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Abstract. Witness encryption (WE) is a recent powerful encryption
paradigm, which allows to encrypt a message using the description of
a hard problem (a word in an NP-language) and someone who knows
a solution to this problem (a witness) is able to efficiently decrypt the
ciphertext. Recent work thereby focuses on constructing WE for NP
complete languages (and thus NP). While this rich expressiveness allows
flexibility w.r.t. applications, it makes existing instantiations impractical.
Thus, it is interesting to study practical variants of WE schemes for
subsets of NP that are still expressive enough for many cryptographic
applications.

We show that such WE schemes can be generically constructed from
smooth projective hash functions (SPHFs). In terms of concrete instantia-
tions of SPHFs (and thus WE), we target languages of statements proven
in the popular Groth-Sahai (GS) non-interactive witness-indistinguish-
able/zero-knowledge proof framework. This allows us to provide a novel
way to encrypt. In particular, encryption is with respect to a GS proof
and efficient decryption can only be done by the respective prover. The so
obtained constructions are entirely practical. To illustrate our techniques,
we apply them in context of privacy-preserving exchange of information.

Keywords: Witness encryption, smooth projective hash functions, Groth-Sahai
proofs, encryption, privacy.

1 Introduction

Witness encryption (WE) is a recent powerful encryption paradigm introduced
by Garg et al. [GGSW13]. In WE, an encryption scheme is defined for some NP-
language L with witness relation R so that L = {x | ∃ w : R(x,w) = 1}. The
encryption algorithm takes an alleged word x from L (instead of an encryption
key) and a message m and produces a ciphertext c. Using a witness w such that
R(x,w) = 1, anyone can decrypt c to obtain m. Decryption only works if x ∈ L
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and a ciphertext c hides m if c has been computed with respect to some x /∈ L.

Constructions of WE for NP. The first construction of WE for any language
in NP in [GGSW13] has been for the NP-complete problem exact cover and
uses approximate multilinear maps (MLMs). Later, Gentry et al. [GLW14] intro-
duced the concept of positional WE, which allows to prove the aforementioned
construction secure. In [GGH+13], Garg et al. showed that indistinguishability
obfuscation implies WE. Goldwasser et al. proposed the stronger notion of ex-
tractable WE in [GKP+13]. While the security for WE is only with respect to
x /∈ L, extractable WE requires that any successful adversary against semantic
security of the WE, given an encryption with respect to x, implies the existence
of an extractor that extracts a witness w to x ∈ L. Thereby, the adversary
and the extractor additionally get an auxiliary input. Garg et al. [GGHW14]
have shown that under the assumption that special-purpose obfuscation exists,
extractable WE for all languages in NP cannot exist.3 Zhandry in [Zha16] intro-
duced the concept of (extractable) witness PRFs and uses them among others
to construct (extractable) WE. Besides, he formalizes reusable WE, which in-
troduces an additional global setup and thus allows to reuse certain parameters
over many encryptions. This can help to drastically reduce the ciphertext size
in WE schemes.

All the above constructions build upon MLMs and/or obfuscation and are
thus far from being practical. To this end, Abusalah et al. [AFP16] recently in-
troduced the notion of offline WE as a step towards more practical WE. They
split encryption into an expensive offline phase and a much more efficient online
phase, which allows them to achieve practical efficiency for the online part. Nev-
ertheless, the offline part and the decryption still requires obfuscation and thus
cannot be considered to be practical. Besides imposing a huge computational
overhead, MLM and obfuscation are still in a “break-repair” state and it is cur-
rently unknown if one can come up with candidate constructions being secure
under well established assumptions.

WE for Restricted Languages. In concurrent and independent work, Fao-
nio et al. [FNV17] introduced the concept of predictable arguments of knowl-
edge (PAoK). They are one-round interactive protocols in which the verifier
generates a challenge and can at the same time predict the prover’s answer
to that challenge. Faonio et al. show that PAoKs are equivalent to extractable
WE [GKP+13]. Regarding concrete instantiations of PAoKs (and thus extractable
WE), they show how to construct PAoKs from extractable hash proof systems
(Ext-HPS) as defined by Wee in [Wee10]. Earlier work on (private) conditional
oblivious transfer [COR99, JL09] can be viewed as an interactive variant of (ex-
tractable) WE for very specific and restricted languages.4 Finally, [GGSW13]
mentioned along the lines that earlier work on smooth projective hash functions

3 Even if such special-purpose obfuscation exists, this does not rule out that ex-
tractable WE for a sufficiently large interesting subset of NP exists.

4 We mention this direction for completeness and stress that we are only interested in
non-interactive WE schemes.



(SPHFs) can be interpreted as establishing the existence of WE for certain re-
stricted languages and an informal sketch of a construction of WE from SPHFs
was recently given in [ABP15].

Putting our Work into Context. The approaches in [FNV17, Zha16] bear
similarities to how we construct WE. This mainly stems from the conceptual
similarity of SPHFs to witness PRFs and extractable hash proof systems, re-
spectively. Essentially, all those primitives have similar goals and thus similar
functionality, but they differ regarding the formalization and available instanti-
ations.

With witness PRFs [Zha16], which can be seen as a variant of (extractable)
hash proof systems, Zhandry aims at building WE for any NP-language and pro-
vides an instantiation from MLMs. Consequently, this does not yield a practical
instantiation, where our aim is explicitly on constructing practical instantiations
of WE and in particular to make them compatible with Groth-Sahai. Moreover,
as Zhandry also notes in [Zha16], the security models for witness PRFs and
SPHFs are different and not fully compatible, making the approaches incompa-
rable.

The approach to constructing extractable WE from PAoKs (which are instan-
tiated with Ext-HPSs) in [FNV17] is related to our approach, but there are some
important differences. Our approach is conceptually simpler, but focuses on WE
instead of extractable WE. Given that extractable WE is harder to achieve, WE
from SPHFs leads to more expressive languages than extractable WE constructed
from Ext-HPSs. For latter, supported languages are very basic and restricted.
Using the results from [Wee10] yields instantiations for hard search problems,
and in particular factoring and computational Diffie Hellman, but it is not clear
if efficient instantiations for more expressive languages can be found. Due to
the lack in expressiveness of Ext-HPS as used in [FNV17], their constructions
of extractable WE, although practical, are not suitable for supporting languages
within Groth-Sahai and we do not see how this could work.

Given the above, it seems that constructing WE from extractable hash proof
systems, when targeting constructions for all NP-languages either require new
assumptions on multilinear maps (as in [Zha16]) yielding impractical instantia-
tions, or yields practical instantiations but for very restricted languages (which
are not sufficient for our applications). Consequently, our work addresses a gap
which was left open by [FNV17, Zha16] and yields an approach in between these
extreme directions. Finally, although Abdalla et al. in [ABP15], informally sketch
the construction of WE from SPHFs, this topic has never been formally studied
and we are the first to provide a rigorous formal treatment.

Applications of WE. WE in general extends the scope of encryption as it
allows to encrypt a message using the description of a hard problem and only
someone who knows a solution to this problem is able to decrypt. WE is thus
intuitively related to time-lock puzzles [RSW96] and WE indeed has been used
to realize a related concept denoted as time-lock encryption, i.e., a method to
encrypt a message such that it can only be decrypted after a certain deadline
has passed, but then very efficiently and by everyone. An approach to realize



such schemes from WE and so called computational reference clocks has been
proposed by Jager in [Jag15]. Liu et al. [LKW15] also propose to use their WE
construction for time-lock encryption based on the Bitcoin protocol. Bellare and
Hoang [BH15] proposed to use WE to realize asymmetric password-based encryp-
tion, where the hash of a password can be used to encrypt a message (acting as
a public key) and only the knowledge of the respective password allows decryp-
tion. Moreover, it has already been shown in the seminal work [GGSW13] that
WE can be used to construct identity-based encryption (IBE) [BF01] as well as
attribute-based encryption (ABE) [SW05] for circuits.

1.1 Motivation

While having WE schemes that support all languages in NP is appealing, it is the
main source of inefficiency. Our goal is to study practical instantiations of WE,
but in contrast to offline WE as introduced in [AFP16] we focus on all aspects,
i.e., encryption and decryption, to be efficient. Our approach to improve the effi-
ciency is by restricting the class of supported languages from any NP-language
to languages that are expressive enough to cover many problems encountered
in cryptographic protocol design. In particular, we aim at algebraic languages
defined over bilinear groups. Such languages are very relevant for the design of
cryptographic protocols as statements in these languages cover statements that
can be proven in a zero-knowledge (or witness indistinguishable) fashion using
the Groth-Sahai (GS) non-interactive proof framework [GS08]. As we will see
soon, our techniques yield a novel way of encryption, where one can encrypt
messages with respect to a GS proof so that only the prover, i.e., the party that
computed the respective proof, can decrypt. We assume that there are various
interesting applications that could benefit from our technique.

1.2 Contribution

The contributions in this paper are as follows.

– We provide a generic construction of WE from SPHFs and prove that if there
exists an SPHF for a language L, then there exists an adaptively sound WE
scheme for language L. Thereby, we define WE to provide an additional
setup algorithm as also done in [AFP16, Zha16], since this notion makes the
schemes more efficient and more convenient to use in protocol design.

– Using well known techniques such as universal hashing and secure symmetric
encryption schemes, we obtain a WE scheme for messages of arbitrary length.

– We present practical instantiations of our generic approach to WE for alge-
braic languages in the bilinear group setting. We, thereby, achieve compat-
ibility with statements from the GS proof system. Besides being practically
efficient, our constructions only require standard assumptions (i.e., DLIN).5

5 Our approach is also easily portable to the SXDH setting (and thus relying on DDH
instead of DLIN).



– We observe that the existing security notions for WE are unsuited when
using WE in combination with other primitives. To this end, we introduce
a stronger security notion for WE which considers the combination of WE
with GS proofs and prove that our instantiation satisfies this notion.

– We present an approach to use our WE construction for GS statements to el-
egantly encrypt messages with respect to NIZK/NIWI proofs for statements
in the frequently used GS proof system so that only the one who computed
the proof can decrypt. This yields a novel way of encryption.

– To illustrate the aforementioned concept, we discuss two potential appli-
cations of our techniques in the context of privacy-preserving exchange of
information.

1.3 Related Work

SPHFs (also known as hash proof systems) are hash functions associated to some
language L and a hash value can be computed in two ways. Either using the pri-
vate hashing key (hk) or using the public projection key (hp), whereas latter
hashing mode additionally requires a witness w, witnessing the membership of
the input to the associated language L. For any x ∈ L both methods yield the
same hash value.

CCA2 secure Encryption. SPHFs were originally used to construct CCA2 se-
cure public key encryption [CS98] that do not require the random oracle heuris-
tic. Later it was observed that SPHFs are sufficient to construct such encryption
schemes [CS02]. The elegant idea in [CS98] is to combine ElGamal encryption
with a SPHF for the DDH language. The public key includes a projection key of
the SPHF and the secret key includes the corresponding hashing key. Roughly,
encryption, besides producing a conventional ElGamal ciphertext, computes a
projective hash using the randomness of the ElGamal ciphertext as a witness.
During decryption, one uses the hashing key to verify whether the hash value has
been computed correctly with respect to the ElGamal ciphertext. This paradigm
can also be viewed as an implicit construction of publicly evaluable pseudoran-
dom functions [CZ14]. The use of SPHFs in the above approach is exactly the
other way round as we are going use it, i.e., in their setting decryption is done
with the knowledge of the hashing key and without the witness.

Hybrid Encryption. Kurosawa and Desmedt [KD04] used the paradigm de-
scribed above for hybrid encryption. A series of works follow their paradigm (e.g.,
[KPSY09]) and use SPHFs to obtain CCA2 secure hybrid encryption schemes.
Similar to [CS02], they use the SPHF exactly the other way round as we are
going to use it. In particular, they use the hashing key of the SPHF as secret
decryption key and the projection key as public encryption key. This setup im-
plicitly defines some language L with an efficiently sampleable witness relation
R. Encryption of a message m amounts to randomly sampling (x,w) ∈ R, com-
puting a projective hash value H and using H to extract a key k for a symmetric
encryption scheme used to encrypt the message m. To decrypt, one reconstructs



H using the hashing key and the word x, extracts k and uses it for decryption.

Key-Exchange. A line of work following Gennaro and Lindell [GL06] uses
SPHFs for password-based authenticated key exchange (PAKE) between two
parties. Briefly, the idea is that each party i sends a commitment Ci to the
shared password p to the other party. Then, each party i computes a SPHF key
pair (hki, hpi) for a SPHF defined for a language L, where (Ci, p) ∈ R if Ci is a
commitment to p. Membership in L is witnessed by the randomness ri used in the
commitment Ci. Then, both parties exchange their projection keys hpi, which
allows them to elegantly use the two hashing modes of the SPHF to obtain a
shared secret. This concept was later extended to one-round PAKE [KV11] and
generalized to language-authenticated key exchange (LAKE) for various alge-
braic languages over bilinear groups in [BBC+13a] (and we note that follow-up
work on various aspects exists).

Most recently, in [BC16] it was shown how to construct so called structure
preserving SPHFs, which can use GS proofs as witnesses. Even though this may
sound somewhat related to our work, apart from not constructing WE, the ap-
proach in [BC16] to build SPHFs is diametrically opposed to our approach. In
particular, our WE approach requires GS proofs to be public and that they must
not to be useful to reconstruct the hash value. So, applying our approach to
construct WE to the SPHFs in [BC16] does not help us.

2 Preliminaries

Let x←R X denote the operation that picks an element x uniformly at random
from X. We use [n] to denote the set {1, . . . , n}. By y ← A(x), we denote that
y is assigned the output of the potentially probabilistic algorithm A on input x
and fresh random coins and we write Pr[Ω : E ] to denote the probability of an
event E over the probability space Ω. A function ε : N→ R+ is called negligible
if for all c > 0 there is a k0 such that ε(k) < 1/kc for all k > k0. We use ε to
denote such a negligible function.

Definition 1 (Bilinear Map). Let G = 〈g〉 and GT be cyclic groups of prime
order p. A bilinear map e : G×G→ GT is an efficiently computable map, where
it holds for all (a, b) ∈ Z2

p that e(ga, gb) = e(g, g)ab, and e(g, g) 6= 1.

Besides the symmetric (Type-1) setting presented above, one can use the asym-
metric setting (Type-2 or Type-3). Here, the bilinear map is defined with respect
to two different source groups, i.e., e : G1×G2 → GT with G1 6= G2. In the Type-
2 setting an efficiently computable isomorphism ψ : G2 → G1 exists, whereas
such an isomorphism is unknown for the Type-3 setting. Although we have cho-
sen to present our results in the Type-1 setting, it is important to note that
our results translate to the asymmetric setting. Such translations can already be
nicely automated [AGH15].

Definition 2 (Bilinear Group Generator). Let BGGen be an algorithm which
takes a security parameter κ and generates a bilinear group BG = (p,G,GT , e, g)



in the Type-1 setting, where the common group order of G and GT is a prime p
of bitlength κ, e is a pairing and g is a generator of G.

To make our notation more succinct, we will henceforth follow [EHK+13] and
use [x] to denote u ∈ G with logg u = x. Likewise we will use [y]T to denote
elements v ∈ GT with loge(g,g) u = y. This notation is easily extended to vec-
tors and matrices. We henceforth use additive notation for the groups and may
thus simply use linear algebra on the values in the brackets (i.e., the discrete
logarithms). Using the bilinear map, we can also make a single multiplication
of the discrete logarithms of two elements from G. When we want to denote a
pairing product

∑n
i=1[xi] · [yi] with respect to vectors [X] = ([x1], . . . , [xn]) and

[Y ] = ([y1], . . . , [yn]), we write [X] • [Y ].
The subsequent assumption is a by now standard assumption introduced

in [BBS04].

Definition 3 (Decision Linear Assumption). Let BG ← BGGen(1κ). The
DLIN assumption states that for all PPT adversaries A there is a negligible
function ε(·) such that:

Pr

[
b←R {0, 1}, x1, x2←R G, r, s, t←R Zp,
b? ← A

(
BG, [x1], [x2], [x1r], [x2s], [b(r + s) + (1− b)t]

) : b = b?
]
≤ 1/2+ε(κ).

Universal Hashing. Subsequently, we recall the notion of families of universal
hash functions and the leftover hash lemma [HILL99]. We, thereby, align our
definitions with [KPSY09] and allow arbitrary domains X for the hash functions.

Definition 4 (Universal Hash Function Family). Let H = {Hy}y∈{0,1}k be

a family of hash functions Hy : {0, 1}k×X → {0, 1}` indexed by a key y ∈ {0, 1}k.
H is universal, if for all x ∈ X , x′ ∈ X \ {x} it holds that

Pr
[
Hy←R H : Hy(x) = Hy(x′)

]
= 2−`.

Lemma 1 (Leftover Hash Lemma). Let X be a random variable with support
X , let δ ≥ − log(maxx∈X Pr[X = x]) and let H be a family of universal hash
functions Hy : {0, 1}k ×X → {0, 1}`. Then, for any Hy←R H, we have that

1

2

∑
z∈{0,1}`

∣∣Pr[Hy(X) = z]− 2−`
∣∣ ≤ 2

(`−δ)/2.

Symmetric Encryption. We adapt the notion for symmetric encryption schemes
Σ from [KL07]. Analogous to [KD04], we do not explicitly model a key genera-
tion algorithm and treat the keys as uniformly random bitstrings k ∈ {0, 1}`Σ,κ .

Definition 5 (Symmetric Encryption Scheme). A symmetric encryption
scheme Σ is a tuple of PPT algorithms which are defined as follows:



Enc(k,m) : Takes a key k and a message m as input and outputs a ciphertext c.
Dec(k, c) : Takes a key k and a ciphertext c as input and outputs a message m

or ⊥.

We require Σ to be correct and to provide ciphertext indistinguishable in the
presence of an eavesdropper (IND-EAV). This weak notion is clearly implied by
IND-CPA and IND-CCA2 security.

Definition 6 (Correctness). A symmetric encryption scheme Σ is correct, if
for all κ, for all k←R {0, 1}`Σ,κ and for all m ∈ {0, 1}∗ it holds that

Pr [Dec(k,Enc(k,m)) = m] = 1.

Definition 7 (IND-EAV Security). A symmetric encryption scheme Σ is IND-
EAV secure, if for all PPT adversaries A there exists a negligible function ε(·)
such that

Pr

k←R {0, 1}`Σ,κ , (m0,m1, st)← A(1κ),
b←R {0, 1}, c← Enc(k,mb),
b? ← A(c, st)

:
b = b? ∧

|m0| = |m1|

 ≤ 1/2 + ε(κ),

where |m| denotes the length of message m.

Groth-Sahai (GS) Non-Interactive Zero-Knowledge Proofs. Groth-Sahai
(GS) proofs [GS08, GS07] are non-interactive witness-indistinguishable (NIWI)
and zero-knowledge (NIZK) proofs for the satisfiability of various types of equa-
tions defined over bilinear groups. We require proofs for the satisfiability of
pairing product equations (PPEs) in the DLIN setting of the form

[A] • [Y ] + [X] • [B] + [X] · Γ • [Y ] = [t]T , (1)

where [X] ∈ Gm, [Y ] ∈ Gn are the secret vectors (to prove knowledge of) and
[A] ∈ Gn, [B] ∈ Gm, Γ ∈ Zm×np , and [t]T ∈ GT are public constants. More
generally, underlined elements are secret and all others are public. To conduct a
proof, one commits to the vectors X and Y , and uses the commitments instead
of the actual values in the PPE. Loosely speaking, the proof π is used to “cancel
out” the randomness used in the commitments. However, this does not directly
work when using the groups G and GT , but requires to map the involved elements
to the vector spaces G3 and G9

T in the DLIN setting by using the defined maps
and to prove the satisfiability of the PPE using the corresponding bilinear map
F : G3 ×G3 → G9

T .
More precisely, a GS proof for a PPE allows to prove knowledge of a witness

w = (X,Y ) such that the PPE, uniquely defined by the statement x = (A,B,
Γ, [t]T ), is satisfied.

Definition 8 (Non-Interactive Proof System). A non-interactive proof sys-
tem Π is a tuple of PPT algorithms which are defined as follows:

BGGen(1κ) : Takes a security parameter κ as input, and outputs a bilinear group
description BG.



CRSGen(BG) : Takes a bilinear group description BG as input, and outputs a
common reference string crs.

Proof(BG, crs, x, w) : Takes a bilinear group description BG, a common reference
string crs, a statement x, and a witness w as input, and outputs a proof π.

Verify(BG, crs, x, π) : Takes a bilinear group description BG, a common reference
string crs, a statement x, and a proof π as input. It outputs a bit b ∈ {0, 1}.

Since we do not explicitly require the security properties here, we omit them and
refer the reader to [GS08] at this point.

2.1 Smooth Projective Hashing

A family of smooth projective hash functions (SPHFs) indexed by parameters
pp for some family of languages {Lpp,aux ⊂ Xpp}aux∈A and associated witness
relations {Rpp,aux}aux∈A, mapping onto Rpp informally works as follows.6 The
hash value can be computed in two ways: (1) Using the hashing key hk one can
compute a hash value for every x ∈ Xpp. (2) Using the projection key hp, one
can compute a hash value for every word x and auxiliary information aux ∈ A
where x ∈ Lpp,aux. This method, besides x, also requires a witness w such that
Rpp,aux(x,w) = 1 to compute the hash value. Thereby, both methods yield the
same hash value for any x ∈ Lpp,aux. Below we provide a formal definition of
SPHFs, where we closely follow [ACP09]. For brevity, we henceforth use SPHF
to refer to a family of SPHFs indexed by parameters pp.

Definition 9 (Smooth Projective Hash Function). A SPHF for a family
of languages {Lpp,aux}aux∈A is a tuple of the following PPT algorithms:

Setup(1κ) : Takes a security parameter κ and outputs the system parameters pp.

HashKG(pp, aux) : Takes the system parameters pp and auxiliary information
aux, and outputs a hashing key hk.

ProjKG(hk, aux, x) : Takes a hashing key hk, auxiliary information aux, and a
word x, and outputs a projection key hp.

Hash(hk, aux, x) : Takes a hashing key hk, auxiliary information aux, and a word
x, and outputs a hash value H.

ProjHash(hp, aux, x, w) : Takes a projection key hp, auxiliary information aux, a
word x, and a witness w, and outputs a hash value H.

We require Rpp and Lpp,aux to be efficiently sampleable for all pp and aux. A
secure SPHF is required to be correct, smooth and pseudo-random. Below, we
formally define these properties.

Correctness guarantees that everything works correctly if everyone behaves
honestly.

6 Similar to [ACP09] we additionally partition the language Lpp with respect to some
auxiliary information aux ∈ A, where A is determined by pp. Note that without this
partitioning, words x ∈ Lpp additionally contain aux, i.e., so that x = (aux, x′).



Definition 10 (Correctness). A SPHF for a family of languages {Lpp,aux}aux∈A
is correct, if for all κ, for all pp← Setup(1κ), for all aux ∈ A, for all x ∈ Lpp,aux,
for all w such that Rpp,aux(x,w) = 1, for all hk ← HashKG(pp, aux), and for all
hp← ProjKG(hk, aux, x), it holds that Hash(hk, aux, x) = ProjHash(hp, aux, x, w).

Smoothness requires that for any aux ∈ A, the hash value looks statistically
random for any x /∈ Lpp,aux.

Definition 11 (Smoothness). A SPHF for a family of languages {Lpp,aux}aux∈A
is smooth if for all security parameters κ, for all pp← Setup(1κ), for all aux ∈ A,
and for all x 6∈ Lpp,aux it holds that:

{pp, aux, hp← ProjKG(hk, aux, x), H ← Hash(hk, aux, x)} ≈
{pp, aux, hp← ProjKG(hk, aux, x), H ←R Rpp)},

where hk← HashKG(pp, aux) and ≈ denotes statistical indistinguishability.

Intuitively pseudorandomness requires that for all aux ∈ A the two distri-
butions considered above remain computationally indistinguishable for random
x ∈ Lpp,aux. We formally model this using the notion below.

Definition 12 (Pseudorandomness). A SPHF for language {Lpp,aux}aux∈A is
pseudorandom if for all security parameters κ, for all aux ∈ A it holds that:

{pp← Setup(1κ), aux, x←R Lpp,aux, hp← ProjKG(hk, aux, x), H ← Hash(hk, aux,

x)} ≈ {pp← Setup(1κ), aux, x←R Lpp,aux, hp← ProjKG(hk, aux, x), H ←R Rpp)},

where hk← HashKG(pp, aux) and ≈ denotes computational indistinguishability.

Remark 1. It is easy to see that pseudorandomness is implied by smoothness for
families of languages where the subset membership problem is hard, i.e., families
of languages {Lpp,aux}aux∈A where it is intractable for any aux ∈ A to distinguish
a word in Lpp,aux from a word in Xpp \ Lpp,aux.

3 Witness Encryption

WE was initially defined in [GGSW13] and refined by a stronger adaptive sound-
ness notion in [BH13, BH15] where the word output by the adversary may depend
on the parameters pp. In our context only adaptive soundness is meaningful as
we define WE schemes for families of languages indexed by pp, i.e., the language
is not fixed before the parameters pp are generated. For brevity, we subsequently
simply use “WE scheme” to denote such a scheme. Since it is beneficial regarding
practical efficiency and more suitable for the use of WE in the design of cryp-
tographic protocols, we follow [AFP16, Zha16] and define WE with respect to a
setup.

Definition 13 (Witness Encryption). A WE scheme is a tuple of PPT al-
gorithms defined as follows:



Gen(1κ) : Takes a security parameter κ and outputs public parameters pp. We
assume that the public parameters pp implicitly define the message spaceM.

Enc(pp, x,m) : Takes public parameters pp, some word x and a message m as
input and outputs a ciphertext c.

Dec(w, c) : Takes a witness w and a ciphertext c as input and outputs a message
m or ⊥.

We require a WE scheme to be correct and adaptively sound, as defined below.

Definition 14 (Correctness). A WE scheme is correct, if for all κ, for all
pp ← Setup(1κ), for all m ∈ M, for all x ∈ Lpp, and for all witnesses w such
that Rpp(x,w) = 1, it holds that

Pr
[
Dec(w,Enc(pp, x,m)) = m

]
= 1.

Definition 15 (Adaptive Soundness). A WE scheme is adaptively sound, if
for all PPT adversaries A there is a negligible function ε(·) such that for all
x /∈ Lpp it holds that

Pr

pp← Gen(1κ),
(m0,m1, st)← A(pp, x), b←R {0, 1},
c← Enc(pp, x,mb), b

? ← A(c, st)
:

b = b? ∧
|m0| = |m1|

 ≤ 1/2 + ε(κ).

We call a WE scheme secure if it is correct and adaptively sound.

Remark 2. We note that assuming adaptive soundness of the WE scheme and
that the subset-membership problem is hard for domain Xpp and language
Lpp,aux, i.e., the probability of a distinguisher can be bound by ε(κ), one can
use a standard hybrid argument to show that the probability to break adaptive
soundness for a random x ∈ Lpp,aux is bounded by ε(κ).

We, however, stress that adaptive soundness is not sufficient to reach our goals,
i.e., to encrypt with respect to a GS proof. To this end, will later define and prove
a stronger security notion for our WE construction from SPHFs (cf. Definition 16
and Theorem 4).

3.1 Generic Construction of Bit WE from SPHFs

We are now ready to present our generic construction of a WE scheme from any
SPHF. We start with a bit encryption WE scheme (cf. Scheme 1), i.e., we assume
the message space M = {0, 1}. For our construction, it turns out that we only
need to assume the existence of SPHFs. We achieve this by using an approach
similar to the idea of encrypting bits in the GM encryption scheme [GM84]. In
particular, we use the fact that without knowledge of hk and a witness w for x
it is hard to distinguish a hash value from a uniformly random element in the
range Rpp of the SPHF. Now, if m = 0, then the ciphertext is a randomly sampled
element from the range Rpp, whereas, if m = 1, the ciphertext is the correctly
computed hash value. Knowledge of a witness w then allows to recompute the
hash value using hp (also included in the ciphertext) and consequently to decide
whether m = 0 or m = 1 has been encrypted.



Gen(1κ) : Run pp← SPHF.Setup(1κ) and return pp.

Enc(pp, x,m) : Parse x as (aux, x′), run hk ← SPHF.HashKG(pp, aux) and hp ←
SPHF.ProjKG(hk, aux, x′). Return c← (C, x, hp, pp), where

C←R Rpp if m = 0, and C ← SPHF.Hash(hk, aux, x′) otherwise.

Dec(w, c) : Parse c as (C, (aux, x′), hp, pp) and return 1 if H = C and 0 otherwise,
where

H ← SPHF.ProjHash(hp, aux, x′, w).

Scheme 1: WE scheme for bits from SPHFs

Theorem 1. If SPHF is correct and smooth, then Scheme 1 is secure.

Proof (Correctness). We analyze the probability that Scheme 1 is not correct,
i.e., the probability that if m = 0 and C←R R yields a value such that C = H. It
is easy to see that this only occurs with negligible probability 1/|Rpp|.

Proof (Adaptive Soundness). We use a sequence of games to prove adaptive
soundness.

Game 0: The original adaptive soundness game.

Game 1: As Game 0, but we modify the encryption algorithm as follows:

Enc(pp, x,m) : Parse x as (aux, x′), run hk ← SPHF.HashKG(pp, aux) and hp ←
SPHF.ProjKG(hk, aux, x′). Return c← (C, x, hp, pp), where

C←R Rpp .

Transition - Game 0→ Game 1: By the smoothness of the SPHF, the adversary’s
view in Game 1 is statistically close to the view in Game 0.

Game 1 is simulated independent of the bit b and distinguishing it from Game
0 would imply a distinguisher for statistically close distributions. ut

3.2 Extension to Messages of Arbitrary Length

To obtain a WE scheme for arbitrary message lengths we apply a well known
paradigm from hybrid encryption to Scheme 1. In Scheme 2 we present a con-
struction that besides a SPHF requires a universal hash function family H and
a symmetric encryption scheme Σ.

Remarkably, our construction only requires the weak notion of IND-EAV se-
curity and our construction works as follows. It uses a universal hash function
H ∈ H on the hash value of the SPHF as a randomness extractor to obtain
an encryption key for Σ. Note that for the languages we have in mind (group-
dependent languages) one could also use alternative extractors such as [CFPZ09].
Furthermore, depending on the chosen randomness extractor, it might be re-
quired to choose a larger security parameter for the SPHF to achieve the desired



security parameter in the overall scheme. To capture this, we introduce a polyno-
mial p(·) which is determined by the concrete choice of the primitives underlying
this construction.

Gen(1κ) : Run pp′ ← SPHF.Setup(1p(κ)).a Fix a family H of universal hash functions

H : Rpp → {0, 1}`Σ,κ . Return pp← (pp′,H).
Enc(pp, x,m) : Parse pp as (pp′,H), and x as (aux, x′), run hk ←

SPHF.HashKG(pp′, aux), hp ← SPHF.ProjKG(hk, aux, x′), choose H←R H, and
return c← (C, x, hp, pp,H), where

H ← SPHF.Hash(hk, aux, x′), k ← H(H), C ← Σ.Enc(k,m).

Dec(w, c) : Parse c as (C, (aux, x′), hp, pp,H), obtain k ←
H(SPHF.ProjHash(hp, aux, x′, w)), and return m, where

m← Σ.Dec(k, C).

a Note that p(·) is a polynomial determined by the concrete instantiation.

Scheme 2: WE Scheme from SPHFs for messages of arbitrary length

Theorem 2. If SPHF is correct and smooth, H is a family of universal hash
functions H : Rpp → {0, 1}`Σ,κ , the symmetric encryption scheme Σ is correct
and IND-EAV secure, and p(·) is such that 2(`Σ,κ−α)/2, with α = − log(1/|Rpp|), is
negligible in κ, then Scheme 2 is secure.

Correctness is perfect and straightforward to verify, which is why we omit the
proof. Adaptive soundness is proven subsequently.

Proof (Adaptive Soundness). We now show that adaptive soundness holds.

Game 0: The original adaptive soundness game.

Game 1: As Game 0, but we modify the encryption algorithm as follows:

Enc(pp, x,m) : Parse pp as (pp′,H), and x as (aux, x′), run hk← SPHF.HashKG(

pp′, aux), hp ← SPHF.ProjKG(hk, aux, x′), choose H←R H, and return c ←
(C, x, hp, pp,H), where

H ←R Rpp , k ← H(H), C ← Σ.Enc(k,m).

Transition - Game 0→ Game 1: By the smoothness of the SPHF, the adversary’s
view in Game 1 is statistically close to the view in Game 0.

Game 2: As Game 1, but we further modify the encryption algorithm as follows:

Enc(pp, x,m) : Parse pp as (pp′,H), and x as (aux, x′), run hk← SPHF.HashKG(

pp′, aux), hp ← SPHF.ProjKG(hk, aux, x′), choose H←R H, and return c ←
(C, x, hp, pp,H), where

H ←R Rpp, k←R {0, 1}`Σ,κ , C ← Σ.Enc(k,m).



Transition - Game 1 → Game 2: By Lemma 1, we know that the statistical
difference between the adversary’s view in Game 1 and Game 2 is bounded by
2(`Σ,κ−α)/2, with α = − log(1/|Rpp|). Thus, there exists a polynomial p(·) such that
the adversary’s view in Game 1 and Game 2 are statistically close.

Game 3: In Game 2 we are already free to randomly choose the key for the
symmetric encryption scheme. Thus, in Game 3, the environment can engage in
an IND-EAV game with a challenger C. In particular, once the adversary outputs
(x,m0,m1, st), the environment forwards (m0,m1, st) to C to obtain the challenge
ciphertext from C and use it as C in the simulation of Enc. Once the adversary
outputs b∗, the environment forwards it as it’s guess to C.
Transition - Game 2 → Game 3: This is only a conceptual change.

The adversary’s success probability in Game 3 is bounded by the success prob-
ability in the IND-EAV game of Σ; a distinguisher between Game 0 and Game 3
would imply a distinguisher for statistically close distributions. ut

4 Efficient SPHFs for Algebraic Languages

Recent expressive SPHFs are mostly constructed to be compatible with the
universal composability (UC) framework [Can01]. Such constructions (see, e.g.,
[BBC+13a]) usually build upon SPHFs based on CCA2 secure (labeled) Cramer-
Shoup encryption, and, consequently, often trade maximum efficiency for UC
security. We do not aim for UC compatibility, as we focus on constructing par-
ticularly efficient instantiations of WE. Additionally, we want to achieve com-
patibility with the GS proof framework, as our goal is to be able to encrypt with
respect to a GS proof. Subsequently, we will gradually develop an SPHF in line
with these goals. We start with an SPHF being compatible with GS commitments
and then extend this SPHF to cover languages for the satisfiability of PPEs.

4.1 SPHF for Linear Groth-Sahai Commitments

Let the language for the SPHF be defined by the commitments used within the
GS proof framework, which we exemplify for the DLIN setting. This brings us
one step closer to our final goal, i.e., to be able to encrypt with respect to a
statement proven using the GS proof framework.

Linear GS Commitments. We first recall how a linear GS commitment is
formed. Let ([U1], [U2], [U3]) ∈ G3×G3×G3 be the commitment parameters for
the DLIN setting, which look as follows:

[U1] = ([x1], [0], [1]) , [U2] = ([0], [x2], [1]) ,

[U3] = ρ · U1 + ν · U2 = ([x1ρ], [x2ν], [ρ+ ν]) ,

where ρ, ν←R Zp. If the commitment parameters are set up in this way, one ob-
tains perfectly binding commitments. In contrast, in the perfectly hiding setup



we have that log[1] [U3] /∈ span(log[1] [U1], log[1] [U2]). The two setups are compu-
tationally indistinguishable under DLIN. Thus, we can align our further expla-
nations to the perfectly binding setup and they equally apply to the perfectly
hiding case. To commit to a message [m] ∈ G one chooses r1, r2, r3←R Zp and
computes

C[m] = ([0], [0], [m]) + r1 · ([x1], [0], [1]) +

r2 · ([0], [x2], [1]) +

r3 · ([x1ρ], [x2ν], [ρ+ ν]) =(
[x1(r1 + ρr3)], [x2(r2 + νr3)], [m + r1 + r2 + r3(ρ+ ν)]

)
.

Observe that C[m] linearly encrypts [m] with respect to randomness ((r1 +
ρr3), (r2 + νr3)).

In Scheme 3, we present the SPHF for linear GS commitments, which borrows
construction ideas from [GL06].

Setup(1κ) : Run BG ← BGGen(1κ), choose (x1, x2, ρ, ν)←R Z4
p, set pk ←

([x1], [x2], [1], [x1ρ], [x2ν], [ρ+ ν]) and return pp← (BG, pk).

HashKG(pp, aux) : Choose (η, θ, ζ)←R Z3
p and return hk← (pp, η, θ, ζ).

ProjKG(hk, aux, x) : Parse hk as ((BG, ([x1], [x2], [1], [x1ρ], [x2ν], [ρ+ ν])), η, θ, ζ), and
return hp← (pp, [hp1], [hp2], [hp3]), where

[hp1]← [x1η] + [ζ], [hp2]← [x2θ] + [ζ], [hp3]← [x1ρ] · η + [x2ν] · θ + [ρ+ ν] · ζ.

Hash(hk, aux, x) : Parse hk as (pp, η, θ, ζ), aux as [m] and x as ([u], [v], [e]), and return
H, where

HHash ← [u] · η + [v] · θ + ([e]− [m]) · ζ.
ProjHash(hp, aux, x, w) : Parse hp as (pp, [hp1], [hp2], [hp3]) and w as (r1, r2, r3), and

return H, where
HProj ← [hp1] · r1 + [hp2] · r2 + [hp3] · r3.

Scheme 3: SPHF for the language of linear GS commitments

Theorem 3. If the DLIN assumption holds, then the SPHF in Scheme 3 is
secure.

Proof (Correctness). Let Lpp,[m] be the language of linear GS commitments C[m]

to messages [m] and let pp, hk and hp be generated according to the setup in
Scheme 3. Furthermore, let C[m] = ([u], [v], [e]) = ([x1(r1 + ρr3)], [x2(r2 + νr3)],
[m + r1 + r2 + r3(ρ+ ν)]), w = (r1, r2, r3), HProj ← ProjHash(hp, [m], x, w), and



HHash ← Hash(hk, [m], x), then we have

HHash := [u] · η + [v] · θ + ([e]− [m]) · ζ =

[x1η(r1 + ρr3)] + [x2θ(r2 + νr3)] · [ζ(r1 + r2 + r3(ρ+ ν))] =

[x1ηr1] + [ζr1] + [x2θr2] + [ζr2] + [x1ρηr3] + [x2νθr3] + [(ρ+ ν)ζr3] =

[hp1] · r1 + [hp2] · r2 + [hp3] · r3 =: HProj.

This concludes the proof. ut

Proof (Smoothness). To prove smoothness, we can assume that we have an in-
valid commitment to some message [m]. Any such commitment is of the form
([x1(r1 + ρr3)], [x2(r2 + νr3)], [m + r4]), where r4 6= r′1 + r′2 = (r1 + ρr3) + (r2 +
νr3) and thus not a word in the language Lpp,[m]. With hp = (pp, [x1η]+[ζ], [x2θ]+
[ζ], [x1ρη]+[x2νθ]+[(ρ+ ν)ζ]), the corresponding hash value is then of the form
HHash = [x1η(r1 + ρr3)] + [x2θ(r2 + νr3)] + [ζr4]. Taking the discrete logarithms
with respect to g yields

log[1]HHash = x1η(r1 + ρr3) + x2θ(r2 + νr3) + ζr4,

log[1] [hp1] = x1η + ζ,

log[1] [hp2] = x2θ + ζ,

log[1] [hp3] = x1ρη + x2νθ + (ρ+ ν)ζ.

It is easy to see that the only possibility where log[1]H ∈ span(log[1] [hp1], log[1]

[hp2], log[1] [hp3]) is when r4 = (r1 + ρr3) + (r2 + νr3) = r′1 + r′2, i.e., when C[m]

is in fact in Lpp,[m]. Conversely, if C[m] /∈ Lpp,[m] we have that r3 6= r′1 + r′2 and
the value HHash looks perfectly random. ut

Proof (Pseudo-Randomness). We prove pseudo-randomness using a sequence of
hybrid distributions.

Distribution 0: Let D0 be the distribution sampled according to the pseudo-
randomness definition.

Distribution 1: As D0, but we choose r1, r2, r3←R Z3
p and set C[m] = ([x1r1] +

[x1ρr3], [x2r2] + [x2νr3], [m′ + r1 + r2 + r3(ρ+ ν)]) for some m′ 6= m.

Transition D0 → D1 : We show that a distinguisher D0→1 is a DLIN distin-
guisher using a hybrid sampler, which—depending on the validity of a DLIN
instance—either samples from D0 or D1. We obtain a DLIN instance (BG, [x1],
[x2], [x1r], [x2s], [t]) and let C[m] = ([x1r] + [x1ρr3], [x2s] + [x2νr3], [m] + [t] +
[r3(ρ+ ν)]). Then, if the DLIN instance is valid we sample from D0, whereas
we sample from D1 if it is invalid.

In D1 we have a distribution as in the smoothness game, i.e., the hash value
is perfectly random. D0 and D1 are computationally indistinguishable, which
completes the proof. ut



4.2 Extending Supported Languages

Now, to achieve the desired compatibility with statements of the satisfiabil-
ity of PPEs proven in the GS proof framework, we extend the SPHF for linear
GS commitments from the previous section. We therefore, borrow ideas from
[BBC+13a, BBC+13b]. Our framework is compatible with PPEs of the form

[A] • [Y ] + [X] • [B] + [Z]T · Γ = [t]T , (2)

where we have [A] = ([a1], . . . [an]) ∈ Gn, [Y ] = ([y1], . . . , [yn]) ∈ Gn, [B] =
([bn+1], . . . , [bn+m]) ∈ Gm, [X] = ([xn+1], . . . , [xn+m]) ∈ Gm, [Z]T = ([zn+m+1]T ,
. . . , [zn+m+o]T ) ∈ GoT , Γ = (γn+m+1, . . . , γn+m+o)

T ∈ Zo×1p . The underlined val-
ues in the equation remain secret and are encrypted using linear encryption.
For the ease of presentation, we use the following simplified equation (i.e., let
m = 0):

[A] • [Y ] + [Z]T · Γ = [t]T . (3)

Note that in a Type-1 setting, this simplification does not even influence the
expressiveness. We denote the commitments to [yi] and [zi]T , respectively, as

[Ci] = ([ui], [vi], [ei]) ∈ G3 for 1 ≤ i ≤ n,

and
[Ci]T = ([ui]T , [vi]T , [ei]T ) ∈ G3

T for n < i ≤ n+ o.

Further, let [C] ∈ Gn×3 and [C ′]T ∈ Go×3T , where the i-th rows contain the entries
of [Ci] and [Ci]T , respectively. Accordingly, we let R ∈ Zn×3p and R′ ∈ Zo×3p be
the matrices where the i-th row contains the randomness (ri1, ri2, ri3) being used
in commitment [Ci] (resp. [Ci]T ). The language Lpp,PPE contains all ([C], [C ′]T )
where the committed values satisfy PPE. Membership in Lpp,PPE is witnessed by
(R,R′).

Now, for the SPHF, let ζ←R Zp and for i ∈ [n + o]: (ηi, θi)←R Z2
p, hki =

(ηi, θi, ζ) as well as hpi = ([hpi1], [hpi2], [hpi3]) = ([x1] · ηi + [ζ], [x2] · θi + [ζ],
[x1ρ] ·ηi+[x2ν] ·θi+[ρ+ ν] ·ζ). We use hk ∈ Zn×3p and hk′ ∈ Zo×3p to refer to the
matrices where the i-th row contains the entries of hki (resp. hkn+i). Likewise,
we use [hp] ∈ Gn×3 and [hp′]T ∈ Go×3T to refer to the matrices, where the i-th
row contains the entries of [hpi] (resp. [hpn+i]). Then, we can define

HHash := [A]• diag([C] · hkT) + diag([C ′]T · hk′T) · Γ − [t]T · ζ =

[A] • diag(R · [hp]
T

) + diag(R′ · [hp′]T) • [Γ ] =: HProj.
(4)

Note that the computation of the hash value involves distinct values (ηi, θi) in
the hashing/projection key per pairing in the pairing products. Intuitively, this
is why we require to select elements from the diagonal of C · hkT and r · hpT,
respectively.

Lemma 2. Using the SPHF in Scheme 3 as described above yields a secure
SPHF for any language covered by Equation (3).



Proof (Correctness). For simplicity, we can without loss of generality assume
that n = 1, o = 2. Then, we have(

[C]
[C ′]T

)
=

(
[u1] [v1] [e1]
[u2]T [v2]T [e2]T

)
,

(
R
R′

)
=

(
r11 r12 r13
r21 r22 r23

)
,

(
hk
hk′

)
=

(
η1 θ1 ζ
η2 θ2 ζ

)
,(

[hp]
[hp′]

)
=

(
[x1η1 + ζ] [x2θ1 + ζ] [x1ρη1 + x2νθ1 + (ρ+ ν)ζ]
[x1η2 + ζ] [x2θ2 + ζ] [x1ρη2 + x2νθ2 + (ρ+ ν)ζ]

)
,

and the projective hash value obtained using hp is computed as

HProj ← [A] • diag(R · [hp]
T

) + diag(R′ · [hp′]T) • [Γ ]

= [a1] · ([x1η1 + ζ] · r11 + [x2θ1 + ζ] · r12
+ [x1ρη1 + x2νθ1 + (ρ+ ν)ζ] · r13)

+ [γ2] · (([x1η2 + ζ] · r21 + [x2θ2 + ζ] · r22
+ ([x1ρη2 + x2νθ2 + (ρ+ ν)ζ)] · r23) .

Computing the hash value using hk yields:

HHash ← [A] • diag([C] · hkT) + diag([C ′]T · hk′T) · Γ − [t]T · ζ
= [a1] · ([u1] · η1 + [v1] · θ1 + [e1] · ζ)

+ ([u2]T · η2 + [v2]T · θ2 + [e2]T · ζ) · γ2 − [t]T · ζ
= [a1] · ([x1(r11 + ρr13)] · η1 + [x2(r12 + νr13)] · θ1
+ ([y1 + r11 + r12 + r13 · (ρ+ ν)] · ζ) + ([x1 · (r21 + ρr23)]T · η2
+ [x2 · (r22 + νr23)]T · θ2 + [z2 + r21 + r22 + r23(ρ+ ν)]T · ζ) · γ2 − [t]T · ζ
(i)
= [a1] · ([x1η1] + [ζ]) · r11 + ([x2θ1] + [ζ]) · r12
+ ([x1ρ] · η1 + [x2ν] · θ1 + [ρ+ ν] · ζ) · r13
+ [γ2] · (([x1η2] + [ζ]) · r21 + ([x2θ2] + [ζ]) · r22
+ ([x1ρ] · η2 + [x2ν] · θ2 + [ρ+ ν] · ζ) · r23).

where for the step (i), we use that [t]T = [a1] · [y1] + [z2]T · γ2 by definition. ut

Smoothness as well as pseudo-randomness follow from the respective properties
of the underlying SPHF, as we will discuss subsequently.

Proof (Smoothness). For simplicity, we only consider PPE without the [zi]T
parts as our argumentation straight forwardly extends to this case (we only
consider the discrete logarithms which are the same for the [zi]T parts). We
can without loss of generality assume that one of the n commitments contains
a value such that the overall PPE is not satisfied. Any such commitment is of
the form ([x1(ri1 + ρri3)], [x2(ri2 + νri3)], [yi + ri4]), where ri4 6= r′i1 + r′i2 =
(ri1 + ρri3) + (ri2 + νri3) and thus not a word in the language Lpp,PPE. Then,
the hash value is defined as:

HHash = [A] • [h]− [t]T · ζ, with [h] = ([h1], . . . , [hn]), and

[hi] = [x1(ri1 + ρri3)] · ηi + [x2(ri2 + νri3)] · θi + [yi + ri4] · ζ.



As the values [yi] cancel out via subtraction of [t]T · ζ when plugging in the
commitments into the PPE, it suffices to consider

log[1] [hi] = x1ηi(ri1 + ρri3) + x2θi(ri2 + νri3) + ri4ζ

log[1] [hpi1] = x1ηi + ζ,

log[1] [hpi2] = x2θi + ζ,

log[1] [hpi3] = x1ρηi + x2νθi + (ρ+ ν)ζ.

Now hi looks perfectly random as it is linearly independent of the projection
keys, unless ri4 = (ri1 + ρri3) + (ri2 + νri3) which only happens if we deal with
a valid commitment. This concludes the proof. ut

Proof (Pseudo-Randomness). We know that smoothness holds. Using the same
argumentation as before, this also implies pseudo-randomness. ut

Finally, we note that an extension to statements of the form in Equation (2) can
be done analogous to [BBC+13a, BBC+13b].

5 Encrypting With Respect to a Groth-Sahai Proof

Assume that a prover conducts a GS proof π for the satisfiability of some PPE.
Such a proof contains commitments to the witness together with some additional
group elements used to “cancel out” the randomness in the commitments. Now,
given such a proof π, one can encrypt a message with respect to π using our WE
instantiated with the SPHF described in Equation (4). The witness to decrypt
is the randomness which was used in the commitments contained in π, and
consequently the entity who produced π can decrypt.

Scheme 4 compactly sketches our approach, where GS refers to the GS proof
system and PPE refers to a paring product equation that can be expressed in
our SPHF framework from Section 4. We assume that GS.BGGen and GS.CRSGen
have already been run and thus the bilinear group description BG as well as the
CRS crs are available to both, the encryptor and the decryptor. Again, we use
PPEs of the form in Equation (3) without the [zi]T values.

We write a GS proof π as a matrix of commitments [C], a corresponding
PPE and a proof part πGS. Additionally, we make the randomness r used in
GS.Proof explicit and assume that one can efficiently derive the randomness
matrix R corresponding to [C] in π from r. Then, words in the language Lpp,PPE

in the WE scheme consist of the commitments [C] to the unrevealed values [Y ].
Membership in Lpp,PPE is witnessed by R.

Remark 3. One might be inclined to think that it would be sufficient to take just
a single GS commitment from a proof π together with the SPHF from Scheme 2.
However, then the encryptor would be required to know the value of the [yi]
corresponding to the commitment, i.e., a part of the witness used in the GS proof,
which is contrary to using GS in the first place. In contrast, for the solution we
propose the knowledge of [t]T is sufficient.



Decryptor

g 

extract R from r
m←WE.Dec(R, c)

g

Encryptor

store r
parse π as (PPE, [C], πGS)
set pp← (BG, crs)

π ← GS.Proof(BG, crs,PPE, [Y ]; r)
π

c←WE.Enc(pp, (PPE, [C]),m)

c

Scheme 4: Encryption of a message with respect to a GS proof

To formally capture the security one would expect when using WE in this con-
text, we introduce the following definition. Informally, we require that breaking
adaptive soundness of the WE scheme remains intractable even if the statement
is in fact in Lpp,PPE and a GS proof for this fact is provided. Since we want
the notion to be useful when combining the primitive with other primitives in
protocol design, we ask for a rather strong notion—even stronger than the one
given in the intuition above. That is, we do not want to assume anything on the
distribution of the values defining the PPE and the corresponding witness, i.e.,
([A], [t]T ) and [Y ]. We model this by allowing the adversary to adaptively choose
the pairing product equation PPE as well as a witness satisfying it. The only
part where the adversary is not involved is the computation of the GS proof.

Definition 16 (Pseudo-Randomness in the Presence of Proofs). A WE
scheme for the language L(BG,crs),PPE provides pseudo-randomness in the presence
of proofs, if for all PPT adversaries A there exists a negligible function ε(·) such
that it holds that

Pr


BG← GS.BGGen(1κ), crs← GS.CRSGen(BG),
b←R {0, 1}, (PPE, [Y ], st)← A(crs),
π = ([C], πGS)← GS.Proof(BG, crs,PPE, [Y ]),
c←WE.Enc((BG, crs), (PPE, [C]), b),
b? ← A(st, c)

: b = b?

 ≤ 1/2 + ε(κ),

where PPE is of the form ([A], [t]T ) = (([a1], . . . , [an]), [t]T ), ai 6= 0 for all i ∈ [n],
and n > 1.

Theorem 4. When instantiating Scheme 1 with the SPHF from Equation (4),
then Scheme 4 provides pseudo-randomness in the presence of proofs in the
generic group model.

Proof. Let A be a generic PPT adversary, who can obtain random strings as
handles for group elements, and can execute group operations by querying those
random strings to group operation oracles. W.l.o.g. we let the encodings of el-
ements from G to be in {0, 1}a and the encodings of elements from GT to be



in {0, 1}b with a < b and a, b being such that A can not efficiently guess values
chosen uniformly random from {0, 1}a (resp. {0, 1}b).

We start our simulation by randomly choosing (α1, . . . , α6)←R ({0, 1}a)6, as-
signing the polynomials 1, x1, x2, x1ρ, x2ν, ρ + ν to these values, and storing
(α1, 1), (α2, x1), (α3, x2), (α4, x1ρ), (α5, x2ν), (α6, ρ+ν) in a newly initialized list
LG. Furthermore, we initialize an empty list LGT to store encoding-tuples for
GT . Then we start A on (α1, . . . , α6) and simulate the group operation oracles
as follows:

Group operation in G: Given two encodings α0, α1, obtain the corresponding
polynomials f0, f1 from LG and return ⊥ if the lookup fails. Otherwise check
whether there is a tuple (α`, f0 + f1) in LG, If not, choose α`←R {0, 1}a and
store (α`, f0 + f1) in LG. In the end, return α`.

Inversion in G: Given an encoding α, obtain the corresponding polynomials f
from LG and return ⊥ if the lookup fails. Otherwise check whether there is
a tuple (α`,−f) in LG. If not, choose α`←R {0, 1}a, store (α`,−f) in LG. In
the end, return α`.

Pairing: Given two encodings α0, α1, obtain the corresponding polynomials
f0, f1 from LG and return ⊥ if the lookup fails. Otherwise check whether
there is a tuple (α`, f0 · f1) in LGT , If not, choose α`←R {0, 1}b and store
(α`, f0 · f1) in LGT . In the end, return α`.

The group operation and inversion oracles for the group GT are simulated anal-
ogously to the ones for G, with the difference that one samples the encodings
from {0, 1}b and uses the list LGT .

If the adversary eventually outputs (((a1, . . . , an), t), (y1, . . . , yn), st) ∈ ((({0,
1}a)n×{0, 1}b)× ({0, 1}a)n× ST) representing (PPE, [Y ], st), we abort if one of
the encodings has no corresponding polynomial in the respective lists. Otherwise,
we define the polynomials

∑
i∈[n] ai · ri1,

∑
i∈[n] ai · ri2,

∑
i∈[n] ai · ri3, (x1(ri1 +

ρri3))i∈[n], (x2(ri2 +νri3))i∈[n], (ri1 +ri2 +ri3(ρ+ν))i∈[n], (x1ηi+ ζ)i∈[n], (x2θi+
ζ)i∈[n], (x1ρηi + x2νθi + (ρ + ν)ζ)i∈[n] choose an encoding value for each of the
polynomials uniformly at random from {0, 1}a and insert the respective tuples in
LG. Likewise, we define the polynomial b ·

∑
i∈[n] ai(ηix1(ri1 + ρri3) + θix2(ri2 +

νri3) + ζ(ri1 + ri2 + (ρ+ν)ri3)) + (1− b) ·Ξ, choose an encoding value uniformly
random in {0, 1}b and insert the respective tuple in LGT . Note that we slightly
abuse the notation and use ai instead of the actual polynomials assigned to ai,
since our argumentation below holds irrespective of the form of the polynomials
assigned to ai. Also note that we do not need to check whether we have a collision
upon insertion in the lists, as every newly introduced polynomial contains at least
one new variable. Finally, we start A on all those encodings and st which was
previously output by A, and allow A to query the group operation oracles again.

Eventually A outputs its guess b? and we choose concrete values for each of
the variables x1, x2, ρ, ν, (ri1, ri2, ri3)i∈[n], (ηi, θi)i∈[n], ζ, Ξ, b. If there is no colli-
sion in the polynomials in LG and LGT , no information about b was leaked and
the adversary can only win with probability 1/2. If there is a collision we have
two possibilities: (1) the collision was produced by A itself, or (2) the collision



occurs due to the assignment of concrete values. We subsequently show that
neither (1) nor (2) can happen with noticeable probability:

(1) In this case we can take a shortcut: we observe that without using the GS
proof, i.e., without using the polynomials

∑
i∈[n] ai·ri1,

∑
i∈[n] ai·ri2,

∑
i∈[n] ai·

ri3, the adversary cannot produce any collisions as this would imply a generic
adversary against pseudo-randomness (which holds by Lemma 2). Thus,
we know that any collision must involve polynomials corresponding to the
GS proof. In this context, we however observe that—under the constraint
that all values ai 6= 0 and n > 1—any combination of the polynomials∑
i∈[n] ai ·ri1,

∑
i∈[n] ai ·ri2,

∑
i∈[n] ai ·ri3 with the other available polynomi-

als either yields at least one term containing rij · rk` with i 6= k ∨ j 6= ` or
at least one term containing ri1 · ηj , ri1 · θj , ri2 · ηj , ri2 · θj , ri3 · ηj , or ri3 · θj
with i 6= j. From the fact, that the adversary can not increase the degree of
the polynomials in LGT and in particular not the degree of the polynomial
which depends on b, we can conclude that the adversary can not produce a
collision on its own.

(2) What remains is to exclude a collision occurring due to the random assign-
ment of values. This case occurs exactly when the difference of the evalua-
tions of two polynomials is equal to 0. Assuming that A makes q queries,
we have O(

(
q
2

)
) possible difference polynomials and—by the Schwartz-Zippel

Lemma—the probability for a collision is O(q
2
/p). This concludes the proof.

ut

As a corollary of the proof above we obtain the following for arbitrary-length
messages.

Corollary 1. When instantiating Scheme 2 with the SPHF from Equation (4),
H is a family of universal hash functions H : Rpp → {0, 1}`Σ,κ , the symmetric
encryption scheme Σ is IND-EAV secure, and p(·) is such that 2(`Σ,κ−α)/2, then
Scheme 4 provides pseudo-randomness in the presence of proofs in the generic
group model.

6 Discussion and Applications

Subsequently, we want to briefly demonstrate that our techniques are very ef-
ficient, and, thus, also appealing from a practical point of view: Counting the
expensive operations in G, the SPHF for linear Groth-Sahai commitments in
Scheme 3 boils down to 6 exponentiations in ProjKG and 3 exponentiations
in Hash and ProjHash, respectively. The operations required when using this
SPHF for languages over bilinear groups as demonstrated in Equation (4), are
outlined in Table 1. Thereby, n refers to the length of the vector [Y ], whereas
o refers to the length of the vector [Z]T . Here, the computational effort grows
linearly in the size of the PPE (in particular in n and o, respectively) and is
almost as efficient as evaluating the PPE with plain values.



Table 1. SPHF for linear GS commitments in PPEs: Expensive operations

Exp. G Exp. GT e(·, ·)
HashKG 0 0 0
ProjKG 4(n+ o) + 1 0 0
Hash 3n 3o+ 1 n
ProjHash 3(n+ o) + o 0 n+ o

Regarding applications, our framework is applicable to extend various Groth-
Sahai based privacy-enhancing protocols with encryption features in an ad-hoc
fashion. Below, we take a closer look at two potential applications.

Ring Encryption. Group encryption [KTY07] is an existing paradigm that can
be seen as the encryption analogue to group signatures. In group encryption, a
sender can prepare a ciphertext and convince a verifier that it can be decrypted
by an anonymous member of some managed group. Thereby, an opening author-
ity can reveal the identity of the group member that is capable of decrypting.
Consequently, group encryption involves a dedicated trusted group manager and
provides conditional anonymity, i.e, the trusted opening authority can break the
anonymity. Using our techniques, it is quite straightforward to construct a group
encryption variant in the ring setting, i.e., an ad-hoc counterpart to group en-
cryption. That is, anyone can encrypt a message such that it is guaranteed that
exactly one unknown member of an ad-hoc ring R is able to decrypt. In partic-
ular, it allows anyone to encrypt a message with respect to R being represented
by a proof of membership of a certain entity in R. Thereby, exactly one member
of the ring, i.e., the prover, can decrypt. Furthermore, even the encrypting party
does not know who exactly will be able to decrypt. Nevertheless, we can ensure
that only the right party is able to decrypt, while nobody is able to reveal the
identity of the party that is able to decrypt.

As an illustrative example of ring encryption let us assume that a whistle-
blower wants to leak a secret to some journalist. Therefore, she needs to establish
a secure channel to transmit the secret. Clearly, the journalist might not want
to publicly reveal that he is willing to publish critical information leaked by
a whistleblower. Using our techniques, the journalist can prove membership in
some group of trusted journalists (without revealing his identity) so that the
whistleblower can use this proof to encrypt the secret in a way that she has a
high level of confidence that only a member of the group will be able to read the
secret.

Policy-Based Encryption. One could even generalize ring encryption to encryp-
tion with respect to arbitrary policies. That is, in the fashion of policy-based
signatures [BF14], a proof that a certain policy is satisfied could be used to
encrypt.

Mutually Anonymous Key-Exchange. Our method to encrypt with respect
to a GS proof could be applied to language-authenticated key exchange (LAKE).
That is, two parties that do not want to reveal their identity to each other (but
only their membership to potentially distinct groups) can agree on a common



encryption key. Note that this goal is in contrast to the goals of private mutual
authentication [JL09] or covert mutual authentication [Jar14], which allows two
parties belonging to some managed groups to privately authenticate to each other
so that external parties cannot obtain any information about their identities or
not even distinguish an instance of the authentication protocol from a random
beacon.

7 Conclusion

In this paper we have studied practical WE schemes and focused on schemes that
do not cover all languages in NP but algebraic languages defined over bilinear
groups. We formally showed that such WE constructions can be efficiently in-
stantiated from SPHFs. Regarding the usage of WE in more complex protocols,
we observed that the conventional adaptive soundness notion provided by WE
schemes is not useful. To this end we introduced the notion of pseudo-randomness
in the presence of proofs, which makes WE constructions attractive for the usage
in more complex scenarios. As a first step towards achieving such practically
useful WE schemes, we proved that our constructions satisfy this more realistic
notion. Due to the strength of this notion we had to resort to a proof in the
generic group model. We see coming up with a proof under a weaker assumption
as a major open question. Regarding applications of WE schemes providing this
strong notion, we have discussed use cases in the context of privacy preserving
exchange of data. Yet, it seems that the approach is a valuable tool for various
other practical applications.
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