inputs MI-FE schemes and homomorphic obfuscators supporting q− 2
merging operations.

4

Our security notion. We adopt as security definition an indistinguishability-based (IND)
one. Recall that in the standard IND-Security game for FE an efficient adversary can output
two challenge messages m0 and m1 and can ask any token for a function f that does not
allow to distinguish the two messages, i.e., such that f(m0) = f(m1). This is to avoid trivial
attacks. In mFE this constraint is not sufficient. In fact, it could be that f(m0) = f(m1) but
f(m||m0) 6= f(m||m1) allowing the adversary to distinguish by merging the challenge ciphertext
with a ciphertext encrypting m. Notice that this situation is similar to the case of MI-FE.
Therefore, we change the definition in the obvious way, by generalizing the above constraint
to take in account any sequence of messages that ”extends” the challenge messages (in poor
words, to any message that has the challenge message as substring). More formally we also
allow the challenge to be a pair of sequences (s0, s1) of merging operations with the same
length and structure. Furthermore, we relax the security to the the selective model where the
adversary has to declare its challenge at beginning of the game, i.e., before receiving the public-
key. This is because, as standard in many works in the area, the selective model simplifies
the security reductions. However, we remark that the selective model is sufficient to imply iO,
homomorphic iO, riO, selectively IND-Secure MI-FE, and the kind of homomorphic CCA1-secure
PKE described in Section 1.2. Details on our security notion are given in Section 2.2.

1.4 Overview of the construction and of the security reduction.

We assume that the reader is familiar with the construction of FE of Garg et al. [GGH+13].

Our construction for single merging operation. Let us now sketch how to construct mFE
scheme that supports a single merging operation. The technical details of our construction
are tightly related with the need of proving its security so we will explain it step by step following
an informal approach. Let us call ciphertexts of ”first level” the ciphertexts encrypting directly
messages and not resulting from merge operations. Suppose that in our scheme the ciphertexts
of first level have the same form as in the Garg et al.’s scheme. Consider now the following
implementation of the merge operation. To merge two ciphertexts (c1, c2, π1) and (c3, c4, π2), re-
encrypt c1 and c3 under the first public-key to get Ct1 and c2 and c4 under the second public-key
to get Ct2 adding a proof that Ct1 and Ct2 encrypt respectively strings (c1||c3) and (c2||c4) such
that there exist proofs π1, π2 of the fact that c1 and c2 encrypt the same message and c3 and c4
encrypt the same message with respect to some proof systems to be specified later. We call the
NP language consisting of statements of such form L2 to distinguish it from L1, the language
used for the ciphertexts of first level (consisting of pairs of ciphertexts that encrypt the same
message). That is, the new ciphertext will be (Encrypt(Pk1, (c1, c3)),Enc(Pk2, (c2, c4), π), where
π is a proof of the fact that Ct1 and Ct2 belong to L2. To simplify the construction, let us use
the following tools. First of all, we employ (1) a non-interactive witness indistinguishable proof
systems (NIWI) with statistical soundness [FLS90] and (2) a statistically binding commitment
scheme. In the public-key we put two CRSs of the NIWI system, one used to prove statements
in L1 and one for L2, and a statistically binding commitment com. Actually for the needs of
our reduction, the languages L1 and L2 are changed as follows. In the real scheme the NIWI
is used to prove the following statement: ”the pair of ciphertexts (Ct1,Ct2) are well formed (as
specified before) or com is a commitment to (Ct1||Ct2)”. Let us now sketch the security reduction.
Recall that the adversary A selects as challenges two sequences (s0 = (m1,m2), s1 = (m3,m4))
of merging operations and let us denote by x1b (resp. x2b) the inner string encrypted in the
ciphertext induced by the sequence sb with respect to the first (resp. second) public-key. The
definition is better explained by an example. For instance, with respect to the sequences s0, x

1
0 is

5

string (Encrypt(Pk1,m1)||Encrypt(Pk1,m2)). Furthermore, let use denote by xib[L] (resp. xib[R])
the left part (resp. right part) of xib, e.g., in the previous example x10[L] = Encrypt(Pk1,m1) and
x10[R] = Encrypt(Pk1,m2). Note that the challenge ciphertext Ct consists of (Ct1,Ct2, π) where,
if for instance the challenge bit b = 0, Ct1 encrypts x10 and Ct2 encrypts x20 and π is a proof that
(Ct1,Ct2) ∈ L2 that is in turn relative to the two proofs π′1, π

′
2. The latter proofs are such that

(1) π′1 is a proof that x10[L] and x20[L] encrypt the same message (in the previous example m1)
and (2) π′2 is a proof that x10[R] and x20[R] encrypt the same message (in the previous example
m2).

Consider the following series of hybrid experiments. In the first experiment H0, the sequence
s0 is chosen as challenge. In the security reduction we first switch to an hybrid H1 where com is a
commitment to (Ct1||Ct2). Then, we switch to an hybrid H2 where the NIWI proof is computed
with respect to the randomness used for com (which, by definition, represents a valid witness).
Then, in H3, Ct1 is encryption of x10 as in the previous experiment but Ct2 is changed to be
encryption of x21 where x21 is the ciphertext induced by the sequence s1 with respect to the second
public-key. The indistinguishability of the last two experiments follows by the security of the
PKE scheme. Then, in H4, any token is changed to be an obfuscation of a machine that uses Sk2
instead of Sk1. The indistinguishability of H4 from H3 follows observing that, by the statistical
soundness of the NIWI and by the correctness of the PKE scheme, the only ciphertexts that
do not encrypt the same inner-message are associated with NIWI proofs produced using the
”trapdoor” witness, i.e., the witness of the fact that com is a commitment to (Ct1||Ct2). By the
statistical binding property of the commitment scheme, by the correctness of the PKE scheme,
by definition of L2 and by statistical soundness of the NIWI system,, w.v.h.p. the only pair of
ciphertexts that encrypts different inner-messages is the one in the challenge ciphertext, but the
messages M0 = (m1,m2) resulting from decrypting Ct1 recursively using Sk1 and the message
M1 = (m3,m4) resulting from decrypting Ct2 recursively using Sk2, are such that, by definition
of the game, f(M0) = f(m1||m2) = f(m3||m4) = f(M1) where f is the function associated with
the token. Thus, we can invoke the security of iO to argue the indistinguishability of the last two
hybrids. Then, in H5, Ct2 is encryption of x21 as in the previous experiment but Ct1 is changed
to be encryption of x11 where x11 is the ciphertext induced by the sequence s1 with respect to
the first public-key. The indistinguishability of the last two experiments follows by the security
of the PKE scheme. Then, in H6, any token is changed to be an obfuscation of a machine that
uses Sk1 instead of Sk2 (that is, it uses the original machine) and the indistinguishability of the
last two hybrids is symmetrical to that of H4 from H3. Finally in H7 and H8 the witness used
to compute the proof in the challenge ciphertext and the commitment com are turned back to
the original ones. The latter experiment corresponds to the experiment in which s1 is chosen as
challenge as desired.
The construction can be also extended to support single merging operation but for messages of
unbounded length as follows. First, note that in order to support multiple merging operation,
we have to handle messages and thus ciphertexts of unbounded size. Therefore, we need (1) to
assume obfuscation for TMs with unbounded inputs that was recently proposed by Ishai et al.
[IPS14] and (2) assume that the obfuscator is public-coin differing-inputs secure as defined in
the latter work. In fact, whereas in the previous security reduction we put in the public-key a
commitment to the challenge ciphertext, we would, in the case of unbounded inputs, commit
to the hash of such challenge with respect to a collision-resistant hash function. The security
reduction is identical except that we have to take in account collisions to the committed value.
Specifically, whereas in the bounded case the two obfuscated machines have same i/o, in the
unbounded case instead the only inputs that would allow to distinguish the two machines are
the collisions to the committed value. To that aim, we cshow that this family is public-coin

6

differing-inputs secure (without any auxiliary input) based on the security of the hash function.
It is easy to observe that the construction can be extended to support a bounded number of
operations with ciphertexts that can possibly blow-up in size.

1.5 mFE for multiple merging operations

A natural approach to generalize our scheme to support multiple merging operation would be
to simply iterate the re-encrypt approach (but also similar approaches we tempted suffer from
the same problems) adding proofs of ”well-formedness” relative to the previous proofs in a re-
cursive way. Apart from technical problems arising from the need for proof systems capable to
handle any NP-statement, and thus for the universal relation [Mic00, BG08], the most serious
hurdle is that we have no guarantee that in this case the size of the proofs does not grows by
a multiplicative factor: for instance the size could double after any merging operation limiting
the number of operations to logarithmic. A patch could be to resort to succinct arguments
[Kil92, Mic00, Gro10], an approach followed in Boneh et al. [BSW12] (see also the related work
of Chase et al. [CKLM13]), but as in the last work we would need to introduce special knowledge
assumptions and moreover we would incur in the same limitation of having a bounded number
of merging operations with either the size of the public-key being linear in the bound or both
the size of public-key and ciphertexts being logarithmic in that bound. For such reasons, we
did not further explore these directions and we propose a drastically different approach. Recall
that one source of the problems arises from the fact that in order to use a proof system for NP
multiple times, the merged ciphertext Ct = (Ct1,Ct2) should be such that Ct1 and Ct2 encrypt
the same message so to be able to add a traditional proof of well-formedness. This clashes with
the fact that Ct1 and Ct2 have to be encrypted with different public-keys. One solution could
be to encrypt in Ct2 the same message encrypted in Ct1 but then in the security reduction
we would have to switch to an obfuscated machine that incorporates both Sk2 (to decrypt the
outer-ciphertext) and Sk1 (to decrypt the inner-ciphertexts recursively). In this case, the re-
duction would break down in showing the indistinguishability of H5 from H4, i.e., in switching
the ”left” ciphertext produced with the first public-key (because we have to simulate a machine
that incorporates the first secret-key). Another possibility could be to adopt the punctured pro-
gramming approach of Waters [Wat14] but this would incur in more problems, the most serious
being that the Waters’ techniques do not seem well suited to handle messages of variable length.
We propose to draw upon new assumptions related to average-case obfuscation introduced by
Hohenberger et al. [HRSV11]. In the latter work, it was proposed a notion of obfuscation aimed
to model functionalities like the re-encryption one. To be useful in our context, we have to
generalize their functionality to be recursive and add a signature. In fact, we need to re-encrypt
under Pk2 a nested encryption (for example Encrypt(Pk1, (Encrypt(Pk1,m1),Encrypt(Pk1,m2))))
under Pk1. This would be not still sufficient. In fact having a obfuscated re-encryption machine
that translates ciphertexts from Pk1 to Pk2 it should be possible to show the indistinguishabil-
ity of two ciphertexts encrypted under Pk1, but in our case the obfuscated machine also needs
Sk2. Consider a more sophisticated functionality that (1) takes as input two pairs of ciphertexts
(c1, c2) and (c3, c4) and (2) recursively decrypts c1 and c2 with Sk1, (2) decrypts (with Sk1) and
re-encrypts the inner-messages contained in c3 and c4 under Pk2 (using the same structure as c1
and c2) to get c′1, c

′
2 and (3) if c1 has the same structure as c3 and c2 has the same structure as

c4 then outputs c′1, c
′
2 and a signature of c1||c2||c′1||c′2, otherwise output an error ⊥. What means

for two ciphertexts C1 and C2 to have the same structure is better explained by the following
examples. For instance, suppose that C1 is an encryption of (d1, d2) where d2 is an encryption
of m1 and d1 is an encryption of (e1, e2) with e1 and e2 encrypting respectively m2 and m3, and

7

where all ciphertexts are encrypted under Pk1. In addition, suppose that C2 is an encryption
of (d′1, d

′
2) where d′2 is an encryption of m1 and d′1 is an encryption of (e′1, e

′
2) with e′1 and e′2

encrypting respectively m2 and m3, and where all ciphertexts are encrypted under Pk2. Then C1

and C2 have the same structure. Suppose instead that C1 is as before but C2 is an encryption of
(d′1, d

′
2) where d′2 is an encryption of m′1 6= m1 and d′1 is an encryption of (e′1, e

′
2) where e′1 and e′2

encrypt respectively m2 and m3, where all ciphertexts are encrypted under Pk2. Then, C1 and C2

have different structures. Intuitively the functionality checks that the ciphertexts have the same
structure to ”authenticate” only the ciphertexts encrypting (recursively) the same sequence of
messages, and thus acting as a proof of well-formedness. We call this functionality ”recursively
decrypt and re-sign-encrypt” (RDRSE). As first step, let us put forward the assumption that
the obfuscator for TMs of Ishai et al. based on the obfuscator of Garg et al. is an average-case
obfuscator for the class of machines that implement RDRSE. Then we change our previous mFE
scheme as follows. Let M [Sk1,Pk2, sk](·, ·) be a average-case obfuscation of a RDRSE machine
that uses a signature scheme with signing key sk incorporated in it. To merge two ciphertexts
(c1, c2, π1) and (c3, c4, π2), re-encrypt c1 and c3 under the first public-key to get Ct1, computes
M [Sk1,Pk2, sk]((c1, c3), (c2, c4)) to get (c′2, c

′
4) and a signature σ and encrypt (c1, c3) under the

first publick-key to get Ct1 and (c′2, c
′
4) under the second public-key to get Ct2 and add a proof

of the fact that Ct1 and Ct2 are such that either (1) Ct1 encrypts (c1, c2) and Ct2 encrypts c′2, c
′
4

and a signature σ of c1||c2||c′2||c′4 or (2) the hash of (Ct1,Ct2) is committed in com. Furthermore,
we now require that the machines corresponding to the tokens are obfuscated with a diO secure
against adversaries with auxiliary input (note that now the tokens are changed in the obvious
way and incorporate the verification key corresponding to sk). The security reduction follows
the previous lines except (1) for the indistinguishability of the experiments in which we switch
the secret keys in the tokens and (2) for the indistinguishability of the experiments in which we
switch the ciphertexts. In the case (1) we would like to prove that for the two machines (one
using Sk1 and one using Sk2) it is difficult to find a distinguishing input. Intuitively this holds
since the RDSME machine is obfuscated with an average-case obfuscator and thus should act
as a black-box. In the second case we would like to argue that an IND-CPA adversary having
in addition an average-case obfuscation of an RDRSE machine has still negligible advantage in
distinguishing the challenge ciphertexts. This should hold for the same reason. Though these
informal arguments seem reasonable, we were not able to reduce the security only to our pre-
vious assumption combined with known assumptions and thus we restrict to conjecture that
the sketched construction is secure, defering to future works or versions of this paper a formal
treatment. We conclude with a last remark. Even if it was possible to prove the security of the
above sketched construction, the underlying PKE scheme should have the additional property
that a ciphertext encrypting a message of length n has length O(n + poly(λ), where λ is the
security parameter, and not for instance O(n · λ). In fact, in the latter case, encrypting the
ciphertexts recursively we would incur in an exponential blow-up. It is easy to construct such a
PKE scheme: for example setting the encryption of m to Encrypt(Pk, r),PRG|m|(r) ⊕ m) where
Encrypt is an arbitrary PKE scheme that encrypts string of fixed size and {PRGn}n is a family
of pseudo-random generators that expands λ bits to n bits.

1.6 Related work.

The primitive we introduce is novel yet it is related to the following cryptographic objects.

• mFE shares with homomorphic encryption (see [Gen09]) the capability of ”combining”
different ciphertexts in an oblivious way but it extends homomorphic encryption with

8

functional features. As discussed before, in some sense mFE achieves the best of possible
homomorphism capabilities for FE.

• mFE shares with MI-FE [GGG+14] the capability of computing over multiple encrypted
data and indeed mFE enables all the applications of MI-FE but the converse is not true.
In particular, MI-FE differs from mFE in an essential aspect. When two ciphertexts c1
and c2 are merged with mFE, it is not longer possible to recover the original information.
Instead, while MI-FE allows to compute a function f over two ciphertexts c1 and c2 yet it is
possible to swap c2 with any other ciphertext c3 to compute f over c1 and c3. Furthermore,
mFE supporting unbounded number of merging operation implies MI-FE for functions of
unbounded arity. Instead, in known MI-FE schemes the arity of the supported functions is
fixed at setup time. We also remark that it is not known how to use MI-FE to re-encrypt
so to imply mFE.

• FE for randomized functionalities was studied by Goyal et al. [GJKS13] who presented two
types of notions, one simulation-based and one indistinguishability-based. The simulation-
based one can be defined only in limited settings due to known impossibility results
[BSW11, AGVW13], and moreover, to be useful in constructing mFE, simulation-based
secure FE for randomized functionalities should be generalized to 2-inputs for which more
severe impossibility results are known as it would imply virtual black-box obfuscation
[BGI+01]. Instead, the indistinguishability-based notion is limited to statistically indis-
tinguishable distributions, thus excluding the re-encryption functionality.

• Target malleability introduced by Boneh et al. [BSW12] restricts the set of homomorphic
operations one can perform on encrypted data but does not offer functional features.
Nevertheless, the techniques used in their construction could be useful for mFE, albeit to
avoid their strong assumptions and limitation on the size of the public-key and ciphertexts
we depart from their approach.

• As discussed in Section 1.2, mFE implies CCA1-secure PKE with mergeable properties.
Loft et al. [LMSV12] present a construction of somewhat homomorphic CCA1-secure PKE
from special knowledge assumptions. Prabhakaran and Rosulek [PR08] also present alter-
native notions of CCA-security for homomorphic encryption.

• Gentry et al. [GSW13] construct an attribute-based encryption (ABE) scheme with fully
homomorphic properties. In ABE the ciphertext is associated with a pair (m,x) where x is
public and only m is hidden. The system of Gentry et al. allows homomorphic operations
only on m, and thus is incomparable to ours.

2 Definitions

A negligible function negl(k) is a function that is smaller than the inverse of any polynomial in
k. If D is a probability distribution, the writing “x ← D” means that x is chosen according
to D. If D is a finite set, the writing “x ← D” means that x is chosen according to uniform
probability on D. If q > 0 is an integer then [q] denotes the set {1, . . . , q}. All algorithms,
unless explicitly noted, are probabilistic polynomial time and all adversaries are modeled by
non-uniform polynomial time algorithms. If B is an algorithm and A is an algorithm with
access to an oracle then AB denotes the execution of A with oracle access to B. If a and b are
arbitrary strings, then a||b denotes the string representing their delimited concatenation. If M

9

is a Turing machine, we denote by steps(M,x) the number of steps executed by M on input x
before halting or ⊥ if it never halts.

2.1 Functional Encryption

Functional encryption schemes are encryption schemes for which the owner of the master secret
can compute restricted keys, called tokens, that allow to compute a functionality on the plaintext
associated with a ciphertext. We start by defining the notion of a functionality.

Definition 2.1 [Functionality] A functionality F is a function F : K ×M → Σ where K is the
key space, M is the message space and Σ is the output space.

In this work, our FE schemes are for the following functionality.

Definition 2.2 [TM Functionality] The TM functionality has key space K equals to the set
of all Turing machines which accept any input of unbounded polynomial length and halt in
polynomial time. The message space M is the set {0, 1}∗. For M ∈ K and m ∈ M , we have
TM(M,m) = (M(m), t), where t is the number of time steps that M performs on input m.

Remark 2.3 In case of a scheme with input-specific run time (cf. Definition E.1), we also
require that the functionality outputs the run time of machine M on m along with the output
of the computation M(m).

The definition of a FE scheme can be found in Appendix E along with the standard definition
of indistinguishability-based security for it.

2.2 Mergeable Functional Encryption

In this Section we will formally introduce the concept of mergeable functional encryption (mFE).

Our notation for merging operations. We first introduce our notation related to merging
operations. To not overburden the discussion, we prefer to adopt a non too much formal style
but expanding the definitions with concrete examples.

We denote the merge of string x1 with string x2 by (x1, x2)
2 and we call such string (x1, x2)

a sequence. (We assume implicitly that the symbols ’(’,’)’ and ’,’ do not belong to the string
alphabet and thus sequences can be parsed efficiently. This can be formalized in standard ways
but we over skip these details). Furthermore, we define a sequence of merging inductively in the
obvious way. That is, a string in the message space is a sequence of merging operations and if
s1 and s2 are sequences of merging operations, then (s1, s2) is a sequence of merging operations.
For instance, the sequence s = ((x1, (x2, x3)), x4) is the result of (1) merging x2 with x3 to get
sequence s1, then (2) merging x1 with s1 to get sequence s2 and finally (3) s2 with x4 to get
sequence s. Note that in this paper with a slight abuse of notation sometimes we use the notation
(x.y) and similar to denote both sequences of merging operations and lists of elements. We say
that a sequence of merging operations s splits over the strings (x1, . . . , xn) if such variables
appear in s in that order. For instance (x1, (x2, (x3, x4))) splits over (x1, x2, x3, x4). We say that
a sequence of merging operations s ranges over the set of strings M if the strings appearing in
s belong to M . For instance (x1, (x2, (x3, x2))) ranges over any set containing {x1, x2, x3}. If s
is a sequence we denote by cat(s) the concatenation of the strings which the sequence consists
of. For instance if s = ((x1, (x2, x3)), x4) then cat(s) = x1||x2||x3||x4.

2Notice that the order is important, so the operation (x1, x2) is different from (x2, x1).

10

We say that a sequence of merging operations s1 splitting over the strings (x1, . . . , xn) has the
same structure of a sequence of merging operations s2 splitting over (y1, . . . , ym) if (1) m = n
and (2) if s′1 is the string obtained by replacing any string xi in s1 with 0|xi| and s′2 is the
string obtained by replacing any string yi in s2 with 0|yi|, then s′1 = s′2. Note that this implies
that for any i, |xi| = |yi|. For instance, (010, (111, 001)) does not have the same structure
of ((010, 111), 001), (010, (111, 001)) does not have the same structure of (010, (11, 001)), but
(010, (11, 001)) does have the same structure of (111, (00, 110)). That is, two sequences have the
same structure if the sequence of parenthesis and commas correspond and any string has the
same length. We say that t(·) is a function of merging operations if t(·) is a sequence of merging
operations containing at least one special symbol ? and if s is a sequence of merging operations
then t(s) is the result of replacing ? with s in t. Furthermore, If t(·) = ? then t(s) = s for
any sequence of merging operations s. For instance, if t(·) = ((x1, (x2, ∗)), x3) and s = (x3, x4)
then t(s) = ((x1, (x2, (x3, x4))), x3). We say that a function of merging operations t(·) ranges
over the set of strings M if except the symbol ? the strings appearing in t belong to M . For
instance t(·) = (x1, (?, (x3, x2))) ranges over any set containing {x1, x2, x3}. Finally, we stress
that the strings in the sequence of merging operations we will consider will be both messages
in the mmessage space and ciphertexts. For instance, if c1, c2, c3 and c4 are ciphertexts, then
s = ((c1, c2), (c3, c4)) is a sequence of merging operations on ciphertexts.

Definition 2.4 [mergeable Functional Encryption Scheme] A mergeable functional encryption
scheme mFE for functionality F is a tuple mFE = (Setup,KeyGen,Enc,Eval,Merge) of 5 algo-
rithms with the following syntax:

1. Setup(1λ) outputs public and master secret keys (Pk,Msk) for security parameter λ.

2. KeyGen(Msk, k), on input a master secret key Msk and key k ∈ K outputs token Tok.

3. Enc(Pk,m), on input public key Pk and plaintext m ∈ M outputs ciphertext Ct: Fur-
thermore, if s is a sequence of merging operations splitting over the strings (x1, . . . , xn),
with a slight abuse of notation, we denote by Enc(Pk, s), the sequence s′ that is equal
to s except that for any i ∈ [n], any occurrence of xi is replaced by Enc(Pk, xi). For
instance, Enc(Pk, (x1, (x2, x3))) = (c1, (c2, c3)) where c1, c2 and c3 are respectively the en-
cryptions of x1, x2 and x3. (We stress that even if a sequence s contains two equal strings,
e.g., (x1, (x2, x1)), in the encryption of s any ciphertext is generated with independent
randomness).

4. Eval(Pk,Ct, Tok) outputs y ∈ Σ ∪ {⊥}.

5. Merge(1λ,Pk,Ct1,Ct2): if Ct1 and Ct2 are ciphertexts, the algorithm outputs a ciphertext
Ct resulting from merging Ct1 with Ct2.

With a slight abuse of notation, we also define Merge to take as input a sequence of
merging operations on ciphertexts in the obvious way, described by the following example.
Let s1 = (c1, (c2, c3)) be a sequence of merging operations on ciphertexts, then

Merge(1λ,Pk, s)
4
= Merge(1λ,Pk, c1,Merge(1λ,Pk, c2, c3)).

In addition we make the following requirements:

• Correctness: For all (Pk,Msk) ← Setup(1λ), all k ∈ K and any sequence s splitting over
strings ∈M such that cat(s) ∈M , for Tok← KeyGen(Msk, k) and Ct← Merge(1λ,Pk,Enc(Pk, s)),
we have that Eval(Pk,Ct, Tok) = F (k, cat(s)) whenever F (k, cat(s)) 6= ⊥, except with neg-
ligible probability in λ. (See [BO13] for a discussion about this condition.)

11

• Compactness: there exists a polynomial poly such that for all (Pk,Msk) ← Setup(1λ), for
any sequences s1, s2 splitting over strings ∈ M such that cat(s1), cat(s2) ∈ M , for Ct1 ←
Merge(1λ,Pk,Enc(Pk, s1)), Ct2 ← Merge(1λ,Pk,Enc(Pk, s2)), Ct← Merge(1λ,Pk,Ct1,Ct2),
we have that |Ct| ∈ O(|Ct1|+ |Ct2|+ poly(λ)). Note that here sequences s1, s2 might be a
single message.

Remark 2.5 Notice that the correctness requirement has as special case the correctness for
traditional FE.

We consider also the following two properties for mFE schemes for Turing machines.

• Succinctness: A mFE scheme for TM is said to be succinct if the ciphertexts have size
polynomial in the security parameter and in the message size, and the tokens generated
using KeyGen for machine M have size q(λ, |M |), where q is a polynomial and |M | is the
size of the Turing machine.

• Input-specific running-time: A mFE scheme for TM is said to have input-specific run time
if the decryption algorithm on input token Tok for machine M and encryption of message
m, takes time p(λ, steps(M,m)), where p is a polynomial.

Indistinguishability-based security. The indistinguishability-based notion of security for
mergeable functional encryption scheme
mFE = (mFE.Setup,mFE.KeyGen,mFE.Enc,mFE.Eval) for functionality F defined over (K,M)
is formalized by means of the following game parametrized by a polynomial poly:

mINDmFE,poly
A between an adversary A = (A0,A1) and a challenger C. Below, we present the

definition for only one message; it is easy to see the definition extends naturally for multiple
messages.

12

mINDmFE,poly
A (1λ)

1. C generates (Pk,Msk)← mFE.Setup(1λ) and runs A0 on input Pk;

2. A0 submits queries for keys ki ∈ K for i = 1, . . . , q1 and, for each such query, C
computes Toki = mFE.KeyGen(Msk, ki) and sends it to A0.

When A0 stops, it outputs two challenge sequences of merging operations s0, s1 and
its internal state st.

3. C picks b ∈ {0, 1} at random, computes the challenge ciphertext Ct =
mFE.Merge(Pk,mFE.Encrypt(Pk, sb))

a and sends Ct to A1 that resumes its com-
putation from state st.

4. A1 submits queries for keys ki ∈ K for i = q1 + 1, . . . , q and, for each such query,
C computes Toki = mFE.KeyGen(Msk, ki) and sends it to A1.

5. When A1 stops, it outputs b′.

6. Output: The challenger outputs 1 (i.e., the adversary wins the game) iff the
following conditions are all satisfied:

(a) b = b′.

(b) s0 and s1 are sequences of strings over strings in M satisfying |s0| = |s1|.
(c) for any function of merging operations t(·) of length ≤ poly(λ) ranging over
M it holds that: F (ki, t(s0)) = F (ki, t(s1)) for i = 1 . . . , q.

aWe refer the reader to the definition of the procedure Merge for the use of this notation.

For any polynomial poly, the advantage of adversary A in the above game parametrized by poly
is defined as

AdvmFE,mIND,poly
A (1λ) = |Prob[mINDmFE,poly

A (1λ) = 1]− 1/2|.

Definition 2.6 We say that mFE is indistinguishably secure (IND-Secure, for short) for all
probabilistic polynomial-time adversaries A there exists a polynomial poly such that the quantity
AdvmFE,mIND,poly

A (1λ) is negligible in λ.

Definition 2.7 [Selective IND-Security] The selective security game of mFE is similar to the
above game except that the adversary has to declare the challenges at the beginning of the
experiment. We say that a mFE scheme is selectively IND-Secure if any PPT adversaries has at
most negligible advantage in such game.

On selective security. We show the security of our constructions in the selective IND-Security
model. This is because, as standard in many works in the area, the selective model simplifies
the security reductions. However, we remark that the selective model is sufficient to imply iO,
homomorphic iO, riO, selectively IND-Secure MI-FE, and the kind of homomorphic CCA1-secure
PKE described in Section 1.2.

On simulation-based security. A stronger notion of security for FE is the simulation-based
one [BSW11, O’N10] that fixes the deficiency of the indistinguishability-based one. In Appendix

13

E we recall the simulation-based security (SIM-Security) for FE. Unfortunately, several impos-
sibility results for SIM-Security for FE are known [AGVW13, BSW11, DIJ+13, CI13, HW15].
Notwithstanding, Decaro et al. [DIJ+13] show how to obtain some limited forms of SIM-Security
for FE. We remark that even weak forms of SIM-Security for mFE are unattainable as SIM-
Secure mFE implies VBB obfuscation [BGI+01], for the same reason that SIM-Secure MI-FE
[GGG+14] is impossible. Furthermore, we stress that the recent transformation for SIM-Secure
FE in the Random Oracle model of Iovino and Żebrowski [IZ14] completely breaks down in the
case of mFE as well as for 2-inputs FE.

mFE for one merging operation. We provided definitions for mFE supporting unbounded
number of operations. It is straight-forward to adapt them to the case of mFE supporting one
merging operation as needed in Section 3. Moreover, for mFE supporting one merging operation
the compactness property is not required.

2.3 Building blocks

In Appendix C and D we recall the definitions of indistinguishability obfuscation (iO) and
public-coin differing-inputs obfuscation (diO). In Appendix B we recall the notion of NIWI
proof systems.

3 Our mFE scheme for one merging operation

Definition 3.1 [MFE scheme for one merging operation] Let NIWIi = (CRSGeni,Provei,Verifyi)
for i = 1, 2 be two NIWI proof systems (cf. Section B) for some NP-languages to be specified
later, Com a (perfectly binding) commitment scheme (cf. Appendix A.3), E = (E.Setup,E.Encrypt,E.Decrypt)
a PKE scheme (cf. Appendix A.2), and iO (cf. Section C) an iO for TMs with bounded inputs.
Let n(λ) be a bound on the size of the messages that our mFE has to support and m(λ) a bound
on the size of ciphertexts of E that encrypt messages of length n(λ). We define a mFE scheme
mFE[NIWI1,NIWI2,Com,E] = (Setup,KeyGen,Enc,Merge,Eval) for functionality TM as follows.

• Setup(1λ)3: runs (Pk1,Sk1)← E.Setup(1λ), (Pk2,Sk2)← E.Setup(1λ), and com← Com(02m(λ)),
and sets crsi ← CRSGeni(1λ)i for i = 1, 2. The procedure returns a pair (Mpk,Msk) where
Mpk = (Pk1,Pk2, com, crs

1, crs2) and Msk = Sk1.

• Enc(Pk,m): on input Pk = (Pk1,Pk2, com, crs
1, crs2) and m ∈ n(λ), the algorithm chooses

randomness r1 and r2, and computes Ct1 = E.Encrypt(Pk1,m; r1),Ct2 = E.Encrypt(Pk2,m; r2).
Consider the following NP-language4:

L1 = {(Ct1,Ct2) ∈ {0, 1}2m(λ) : ∃m, r, r1, r2 : (Ct1 = E.Encrypt(Pk1,m; r1) ∧ Ct2 =
E.Encrypt(Pk2,m; r2)) ∨ com = Com(Ct1||Ct2; r)}.
(Note that L1 is relative to com,Pk1,Pk2). The procedure outputs a ciphertext of first
level (1,Ct1,Ct2, π) where π is a proof of the fact that (Ct1,Ct2) ∈ L1 computed with
Prove1 and crs1 using as witness m, r1, r2.

• KeyGen(Msk,M): on input Msk and a machine M , the algorithm outputs an iO of the
following machine T [M, Sk1,Pk1,Pk2, crs

1, crs2, com] as token.

3Formally, the procedure should also take as input the bound m(λ) on the size of the messages (since it is used
to generate the commitment) but for simplicity we omit such details.

4Formally we should define it as a family of languages indexed by the security parameter but henceforth for
simplicity we omit this detail.

14

Machine T [M, Sk1,Pk1,Pk2, crs
1, crs2, com](l,Ct1,Ct2, π)

1. Pad with machine T2[M, Sk2,Pk1,Pk2, crs
1, crs2, , com]

2. if l = 1 then do
3. If Verify1(crs1, (Ct1,Ct2), π) = 0 then return ⊥
4. set m = E.Decrypt(Sk1,Ct1) and return M(m)
5. if l = 2 then do
6. If Verify2(crs2, (Ct1,Ct2), π) = 0 then return ⊥
7. (c1, c2) = E.Decrypt(Sk1,Ct1)
8. set m1 = E.Decrypt(Sk1, c1) and m2 = E.Decrypt(Sk1, c2)
9. return M(m1||m2)

• Merge(Pk,Ct1,Ct2): Let Ct1 = (c1, c2, π1) and Ct2 = (c3, c4, π2). The procedure sets
Ct′1 = E.Encrypt(PK1, c1||c3) and Ct′2 = E.Encrypt(PK2, c2||c4). Consider the following
NP-language L2:

L2 = {(Ct1,Ct2) ∈ {0, 1}2m(λ) : ∃c1, c2, c3, c4, π1, π2, r, r1, r2 : (Ct′1 = E.Encrypt(Pk1, c1||c3; r1) ∧
Ct2 = E.Encrypt(Pk2, c2||c4; r2) ∧ Verify1(crs1, c1||c2) = 1 ∧ Verify1(crs1, c3||c4) = 1) ∨
com = Com(Ct1||Ct2; r)}.
(Note that L2 is relative to com, crs1,Pk1,Pk2). The procedure computes a proof π of the
fact that (Ct′1,Ct

′
2) ∈ L2 using Prove2 with crs2 and witness r1, r2, c1, c2, c3, c4, π1, π2. The

procedure outputs (Ct′1,Ct
′
2, π).

• Eval(Pk,Ct, Tok): on input Pk = (Pk1,Pk2), Ct = (i, C1, C2, π) and
Tok = iO(T [M,Sk1,Pk1,Pk2, crs, com]), returns the output Tok(Ct) (i.e., evaluates the
obfuscated program on input Ct).

It is straight-forward to see that the scheme is correct (and recall that in the context of one
merging operation the compactness is not required).

3.1 Security reduction.

We assume that the reader is familiar with the overview presented in Section 1.4. We reduce
the security of our mFE scheme to that of the underlying primitives via a series of hybrid
experiments against a PPT adversary A attacking the selective IND-Security of mFE.

For simplicity we assume that the challenge sequences do not consist of single messages so
that the challenge ciphertexts can not be of first level. However, it is easy to observe that
in the latter case the reduction can be derived as special case of ours, but not to overburden
the presentation we omit the details. Recall that the adversary A selects as challenges two
sequences (s0, s1) of merging operations. We denote by x1b (resp. x2b) the inner string encrypted
in the ciphertext induced by the sequence sb with respect to the first (resp. second) public-key.
The definition is better explained by an example. For instance, if s0 = (m1,m2), then x10 is
the string Encrypt(Pk1,m1)||Encrypt(Pk1,m2). Furthermore, we denote by xib[L] (resp. xib[R])
the left part (resp. right part) of xib, e.g., in the previous example x10[L] = Encrypt(Pk1,m1)
and x10[R] = Encrypt(Pk1,m2). Note that in our construction the challenge ciphertext Ct with
respect to the challenges (s0, s1) consist of (Ct1,Ct2, π) where Ct1 encrypts x1b and Ct2 encrypts
x2b and π is a proof that (Ct1,Ct2) ∈ L2 that is in turn relative to (1) a NIWI proof π′1 of the

15

fact that x1b [L] and x2b [L] encrypt the same message and (2) a proof π′2 of the fact that x1b [R]
and x2b [R] encrypt the same message.

• H0. This corresponds to the IND-Security game in which the chosen challenge sequence is
s0. Thus, the challenge ciphertext consists of (Ct1,Ct2, π) where (Ct1,Ct2) belong to L2.

• H1. This experiment is identical to H0 except that the commitment com in the public-key
is a commitment to (Ct1,Ct2). Specifically, A selects its challenges (s0 = (m1,m2), s1 =
(m3,m4)) and x10 = x10[L]||x10[R] and x20 = x20[L]||x20[R] are computed as described above
along with (1) the NIWI proof π′1 of the fact that x10[L] and x20[L] encrypt the same message
(specifically m1) and (2) the NIWI proof π′2 of the fact that x10[R] and x20[R] encrypt the
same message (specifically m2). Then, the procedure Setup of mFE is run as in its definition
except that com is set to be com = Com((Ct1||Ct2); r) for some fresh randomness r where
Ct1 is an encryption of x10 and Ct2 is an encryption of x20. The rest of the experiment can
be simulated by means of Msk and Pk generated by the procedure Setup. Indeed, note
that in the challenge ciphertext Ct = (Ct1,Ct2, π) the proof π is computed with respect to
the proofs of ”first level” π′1, π

′
2 and the randomness to encrypt x10 in Ct1 and x20 in Ct2.

Claim 3.2 Indistinguishability of H1 from H0. It is easy to see that the claim follows
from the computational hiding property of Com.

• H2. This experiment is identical to H1 except that the NIWI proof π in the challenge
ciphertext Ct = (Ct1||Ct2) is computed with respect to the randomness r used to generate
com.

Claim 3.3 Indistinguishability of H2 from H1. It is easy to see that the claim follows
from the witness indistinguishability property of NIWI observing that both the witness
used in H1 and the witness used in H1 are valid witnesses of the fact that (Ct1,Ct2) ∈ L2.

• H3. This experiment is identical to H2 except that Ct2 is set to an encryption of x21. The
commitment com is still generated as com = Com((Ct1||Ct2); r) and the randomness r is
still used as witness to compute the proof π in the challenge ciphertext Ct = (Ct1,Ct2, π).

Claim 3.4 Indistinguishability of H3 from H2. It is easy to see that the claim follows
from the IND-CPA security of E observing that Sk2 is never needed to simulate the exper-
iment.

• H4. This experiment is identical to H3 except that any token is changed to be the obfus-
cation of the following machine:

Machine T2[M, Sk2,Pk1,Pk2, crs
1, crs2, com](l,Ct1,Ct2, π)

1. Pad with machine T [M, Sk1,Pk1,Pk2, crs
1, crs2, com]

2. if l = 1 then do
3. If Verify1(crs1, (Ct1,Ct2), π) = 0 then return ⊥
4. set m = E.Decrypt(Sk2,Ct2) and return M(m)
5. if l = 2 then do

16

6. If Verify2(crs2, (Ct1,Ct2), π) = 0 then return ⊥
7. (c1, c2) = E.Decrypt(Sk2,Ct2)
8. set m1 = E.Decrypt(Sk2, c1) and m2 = E.Decrypt(Sk2, c2)
9. return M(m1||m2)

Claim 3.5 Indistinguishability of H4 from H3. For simplicity we can assume that A asks
only one token query for the TM M computing the function f . The general case can be
handled by a standard hybrid argument. By the statistical binding property of Com and
by the correctness of E and by definition of Li, i = 1, 2 and statistical soundness of NIWI,
with all except negligible probability, there is exactly one pair of ciphertexts (Ct1,Ct2)
that encrypts different inner-messages, the challenge ciphertext, and by definition of the
experiments, the message M0 resulting from decrypting Ct1 recursively using Sk1 and the
message M1 resulting from decrypting Ct2 recursively using Sk2, are such that f(M0) =
f(M1) where f is the function associated with the token. Thus, we can invoke the security
of iO to argue the indistinguishability of the two hybrids.

• H5. This experiment is identical to H4 except that Ct1 is set to an encryption of x11. The
commitment com is still generated as com = Com((Ct1||Ct2); r) and the randomness r is
still used as witness to compute the proof π in the challenge ciphertext Ct = (Ct1,Ct2, π).

Claim 3.6 Indistinguishability of H5 from H4. The indistinguishability of H5 from H4 is
symmetrical to that of H3 from H2.

• H6. This experiment is identical to H5 except that any token is changed to be the obfus-
cation of the machine T [M,Sk1,Pk1,Pk2, crs

1, crs2, com].

Claim 3.7 Indistinguishability of H6 from H5. The indistinguishability of H6 from H5 is
symmetrical to that of H4 from H3.

• H7. This experiment is identical to H6 except that the NIWI proof π in the challenge
ciphertext Ct = (Ct1,Ct2) is computed with respect to the randomness r used to generate
com.

Claim 3.8 Indistinguishability of H7 from H6. The indistinguishability of H7 from H6 is
symmetrical to that of H2 from H1.

• H8. This experiment is identical to H7 except that the commitment com in the public-key
is a commitment to 02m(λ).

Claim 3.9 Indistinguishability of H8 from H7. The indistinguishability of H8 from H7 is
symmetrical to that of H8 from H7.

The indistinguishability of the above hybrid experiments implies the following theorem.

17

Theorem 3.10 If for i = 1, 2 NIWIi = (CRSGeni,Provei,Verifyi) is a NIWI proof system for the
NP-language Li, Com is a (perfectly binding) commitment scheme, E = (E.Setup,E.Encrypt,E.Decrypt)
is a IND-CPA secure PKE scheme, and iO is an iO for TMs with bounded inputs, then the pro-
posed scheme mFE is a selective IND-Secure mFE scheme for bounded messages supporting one
merging operation. If in addition iO satisfies succinctness and input-specific running time, so
mFE does.

mFE for bounded number of merging operations. It is easy to observe that it is trivial
to extend the above construction to support a bounded number q of merging operations with
parameters (public- and master secret- key, tokens and ciphertexts) of size proportional to q.

3.2 Extension to support messages of unbounded length

To extend the above scheme to support messages of unbounded length we make the following
changes, but first we would like to stress that, whereas in the case of bounded messages it is
possible to concatenate strings of fixed length without a separator and indeed we often did
this making use of the symbol ’||’, instead in the case of unbounded messages we would need
to separate strings of variable length with a separator but with a slight abuse of notation we
will continue to use the previous notation, i.e., we will write z = x||y for strings x, y ∈ {0, 1}?
assuming that it is possible to parse z in x and y.

1. We assume a public-coin differing-inputs obfuscation (diO, in short. See Section D) for
TMs with unbounded inputs. This is necessary since the TM to be obfuscated have to
read inputs of variable length.

2. We assume collision-resistant hash functions (CRHF, in short. See Section A.1) CRHF =
(Gen,Hash) mapping strings from {0, 1}? to {0, 1}λ.

3. The Setup procedure of the mFE scheme is identical except that an hashing key hk is
generated by Gen(1λ), and com is a commitment to 0λ.

4. The languages Li are changed to the following languages L′i.

L′1 = {(Ct1,Ct2) ∈ {0, 1}2m(λ) : ∃m, r, r1, r2 : (Ct1 = E.Encrypt(Pk1,m; r1) ∧ Ct2 =
E.Encrypt(Pk2,m; r2)) ∨ com = Com(Hash(hk,Ct1||Ct2); r)}.
L′2 = {(Ct1,Ct2) ∈ {0, 1}2m(λ) : ∃c1, c2, c3, c4, π1, π2, r, r1, r2 : (Ct′1 = E.Encrypt(Pk1, c1||c3; r1) ∧
Ct2 = E.Encrypt(Pk2, c2||c4; r2) ∧ Verify1(crs1, c1||c2) = 1 ∧ Verify1(crs1, c3||c4) = 1) ∨
com = Com(Hash(hk,Ct1||Ct2); r)}.
Note that L′1 is relative to com,Pk1,Pk2, hk and L′2 is relative to com, crs1,Pk1,Pk2, hk
and the languages are still in NP. As consequence, the NIWI proofs used in the modified
scheme will be relative to the latter languages.

5. The machine T [M,Sk1,Pk1,Pk2, crs
1, crs2, com] is changed to the machine

T ′[M, Sk1,Pk1,Pk2, crs
1, crs2, hk, com] with the obvious modification that the new machine

verifies the proofs with respect to the new languages L′i (and thus, implicitly using the
hashing key hk).

Security reduction. Let us now analyze the changes to the security reduction of Section 3.1.
Consider the following series of hybrid experiments against a PPT adversary A attacking the
selective IND-Security of the modifed scheme.

18

• H ′0. Identical to H0 except that com is a commitment to Hash(hk, (Ct1,Ct2)).

• H1. This experiment is identical to H ′0 except that the commitment com in the public-key
is a commitment to Hash(hk, (Ct1,Ct2)).

Claim 3.11 Indistinguishability of H ′1 from H ′0. Identical to the indistinguishability of
H1 from H0.

• H ′2. This experiment is identical to H1 except that the NIWI proof π in the challenge
ciphertext Ct = (Ct1,Ct2) is computed with respect to the randomness r used to generate
com.

Claim 3.12 Indistinguishability of H ′2 from H ′1. Identical to the indistinguishability of
H2 from H1.

• H ′3. This experiment is identical to H ′2 except that Ct2 is set to an encryption of x21.
The commitment com is still generated as com = Com(Hash(hk, (Ct1,Ct2)); r) and the
randomness r is still used as witness to compute the proof π in the challenge ciphertext
Ct = (Ct1,Ct2, π).

Claim 3.13 Indistinguishability of H ′3 from H ′2. Identical to the indistinguishability of
H3 from H2.

• H ′4. This experiment is identical to H ′3 except that any token is changed to be the obfus-
cation of the following machine:
T ′2[M, Sk2,Pk1,Pk2, crs

1, crs2, hk, com] that is identical to T2[M, Sk2,Pk1,Pk2, crs
1, crs2, hk, com]

except that it verifies the proofs for the new languages L′i.

Claim 3.14 Indistinguishability of H4 from H3. For simplicity we can assume that A
asks only one token query for a TM M computing the function f . The general case can
be handled by a standard hybrid argument. By the the correctness of E, by definition of
Li, i = 1, 2, and statistical soundness of NIWI, with all except negligible probability, the set
of pairs of ciphertexts S = {(Ct′1,Ct′2)} for which (1) there exists an associated valid (i.e.,
accepted by the verifier) NIWI proof of the fact that Ct ∈ L2 (or in the case of ciphertexts
of first level, a proof of the fact that Ct ∈ L1) and (2) such that the message M0 resulting
from decrypting Ct1 recursively using Sk1 and the message M1 resulting from decrypting
Ct2 recursively using Sk2 satisfy f(M0) 6= f(M1), have one of the following two forms:

1. ∀Ct′ = (Ct′1,Ct
′
2) ∈ S, Hash(hk,Ct′) = Hash(hk,Ct) where Ct = (Ct1,Ct2) is the value

committed in com.

2. Let (Ct′1,Ct
′
2) ∈ S and x1 = (x1[L], x1[R]) and x2 = (x2[L], x2[R]) be the strings re-

sulting from decrypting respectively Ct′1 with Sk1 and Ct′2 with Sk2. Then Hash(hk, (x1[L], x2[L])) =
Hash(hk,Ct) and Hash(hk, (x1[R], x2[R])) = Hash(hk,Ct), where Ct = (Ct1,Ct2) is the
value committed in com.

Furthermore, note that the set S does not contain the challenge ciphertext Ct committed in
com. Consider now the following sampling algorithm Sampler. It takes as input a random
string ρ and parses it as (hk, τ). The sampler runs the adversary A simulating to it the

19

view in experiment H ′4 until A asks the token query. Specifically, it uses the randomness
hk for Hash and the randomness τ to generate the public-/secret- keys for E, for Com,
and for the ciphertexts and the NIWI proofs. Then, it outputs the two (non-obfuscated)
machines T ′[M,Sk1,Pk1,Pk2, crs

1, crs2, hk, com] and T ′2[M, Sk2,Pk1,Pk2, crs
1, crs2, hk, com].

Consider a distinguisher D that takes as input the randomness ρ and machine M ′ that is
the obfuscation (with respect to diO) of one of the two previous machines. D executes all
steps of Sampler and continues the execution of A answering the token query sending M ′.
It is easy to see that if A has non-negligible advantage in distinguishing the two hybrids, so
D does for the two machines. Thus, to prove the claim we have to show that Sampler is a
public-coin differing-inputs sampler. Suppose towards a contradiction that there exists an
adversary B that finds a differing-input to the pair of TMs sampled by Sampler. Then we
build an algorithm CHash that breaks the security of Hash. CHash incorporates Sampler and
B. On input a random hashing key hk, the algorithm samples a uniform string τ and runs
B and Sampler on ρ = (hk, τ). Let the output of Sampler be T ′, T ′2 and let Ct′ = (Ct′1,Ct

′
2)

be the output of B. Furthermore, let Ct = (Ct1,Ct2) be the challenge ciphertext committed
in com that is computed by Sampler at the beginning of its execution. By the fact that
the only distinguishing inputs for T ′ and T ′2 are strings in S and by correctness of diO and
by the above two facts, it holds that Ct′ 6= Ct and either (1) Hash(hk,Ct′) = Hash(hk,Ct)
or (2) Hash(hk, (x′1[L], x′2[L])) = Hash(hk,Ct) and Hash(hk, (x′1[R], x′2[R])) = Hash(hk,Ct),
where x′1 = (x′1[L], x′1[R]) and x′2 = (x′2[L], x′2[R]) are the strings resulting from decrypting
respectively Ct′1 with Sk1 and Ct′2 with Sk2. Observing that in the case (2) CHash has the
secret-keys Sk1,Sk2 to decrypt Ct1 and Ct2, we conclude that in both cases CHash can find
a collision for Hash(hk,Ct) as desired.

• H ′5. This experiment is identical to H ′4 except that Ct1 is set to an encryption of x11.
The commitment com is still generated as com = Com(Hash(hk, (Ct1,Ct2)); r) and the
randomness r is still used as witness to compute the proof π in the challenge ciphertext
Ct = (Ct1,Ct2, π).

Claim 3.15 Indistinguishability of H ′5 from H ′4. The indistinguishability of H ′5 from H ′4
is symmetrical to that of H ′3 from H ′2.

• H ′6. This experiment is identical to H ′5 except that any token is changed to be the obfus-
cation of the machine T ′[M,Sk1,Pk1,Pk2, crs

1, crs2, hk, com].

Claim 3.16 Indistinguishability of H ′6 from H ′5. The indistinguishability of H ′6 from H ′5
is symmetrical to that of H ′4 from H ′3.

• H ′7. This experiment is identical to H ′6 except that the NIWI proof π in the challenge
ciphertext Ct = (Ct1,Ct2) is computed with respect to the randomness r used to generate
com.

Claim 3.17 Indistinguishability of H ′7 from H ′6. The indistinguishability of H ′7 from H ′6
is symmetrical to that of H ′2 from H ′1.

• H ′8. This experiment is identical to H ′7 except that the commitment com in the public-key
is a commitment to 0λ.

20

Claim 3.18 Indistinguishability of H ′8 from H ′7. The indistinguishability of H ′8 from H ′7
is symmetrical to that of H ′8 from H ′7.

The indistinguishability of the above hybrid experiments implies the following theorem.

Theorem 3.19 If for i = 1, 2 NIWIi = (CRSGeni,Provei,Verifyi) is a NIWI proof system for the
NP-language Li, Com is a (perfectly binding) commitment scheme, E = (E.Setup,E.Encrypt,E.Decrypt)
is a IND-CPA secure PKE scheme, Hash is a CRHF, and diO is a public-coin differing-inputs ob-
fuscator for TMs (with unbounded inputs), then the modified scheme is a selective IND-Secure
mFE scheme for unbounded messages supporting one merging operation. If in addition iO
satisfies succinctness and input-specific running time, so the mFE scheme does.

4 Future research directions and open problems

The main open problem that we leave to future research or versions of this paper is to provide a
formal security reduction for the construction sketched in Section 1.5 or in general the construc-
tion of a mFE scheme for unbounded merging operations reducible to reasonable assumptions.
Another interesting line of research that our work opens up is the construction of efficient mFE
schemes for more restricted functionalities, e.g., extensions of searchable encryption supporting
the update of ciphertexts.

References

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Func-
tional encryption: New perspectives and lower bounds. In CRYPTO (2), pages
500–518, 2013.

[BCHK07] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext secu-
rity from identity-based encryption. SIAM Journal on Computing, 36(5):1301–1328,
2007.

[BDOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Pub-
lic key encryption with keyword search. In Christian Cachin and Jan Camenisch, edi-
tors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 506–522, Interlaken, Switzerland, May 2–6, 2004. Springer,
Berlin, Germany.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM
Journal on Computing, 38(5):1661–1694, 2008.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 533–556, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In

21

Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 1–18, Santa Barbara, CA, USA, August 19–23,
2001. Springer, Berlin, Germany.

[BIP10] Carlo Blundo, Vincenzo Iovino, and Giuseppe Persiano. Predicate encryption with
partial public keys. In Swee-Huay Heng, Rebecca N. Wright, and Bok-Min Goi, ed-
itors, CANS 10: 9th International Conference on Cryptology and Network Security,
volume 6467 of Lecture Notes in Computer Science, pages 298–313, Kuala Lumpur,
Malaysia, December 12–14, 2010. Springer, Berlin, Germany.

[BLR+14] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe
Zimmerman. Semantically secure order-revealing encryption: Multi-input functional
encryption without obfuscation. Cryptology ePrint Archive, Report 2014/834, 2014.
http://eprint.iacr.org/.

[BO13] Mihir Bellare and Adam O’Neill. Semantically-secure functional encryption: Possi-
bility results, impossibility results and the quest for a general definition. In Cryp-
tology and Network Security - 12th International Conference, CANS 2013, Paraty,
Brazil, November 20-22. 2013. Proceedings, pages 218–234, 2013.

[BRS13a] Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-based
encryption: Hiding the function in functional encryption. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, volume 8043 of Lecture Notes in Computer Science, pages 461–478. Springer,
2013.

[BRS13b] Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private subspace-
membership encryption and its applications. In Kazue Sako and Palash Sarkar,
editors, Advances in Cryptology - ASIACRYPT 2013 - 19th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Ben-
galuru, India, December 1-5, 2013, Proceedings, Part I, volume 8269 of Lecture
Notes in Computer Science, pages 255–275. Springer, 2013.

[BS14] Zvika Brakerski and Gil Segev. Function-private functional encryption in the
private-key setting. Cryptology ePrint Archive, Report 2014/550, 2014. http:

//eprint.iacr.org/.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography
Conference, volume 6597 of Lecture Notes in Computer Science, pages 253–273,
Providence, RI, USA, March 28–30, 2011. Springer, Berlin, Germany.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomorphic
encryption for restricted computations. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, pages 350–366. ACM, 2012.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography Conference,
volume 4392 of Lecture Notes in Computer Science, pages 535–554, Amsterdam, The
Netherlands, February 21–24, 2007. Springer, Berlin, Germany.

22

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In Christian Cachin and Jan Camenisch, editors, Ad-
vances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Com-
puter Science, pages 207–222, Interlaken, Switzerland, May 2–6, 2004. Springer,
Berlin, Germany.

[CI13] Angelo De Caro and Vincenzo Iovino. On the power of rewinding simulators in
functional encryption. IACR Cryptology ePrint Archive, 2013:752, 2013.

[CKLM13] Chase, Kohlweiss, Lysyanskaya, and Meiklejohn. Succinct malleable nizks and an
application to compact shuffles. In Theory of Cryptography, pages 100–119. Springer,
2013.

[DIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Ran Canetti and Juan A. Garay, editors, CRYPTO (2), volume 8043
of Lecture Notes in Computer Science, pages 519–535. Springer, 2013.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st Annual Sym-
posium on Foundations of Computer Science, St. Louis, Missouri, USA, October
22-24, 1990, Volume I, pages 308–317. IEEE Computer Society, 1990.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity, 2009. crypto.stanford.edu/craig.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages
578–602. Springer, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE
Computer Society, 2013.

[GGJS13] Shafi Goldwasser, Vipul Goyal, Abhishek Jain, and Amit Sahai. Multi-input func-
tional encryption. Cryptology ePrint Archive, Report 2013/727, 2013. http:

//eprint.iacr.org/.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Tal Rabin, editor, Ad-
vances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 465–482, Santa Barbara, CA, USA, August 15–19, 2010. Springer,
Berlin, Germany.

[GJKS13] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryp-
tion for randomized functionalities. Cryptology ePrint Archive, Report 2013/729,
2013. http://eprint.iacr.org/.

23

crypto.stanford.edu/craig
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[GKL+13] S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou.
Multi-input functional encryption. IACR Cryptology ePrint Archive, 2013:774, 2013.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, Advances in Cryptology – ASIACRYPT 2010, volume 6477
of Lecture Notes in Computer Science, pages 321–340, Singapore, December 5–9,
2010. Springer, Berlin, Germany.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
Advances in Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.

[HRSV11] Hohenberger, Rothblum, Shelat, and Vaikuntanathan. Securely obfuscating re-
encryption. Journal of Cryptology, 24(4):694–719, 2011.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure
function evaluation with long output. In Proceedings of the 2015 Conference on
Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January
11-13, 2015, pages 163–172, 2015.

[IPS14] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfus-
cation and its applications. Cryptology ePrint Archive, Report 2014/942, 2014.
http://eprint.iacr.org/.

[IZ14] Vincenzo Iovino and Karol Zebrowski. Simulation-based secure functional encryp-
tion in the random oracle model. Cryptology ePrint Archive, Report 2014/810,
2014. http://eprint.iacr.org/2014/810.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In Proceedings of the Twenty-fourth Annual ACM Symposium on Theory
of Computing, STOC ’92, pages 723–732, New York, NY, USA, 1992. ACM.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Nigel P. Smart, editor,
Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in
Computer Science, pages 146–162, Istanbul, Turkey, April 13–17, 2008. Springer,
Berlin, Germany.

[KSY14] Ilan Komargodski, Gil Segev, and Eylon Yogev. Functional encryption for random-
ized functionalities in the private-key setting from minimal assumptions. Cryptology
ePrint Archive, Report 2014/868, 2014. http://eprint.iacr.org/.

[LMSV12] Loftus, May, Smart, and Vercauteren. On cca-secure somewhat homomorphic en-
cryption. In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography,
volume 7118 of Lecture Notes in Computer Science, pages 55–72. Springer Berlin
Heidelberg, 2012.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hier-
archical) inner product encryption. In Henri Gilbert, editor, Advances in Cryptology
– EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages
62–91, French Riviera, May 30 – June 3, 2010. Springer, Berlin, Germany.

24

http://eprint.iacr.org/
http://eprint.iacr.org/2014/810
http://eprint.iacr.org/

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hier-
archical) inner product encryption. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes
in Computer Science, pages 591–608, Cambridge, UK, April 15–19, 2012. Springer,
Berlin, Germany.

[PR08] Manoj Prabhakaran and Mike Rosulek. Homomorphic encryption with CCA secu-
rity. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th International
Colloquium on Automata, Languages and Programming, Part II, volume 5126 of
Lecture Notes in Computer Science, pages 667–678, Reykjavik, Iceland, July 7–11,
2008. Springer, Berlin, Germany.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems.
In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference,
volume 5444 of Lecture Notes in Computer Science, pages 457–473. Springer, Berlin,
Germany, March 15–17, 2009.

[Wat12] Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-
Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 218–235, Santa Barbara, CA,
USA, August 19–23, 2012. Springer, Berlin, Germany.

[Wat14] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. IACR Cryptology ePrint Archive, 2014:588, 2014.

A Standard Notions

A.1 Collision-resistant Hash Functions

Definition A.1 [Collision-resistant Hash Functions] We say that a pair of PPT algorithms
(Gen,Hash) is collision-resistant hash function (CRHF in short) if:

• Gen(1λ) outputs an hashing key hk. We require that hk is uniformly distributed in {0, 1}λ,
i.e., Gen outputs its own random coins. (Note that due to this requirement we could get
rid of Gen completely, but for stylistic reasons we stick with such notation).

• There exists some polynomial l(λ) such that Hash on input 1λ and x ∈ {0, 1}? outputs a
string y ∈ {0, 1}l(λ). If H(s, ·) is only defined for inputs x of length l′(λ), where l′(λ) > l(λ),
we say that (Gen,Hash) is a fixed-length collision-resistant hash function for inputs of
length l′.

• It holds that for any (possibly, non-uniform) PPT adversary A the probability of winning
in the following game is negligible in λ:

25

http://eprint.iacr.org/

1. s← Gen(1λ);

2. (x0, x1)← A(1λ, hk);

3. Output: A wins iff Hash(hk, x0) = Hash(hk, x1) and x0 6= x1.

A.2 IND-CPA secure PKE

An IND-CPA (or semantically) secure Public Key Encryption (PKE) scheme consists of three
PPT algorithms (Setup,Encrypt,Decrypt) described as follows.

• Setup(1λ): On input 1λ, it outputs public key Pk and decryption key Sk.

• Encrypt(m,Pk): On input message m and the public key, it outputs a ciphertext Ct.

• Decrypt(Ct,Sk): On input a ciphertext Ct and the decryption key, it outputs m.

The PKE scheme is said to be IND-CPA (or semantically) secure if for any PPT adversary A,
there exists a negligible function negl such that the following is satisfied for any two messages
m0,m1 and for b ∈ {0, 1}: |Pr

[
A(1λ,Encrypt(m0,Pk)) = b

]
−Pr

[
A(1λ,Encrypt(m1,Pk)) = b

]
| ≤

negl(λ).

A.3 Commitment schemes

Definition A.2 [Commitment Schemes] A commitment scheme Com is a PPT algorithm that
takes as input a string x and randomness r and outputs com← Com(x; r). A perfectly binding
commitment scheme must satisfy the following properties:

• Perfectly Binding: This property states that two different strings cannot have the same
commitment. More formally, ∀x1 6= x2 and r1, r2,Com(x1; r1) 6= Com(x2; r2).

• Computational Hiding: For all strings x0 and x1 (of the same length), for all PPT adver-
saries A, we have that: |Pr [A(Com(x0)) = 1]− Pr [A(Com(x1)) = 1)]| ≤ negl(k).

B NIWI proof systems

We employ non-interactive witness indistinguishability (NIWI) proof systems [FLS90].

Definition B.1 [Non-interactive Proof System]. A non-interactive proof system for a language
L with a PPT relation R is a tuple of algorithms (CRSGen,Prove,Verify) such that the following
properties hold:

• Perfect Completeness: For every (x,w) ∈ R, it holds that Pr [Verify(crs, x,Prove(crs, x,w)) = 1] =
1, where crs← CRSGen(1k), and the probability is taken over the coins of CRSGen,Prove
and Verify.

• Statistical Soundness: For every adversary A, it holds that

Pr
[
Verify(crs, x, π) = 1 ∧ x /∈ L|crs← CRSGen(1k)); (x, π)← A(crs)

]
= negl(k).

We also assume that CRSGen outputs its own random coins, i.e., the procedure output a common
random string.

26

Definition B.2 [NIWI]. We say that a non-interactive proof system (CRSGen,Prove,Verify) for
a language L with a PPT relation R is witness-indistinguishable if for any triplet (x,w0, w1) such
that (x,w0) ∈ R and (x,w1) ∈ R, the distributions {crs,Prove(crs, x, w0)} and {crs,Prove(crs, x, w1)}
are computationally indistinguishable, where crs← CRSGen(1k).

We remark that for our construction supporting a single merging operation, NIWI proof systems
for theorems of ounded size suffice.

C Indistinguishability obfuscation

Definition C.1 [Indistinguishable Obfuscators (iO) for Turing machines] A uniform PPT ma-
chine iO is called a Turing machine indistinguishable Obfuscators for the Turing machine family
M = {Mn}, if the following conditions are satisfied:

• Correctness: ∀n,∀M ∈Mn,∀x ∈ {0, 1}? we have Pr [M ′(x) = M(x) : M ′ ← iO(1n,M)] =
1.

• Security of indistinguishability obfuscation: For any (not necessarily uniform) PPT distin-
guisher D, there exists a negligible function negl(·) such that the following holds: For all se-
curity parameters n ∈ N, for all M0,M1 ∈Mn, aux such that for all x,M0(x) = M1(x) and
steps(M0, x) = steps(M1, x) we have that |Pr [D(iO(1n,M0), aux) = 1]−Pr [D(iO(1n,M1), aux) = 1]| ≤
negl(n).

• Succinctness and input-specific running time: there exists a (global) polynomial s′(·) such
that for all n ∈ N, for all M ∈ Mn, for all M0 ← iO(1n,M), and for all x ∈ {0, 1}?,
steps(M ′, x) ≤ s′(n, steps(M,x)).

We say that an iO is for TMs with bounded inputs if it is an iO for the class of TMs that read
inputs of bounded size.

D Public-coin differing-inputs obfuscation

Definition D.1 [Public-Coin Differing-Inputs Sampler for TMs][IPS14]. An efficient non-uniform
sampling algorithm Sampler = {Samplern} is called a public-coin differing-inputs sampler for the
parameterized collection of TMs M = {Mn} if the output of Samplern is always a pair of Tur-
ing machines (M0,M1) ∈ Mn ×Mn such that |M0| = |M1| and for all efficient non-uniform
(attacker) algorithms A = {An} there exists a negligible function ε such that for all n ∈ N:

Pr

[
M0(x) 6= M1(x)∧ (M0,M1)← Samplern(r),

:
steps(M0, x) = steps(M1, x) = t (x, 1t)← An(r)

]
≤ ε(n).

By requiring An to output 1t, we rule out all inputs x for which M0,M1 may take more than
polynomial steps.

Definition D.2 [Public-Coin Differing-Inputs Obfuscator for TMs]. A uniform PPT algorithm
diO is a public-coin differing-inputs obfuscator for the parameterized collection of TMs M =
{Mn} if the following requirements hold:

• Correctness: ∀n,∀M ∈Mn,∀x ∈ {0, 1}? we have Pr [M ′(x) = M(x) : M ′ ← diO(1n,M)] =
1.

27

• Security: for every public-coin differing-inputs samplers Sampler = {Samplern} for the
collection M, for every efficient non-uniform (distinguishing) algorithm D = {Dn}, there
exists a negligible function negl s.t. for all n:

|Pr [Dn(r,M ′) = 1 : (M0,M1)← Samplern(r),M ′ ← diO(1n,M0)]−
Pr [Dn(r,M ′) = 1 : (M0,M1)← Samplern(r),M ′ ← diO(1n,M1)]| ≤ negl(n),

where the probability is taken over r and the coins of diO.

• Succinctness and input-specific running time: there exists a (global) polynomial s′(·) such
that for all n ∈ N, for all M ∈ Mn, for all M0 ← diO(1n,M), and for all x ∈ {0, 1}?,
steps(M ′, x) ≤ s′(n, steps(M,x)).

E FE and its security

Let us now define the notion of a functional encryption scheme FE for a functionality F .

Definition E.1 [Functional Encryption Scheme] A functional encryption scheme FE for func-
tionality F is a tuple FE = (Setup,KeyGen,Enc,Eval) of 4 algorithms with the following syntax:

• Setup(1λ): the procedure outputs public and master secret keys (Pk,Msk) for security
parameter λ.

• KeyGen(Msk, k): on input a master secret key Msk and key k ∈ K, the procedure outputs
token Tok.

• Enc(Pk,m): on input public key Pk and plaintext m ∈M the procedure outputs ciphertext
Ct.

• Eval(Pk,Ct, Tok): the procedure outputs y ∈ Σ ∪ {⊥}.

In addition we make the following correctness requirement: for all (Pk,Msk) ← Setup(1λ),
all k ∈ K and m ∈ M , for Tok ← KeyGen(Msk, k) and Ct ← Enc(Pk,m), we have that
Eval(Pk,Ct, Tok) = F (k,m) whenever F (k,m) 6= ⊥, except with negligible probability. (See [BO13]
for a discussion about this condition.)

We consider also the following two properties of FE schemes for Turing machines.

• Succinctness: A FE scheme for TM is said to be succinct if the ciphertexts have size
polynomial in the security parameter and in the message size, and the tokens generated
using KeyGen for machine M have size q(λ, |M |), where q is a polynomial and |M | is the
size of the Turing machine.

• Input-specific running-time: A FE scheme for TM is said to have input-specific run time
if the decryption algorithm on input token Tok for machine M and encryption of message
m, takes time p(λ, steps(M,m)), where p is a polynomial..

28

Indistinguishability-based security. The indistinguishability-based notion of security for
functional encryption scheme
FE = (Setup,KeyGen,Enc,Eval) for functionality F defined over (K,M) is formalized by means
of the following game INDFE

A between an adversary A = (A0,A1) and a challenger C. Below, we
present the definition for only one message; it is easy to see the definition extends naturally for
multiple messages.

INDFE
A (1λ)

1. C generates (Pk,Msk)← Setup(1λ) and runs A0 on input Pk;

2. A0 submits queries for keys ki ∈ K for i = 1, . . . , q1 and, for each such query, C
computes Toki = FE.KeyGen(Msk, ki) and sends it to A0.

When A0 stops, it outputs two challenge plaintexts m0,m1 ∈M satisfying |m0| =
|m1| and its internal state st.

3. C picks b ∈ {0, 1} at random, computes the challenge ciphertext Ct = Enc(Pk,mb)
and sends Ct to A1 that resumes its computation from state st.

4. A1 submits queries for keys ki ∈ K for i = q1 + 1, . . . , q and, for each such query,
C computes Toki = KeyGen(Msk, ki) and sends it to A1.

5. When A1 stops, it outputs b′.

6. Output: if b = b′, m0 and m1 are of the same length, and F (ki,m0) = F (ki,m1)
for i = 1 . . . , q, then output 1 else output 0.

The advantage of adversary A in the above game is defined as

AdvFE,INDA (1λ) = |Prob[INDFE
A (1λ) = 1]− 1/2|.

Definition E.2 We say that FE is indistinguishably secure (IND security, for short) if all prob-
abilistic polynomial-time adversaries A have at most negligible advantage in the above game.

Simulation-based security In this section, we give a simulation-based security definition for
FE similar to the one given by Boneh, Sahai and Waters [BSW11]. For simplicity of exposition,
below, we present the definition for only one message; it is easy to see the definition extends
naturally for multiple messages.

Definition E.3 [Simulation-Based security] A functional encryption scheme FE = (Setup,KeyGen,
Enc,Eval) for functionality F defined over (K,M) is simulation-secure (SIM security, for short)
if there exists a simulator algorithm Sim = (Sim0,Sim1) such that for all adversary algorithms
A = (A0,A1) the outputs of the following two experiments are computationally indistinguish-
able.

29

RealExpFE,A(1λ)

(Pk,Msk)← FE.Setup(1λ);

(m, aux)← AFE.KeyGen(Msk,·)
0 (Pk);

Ct← Enc(Pk,m);

α← AFE.KeyGen(Msk,·)
1 (Pk,Ct, aux);

Output: (Pk,m, α)

IdealExpFE,ASim (1λ)

(Pk,Msk)← FE.Setup(1λ);

(m, aux)← AFE.KeyGen(Msk,·)
0 (Pk);

(Ct, aux′)← Sim0(Pk, |m|, {ki, Tokki , F (ki,m)}, τ);

α← AO(·)1 (Pk,Ct, aux);
Output: (Pk,m, α)

Here, {ki} correspond to the token queries of the adversary. Further, oracle O(·) is the second
stage of the simulator, namely algorithm Sim1(Msk, aux′, ·, ·). Algorithm Sim1 receives as third
argument a key kj for which the adversary queries a token, and as fourth argument the output
value F (kj ,m). Further, note that the simulator algorithm Sim1 is stateful in that after each
invocation, it updates the state aux′ which is carried over to its next invocation.

30

	Introduction
	Mergeable functional encryption.
	Applications
	mFE: properties and security
	Overview of the construction and of the security reduction.
	mFE for multiple merging operations
	Related work.

	Definitions
	Functional Encryption
	Mergeable Functional Encryption
	Building blocks

	Our mFE scheme for one merging operation
	Security reduction.
	Extension to support messages of unbounded length

	Future research directions and open problems
	Standard Notions
	Collision-resistant Hash Functions
	IND-CPA secure PKE
	Commitment schemes

	NIWI proof systems
	Indistinguishability obfuscation
	Public-coin differing-inputs obfuscation
	FE and its security

