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Abstract. This paper shows that it is feasible to implement the stateless
hash-based signature scheme SPHINCS-256 on a ‘very small device’ with
memory even smaller than a signature and limited computing power. We
demonstrate that it is possible to generate and verify the 41KB signature
on an ARM Cortex M3 that only has 16KB of memory available. We
provide benchmarks for our implementation which show that this can be
used in practice. To analyze the costs of using the stateless SPHINCS
scheme instead of its stateful alternatives, we also implement XMSSMT

on this platform and give a comparison.
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1 Introduction

It is difficult to precisely predict the future of computing, but once large-scale
quantum computers become feasible in practice, all of the asymmetric cryptogra-
phy that is widely deployed today will be broken. Over the past few years, several
schemes have been proposed that address this issue. One of the most promis-
ing classes of schemes that provide post-quantum secure digital signatures are
hash-based schemes [20].

Hash-based schemes come with well-understood security guarantees, build-
ing only on the assumption of a secure cryptographic hash function. This makes
them a very attractive, confidence inspiring choice. The keys they use and the
signatures they produce are of practical sizes, and signing is reasonably fast. Ad-
ditionally, signature verification is very fast. Until recently, however, all practical
hash-based schemes required a state that must be constantly kept up to date.
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In many real-world scenarios, this is a far reach from the signature schemes that
are currently in use.

The introduction of SPHINCS [4] at Eurocrypt 2015 demonstrated that it is
not strictly necessary to maintain a state for a hash-based scheme to be practical.
Lifting this constraint does not come for free; it is paid for by an increase in
signing time as well as signature size. Still, SPHINCS-256 remains fairly efficient
in terms of these dimensions, with signatures of 41KB and a signing rate of
“hundreds of messages per second on a modern 4-core CPU” [4].

This shows that SPHINCS is a feasible solution on high-end servers and
desktops, but the question remains, whether SPHINCS is also a feasible solution
for small embedded “Internet-of-Things” devices. This is not merely a question
of performance. It is a question of whether it is even possible to compute a 41KB
SPHINCS signature on a device with only little RAM. In this paper we answer
the question in the affirmative and show that not only is it possible to compute
and verify SPHINCS-256 signatures on an ARM Cortex M3 microcontroller with
only 16KB of RAM, the performance results indicate that it may even be a
practical solution in contexts that do not involve interactive processes.

To illustrate the cost of eliminating the state in hash-based signatures, we
furthermore implement the state-of-the-art stateful hash-based signature scheme
XMSSMT as described in a recent Internet draft [16]. To provide a fair compari-
son, we replaced all the used hash functions with similar functions as SPHINCS-
256.

Availability of software.We place all software described in this paper into the
public domain. It is available online at https://joostrijneveld.nl/papers/
armedsphincs.

1.1 Related work

In [23], the potential for hash-based signature schemes on constrained micro-
processors was first demonstrated. The authors establish that it is possible, to
implement GMSS [6], an improvement of Merkle’s original hash-based signature
scheme, on an 8-bit AVR microprocessor at a speed comparable to RSA and
ECDSA, although without key generation. The described platform offers 8KB
of program memory and 4KB of SRAM.

A variant of XMSS was implemented on a 16-bit smart card [8]. The authors
show that key generation can be done on the device and get even faster speeds
than [23], further demonstrating practicality of (stateful) hash-based signature
schemes on constrained devices.

Extensive side-channel analysis of a fast Merkle signature scheme implemen-
tation on an AVR ATxmega is presented in [10]. This paper introduces a new
algorithm for the computation of authentication paths in a Merkle tree to sig-
nificantly reduce (and actually bound) side-channel leakage during this compu-
tation.

Other post-quantum schemes also show promising results on embedded sys-
tems. In [12], a lattice-based signature scheme is shown to produce signatures of
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9KB, with keys of 2KB and 12KB in size, beating RSA in terms of speed, on
a Xilinx Spartan-6 FPGA. While memory usage is slightly higher compared to
hash-based schemes, [21] shows that lattice-based signatures can be very fast by
providing an implementation on a Cortex-M4F. Multivariate-quadratic systems
have also been implemented and proven to be practical on low-resource devices
as well as ASICs, with keys of practical size [24].

Comparing the result of these papers is very hard because they target differ-
ent platforms, choose different trade-offs between speed and memory consump-
tion, and achieve different security levels. The software presented in this paper is
the first to describe (stateless) signature software achieving 128 bits of security
against quantum attackers on an embedded microcontroller.

2 The SPHINCS-256 signature scheme

This section explains the SPHINCS-256 signature scheme as proposed in [4].
The section follows a top-down approach: we first explain why there is a need
for SPHINCS and present a high-level overview. Then, we fill in details on each
of the components. Rather than discussing the SPHINCS scheme in general, we
will directly and explicitly adhere to the parameters and functions proposed as
SPHINCS-256 in the original paper. Refer to [4] for a more general description.

2.1 Eliminate the state

In [17], Lamport describes a one-time signature scheme (OTS) that forms the
foundation for hash-based signatures. This scheme has later been used and im-
proved by Merkle [20] to build a many-time signature scheme. This is done
constructing a binary hash tree on top of a series of OTS key pairs, effectively
joining them together under a single long-term public key. When a sequence of
authentication nodes is supplied as part of the signature together with an OTS
public key, a verifier is able to reconstruct the long-term public key at the root of
the authentication tree. See Figure 1 for an illustration of this. This approach is
still the main construction used in modern hash-based signature schemes (such
as XMSS [5]).

However, these constructions suffer from a fundamental problem. When using
Merkle trees on top of OTS key pairs, the user should be very careful not to
use a OTS key twice as this would undermine security. This implies that, in
addition to storing the secret key (i.e., the seed that produces all OTS keys
on the leaf nodes), one needs to store some indicator to keep track of the leaf
nodes that have already been used3: the state. While this is not a problem in
some applications, key management can quickly become an issue. In scenarios
where multiple instances of the key are stored in different places (for example,
backups, different machines used for load balancing, or different devices owned

3 In practice, this could be just the number of messages signed so far, as Merkle showed
that using the keys sequentially is often preferable [20]
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Fig. 1. The authentication nodes needed to authenticate leaf node 5 are coloured grey.

by the same user), the state needs to be constantly kept in sync among those
copies. This makes such a signature scheme highly impractical and incompatible
with many of today’s systems.

Already in 1986, Goldreich recognized this problem and proposed a solu-
tion [11]: create a tree of such depth that, when randomly choosing an OTS key
pair for each signature, the chance of accidentally reusing a certain OTS key
pair becomes insignificantly small. This way, there is no need to keep track of
the already used OTS keys. The obvious problem here is actually creating such a
tree in the first place, but Goldreich is able to avoid this. By not simply hashing
nodes together (as is the typical Merkle tree construction) but instead attaching
an OTS key pair to each tree node and using that to sign the child nodes, it is
never necessary to compute the entire tree. This requires that the OTS keys of
the nodes along the path from a random leaf to the root node are determinis-
tically generated out of order, but this can easily be done using pseudorandom
function with a secret seed and the node index.

While Goldreich’s system solves the issue of having to maintain a state, it
introduces a new problem. As it replaces hashing with signing throughout the
tree, it also replaces hash digests with OTS signatures for the authentication-
path nodes included in each signature. This creates a new hurdle for practical
use, as it results in tremendously large signatures (more than 1MB for reasonable
parameters).

2.2 Overview of SPHINCS-256

As discussed above, the main problem with hash-based signature schemes is ei-
ther the need to maintain a state or the size of the signatures. This has prevented
hash-based solutions from being a drop-in replacement for the signature schemes
that are currently in use. SPHINCS solves this by combining the approach of
Goldreich with traditional Merkle trees in a nested construction and few-time
signatures. This results in a stateless scheme with signatures of 41KB and pri-
vate and public keys of 1KB each [4]. At “hundreds of messages per second on
a modern 4-core 3.5GHz Intel CPU”, it is shown to be sufficiently fast for many
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practical applications. In later sections of this paper, we demonstrate that it is
also practical on low-end devices with highly limited resources.

The nested trees construction forms the base of SPHINCS. The complete
structure consists of a total of h = 60 layers, divided over d = 12 layers of
sub-trees. This can be viewed as a hypertree of two levels of abstractions, where
each node in the global tree represents a sub-tree. Each of these sub-trees then
consists of h/d = 5 layers of nodes themselves. Let us refer to the sub-trees
on layer i of the global tree as τi, where i ∈ {1, . . . , d}. We refer to the nodes
in a sub-tree as νi,j , where j ∈ {1, . . . , h/d} is their level in the sub-tree and
i ∈ {0, 2j − 1} the index within that level. There is no need to diversify between
nodes or trees in the same layer at this point, as they each serve an identical
purpose.

The trees τi are binary hash trees, only slightly varying from the original
Merkle tree concept. Each of their nodes νi,j for j ∈ {1, . . . , h/d − 1} contains
a digest of its child nodes, while the leaf nodes on layer h/d each contain the
key of an OTS. For now, let us assume that we have some hash function H that
generates these digests. As with Merkle trees, the digest at the root of the tree is
used to authenticate the entire structure by constructing authentication paths.

All the sub-trees are then chained together as in Goldreich’s system. Using
the OTS keys in the leaf nodes νi,h/d of the trees τi, the root nodes of the trees
τi+1 are signed; a new sub-tree is chained to each of the leaf nodes. See Figure 2
for a close-up of this construction. Nodes labeled H contain a hash of their child
nodes; nodes labeled OTS include a key pair to authenticate their child node.

The OTS key pairs of the leaves of the trees on the bottom layer are not
used to authenticate more sub-trees. Instead, they are used to authenticate the
public key of a few-time signature scheme (FTS). An FTS behaves similarly to
an OTS, but can be used several times before revealing too much of the secret
key. By using an FTS rather than an OTS, SPHINCS does not require as many
leaf nodes to maintain the same security level: the required maximal probability
of selecting the same node repeatedly can be much higher without breaking the
system. These FTS keys are used to sign the actual messages.

The above describes the basic outline of SPHINCS. This still far from a
working algorithm, though, as we have assumed a number of black boxes: some
hash function H to use in the sub-trees, an OTS to use between sub-trees and an
FTS to sign the actual message at the bottom of the hypertree. In the following
subsections, we will gradually collect the missing pieces.

2.3 Key generation

Because of the hypertree structure, key generation for SPHINCS is a fairly cheap
operation. We start by selecting some random values SK1 ∈ {0, 1}n and SK2 ∈
{0, 1}n. For SPHINCS-256, n = 256. The first of these values is used for key
generation, while the second is required for signing. This will be illustrated in the
next subsection. Additionally, we generate a tuple Q of random bitmasks, each
one also from {0, 1}n. These masks are used in the hash trees (as described in
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Fig. 2. Linking sub-trees together

Section 2.6), as well as in the OTS and FTS – for now, let us merely acknowledge
their existence. Thus SK = (SK1, SK2, Q).

In order to generate the public key, we only need to generate the single tree
in τ1: the tree at the top of the structure. This requires generating the OTS
keys along the bottom of this tree. Note that these keys need to be generated
deterministically; using their address and SK1 as input to some pseudorandom
function we can derive a seed for this key. Then, a binary hash tree can be built
on the public keys of the OTS key pairs, and the root node of this tree is part of
the SPHINCS public key: PK1. As the bitmasks are also needed for verification,
they must also be included in the public key: PK = (PK1, Q).

It is worth noting that, while SK1, SK2 and PK1 are all only 256 bits (or
32 bytes) in size, Q is significantly larger. SPHINCS-256 uses 32 bitmasks in Q,
which add up to a total size of 32 · 32 = 1024 bytes. Bitmasks thus account for
the largest part of the keys. In general, the number of bitmasks is determined
by the part of the scheme that requires the largest number of them – the FTS,
the OTS or the hash trees.

2.4 Signing

Public-key signature schemes typically compute a hash of the message that is to
be signed, and then sign that hash. This ensures that the input is of a constant,
relatively small length. In a stateless scheme like Goldreich’s, a random key pair
at the bottom of the tree would then be selected to sign the hash. In SPHINCS,
however, the key pair is selected based on the message hash itself. In order to
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prevent attackers from specifically targeting certain key pairs, some random or
unknown factor still needs to be included – this is what SK2 is for. We first
compute a bitstring (idx‖R) using a pseudorandom function that takes SK2

and the message as input, and use idx to select an FTS key pair. The second
part R is used to compute a randomized digest D of the message. This digest
is what we will be signing. As a practical result of all this, the selection of an
FTS key pair is completely deterministic with respect to a secret key SK2 and
a message M .

After selecting a particular FTS key pair, the secret key of this key pair
needs to be generated (based on a seed derived from its location and SK1)
and is then used to sign D and produce the signature σFTS . Together with the
message-specific randomness R generated above and the index idx of the selected
key pair, this signature forms the first part of the SPHINCS signature Σ. As
SPHINCS uses an OTS and an FTS for which the public keys can be derived
from their respective signatures (as we will see in Section 2.7 and 2.8), there is
no need to include the FTS public key here.

We then generate the OTS key pair for its parent node in νd,h/d in the relevant
sub-tree in τd (again using its position in the tree in combination with SK1),
and use it to sign the FTS public key. Let us refer to the produced signature as
σOTS,d. This signature is also added to Σ. The public key of this OTS needs to be
authenticated, so we compute all nodes along its authentication path throughout
the tree in τd and include those in Σ as well. We refer to the nodes along the
authentication path in the selected tree on layer d as Authd. Upon reaching the
root of the tree in this fashion, we generate the OTS key pair that belongs to its
parent node in νd−1,h/d and use that to sign the root. This procedure continues
all the way up to the root of the one tree in τ1, which is, by construction, included
in PK. While progressing up the hypertree, all OTS signatures and nodes along
the authentication paths need to be added to Σ.

Altogether, the SPHINCS signature Σ now contains the message-specific ran-
domness R, the index idx of the selected FTS key pair, the FTS signature σFTS

and d pairs of OTS signatures and sequences of nodes along the authentica-
tion path (σOTS,i, Authi). Everything combined, Σ = (idx,R, σFTS , (σOTS,1,
Auth1), . . . , (σOTS,d, Authd)).

2.5 Signature verification

The procedure for verifying a signature on M is very similar to signing. As
we have seen above, the signature Σ contains the message-specific randomness
R, the FTS signature and the OTS signatures and authentication paths. After
computing D (using R and M), the FTS signature is verified. As mentioned
above, the verification function of the OTS and FTS used in SPHINCS output
the respective public key. Hence, the OTS signature on the FTS public key can
now be verified, resulting in the respective OTS public key. As the authentication
path is also given in Σ, the root node of the tree in τd can now be computed.
Similar to the way the signature was generated, we now continue up the tree

7



along the authentication paths while verifying the signatures on the root nodes
of each sub-tree.

In the end, the verification eventually arravies at the root node of the single
tree in τ1. This root node should be equal to PK1, included in PK. If this is the
case, the signature is valid.

2.6 Hash trees

At its core, SPHINCS heavily relies on hash trees. The construction of these trees
is slightly different from the classical binary Merkle trees. After concatenating
the values of the two child nodes, they are not immediately fed to a hash function
to produce the parent node. Instead, two bitmasks are applied first; let Qi, Qi+1

be such bitmasks and h2, h3 child nodes, then h1 = H((h2‖h3)⊕ (Qi‖Qi+1)).
In [2], XORing with bitmasks is introduced as part of a linear hashing scheme,

and it is employed in [9] in order to construct binary hash trees that do not
require the underlying hash function to be collision resistant. Instead, second-
preimage resistance is sufficient to attain unforgeability. This hash-tree construc-
tion is the one described above, and is used in SPHINCS.

2.7 The FTS: HORST

At the bottom of the hypertree, SPHINCS relies on an few-time signature
scheme. For this, a variation of an FTS called HORS [22] is used. This variant,
referred to as HORST, adds a tree construction to plain HORS [4]. The con-
figuration of HORST consists of two parameters that control the security level,
signature size, and key sizes: t and k, where t is a power of 2. For SPHINCS-256,
we have t = 216 and k = 32.

As mentioned in the overview of SPHINCS, the key is seeded based on SK1

and the location of a particular HORST instance in the hypertree. This seed is
expanded to t secret-key components to form sk = (sk0, . . . , skt), which are then
hashed to create the public-key components pki for i ∈ {0, . . . , t}. In SPHINCS-
256, each ski and pki has 32 bytes. The HORST variation then proceeds to
build a hash tree on top of the public-key components. The root of this tree
is the actual HORST public key pk. For this tree, SPHINCS also makes use of
bitmasks as described in Section 2.6.

Signing a messageM using a HORS key pair is done by splitting the message
into k pieces of length log2 t. Each of these pieces Mi is then used as an index
to address a piece of the secret key, skMi

, which is subsequently revealed. For
HORST, the nodes along the authentication path from these hashes to the root
of the tree are also required as part of the signature.

Verification is quite similar: first, the revealed pieces of sk are hashed, and
the message is split into k parts. These parts are then interpreted as integers
and used to place the pieces of sk on the appropriate leaves. Using the nodes
supplied in the signature, the path to the root node can then be computed. This
is done for all nodes and authentication paths checking that all agree on the
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same root. If this is not the case, verification fails. The verification algorithm
then outputs this root as the public key – comparing it to the actual public key
will reveal if the signature was valid.

What makes HORS usable as a few-time signature scheme (as opposed to an
OTS) is the choice of a sufficiently large t in relation to k. This implies that only
a small part of the secret key is revealed for each signature, and the chance of
a successful forgery after obtaining just a few signatures diminishes. Note that
this does require that an adversary cannot control the message hash for which
a signature is obtained. As we have seen above, this requirement is satisfied in
SPHINCS. In the original HORS scheme the combined size of public key and
signature would increase linearly with t, but the HORST variation only incurs
logarithmic growth in t, caused by the length of the authentication paths. This
makes it possible to use HORST as the FTS in SPHINCS without dramatically
increasing the key length.

2.8 The OTS: WOTS+

For the OTS that links the sub-trees together, SPHINCS uses WOTS+. This
variation of the Winternitz OTS is proposed in [14], designed to reduce the
signature size even further than other WOTS-based schemes. As in WOTS,
the Winternitz parameter w = 16 is used to configure the efficiency trade-off.
Likewise, one then derives ` (consisting of `1 and `2) from this parameter and
the security setting n = 256 as follows.

`1 =

⌈
n

logw

⌉
, `2 =

⌊
log (`1(w − 1))

logw

⌋
+ 1, ` = `1 + `2.

For the SPHINCS-256 configuration, it can be readily computed that `1 = 64
and `2 = 3, thus ` = 67.

In the plain WOTS scheme, a function F is applied to the secret key several
times to produce a hash chain. In WOTS+, however, we take into account the
bitmasks. In each iteration, before applying F , the input is XORed with a round-
specific bitmask Qi. The chaining function then looks as follows (where the base
case is c0(x) = x):

ci(x) = F (ci−1(x)⊕Qi)

In order to guarantee deterministic signatures here as well, WOTS+ key
pairs are also seeded using SK1 and their location in the tree. This seed is then
expanded to a secret key of ` = 67 pieces, sk = (sk1, . . . , sk`). Generating the key
is very similar to traditional WOTS; we simply apply the chaining function c for
a total of w−1 times to each part of sk to obtain (pk1, . . . , pk`). In SPHINCS-256,
each of the ski and pki has again 32 bytes. As the reader might be expecting by
now, we proceed by building a hash tree on top of these public-key parts. These
trees make up the third abstraction level of trees in the hypertree. However, `
is not necessarily a power of two – in fact, as w and n (and thus `1) typically
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are a power of two, ` is not. This requires the use of a slightly different tree
construction: the L-Tree [9]. The structure is entirely identical to binary hash
trees, except for the rightmost nodes. Whenever the number of nodes on the
current layer is odd, the rightmost node is lifted up to the next layer instead.
See Figure 3 for an example with five nodes. The root of this tree is the public
key pk.

5

5

54321

Fig. 3. An L-Tree with five leaf nodes

In order to sign a message M , we first interpret it as an integer in binary,
and then express it in base w. This effectively splits M into a sequence of values
that can be at most w−1, each. Note how there will be at most `1 values, as per
the construction of `1. We write M = (M1, . . . ,M`1). Furthermore, a checksum
needs to be computed to prevent an attacker from being able to forge a signature:
C = Σ`1

i=1(w − 1 −Mi), which is also expressed in base w: C = (C1, . . . , C`2).
The lists M and C are then chained together to form B = (b1, . . . , b`) = M‖C.
These values in B are then used as lengths for the Winternitz chains, producing
the signature (σ1, . . . , σ`) = (cb1(sk1), . . . , c

b`(sk`)).
Verifying a WOTS+ signature is very similar to the regular WOTS scheme,

except that one needs to take special care to use the correct bitmasks when
applying the chaining function4. Let us define the function v to account for this
as

vi,j(x) = F (vi,j−1(x)⊕Qw−i+j−1).

Like for the original chaining function, the base case is vi,0(x) = x and we
abbreviate vi,i(x) = vi(x).

We then compute B in the same way as in the signing procedure, and then
compute the public key parts (pk1, . . . , pk`) = (vw−1−b1(σ1), . . . , v

w−1−b`(σ`)).
As was the case during the key generation step, the last step that remains is

4 Note that this approach differs slightly from the one presented in [14]. In the original
definition this is solved by supplying the appropriate set of bitmasks as an argument
to the chaining function.
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computing an L-Tree over these pieces. The verification algorithm then outputs
the root of this tree. Like in HORST, this can then be compared to the actual
public key to verify that the signature was valid.

2.9 H and F : ChaCha

Two key elements of SPHINCS have not yet been discussed. Practically the
entire scheme consists of computing hashes. In WOTS+, some hash function
F : {0, 1}n → {0, 1}n is used to construct the chaining function, and throughout
the entire hypertree, H : {0, 1}2n → {0, 1}n is used to construct binary hash
trees. The function F is also used to compute the HORST leaf nodes based on the
secret key. For the performance of the scheme, it is crucial that these functions
are sufficiently fast. An important characteristic of both of these functions is
that they do not need to be able to take arbitrarily long input. This makes
it unnecessary (and wasteful) to select a hash function that can. As it turns
out, being able to accept arbitrarily long input is one of the properties that
typically slow down hash functions. Instead, SPHINCS uses a permutation-based
construction following the sponge design using the permutation from the ChaCha
stream-cipher family [3].

The core of ChaCha is a 512-bit permutation, so in order to use it for F ,
the input needs to be padded to extend it. In SPHINCS, the authors chose the
32-byte ASCII string C = “expand 32-byte to 64-byte state!”. The output of F
is obtained by truncating the output of the ChaCha permutation to 256 bits.
H is constructed similarly. Let Chop(M, i) be a function that truncates M to i
bits, M1 and M2 be strings of 256 bits, and O be a string of 256 zero-bits, then

F (M) = Chop(πChaCha(M‖C), 256), and
H(M1‖M2) = Chop(πChaCha(πChaCha(M1‖C)⊕ (M2‖O)), 256).

Now only a few minor pieces of the puzzle remain. Creating the message-
specific random valueR is done by calling BLAKE-512(SK2‖M) [1], and BLAKE-
512 is used once more to create the digest D. In order to derive the secret keys
for the HORST and WOTS+ key pairs based on their location and SK1, the
BLAKE-256 function is used as a pseudo-random function. Along the bottom of
each of the trees, the ChaCha12 stream cipher is used to generate HORST and
WOTS+ keys. An complete overview of the SPHINCS-256 hypertree is shown
in Figure 4.

3 The ARM Cortex-M3 microcontroller

The platform of choice for this implementation is the ARM Cortex M3, and de-
velopment was carried out using the STM32L100C discovery board. The Cortex
M3 is a 32-bit microprocessor with sixteen 32-bit registers, thirteen of which are
available for general-purpose computation (leaving three for the stack pointer,
link register and program counter). This microcontroller is commonly found in
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embedded systems used in the automotive industry, small industrial systems
and (wireless) sensors. As opposed to the ARMv6-M [18] architecture found
among the smaller processors in the Cortex M-series, this processor supports
the ARMv7-M [19] architecture.

The ARMv7-M architecture is aimed at microcontrollers, and is highly op-
timized for low-cost devices. It only supports the Thumb-2 instruction set (as
opposed to the full ARM instruction set) and its register scheme is very straight-
forward – there are no SIMD instructions or extended register banks. This is
somewhat compensated for by the efficient STM and LDM instructions. While
these cannot be pipelined with other instructions, they provide internal pipelin-
ing when transferring more than one register to or from memory, making it not
so costly to swap out the register contents. In Thumb-32 instructions, there are
some limitations to their use on the SP, PC and LR registers, but none of this
is a direct obstacle in our use-case.

The STM32L100C is part of the STM32 ultra-low-power series. The processor
runs at a clock speed of 32MHz, and the board offers 16KB of RAM. This makes
it a highly constrained platform for the implementation of SPHINCS, given that
the stack usage of the Haswell implementation [4] runs into several megabytes.
Notably, this means that the available RAM is insufficient to store the signature,
which weighs in at 41KB.

In order to communicate with the device at runtime, we make use of se-
rial communication over USART. This can be done efficiently using the direct-
memory-access (DMA) controller, to prevent blocking the computation while
waiting for the communication interface. Doing this, we are able to communi-
cate reliably at a baud rate of 921 600Bd. To be able to configure and use this
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from a more abstract level, we made use of the open-source libopencm3 firmware
library.

4 Implementing SPHINCS-256 on the Cortex-M3

The main contribution of this work is to show that SPHINCS-256 can be im-
plemented on resource-constrained devices. The Cortex M3 is quite constrained
both in terms of available volatile memory as well as processor speed, serving
as a proof of concept that this does not render SPHINCS unusable. In this sec-
tion, we describe implementation-specific design choices and present the achieved
speed results. It should further be noted that this implementation makes use of
code from the SPHINCS reference implementation [4] as well as (parts of) im-
plementations of BLAKE-256 and BLAKE-512 [1] and the ChaCha12 stream
cipher [3].

4.1 Signing within 16KB

In a hash-based signature scheme, signing and verification are very similar in
design, but they differ significantly when actually being performed. For verifi-
cation, much of the work has already been done when producing the signature,
and there is no need to construct entire trees from the ground up. The same is
the case for SPHINCS. While verification is fairly straight-forward in terms of
memory use, signing requires more effort to get right.

The general approach is as follows. In order to reduce the memory consump-
tion of the signing operation, we split the computation into disjunct parts, and
process the output of each part before continuing with the next part. This makes
sure that we only have to account for the memory requirements of each such part
at a time, instead of the consumption of the entire operation. The remaining task
is now to find suitable points at which to split the computation such that mem-
ory use is sufficiently low in each of the parts, without introducing too much
performance overhead.

Tree storage. The SPHINCS scheme consists of a number of clearly distinct
components, with the HORST trees and WOTS+/hash trees as the two most
prominent subdivisions. While the memory usage is typically large at the base
of a tree, it fans in again as one progresses towards the root. As each tree is
stacked on top of the one below, it is not necessary to ever store more than one
tree in memory at a time before proceeding on to the next – this progression is
highly sequential.

For the WOTS+/hash trees, the available memory is not an immediate prob-
lem. Producing a single WOTS+ signature impacts the available memory for
only 67 bytes. At 32 · 67 = 2144 bytes, the WOTS+ public key itself is slightly
larger, but this can be quickly reduced to a 32 byte root node by applying the
L-Trees we have seen in Figure 3. This does imply that one really has to perform
this reduction before continuing with the next WOTS+ leaf node, but in the
current context this has no negative impact. After processing all leaf nodes in
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this fashion, one is left with 32 leaf nodes of 32 bytes each. Each authentication
tree contains only h/d = 5 layers of hashing, resulting in a total of 26 − 1 = 63
nodes, which can be stored in memory all at once. After computing the entire
tree, the nodes along the authentication path can be conveniently selected.

HORST, on the other hand, is a different beast entirely. With t = 216 and
k = 32, the trees contain 131071 nodes spread over 16 layers of hashing, making
these trees much higher than the hash trees on top of the WOTS+ signatures.
This means that the method of first building the entire tree and then extracting
the authentication path is not feasible. At 32 bytes per node, the nodes alone
would require 4MB of storage. There is no need to store the entire tree, though,
as only a very specific set of nodes is relevant for the signature: the nodes along
the 32 authentication paths, as well as the root node. As we do require the root
node to authenticate the tree, there is definitely no escaping having to compute
the entire tree.

Treehash. In [4], the authors mention that RAM usage and code size was not
one of the concerns when writing the optimized implementation – the imple-
mentation was optimized for speed on a platform where memory was available
in abundance. They remark that, if saving memory is a concern, the treehash
algorithm could be used. This is what we will now apply in order to compute
the HORST authentication path.

The treehash algorithm is another contribution by Merkle [20, Section 7]. It
has since been used in various forms as the basis of tree-traversal algorithms.
A common approach is expressed by the pseudo-code (based on [13]) in Algo-
rithm 1, and discussed below.

Algorithm 1 One round of the treehash algorithm
Require: Stack, next leaf node N
Ensure: Stack is updated
1: while Stack.peek() is on same level as N do
2: neighbour ← Stack.pop()
3: N ← H(neighbour ‖ N)
4: end while
5: Stack.push(N)

The core idea is to grow a tree, using its leaves in subsequent order and
only maintaining a collection of the currently relevant nodes: the ‘heads’ of the
different branches. As new nodes are added, these branches are gradually grown
to completion, and merged when needed. Any nodes that occur deeper in the tree
can safely be forgotten (for the purpose of finding the root node), as each node
is only required once to generate its parent. Each round of treehash consists of
introducing the next leaf node and updating the heads of the branches until no
more new nodes can be computed. For half of the leaves (i.e., the ‘left neighbors’),
their introduction does not allow for the computation of any new parent nodes,
while a quarter of the leaves allows us to compute one parent node, etcetera.
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When examining how the set of relevant nodes evolves, there is a strict order-
ing in when these nodes become relevant again, based on their level in the tree.
It can be easily observed that nodes are always consumed in a last-in-first-out
manner – the set is really a stack. After introducing all leaf nodes and com-
pleting the last round, the root node will be the only node left on the stack.
Another important observation here is the fact that there are never two nodes
of the same tree level on the stack at the same time. The nodes on the stack
are inherently ordered by their tree level (nodes that occur higher in the tree
are stored deeper down the stack). As leaves are consumed in subsequent order,
two nodes at the same level have to be neighboring nodes that can immediately
be used to produce their parent node. This allows us to conclude that using
treehash for HORST requires a stack that can hold log(t) = 16 nodes. At 32
bytes per node, this easily fits in the available memory.

Besides computing the root node of a HORST tree, however, we are particu-
larly interested in the nodes along the authentication paths from the leaves used
to produce the signature, to the top of the tree. The position of these nodes on
the stack is less easy to predict, but we do not want to compute parts of the tree
more than once in order to gather all required nodes. Intuitively, a way to resolve
this is by somehow recognizing the nodes that need to be included in the signa-
ture while performing the treehash rounds. Navigating through the tree without
actually computing the node values is cheap, allowing us to trace the authenti-
cation paths from leaf to root and observe which nodes will need to be output.
Rather than compiling a list of these nodes and performing costly lookups, we
can compute and store in which treehash round they will be produced, as well as
their position in the signature5. Algorithm 2 shows how to compute the round
numbers of all nodes along the authentication path for a given leaf-node index.

Consider that the tree consists of 217−1 = 131071 nodes, but only 320 nodes6
are relevant. Because of this, only a small subset of all treehash rounds contains
relevant nodes. This makes it especially important to optimize recognizing rele-
vant treehash rounds.

An efficient way to recognize which nodes need to be included in the signature
while performing treehash is by storing bitmasks for each of the relevant rounds.
By sorting these bitmasks by their round index, one can iterate over the mask-
index pairs while processing each of the leaf nodes. Pointing an iterator at the
current mask-index pair and only incrementing it when the index is equal to the
index of the current leaf node will result in an overhead of only one comparison
for each non-relevant round.

5 As nodes of the various authentication paths will be generated interleaved, it is
necessary to rearrange them accordingly.

6 One might expect to require 32 · 16 = 512 nodes, as each of the 32 authentication
paths results in 16 neighboring nodes. However, in order to prevent needless dupli-
cation in the top layers, the HORST signature always includes layer 6 in its entirety
and truncates the authentication paths after 10 nodes, leaving it to the verifier to
reconstruct the paths.
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Algorithm 2 Computing treehash round numbers
Require: idx
Output: treehash round numbers of authentication nodes
1: roundno← idx+ t
2: roundnumbers← [ ]
3: for i ∈ {1, . . . , log(t)} do
4: . Find the neighbour node’s round number..
5: if idx mod 2 = 1 then . (idx is a ‘right-node’)
6: roundno← roundno− 2i−1

7: idx← idx− 1
8: else . (idx is a ‘left-node’)
9: roundno← roundno+ 2i−1

10: end if
11: roundnumbers.append(roundno)
12: . ..and move up to the parent node.
13: if idx mod 2 = 0 then
14: roundno← roundno+ 2i−1

15: end if
16: idx← idx/2
17: end for
18: return roundnumbers

Streaming out signature data. In the previous section, we have glossed over
an important aspect of the signing process: constructing the signature. Where an
implementation with an abundance of memory available would simply allocate
41KB of memory and insert the different pieces of the signature in the right place
as they are computed, this is not possible on our device. Instead, the signature is
streamed out of the board over the serial port throughout the computation. For
many applications, this is not much different from receiving the entire signature
all at once after the entire computation has finished, so we believe this should
not pose any immediate usability concerns.

As was discussed in Section 2.4, the SPHINCS signature consists of a number
of different components. Recall that Σ = (idx,R, σH , (σW,1, Auth1), . . . , (σW,d,
Authd)), where, for brevity, H and W now denote the HORST FTS signature
and the WOTS+ OTS signatures, respectively.

The values idx and R are generated at the start of the signing procedure,
and can be written to the output stream immediately. The WOTS+ signatures
σW,i and sequences of nodes Authi are generated in the same order as the order
in which they are supposed to be arranged in Σ, so this does not lead to any
difficulty, either – instead of storing them in memory, we simply write these
values to the output stream as they are computed.

The HORST signature σH is a bit more complicated. It consists of k pairs of
secret keys belonging to leaf nodes, and sequences of nodes along the path from
each of these leaf nodes towards the top of the tree. As remarked in footnote 6
on page 15, all nodes on layer 6 are always included, so the last 6 nodes of these
sequences are truncated. The issue here is the fact that the node sequences are

16



not produced one at a time, but are each grown in an interleaved fashion as more
and more of the tree is computed. When storing the hash values in a signature
in memory, this does not pose a problem – each node value can be inserted in
the right place. When streaming the output, however, one cannot go back and
insert a node value. Instead, the node values will have to be tagged with what
should have been their location in the signature, and rearranged accordingly on
the receiving end of the communication. For each 32-byte node value, this adds
an overhead of two bytes. While this may seem significant, in the end it results
in an increase of 832 bytes (640 for the authentication path nodes, 128 for the
nodes on layer 6 and 64 bytes for the secret keys). Considering that the entire
SPHINCS signature is 41KB, this can be considered acceptable.

HORST key material. Similarly, generating a HORST secret key (based on
the seed SK1 and its location in the hypertree) results in too much key material
to fit in memory. With 216 leaf nodes of 32 bytes each, this would amount to
2MB. Instead, we can once more rely on the fact that treehash rounds consume
the leaf nodes sequentially, and only generate the leaf node values when they are
required. To achieve this, we briefly store the intermediate state of the ChaCha12
stream cipher instead, initially seeding it in the regular fashion for HORST. We
then perform the next iteration based on the stored state whenever more key
data is required. This allows for the generation of leaf node values on the fly. As
ChaCha12 produces output blocks of 512 bits, every other leaf node requires a
new chunk of output to be generated.

Streaming the message. On the subject of streaming data, it should also be
remarked that for the Cortex M3 to be able to sign messages of a length larger
than the available memory, it is necessary to process the message in a streamed
fashion as well. This is possible, but requires the message to be streamed twice. In
Section 2.4, we described that the message is first used together with the secret
key to generate a message-specific random value R, after which the message
digest is generated. As this digest is computed as the hash of the concatenation
of a part of R and the message (in that order), the message needs to be available
twice. As storing it on the device is not an option for large messages, it needs
to be streamed twice. The additional overhead is minimal as it can be streamed
in block by block while performing the BLAKE512 hash using direct memory
access.

4.2 Performance

The previous subsections show some of the adjustments required to be able to
generate SPHINCS signatures on a platform with only 16KB of volatile memory.
Besides memory usage, time is also a relevant metric to consider. In fact, the
running time very much determines usability in practice.

ChaCha permutation. When considering SPHINCS-256, one of the key ob-
servations here is the repeated use of the ChaCha permutation. It is the funda-
mental building block in both WOTS+ and HORST, as well as the hash trees
that make up the rest of the hypertree.
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Recall that t = 216. In order to generate a HORST key and produce a
signature, ChaCha is used 1

2 · t = 32768 times to expand the seed and generate
the secret keys, as the permutation outputs 512 bits and the keys are 256 bits
each. These secret keys are then hashed using F to construct the leaf nodes at
the cost of another t = 65536 permutations. Subsequently, treehash is used to
hash together t leaf nodes, at a cost of two ChaCha permutations per parent
node (as follows from the construction of the functionH in Section 2.9), resulting
in another 2 · (t − 1) = 131070 permutations. All in all, this results in 229374
calls for one HORST signature.

WOTS+ is significantly cheaper. Recall that ` = 67 and w = 16. Generating
a WOTS+ key pair requires ` secret keys, which costs

⌈
1
2 · `

⌉
= 34 permutations

to expand the seed, ` · (w− 1) = 1005 invocations of F at one permutation each
for the chaining function and 66 invocations of H to build the L-tree, totaling
34+1006+2 ·66 = 1171 permutations. Each of the trees in the hypertree has 32
WOTS+ leaf nodes, costing a total of 32 · 1171 = 37472 permutations per tree.

Constructing a tree with WOTS+ key pairs on the leaf nodes costs an ad-
ditional 31 invocations of H. One of the WOTS+ nodes is used to produce a
signature on the sub-tree below, at the average cost of

⌈
1
2 · ` · (w − 1)

⌉
= 503

more invocations of F . As there are trees 12 in the hypertree, this leads to a
total of 12 · (37472 + 2 · 31 + 503) = 456444. Summing the cost of HORST and
the WOTS+ trees, we arrive at a grand total of 229374 + 456444 = 685818
permutations.

Because we perform so many ChaCha permutations, it is worthwhile to opti-
mize this in ARMv7-M assembly. Internally, the ChaCha permutation operates
on sixteen words of 32 bits each. These fit precisely in the 32-bit registers that are
available to us on this platform, and the arithmetic in ChaCha is very simple to
perform once the words are accessible. There are not enough registers available
for all of these words, though, as register 13, 14 and 15 are reserved for the stack
pointer, link register and program counter, respectively. This would imply that
three of the sixteen words would need to be saved in memory at all times, at the
cost of a load and a store whenever one of these is needed. While we need the
program counter and stack pointer for the code to run properly, we are not mak-
ing any function calls that require the link register – the extra cost of having to
pop it from the stack in the end is easily compensated by the benefit of an extra
general purpose register. Now that we have fourteen registers to work with, we
can arrange the order of the round internals of the ChaCha permutations such
that we only need to switch out the two words on the stack once every round,
on average. Doing so, we arrive at 738 cycles for one permutation; in the context
of the ChaCha12 stream cipher, this corresponds to around 23 cycles per byte.

Key generation.Generating a SPHINCS-256 key on the device takes 35 423 182
cycles. At 32MHz, this amounts to just over a second. As one would expect,
virtually all of these cycles can be attributed to WOTS+ key generation. When
it comes to key generation, it should be noted that the STM32L100C discovery
board that we used for these benchmarks is not equipped with a random number
generator. Instead, we used a hard-coded 32-byte value that is included when
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we flash the device. While in practice, using this board, key generation would
have to be done off the board, our results show that for similar boards with a
TRNG on-board key generation is not only feasible but practical.

Signing. Producing a signature takes 729 942 616 cycles, or approximately 22.81
seconds. As described above, we cannot store the signature on the board – this
requires communication to a host outside of the board. Using direct memory
access, we can efficiently interleave control of this communication with compu-
tations. If we disable communication and instead discard the signature as it is
being produced, the signing procedure requires 725 933 925 cycles (for messages
of small length, so as to focus the benchmark on penalty of signature output).
This shows that the overhead is noticeable but not significant. In practice, this is
a factor that may vary slightly depending on the specific context and interfaces
available.

Verification. Verification is much more straight-forward. The memory limit
does not necessitate any significant changes like it did for signature generation,
as the verification procedure never requires the construction of a full tree. The
signature needs to be streamed to the device, but this does not complicate pro-
cessing, as the node values arrive in the order in which they are to be consumed.
At 17 707 814 cycles, verification takes roughly 553 milliseconds. When ignoring
the communication and operating on bogus data instead, verification requires
8 263 801 cycles. The communication penalty is in the same ballpark as the one
incurred when signing, but still noticeably different. This can be accounted for by
the way in which communication and computation can be interleaved in the two
procedures: for verification, the windows in which communication can be per-
formed are much smaller, making it more difficult to schedule the computation
and communication efficiently.

5 The cost of eliminating the state

As has been discussed earlier, being able to compute digital signatures in a
stateless configuration has definite advantages over a scheme that has to maintain
a state. The advantages are generally focused around practical applicability. In
order to be able to get rid of the state, however, SPHINCS pays a significant
price. In this section, we will review just how much it costs to get rid of the
state. We do this by comparing the performance of SPHINCS on the Cortex M3
to that of Multi Tree XMSS [16] on the same platform, configured in such a way
that both schemes offer a similar security level using similar primitives.

5.1 XMSSMT

XMSSMT [16] uses the XMSS construction [5] in such a way that it is possible
to sign a much larger number of messages before having to generate a new key.
Depending on the specific parameters and practical application, this limit is
virtually non-existent.
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In essence, XMSS (and, by extension, XMSSMT ) is the stateful counterpart
of SPHINCS. The high-level design is very similar, using WOTS+ leaf nodes to
sign messages and including the authentication path in the signature, as well as
adding bitmasks to the hash tree layers. The differences originate from the fact
that XMSS uses the leaf nodes sequentially to guarantee that they are only used
once, while SPHINCS selects them at random with a negligible chance of dupli-
cation. As we have discussed earlier, SPHINCS reduces this chance by adding a
layer of HORST nodes underneath the WOTS+ leaves and by greatly increas-
ing the tree size. In order to feasibly operate on such a large tree, SPHINCS
includes layers of WOTS+ signatures to link different subtrees together. These
linked subtrees are precisely how XMSSMT is also able to increase its tree size
(and thus the number of available leaf nodes).

Besides being able to work with a smaller, more efficient tree, going through
the leaf nodes sequentially also allows us to re-use parts of the previous authen-
tication path when generating a new signature. By storing the authentication
path and the WOTS+ signature, only very few new nodes need to be computed
when the next signature is generated. The amount of work that needs to be
done to update the authentication path varies wildly for the different leaf nodes,
however, making the signing cost very diverse. In order to be able to efficiently
compute each signature at the same costs, the authors of XMSSMT suggest the
use of the BDS traversal algorithm [7] with a distributed signature generation
method7.

BDS traversal. While this is not the right place to go into the precise details of
the BDS algorithm [7], it is relevant and necessary to have a basic intuition. The
goal of this algorithm is to have all the nodes for a certain authentication path
available right when it is required, while still keeping the storage requirement
to a minimum. This is done by maintaining an elaborate state and allocating
‘updates’ to each round (i.e. to be performed whenever an authentication path
is returned). The state consists, among other structures, of instances of the
treehash algorithm progressing through the current subtree, but also of work-
in-progress instances of the next subtree, for each layer in the hypertree. The
allocated updates are assigned to the treehash instances that have the most
work to do relative to their deadline, guaranteeing that each node is produced
when needed. Additionally, the algorithm configuration allows for a trade-off
between the amount of work per update and the storage requirement by caching
particularly expensive nodes high up in the trees.

For now, the main detail we need to make note of is the fact that in order
to initialize the state and initial authentication path, it is necessary to compute
the first full subtree on every layer. Additionally, it is relevant to remark that
changing from one subtree to the next is a more costly operation, as this requires
a new WOTS+ signature to effectively link the new tree to the existing parent
tree.

7 Where the costs for signature generation are equally distributed among all signature
generations
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5.2 Parameters

XMSSMT offers a diverse set of parameters to make different trade-offs between
the runtime and storage requirements. For the parameters selection, we tried to
conform to the settings proposed in the XMSSMT Internet-Draft [15]. This let
to the choice of m = 32 and n = 32 for the function output sizes, a tree with a
total height of h = 20, d = 2 subtree layers and a Winternitz parameter w = 16
(resulting in a length of ` = 67).

In terms of running time, the performance would have benefited significantly
from a larger number of subtree layers, d. However, each layer d implies the
need to store an additional WOTS+ signature, quickly exceeding our memory
constraint. Moreover, a signature contains one WOTS+ signature per layer, in-
creasing the signature size significantly. For the BDS algorithm, we choose k = 6.
This allows us to cache a fairly large number of expensive nodes in the limited
memory that is available.

In order to be able fairly compare XMSSMT to SPHINCS-256, we do not use
SHA-256 and SHA-512 to compute the message digest or the parent nodes in the
hash trees. Instead, we rely on the BLAKE hash functions [1] for the message
digest, and use a construction based on the ChaCha permutation similar to
the ones described in Section 2.9 for the functions H and F , listed below. As
in SPHINCS, let C = “expand 32-byte to 64-byte state!”, let Chop(M, i) be a
function that truncates M to i bits, π the ChaCha permutation, Mi strings of
256 bits and O a string of 256 zero-bits, then:

F (K,M) = Chop(π(π(K‖C)⊕ (M‖O)), 256)

H(K,M1,M2) = Chop(π(π(π(K‖C)⊕ (M1‖O))⊕ (M2‖O)), 256)

For pseudo-random number generation, we replace ChaCha20 with ChaCha12,
as this matches the choice for SPHINCS-256. All of this implies that we can use
the same ARMv7-M assembly implementation of the ChaCha permutation that
we used for SPHINCS.

5.3 Performance

The difficulty with an accurate performance estimate for XMSSMT is that it
highly depends on the practicalities of the platform it is deployed on, as well
as the precise use-case. This is a result of the extra administration that comes
with dealing with the state. As suggested above, part of the state is crucial for
the security of the scheme (namely the index of the last processed leaf node),
and while the structures that need to be stored for BDS traversal are needed
for signing time optimization purposes. Writing persistent data is a relatively
costly operation on most platforms, so different decisions will need to be made
depending on use case specific requirements. On the STM32L100C, writing a
well-aligned 4-byte word to non-volatile memory costs roughly 216 500 cycles on
average, and scales linearly with the number of words written.
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For our experiments, we assume that the device is powered on for a longer
period of time, and is being queried for multiple signatures over this interval.
This is an especially relevant scenario for XMSSMT , as this is where the benefit
of the BDS state comes into play most prominently.

Before outputting each new signature, it is necessary to write the updated
secret key to persistent memory. This prevents re-use of a leaf node (and thus
compromise of the key) when the power gets cut. As the BDS state is much larger
and thus more expensive to store, it is only written to persistent memory when
a graceful power-off occurs. In case this state is lost, it can be reinitialized based
on the secret key seed and leaf node index. For the purpose of this comparison,
this is considered out of scope.

Key generation and initialization. Compared to SPHINCS, the key gen-
eration phase for XMSSMT is much more expensive, especially in the setting
described here. The main reason for this is the fact that the two trees consist
of 10 levels each, resulting in the computation of 2048 WOTS+ leaves (1024 on
each level). As mentioned above, the generation of two trees is necessary to ini-
tialize the BDS state. Additionally, a WOTS+ signature needs to be computed
for the bottom tree. For the specified parameters, the initialization phase takes
10 590 816 803 cycles. Each WOTS+ leaf computation costs 5 160 791 cycles, and
the WOTS+ signature costs 1 922 418 cycles. This accounts for most of the work,
leaving only a small fraction for the hash trees.

Signing and verification. For signing, the cycle count is not precisely identical
for each signature. The BDS algorithm tries to distribute costs equally among
signature generations by running a fixed amount of treehash ‘updates’ for each
signature. However, for the first few signatures not all these updates are needed
as all structures are initialized during key generation and only few values have
to be computed during each signature generation. It turns out that during this
“start-up phase” it is slightly more costly to update the state for ‘right’ leaf
nodes than for their ‘left’ neighbors, signatures using a left leaf node come in
at 25 289 355 cycles, while right nodes cost 20 135 696 cycles. Transitioning from
one tree to the next does cost significantly more cycles than a regular signature:
Signatures that require renewing the WOTS+ signature that binds the subtrees
together cost 33 003 958 cycles. Overall, the average signing time is 22 725 092
cycles.

As one would expect of a hash-based signature scheme, verification is a much
cheaper operation. At only 5 528 712 cycles, the relative gain in comparison to
SPHINCS is not as dramatic as it is for the signing procedure, but it is still a
significant difference.

6 Conclusions

Having to maintain a state for digital signature schemes can have several negative
consequences. With this work, we have shown that it is feasible and practical
to run stateless hash-based signatures on a microcontroller, both in terms of
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performance and memory use. The fact that a SPHINCS signature itself does not
fit in memory has proven to be a surmountable obstacle. This makes SPHINCS-
256 well-suited as a cross-platform post-quantum signature scheme, especially
when keeping a state is not a viable option.

However, we have also shown that being stateless comes not for free. While
verification is fast for stateful and stateless schemes, the state influence speeds up
signature generation roughly by a factor 32; recall that producing a SPHINCS-
256 signature takes 729 942 616 cycles, while an XMSSMT signature can be pro-
duced in 22 725 092 cycles. Still, this difference is not prohibitively big, and may
be a fair price to pay for the flexibility that a stateless scheme provides.
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