
Computational Soundness of Uniformity
Properties for Multi-party Computation based

on LSSS

Hui Zhao1,2 and Kouichi Sakurai2

1 Shandong University of Technology, Zibo SD 255000, China
2 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

Abstract. We provide a symbolic model for multi-party computation
based on linear secret-sharing scheme, and prove that this model is com-
putationally sound: if there is an attack in the computational world, then
there is an attack in the symbolic (abstract) model. Our original contri-
bution is that we deal with the uniformity properties, which cannot be
described using a single execution trace, while considering an unbounded
number of sessions of the protocols in the presence of active and adaptive
adversaries.

1 Introduction

Provable security are now widely considered an essential tool for validating the
design of cryptographic schemes. While Dolev-Yao models traditionally comprise
only non-interactive cryptographic operations (i.e.,cryptographic operations that
produce a single message and do not involve any form of communication, such as
encryption and digital signatures), recent cryptographic protocols rely on more
sophisticated interactive primitives (i.e., cryptographic operations that involve
several message exchanges among parties), with unique features that go far be-
yond the traditional goals of cryptography to solely offer secrecy and authenticity
of communication.

Secret-sharing cryptographic operations constitutes arguably one of the most
prominent and most amazing such primitive [1-9]. Traditionally, in an linear
secret-sharing scheme with threshold (t, l), a dealer D and a number of players
P1, P2, ..., Pl wish to securely generate the secret share ss1,ss2, ..., ssl, where
each player Pi holds a private input di. This secret-sharing scheme is consid-
ered sound and complete if any t or more valid secret shares make the secret s
computable, and knowledge of any t− 1 or fewer secret shares leaves the secret
completely undetermined.

Indeed, verifiable secret sharing (VSS) and secure multi-party computation
(MPC) among a set of n players can efficiently be based on any linear secret-
sharing scheme (LSSS) for the players, provided that the access structure of the
LSSS allows MPC or VSS at all [9, 18]. Secure multi-party computation (MPC)
can be defined as the problem of n players to compute an agreed function of their
inputs in a secure way, where security means guaranteeing the correctness of the

2

output as well as the privacy of the players’ inputs, even when some players
cheat. A key tool for secure MPC, interesting in its own right, is verifiable secret
sharing (VSS): a dealer distributes a secret value s among the players, where the
dealer and/or some of the players may be cheating. It is guaranteed that if the
dealer is honest, then the cheaters obtain no information about s, and all honest
players are later able to reconstruct s. Even if the dealer cheats, a unique such
value s will be determined and is reconstructible without the cheaters’ help.

Thus, it is important to develop abstraction techniques to reason about LSSS-
based MPC and to offer support for the automated verification of their security.
Further, computational soundness results (in the sense of uniformity properties)
for MPC built upon the abstraction of LSSS should be presented.

1.1 Related works

Starting with the seminal work of Abadi and Rogaway [10-12], a lot of efforts
has been directed to bridging the gap between the formal analysis system and
computational-soundness model. The goal is to obtain the best of both worlds:
simple, automated security proofs that entail strong security guarantees. Re-
search over the past decade has shown that many of these Dolev-Yao models
are computationally sound, i.e., the absence of attacks against the symbolic ab-
straction entails the security of suitable cryptographic realizations. Most of these
computational soundness results against active attacks, however, have been spe-
cific to the class of trace properties, which is only sufficient as long as strong
notions of privacy are not considered, e.g., in particular for establishing various
authentication properties [13-18]. Only few computational soundness results are
known for the class of equivalence properties against active attackers, most of
these results focus on abstractions for which it is not clear how to formalize any
equivalence property beyond the non-interactive cryptographic operations [19-
22], such as multi-party computation that rely on more sophisticated interactive
primitives [13, 18].

1.2 Challenging issues

Canetti et. proposed framework of universally composable security [18, 21]. In
this framework, security properties is defined by what it means for a protocol
to realize a given ideal functionality, where an ideal functionality is a natural
algorithmic way of capturing the desired functionality of the protocol problem
at hand. A protocol that is secure within the universally composable framework
is called universally composable (UC).

We are facing a situation where computational soundness results, despite
tremendous progress in the last decade, still fall short in comprehensively ad-
dressing the class of equivalence properties and protocols that formal verification
tools are capable to deal with. Moreover, it is still unknown the composability in
UC framework can be extended to achieve more comprehensive computational
soundness results for equivalence properties.

3

1.3 Our main contributions

In this paper, we present an abstraction of LSSS within the pi-calculus. In this
abstraction, linear secret-sharing scheme is defined by equational theory. Further,
abstraction of LSSS-based MPC is provided as a process that receives the inputs
from the parties involved in the protocol over private channels, create secret
shares of the MPC result, and sends secret shares to the parties again over
private channels. This abstraction can be used to model and reason about larger
MPC protocols that employ LSSS as a building block.

We establish computational soundness results of preservation of uniformity
properties for protocols built upon our abstraction of LSSS-based MPC. This
result is obtained in essentially two steps: We first establish an ideal function-
ality for LSSS-based MPC in the UC framework. Second, we obtain an secure
cryptographic realization of our symbolic abstraction of LSSS-based MPC. This
computational soundness result holds for LSSS-based MPC that involve arbi-
trary arithmetic operations; moreover, we will show that it is compositional, in
the sense that uniformity properties of bi-processes in pi-calculus implies com-
putational soundness results of preservation of uniformity properties. Such a
result allows for soundly modeling and verifying many applications employing
LSSS-based MPC as a building block.

1.4 Comparison with existing works

While computational soundness proofs for Dolev-Yao abstractions of multi-party
computation use standard techniques[13, 18, 23-25] finding a sound ideal func-
tionality for multi-party computation do not support equivalence properties.
Securely realizable ideal functionalities constitute a useful tool for proving com-
putational soundness for equivalence properties of a Dolev-Yao model. In our
proof, we establish a connection between our symbolic abstraction of LSSS-based
MPC and such an ideal functionality which supports uniformity properties: for
an expressive class of equivalence properties, the uniformity implies observa-
tional equivalence for bi-processes , which are pairs of processes that differ only
in the messages they operate on but not in their structure. We exploit that this
ideal functionality is securely realizable.

2 The Abstraction of Secret-Sharing in Multi-party
Computation

In this section, we present a symbolic abstraction of LSSS-based MPC based
on Backes’s abstraction for MPC [13]. Since the overall protocol may involve
several secure LSSS-based MPC, a session identifier sid is often used to link
the private inputs to the intended session. We then represent SSl,t(m, r) as a
function that explicitly generates the LSSS-based proofs. The resulting abstrac-
tion of LSSS-based MPC is depicted as the pi-calculus process LMPC as follows.

4

Inputi = !(inloopi(z).ini(di, sid
′).adv(sid). if sid = sid′

then lini(di) else inloopi(sync())) | inloopi(sync())

Deliveri = ini(yi, sid).inloopi(sync())

SSCompu(l, t, F)

= lin1(d1).lin2(d2)...linl(dl).vr

let y = SSl,t(F (d1, d2, ..., dl), r) in

let y1 = COEl,t,1(y) in

let y2 = COEl,t,2(y) in

.

.

.

let yl = COEl,t,l(y) in

(Deliver1 | Deliver2 | ... | Deliverl)

LMPC(l, t, F, sidc, adv, ĩn) = sidc(sid).vlin.vinloop.

(Input1 | Input2 | ... | Inputl | !SSCompu(l, t, F)

In the abstraction of LSSS-based MPC above, process LMPC is parametrized
by threshold (l, t), l-function F , a session identifier channel sidc, a adversary
channel adv, and l private channels ini for the l players. We implicitly assume
that private channels are authenticated such that only the ith player can send
messages on channel ini. The computational implementation of LMPC imple-
ments this authentication requirement. Furthermore, LMPC contains two re-
stricted channels for every party i: an internal loop channel inloopi and an
internal input channel lini. LMPC receives a session identifier over the channel
sidc. Then l + 2 subprocesses are spawned: a process inputi for each of the l
players that is responsible for collecting the ith input and for divulging public
information, such as the session identifier, to the adversary, and a process that
generates the actual secret-sharing proof. Here inputi waits (under a replication)
on the loop channel inloopi for the trigger message sync() of the next round, and
expects the private input di and a session identifier sid′ over ini. It then sends
the session identifier sid′ to the adversary, checks whether the session identi-
fier sid′ equals sid, and finally sends the private input di on the internal input
channel lini. The actual generation of secret share proof is performed in the
last subprocess: after the private inputs of the individual parties are collected
from the internal input channels lini, the function SSl,t(F (d1, d2, ..., dl), r) is
executed. After each computation round, the subprocesses deliveri send the in-
dividual secret-sharing proof COEl,t,i(SSl,t(F (d1, d2, ..., dl), r)) over the private
channels ini to every player i along with the session identifier sid. In order to
trigger the next round, sync() is sent over the internal loop channels inloopi.

The abstraction allows for a large class of l-function F as described below.

5

Definition 1. (l-function) We call a term F an l-function if the term contains
neither names nor variables, and if for every αm occurring therein, we have
m ∈ [1, l].

In our abstraction model for LSSS-based MPC with (l, t) threshold, the val-
ues αi in F constitute placeholders for the private input di. Based on that,
Dealer and players’ ability to produce LSSS-based MPC proofs is modeled by
introducing symbolic constructor SSl,t(F (d̃), r), called secret share key. Its ar-

guments are a message F (d̃) and di will serve as substitutes for the variables αi
in F . The semantics of these constructors will guarantee two properties: First, a
secret D = F{d̃ / α̃} can only be constructed by providing t secret share proofs

COEl,t,i1(SSl,t(F (d̃), r), COEl,t,i2(SSl,t(F (d̃), r)), ..., COEl,t,it(SSl,t(F (d̃), r)).
Second, while the sum of secret shares is less than t, the values D are kept se-
cret. These properties imply that the secret share proof indeed guarantees that
in the abstract model the soundness and the completeness of the secret-sharing
schemes with threshold (l, t). In the symbolic secret share proof above, d1, d2,
..., dl represent player 1,2,...,l’s respectful private input.

In the following we define the symbolic model in which the execution of a
symbolic protocol involving secret share proofs takes place.

First, we fix several countably infinite sets. By Nonce we denote the set of
nonces. We use elements from Garbage to represent ill formed messages (cor-
responding to unparseable bitstrings in the computational model). Finally, ele-
ments of Rand denote symbolic randomness used in the construction of secret
share proofs. We assume that Nonce is partitioned into in infinite sets Nonceag
and Nonceadv, representing the nonces of honest agents and the nonces of the ad-
versary. Similarly, Rand is partitioned into in infinite sets Randag and Randadv.

We proceed by defining the syntax of messages that can be sent in a protocol
execution. Since such messages can contain secret share proofs, and these are
parametrized over constructors that are to be computed, we first have to define
the syntax of these constructors. Let the message type T be defined by the fol-
lowing grammar:

T ::= COEl,t(SSl,t(T,N)) | SSl,t(T,N) |
pair(T, T) | S | N | garbage(N)

S::= empty | string0(S) | string1(S)

The intuitive interpretation of a l-function is that it is a term with free
variables αi. The αi will be substituted with messages.

We define destructors as follows:

D := {Combinl,t/t, fst/1, snd/1, unstring0/1, unstring1/1, equals/2}. The
destructor Combinl,t extracts the secret from a secret share sequence. The de-
structors fst and snd are used to destruct pairs, and the destructors unstring0
and unstring1 allow to parse payload-strings.

6

We further define the equational rule as follows:

Combinl,t(COEl,t,i1(SSl,t(m, r)), COEl,t,i2(SSl,t(m, r)), ..., COEl,t,it(SSl,t(m, r))
= m.

Based on the symbolic model above, we then give the definition of symbolic
pi-calculus execution of LSSS-based MPC.

Definition 2. (Symbolic pi-calculus execution). Let Π be a closed process, and
let Adv be an interactive machine called the attacker. We define the symbolic
pi-execution as an interactive machine SExecΠ that interacts with Adv:

1. Start. Let P = Π, where we rename all bound variables and names (including
nonces and randomness) such that they are pairwise distinct and distinct
from all unbound ones. Let η and µ be a totally undefined partial functions
from variables and names, respectively, to terms. Let a1, a2, ..., an denote the
free names in P0. For each i, pick ri ∈ Noncesag at random. Set µ := µ

⋃
{a1 := r1, a2 = r2, ..., an := rn}. Send (r1, r2, ..., rn) to Adv.

2. Main loop. Send P to the adversary and expect an evaluation context E from
the adversary. Distinguish the following cases:
(a) P = E[M(x) : P1]: Request two terms c, m from the adversary. If c =

evalη,µ(M), set η := η
⋃
{x := m} and P := E[P1].

(b) P = E[va.P1]: Pick r ∈ Nonceag \ range(µ), set P := E[P1] and
µ := µ(a := r).

(c) P = E[M̃(N).P1][M2(x).P2]: If evalη,µ(M1) = evalη,µ(M2), then set
P := E[P1][P2] and η := η

⋃
{x := evalη,µ(N)}.

(d) P = E[let x = D in P1 else P2]: If m := evalη,µ(D)⊥, set η := η
⋃

{x := m} and P := E[P1]; Otherwise set P := E[P2].
(e) P = E[!P1]: Rename all bound variables of P1 such that they are pair-

wise distinct and distinct from all variables and names in P and in the
domains of η and µ, yielding a process P̃1. Set P := E[P̃1|!P1].

(f) P = E[M̃(N).P1]: Request a term c from the adversary. If c = evalη,µ(M),
set P := E[P1] and send evalη,µ(N) to the adversary.

(g) In all other cases, do nothing.

We are now ready to define what uniformity properties of a bi-process in the
applied pi-calculus is.

Definition 3. (Uniformity properties for bi-process) We say that the bi-process
P is uniform when fst(P)→ Q1 implies that P → Q for some bi-process Q with
fst(Q) = Q1, and symmetrically for snd(P)→ Q2.

3 Computational Soundness of Secret-Sharing in
Multi-party Computation

In this section, we present a computational soundness result of preservation of
uniformity properties for our abstraction of LSSS-based MPC. Our result builds

7

on the universal composablity (UC) framework [18, 21], where the security of
a protocol is defined by comparison with an ideal functionality I. The proof
proceeds in three steps, as depicted in the following.

In the first step, we prove that the uniformity properties of an applied pi-
calculus process carries over to the computational setting, where the protocol
is executed by interactive Turing machines operating on bitstrings instead of
symbolic terms and using cryptographic algorithms instead of constructors and
destructors.The first part of the proof entails the computational soundness of a
process executing the abstraction LMPC(l, t, F, sidc, adv, ĩn). A computational
implementation of the protocol, instead, should execute an actual MPC protocol.

In the second step of the proof, we show that for each l-function F , the com-
putational execution of our abstraction LMPC(l, t, F, sidc, adv, ĩn) is indistin-
guishable from the execution of a ideal LMPC protocol I that solely comprises
a single incorruptible machine.

The third step of the proof ensures that for a l-function F there is a protocol
that securely realizes I in the UC framework, which ensures in particular that
the uniformity properties of I carry over to the actual implementation.

These three steps allow us to conclude that for each abstraction LMPC(l, t, F,

sidc, adv, ĩn) there exists an implementation such that the uniformity properties
of any process P , carry over from the execution that merely executes a process P
and executes LMPC(l, t, F, sidc, adv, ĩn) as a regular subprocess to the execu-
tion that communicates with upon each call of a subprocess LMPC(l, t, F, sidc,

adv, ĩn). By leveraging the composablity of the UC framework and the realiza-
tion result for LSSS-based MPC in the UC framework, we finally conclude that
if a protocol based on our LSSS-based MPC abstraction is robustly safe then
there exists an implementation of that protocol that is computationally safe.

3.1 Computational execution of a process

We firstly give computational soundness definition of LSSS. Two properties are
expected from a secret share proof in LSSS: knowledge of any t or more valid
secret shares makes the secret easily computable (completeness), it is computa-
tionally infeasible to produce the secret with knowledge of any t − 1 or fewer
valid secret shares(soundness):

Definition 4. (Computational sound LSSS, ΥLSSS). A symbolically-sound LSSS
is a tuple of polynomial-time algorithms (K, SCon, SCom, S) with the following
properties (all probabilities are taken over the coin tosses of all algorithms and
adversaries):

1. Completeness. Let a nonuniform polynomial-time adversary A be given. Let
(crs, simtd, extd) ← K(1η). Let (l, t, m) ← A(1η, crs). Let (ss1, ss2, ...,
ssl)← SCon(l, t, m, crs), then with overwhelming probability in η, SCom(l,
t, ssi1 , ssi2 , ..., ssit , crs) = m.

2. Soundness. Let a nonuniform polynomial-time adversary A be given. Con-
sider the following experiment parameterized by a bit c: Let (crs, simtd,

8

extd) ← K(1η). Let (l, t, m) ← ASCon(.
∗),SCom(.∗)(1η, crs, simtd). Then

let (ss1, ss2, ..., ssl) ← SCon(l, t, m, crs) if c=0 and (ss1, ss2, ..., ssl)
← S(l, t, simtd) if c=1. Let guess = ASCon(.

∗),SCom(.∗)(crs, simtd, ssi1 ,
ssi2 , ..., ssir) with r < t. Let Pc(η) denote the following probability: Pc(η)
:= Pr[guess = m], then |P0(η)− P1(η)| is negligible.

3. Length-regularity. Let polynomial-size circuit sequence C̃(.∗), and secret share
parameters m1, m2 be given such that |m1| = |m2|. Let (crs, simtd) ←
K(1η). Let (ss1) ← SCon(l, t, m1, crs) and (ss2) ← SCon(l, t, m2, crs).
Then |ss1| = |ss2| holds with probability 1.

Since the applied pi-calculus only has semantics in the symbolic model (with-
out probabilities and without the notion of a computational adversary), we need
to introduce a notion of computational execution for symbolic protocol.

Our computational implementation of a symbolic protocol is a probabilistic
polynomial-time algorithm that expects as input the symbolic protocol Π, a set
of deterministic polynomial-time algorithms A for the constructors and destruc-
tors in Π, and a security parameter k. This algorithm executes the protocol by
interacting with a computational adversary. In the operational semantics of the
applied calculus, the reduction order is non-deterministic. This non-determinism
is resolved by letting the adversary determine the order of the reduction steps.
The computational execution sends the process to the adversary and expects a
selection for the next reduction step.

Definition 5. (Computational implementation of the symbolic model) We re-
quire that the computational implementation A of the symbolic model M has the
following properties:

1. A is an implementation of M (in particular, all functions Af (f ∈ C
⋃
D)

are polynomial-time computable). For bitstring m, Type(m) denotes the type
of m.

2. There are disjoint and efficiently recognizable sets of bitstrings represent-
ing the types nonces, and payload-strings. The set of all bitstrings of type
nonce we denote Noncesk.(Here and in the following, k denotes the security
parameter.)

3. The functions ASSl,t are length-regular. We call an function f length regular
if |mi| = |m′i| for i = 1, 2, ..., n implies |f(mi)| = |f(m′i)|. All m ∈ Noncesk
have the same length.

4. AN for N ∈ Nonceag
⋃
Nonceadv returns a uniformly random r ∈ Noncesk.

5. For all m, the image of ASSl,t(m, r) is the sequence of the type < secret share,
Type(m) >.

6. For all m, the image of ACOEl,t,i(ASSl,t(m, r)) is of the type < secret share,
Type(m) >.

7. For all m1, ...,mt ∈ {0, 1}∗, if m1 = ACOEl,t,i1 (ASSl,t(m, r)), ..., mt =
ACOEl,t,it (ASSl,t(m, r)), we have ACombinl,t(m1, ...,mt) = m. Else,
ACombinl,t(m1, ...,mt) =⊥.

Definition 6. (Computational pi-calculus execution). Let Π be a closed process,
A be a computational implementation of the symbolic model. Let Adv be an

9

interactive machine called the adversary. We define the computational pi-calculus
execution as an interactive machine ExecΠ,A(1k) that takes a security parameter
k as argument and interacts with Adv:

1. Start. Let P be obtained from Π by deterministic α-renaming so that all
bound variables and names in P are distinct. Let η and µ be a totally unde-
fined partial functions from variables and names, respectively, to bitstrings.
Let a1, a2, ..., an denote the free names in P . For each i, pick ri ∈ Noncesk
at random. Set µ := µ

⋃
{a1 := r1, a2 = r2, ..., an := rn}. Send (r1, r2, ..., rn)

to Adv.
2. Main loop. Send P to the adversary and expect an evaluation context E from

the adversary. Distinguish the following cases:

(a) P = E[M(x) : P1]: Request two bitstrings c, m from the adversary. If
c = cevalη,µ(M), set η := η

⋃
{x := m} and P := E[P1].

(b) P = E[va.P1]: Pick r ∈ Noncesk at random, set P := E[P1] and µ :=
µ(a := r).

(c) P = E[M̃(N).P1][M2(x).P2]: If cevalη,µ(M1) = cevalη,µ(M2), then set
P := E[P1][P2] and η := η

⋃
{x := cevalη,µ(N)}.

(d) P = E[let x = D in P1 else P2]: If m := cevalη,µ(D)⊥, set η := η
⋃

{x := m} and P := E[P1]; Otherwise set P := E[P2].
(e) P = E[!Q]: Let Q′ be obtained from Q by deterministic α-renaming so

that all bound variables and names in Q′ are fresh. Set P := E[Q′|!Q].

P = E[M̃(N).P1]: Request a bitstring c from the adversary. If c =
cevalη,µ(M), set P := E[P1] and send cevalη,µ(N) to the adversary.

(f) In all other cases, do nothing.

For any interactive machine Adv, we define ExecΠ,A,Adv(1
k) as the interaction

between ExecΠ,A(1k) and Adv; the output of ExecΠ,A,Adv(1
k) is the output of

Adv.

In the preceding section, we have described the trace properties and the uni-
formity properties involving LSSS proofs. We firstly formulate our soundness
result for trace properties, Namely, with overwhelming probability, a computa-
tional trace of computational pi-calculus execution is a computational instanti-
ation of some symbolic Dolev-Yao trace.

We construct a interactive machine called simulator, which simulates against
an adversary Adv the execution Exec while actually interacting with SExec.
The definition of such a simulator based on computational implementation A
will be used for the definition for computational soundness for trace properties
in the following.

Definition 7. (Hybrid pi-calculus execution) The simulator SimA based on com-
putational implementation A is constructed as follows: whenever it gets a term
from the protocol, it constructs a corresponding bitstring and sends it to the ad-
versary, and when receiving a bitstring from the adversary it parses it and sends
the resulting term to the protocol.

10

1. Constructing bitstrings is done using a function β, parsing bitstrings to terms
using a function τ . The simulator picks all random values and keys himself:
For each protocol nonce N , he initially picks a bitstring rN . He then trans-
lates, e.g., β(N) := rN and β(SSl,t(M,N)) := ASSl,t(rM , rN).

2. Translating back is also natural: Given m̃ = r̃N , we let τ(mi) := COEl,t,i1(
SSl,t(M,N)), and if c is a LMPC result that can be decrypted as m using
ACom(m̃), we set τ(c) := M .

Let Π be a closed process, SimA be a simulator based on computational imple-
mentation of the symbolic model A. Let Adv be an interactive machine called
the adversary, we define the hybrid pi-calculus execution as an interactive ma-
chine ExecΠ,SimA(1k) that takes a security parameter k as argument and inter-
acts with Adv. We also define ExecΠ,SimA,Adv(1

k) as the interaction between
ExecΠ,SimA(1k) and Adv; the output of ExecΠ,SimA,Adv(1

k) is the output of
Adv. .

We stress that the simulator Sim does not have additional capabilities com-
pared to a usual adversary against Exec. We then give the definition of the
computational soundness for trace properties.

Definition 8. (Computational soundness for trace properties) Let A be a com-
putational implementation of the symbolic model and SimA be a simulator. If
for every closed process Π, A has to satisfy the following two properties:

1. Indistinguishability: ExecΠ,A(1k) ≈ ExecΠ,SimA(1k), which means the hy-
brid execution is computationally indistinguishable from the computational
execution with any adversary.

2. Dolev-Yaoness: The simulator SimA never (except for negligible probability)
sends terms t to the protocol with S 7→ t where S is the list of terms SimA

received from the protocol so far.

then A is a computationally sound model for trace properties.

Further, we give the definition of the computational soundness for unifor-
mity properties. We rely on the notion of termination-insensitive computational
indistinguishability (tic-indistinguishability) to capture that two protocols are
indistinguishable in the computational world [22].

Definition 9. (Tic-indistinguishability) Given two machines M , M ′ and a poly-
nomial p, we write Pr[(M | M ′) ⇓p(k) x] for the probability that the interaction
between M and M ′ terminates within p(k) steps and M ′ outputs x. We call two
machines A and B termination-insensitively computationally indistinguishable
for a machine Adv (A ≈Advtic B) if for for all polynomials p, there is a negligible
function η such that for all z, a, b ∈ [0, 1]∗ with a 6= b,

Pr[(A(k) | Adv(k)) ⇓p(k) a]+ Pr[(B(k) | Adv(k)) ⇓p(k) b] � 1 + η(k)
Here, z represents an auxiliary string. Additionally, we call A and B termination-

insensitively computationally indistinguishable A ≈tic B if we have A ≈Advtic B
for all polynomial-time machines Adv.

11

Based on tic-indistinguishability, the definition of the computational sound-
ness for uniformity properties is given as follows.

Definition 10. (Computational soundness for uniformity properties) Let A be
a computational implementation of the symbolic model and SimA be a simulator
based on A. If A is a computational soundness model for trace properties, and for
every uniform bi-process Π, Execleft(Π),SimA(1k) ≈tic Execright(Π),SimA(1k),
then A is a computational soundness model for uniformity properties.

Lemma 1. Assume that the encryption scheme AE, the signature scheme SIG,
and the ISSS proof system ΥLSSS satisfy the requirements in definition 4. (AE,
SIG, ΥLSSS) is a computationally sound model for trace and uniformity prop-
erties.

Proof. See Appendix

We now proceed to construct a generic ideal functionality Isid,l,t,F that serves
as an abstraction of LSSS-based MPC. This construction is parametric over the
session identifier sid, and the function F to be computed. The ideal functionality
receives the (secret) input message of party i from port inei,sid along with a session
identifier. The input message is stored in the variable xi and the state statei of i
is set to input. Both the session identifier and the length of the received message
are leaked to the adversary on port outai,sid.

Definition 11. (Ideal model for LMPC) We construct an interactive polynomial-
time machine Isid,l,t,F , called the LMPC ideal functionality, which is parametric
over a session identifier sid, LSSS threshold (l, t), and a poly-time algorithm
F . Initially, the variables of Isid,l,t,F are instantiated as follows: ∀i ∈ [1, n] :
statei := input, ri := 1. Upon an activation with message m on port p, Isid,l,t,F ,
behaves as follows.

1. Upon (inei,sid(m, sid
′)) If sid = sid′ and statei = input, then set statei :=

compute and xi := m. If statei = input, then send (sid′, |m|) on port inai,sid.
2. Upon (inai,sid(deliver, sid

′)), if ∀j ∈ [1;n] : statej = compute and ri = rj
, then compute (y1, y2, ..., yn) ← SCon(F (x1, x2, ..., xn)) and ∀j ∈ [1, n] :
statej := deliver. If statei = deliver, set ri := ri + 1, statei := input and
send yi on port outei,sid.

For defining computational computational soundness for uniformity proper-
ties with ideal model Isid,l,t,F , we modify the scheduling simulator Sim and
hybrid computational execution as follow. Simulator SimA,I simulates against
an adversary Adv the execution Exec while interacting with SExec, in which A
is a computational implementation of the symbolic model and I is a family of
LMPC ideal functionalities.

We also construct context, called stateγ . In our abstraction, every party of a
LMPC can be in the following states: init, input, compute, and deliver. In the
state init, the entire session is not initialized yet; in the state input, the party
expects an input; in the state compute, the party is ready to start the main

12

computation; and, in the state deliver, the party is ready to deliver secret share.
These states are stored in a mapping state (which is maintained by SimA,I) such
that stateγ(i) is the state of party i in the session.

Definition 12. (Hybrid pi-calculus execution with Ideal model for LMPC) Let a
mapping stateγ(i) from internal session identifiers and party identifiers to states
given. We assign a process to each state stateγ .

1. Upon receiving the initial process P , Enumerate every occurrence LMPC(l, t,

F, sidc, adv, ĩn) with an internal session identifier γ, and tag this occur-

rence LMPC(l, t, F, sidc, adv, ĩn) in P with γ. Let initially delivery(γ, i) :=
false, andletstateγ(i) := init for all i ∈ [1, n]. For any γ, let corrupt(γ, i) :=

true, if the corresponding ini in LMPC(l, t, F, sidc, adv, ĩn) is free; other-
wise let corrupt(γ, i) := false. In addition store all channel names in the
partial mapping µ.

2. Main loop: Send P to the adversary Adv. Then, expect an evaluation context
E . We distinguish the following cases for E.
(a) E schedules the initialization and evaluation context is P = E[LMPC(l,

t, F, sidc, adv, ĩn)]: Set stateγ(i) := init for all i ∈ [1, n]. The internal
state of Isessionid(γ),l,t,F is set to input.

(b) E schedules an input to a corrupted party i and evaluation context is

P = E[LMPC(l, t, F, sidc, adv, ĩn)]: Request a bitstring m from the
adversary. Check whether m = (c, s, input,m0), sessionid(γ) := s and
stateγ(i) := input, If the execution accepts the channel name c, we pro-
ceed and check wether µ(ini) is defined and c = µ(ini); if µ(ini) is not de-
fined set µ(ini) := c. If the check fails, abort the entire simulation. Send
(m0, s) to Isessionid(γ),l,t,F upon port inei,s, Set stateγ(i) := compute.

(c) E schedules an input to an honest party i and evaluation context is P =

E[c̃(x, s).Q][LMPC(l, t, F, sidc, adv, ĩn)]: Check whether there is an i ∈
[1, n] such that µ(c) = µ(ini), stateγ(i) := input, and sessionid(γ) :=
µ(s). Send (µ(x), µ(s)) to Isessionid(γ),l,t,F upon port inei,s, Set stateγ(i) :=
compute.

(d) Start the main computation upon the first delivery command for a party

i and evaluation context: P = E[LMPC(l, t, F, sidc, adv, ĩn)]: Check
whether stateγ(i) := compute for all i ∈ [1, n]. Set stateγ(i) := deliver
for all i ∈ [1, n].

(e) The delivery command for a party i is sent and evaluation context: P =

E[LMPC(l, t, F, sidc, adv, ĩn)]: Request a bitstring m = (c, s, deliver)
from the adversary. Check whether s = sessionid(γ), and stateγ(i) =
deliver and there is an i ∈ [1, n] such that µ(ini) = c. Set delivery(γ, i) :=
true, stateγ(i) = input, receive m′, sid from Isessionid(γ),l,t,F on port
outei,s and forward m′ to adversary.

(f) The output of party i is delivered to an honest party and evaluation con-

text: P = E[c(x).Q][LMPC(l, t, F, sidc, adv, ĩn)]: Check whether there is
an i such that µ(c) = µ(ini), and stateγ(i) = deliver. Set delivery(γ, i) :=
true, stateγ(i) = input, receive m′, sid from Isessionid(γ),l,t,F on port
outei,sessionid(γ) and set µ(x) = m′.

13

Let Π be a closed process, SimA,I be a simulator based on computational
implementation of the symbolic model A and I be a family of Ideal model for
LMPC. Let Adv be an interactive machine called the adversary, we define the
hybrid pi-calculus execution as an interactive machine ExecΠ,SimA,I (1

k) that
takes a security parameter k as argument and interacts with Adv. We also define
ExecΠ,SimA,I ,Adv(1

k) as the interaction between ExecΠ,SimA,I (1
k) and Adv; the

output of ExecΠ,SimA,I ,Adv(1
k) is the output of Adv.

Then we can give the definition of Computational soundness for trace and
uniformity properties with Ideal model for LMPC.

Definition 13. (Computational sound ideal model for LMPC) Let I be a fam-
ily of ideal model for LMPC. If for every closed process Π, and computational
implementation of the symbolic model A, ExecΠ,SimA,I (1

k) ≈ ExecΠ,SimA , then
I is a computationally sound ideal model for LMPC.

We can get the computation soundness result for ideal model for LMPC.

Lemma 2. Assume the family of ideal model for LMPC I satisfy the require-
ment in definition 13, I is a computationally soundness ideal model for LMPC.

Proof. See appendix.

3.2 Computational soundness results

We now state the main computational soundness result of this work: the ro-
bust safety of a process (specifically uniformity properties) using non-interactive
primitives and our LMPC abstraction carries over to the computational setting,
as long as the non-interactive primitives are computationally sound. This result
ensures that the verification technique from Section 3 provides computational
safety guarantees. We stress that the non-interactive primitives can be used both
within the LMPC abstractions and within the surrounding protocol.

In order to realize the definition of computation soundness for uniformity
properties in UC framework, we firstly give a novel definition for the security
requirement of UC realization which is stronger that original definition in UC
framework.

Definition 14. (UC realization) Let I be an ideal functionality and let Π be an
n-party protocol, A be a computational implementation of the symbolic model. We
say that real protocol ρ securely realizes I if for any adversary Adv, ExecΠ,SimA,I (
1k) ≈ ExecΠ,SimA,ρ .

Lemma 3. Assume that enhanced trapdoor permutations exists. Then for all
ideal function for LMPC I which security requirements in definition 4, there
exists a family of non-trivial protocols ρin the CRS-model that UC realizes I in
the presence of malicious, static adversaries.

14

Proof. See Appendix.

Finally, we can get the computation soundness result for our abstraction for
LMPC.

Theorem 1. Assume that the encryption scheme AE, the signature scheme
SIG, and the ISSS proof system ΥLSSS satisfy the security requirements in def-
inition 4, also the family of ideal model for LMPC I satisfy the requirement in
definition 13, there exists a family of non-trivial protocol ρin the CRS-model that
UC realizes I.

Proof. See Appendix.

4 Conclusions

We have presented the first computational soundness theorem for multi-party
computation based on linear secret-sharing scheme (LMPC). This allows to an-
alyze protocols in a simple symbolic model supporting encryptions, signatures,
and secret-sharing schemes; the computational soundness theorem then guaran-
tees that the uniformity properties shown in the symbolic model carry over to
the computational implementation.

References

[1] Shamir, A.: How to share a secret. Communications of the ACM. 22(11), 612–
613 (1979).

[2] Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In
Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer
Science, 427–437 (1987).

[3] Shoup, V.: Practical threshold signatures. In Proceedings of the EUROCRYPT
2000. Springer-Verlag, 207–220 (2000).

[4] He, A. J., Dawson, E.: Multistage secret sharing based on one-way function.
Electronics Letters. 30(9), 1591–1592 (1994).

[5] Chien, H.-Y., Tseng, J. K.: A practical (t, n) multi-secret sharing scheme. IE-
ICE Transactions on Fundamentals of Electronics. Communications and Com-
puter 83-A, 12(2000), 2762–2765 (2000).

[6] Shao, J., Cao, Z. F.: A new efficient (t,n) verifiable multi-secret sharing (VMSS)
based on YCH scheme. Applied Mathematics and Computation. 168(1), 135–
140 (2005).

[7] Zhao, J., Zhang, J., Zhao, R.: A practical verifiable multi-secret sharing scheme.
Computer Standards and Interfaces. 29(1), 138–141 (2007).

[8] Yang, C. C., Chang, T. Y., Hwang, M. S.: A (t, n) multi-secret sharing scheme.
Applied Mathematics and Computation. 151, 483–490 (2004).

[9] Cramer, R., Damgard, I., and Maurer, U.: General Secure Multi-Party Com-
putation from any Linear Secret-Sharing Scheme. In Proceedings of EURO-
CRYPT ’00, Springer LNCS. May 2000.

15

[10] Abadi, M., Baudet, M., and Warinschi, M.: Guessing attacks and the computa-
tional soundness of static equivalence. In Proceedings of the 9th International
Conference on Foundations of Software Science and Computation Structures
(FOSSACS). Springer, Volume 3921 of Lecture Notes in Computer Science,
398-412 (2006).

[11] Abadi, M., and Fournet, C.: Mobile values, new names, and secure communi-
cation. In Proceedings of the 28th Symposium on Principles of Programming
Languages (POPL), ACM Press. 104–115 (2001).

[12] Abadi, M. and Rogaway, P.: Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology. 15(2), 103–127
(2002).

[13] Backes, M., Maffei, M., Mohammadi, E.: Computationally Sound Abstraction
and Verification of Secure Multi-Party Computations. In Proceedings of ARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2010), 2010.

[14] Backes, M. Hofheinz, D. and Unruh, D.: A general framework for computational
soundness proofs or the computational soundness of the applied pi-calculus.
IACR ePrint Archive 2009/080, 2009.

[15] Backes, M., Bendun, F., Unruh, D.: Computational Soundness of Symbolic
Zero-knowledge Proofs: Weaker Assumptions and Mechanized Verification. In
Proceedings of Principles of Security and Trust: Second International Confer-
ence (POST 2013). Springer, 206–225 (2013).

[16] Backes, M., Malik, A., Unruh, D.: Computational Soundness without Protocol
Restrictions. CCS. ACM Press. 699–711 (2012).

[17] Kusters, R., Tuengerthal, M.: Computational Soundness for Key Exchange
Protocols with Symmetric Encryption. In Proceedings of the 16th ACM Con-
ference on Computer and Communications Security (CCS). ACM Press. 91–100
(2009).

[18] Canetti, R., Lindell, Y., Ostrovsky, R., and Sahai, A.: Universally composable
two-party and multiparty secure computation. In Proceedings of the 34th An-
nual ACM Symposium on Theory of Computing (STOC), ACM Press. 494–503
(2002).

[19] Comon-Lundh, H., Cortier, V.: Computational soundness of observational
equivalence. In Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS), ACM Press. 109–118 (2008).

[20] Comon-Lundh, H., Cortier, V., Scerri, G.: Security Proof with Dishonest Keys.
In Proceedings of Principles of Security and Trust: Second International Con-
ference (POST 2012), Springer Press. 149–168 (2012).

[21] Canetti, R., Herzog: Universally Composable Symbolic Security Analysis. Jour-
nal of Cryptology. 24(1), 83–147 (2011).

[22] Backes, M., Mohammadi, E., Rung, T.: Bridging the Gap from Trace Proper-
ties to Uniformity. In Proceedings of Principles of Security and Trust: Second
International Conference (POST 2014), Springer Press (2014).

[23] Canetti, R., Feige, U., Goldreich, O. and Naor, m.: Adaptively Secure Multi-
Party Computation, In Proceedings of 28th STOC. 639–648 (1996).

[24] Canetti, R., Fischlin, M.: Universally Composable Commitments. In Proceed-
ings of CRYPTO’01, Springer-Verlag. LNCS 2139, 19–40 (2001).

[25] Canetti, R., Rabin, T.: Universal Composition with Joint State. Cryptology
ePrint Archive. Report 2002/047, http://eprint.iacr.org/ (2002).

