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Abstract

The Cryptographics Algorithms AES and Twofish guarantee a high diffusion
with the use of fixed MDS matrices of size 4 × 4. In this article variations to the
Cryptographics Algorithms AES and Twofish are made. They allow that the pro-
cess of cipher - decipher come true with MDS matrices selected randomly from an
algorithm that obtaining an MDS matrix of set of all the MDS matrices possible.
A new Schedule of key with a high diffusion is designed for the Algorithm Crypto-
graphic AES. Besides it is proposed a new S - box that he varies in function of the
key.
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1 Introduction.

The Cryptographics Algorithms of Block Cipher Rijndael [DR99] and [DR02]
and Twofish [SKWHF98] and [GBS13] were finalists in the world contest to
select the Advanced Encryption Standard (AES) convened by the National
Institute of Standards and Technology from the United States (NIST). The
contest finished in October 2000 with the selection of the Cryptographics
Algorithms Rijndael as the AES, which was proposed by Joan Daemen and
Vincent Rijmen, from Belgium.

In order to reach a high diffusion, the Cryptographics Algorithms AES
and Twofish, use a MDS (Maximal Distance Separable) matrix, selected a
priori. In this paper we will explain the variations of these Cryptographics
Algorithms of Block Cipher, where the MDS matrix is selected randomly
in function of the secret key, as part of the Schedule of Keys. In addition,
a new Schedule of Keys for the Cryptographic Algorithm AES is proposed,
which guarantee a high diffusion and where a new S-box as function key is
obtained. Proposals of variation of the Cryptographic Algorithm AES can
be found in [AE13], [AHK13], [ERDM09], [IGKAE12], [MEEZ13], [MJ11]
and [MKAF11].

The algorithm for the random generation of MDS matrix A = {ai,j}4×4,
where for all i and j, ai,j ∈ GF (28) (GF - Galois Fields), it only needs a
random matrix M = {mi,j}4×4, where for all i and j, ai,j ∈ GF (28), which
has as restriction that for none i, i ≥ 2, that is fulfilled mi,i = mi,i+1 =
· · ·mi,4 = 0 and m1,2,m1,3 and m1,4 6= 0. This algorithm has the advantage,
in relation to the other ones, that the selection of a random MDS matrix is
achieved from the set of all MDS matrices, see epigraph 2.3 and [FDDP14].
The attainment of MDS matrices can be seen in [AF14], [AF13],[DMMF15],
[DMMMP14], [GR13], [GR13a], [GR14], [KM14], [JV04], [LF04], [MI08],
[MI11], [NA09], [RRYB15], [SDMO12] and [SKOP15].

This paper also contains a proposal of variation, in function of the key,
of the S - box (SRD) from the Cryptographic Algorithm AES. SRD is trans-
formed into in S ′RD = λ2SRDλ1(x), where λ1 y λ2 are Boolean invertible
matrices of 8 × 8, which are generated in the Schedule of Key for the al-
gorithm that is described in epigraph 2.3 of the present paper. Proposals
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of variation of the S-box from AES can be found in [Ke97], [FSESH05],
[KM08], [MRE09], [KK09] and [JMV15].

This article begins with the summarized description of the Crypto-
graphic Algorithm AES, followed by variation proposals and afterwards a
similarly summarized description of the Cryptographic Algorithm Twofish,
followed by the explanation of its variations. The work finishes with
two algorithms which allow the variation in function of the key of the
S - box from AES and the MDS matrices of the Cryptographics Algorithms
AES and Twofish.

2 Development.

2.1 Cryptographic Algorithm of Block Cipher AES.

The input and output blocks of the Cryptographic Algorithm AES are
described in matrices forms of bytes in 4 rows per Nb = 4 columns.
The input matrix is formed from the succession of bytes of clear text
p0p1p2p3 . . . p4Nb−1 in the following way: ai,j = pi+4j 0 ≤ i < 4, 0 ≤ j < Nb,
where p0 is the initial byte and p4Nb−1 is the final byte. The output matrix
is transformed into bytes of ciphered texts c0c1c2c3 . . . c4Nb−1 in the follo-
wing way: ci+4j = ai,j 0 ≤ i < 4, 0 ≤ j < Nb. The transformations in
each round operate on the matrix ai,j, 0 ≤ i < 4, 0 ≤ j < Nb, which it is
denoted matrix of state [DR99] and [DR02].

The key is a one-dimensional arrangement of bytes which is written as
a matrix of bytes of 4 rows per Nk = 4, 6 o 8 columns. The number of
round Nr in the Cryptographic Algorithm AES is function of Nb and Nk

[DR99] and [DR02].
The Cryptographic Algorithm AES uses the following funtions:

SubBytes, which we denote as SRD, ShiftRows and MixColumns. The
schedule of key for Nk ≤ 6 and Nk > 6 is presented in pseudo code in
[DR99] and [DR02].
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2.1.1 Variations of the Cryptographic Algorithm of Block Cipher AES.

Variation of Schedule of Keys.

The Cryptographic Algorithm AES has a Schedule of Keys with a low dif-
fusion, which it has made possible the success of differential Cryptanalysis
with related keys (see [JD04], [BKN09] and [BK09]), in order to avoid this
cryptanalytic attack in [DR12] and [CZKHP11] it is proposed to redesign
a new Schedule of Keys.

The first variation to the Cryptographic Algorithm AES exhibited in
this paper is the substitution of its Schedule of Keys by the one that follows,
which uses in its base Rijndael Cryptographic Algorithm with Nb = Nk = 8
and Nr = 10 when the key is 256 bits, Nb = Nk = 6 and Nr = 8 when
the key is 192 bits and Nb = Nk = 4 and Nr = 8 when the key is 128 bits
[DR99] and [DR02].

To generate the keys in each round with this new Schedule of Keys, the
following algorithms are used:

MDSMatrixGeneration:
Input:
1. Primitive polynomials g1(x), g2(x) y g3(x) ∈ GF (28)[x] (they are a

priori selected and gr(g1(x)) = 4, gr(g2(x)) = 3 and gr(g3(x)) = 2)
2. 16 bytes that are transformed in a M [4][4] matrix of bytes.
Output:
1. MDS matrix A[4][4] of bytes used in the MixColumns function.

This algorithm of generation of random MDS matrix can be seen in
epigraph 2.3 and [FDDP14]. If in the matrix M [4][4] comes true that
(mk,0,mk,1, . . . ,mk,4−k) = 0 then (mk,0,mk,1, . . . ,mk,4−k) = (0, 0, . . . , 0, 28−
1), k = 2..4.
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BooleanMatrixGeneration:
Input:
1. Primitive polynomials g1(x), g2(x), . . . , g7(x) ∈ GF (2)[x]( They are a

priori selected and gr(g1(x)) = 8, gr(g2(x)) = 7, . . . , gr(g7(x)) = 2).
2. 8 bytes that are transformed in a Boolean matrix M [8][8].
Output:
1. Invertible Boolean matrix A[8][8].

This algorithm of generation of random invertible Boolean matrices can
be seen in epigraph 2.3 and [FDM09]. If in the matrix M [8][8] comes true
that (mk,0,mk,1, . . . ,mk,8−k) = 0 then (mk,0,mk,1, . . . ,mk,8−k) = (0, 0, . . . , 0,
1), k = 1..8.

The BooleanMatrixGeneration algorithm is used to create the new
SubBytes function where SRD is substituted by S ′RD = λ2SRDλ1 and
the matrices λ2 and λ1 are obtained by the BooleanMatrixGeneration
algorithm. Anothers proposal of variation of the S - box from AES can be
found in [MRE09], [KK09] and [JMV15].

RoundKeyGeneration:
Input:
1. The key of 256, 192 or 128 bits identified as Key.
2. A primitive element α ∈ GF (28).
3. The S - Box of the AES identified as SRD.
Output:
1. 17 keys of 16 bytes identified as RoundKey[17][16].

Note: RoundKey[0][16], RoundKey[1][16],. . . , RoundKey[14][16] are the
keys of rounds, RoundKey[15][16] is used in the MDSMatrixGeneration
algorithm, RoundKey[16][16] is used to obtain two Boolean matrices with
the BooleanMatrixGeneration algorithm.
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RoundKeyGeneration(byte Key[Nkey],byte Keyr[Nr][Nkey], byte α, byte SRD[256],byte
RoundKey[17][16]){
switch (Nkey){
case 32:

for(t=0;t < 16;t++){
RoundKey[0][t]=Key[t];
RoundKey[1][t]=Key[16+t];
}
MDSMatrixGeneration(SRD[Key[0]],SRD[Key[1]],. . . ,SRD[Key[15]]);
λ1=BooleanMatrixGeneration(SRD[Key[16]],SRD[Key[17]],. . . ,SRD[Key[23]]);
λ2=BooleanMatrixGeneration(SRD[Key[24]],SRD[Key[25]],. . . ,SRD[Key[31]]);
for(i=0;i < 256;i++)
S′RD[i] = λ2SRDλ1[i];

for(i=0;i < Nr;i++)
for(j=0;j < Nkey;j++)

Keyr[i][j]= S′RD

[
α(i ∗ Nkey + j) mod 255

]
;

for(j=0;j < 8;j++){
for(i=0;i < 10;i++){

SubBytes(Key);
ShiftRows(Key);
MixColumns(Key);
AddRoundKey(Key,Keyr[i]);
}
If(j 6= 7)

for(t = 0 ; t ¡ 16 ; t++) {
RoundKey[j*2+2][t]=Key[t];
RoundKey[j*2+3][t]=Key[16+t];
}

else
for(t=0;t < 16;t++)

RoundKey[j*2+2][t]=Key[t];
Keyr[j] << 8;
}
break

case 24:
for(t=0;t < 8;t++){

RoundKey[0][t]=Key[t];
RoundKey[0][t+8]=Key[t+8];
RoundKey[1][t]=Key[t+16];
}
MDSMatrixGeneration(SRD[Key[0]],SRD[Key[1]],. . . ,SRD[Key[15]]);
for(i=0;i < Nr;i++)

for(j=0;j < Nkey;j++)
Keyr[i][j]=α(i ∗ NKey + j);
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for(i=0;i < 8;i++){
SubBytes(Key);
ShiftRows(Key);
MixColumns(Key);
AddRoundKey(Key,Keyr[i]);
}
λ1=BooleanMatrixGeneration(SRD[Key[0]],SRD[Key[1]],. . . ,SRD[Key[7]]);
λ2=BooleanMatrixGeneration(SRD[Key[8]],SRD[Key[9]],. . . ,SRD[Key[15]]);
for(i=0;i < 8;i++)

RoundKey[1][t+8]=Key[t+16];
for(i=0;i < 256;i++)
S′RD[i]= λ2SRDλ1[i];

for(i=0;i < Nr;i++)
for(j=0;j < Nkey;j++)

Keyr[i][j]= S′RD

[
αi ∗ Nkey + j

]
;

for(j=1;j < 11;j++){
for(i=0;i < 8;i++){

SubBytes(Key);
ShiftRows(Key);
MixColumns(Key);
AddRoundKey(Key,Keyr[i]);
}

if(j mod 2)
for(t=0;t < 8;t++){

RoundKey[j+1][t]=Key[t];
RoundKey[j+1][t+8]=Key[t+8];
RoundKey[j+2][t]=Key[t+16];
}

else
for(t=0;t < 8;t++){

RoundKey[j+2][t]=Key[t];
RoundKey[j+2][t+8]=Key[t+8];
RoundKey[j+1][t]=Key[t+16];
}

Keyr[(j 1) mod 8] << 8;
}
break

Case 16:
for(t=0;t < 16 ; t++) RoundKey[0][t]=Key[t];
MDSMatrixGeneration(SRD[Key[0]],SRD[Key[1]],. . . ,SRD[Key[15]]);
for(i=0;i < Nr;i++)

for(j=0;j < Nkey;j++)
Keyr[i][j]=αi ∗ NKey + j ;

for(i=0;i < 8;i++){
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SubBytes(Key);
ShiftRows(Key);
MixColumns(Key);
AddRoundKey(Key,Keyr[i]);
}
λ1=BooleanMatrixGeneration(SRD[Key[0]],SRD[Key[1]],. . . ,SRD[Key[7]]);
λ2=BooleanMatrixGeneration(SRD[Key[8]],SRD[Key[9]],. . . ,SRD[Key[15]]);
for(i=0;i < 256;i++)
S′RD[i]=λ2SRDλ1[i];

for(i=0;i < Nr;i++)
for(j=0;j < Nkey;j++)

Keyr[i][j]= S′RD

[
αi ∗ NKey + j

]
;

for(j=0;j < 16;j++){
for(i=0;i < 8;i++){

SubBytes(Key);
ShiftRows(Key);
MixColumns(Key);
AddRoundKey(Key,Keyr[i]);
}

for(t=0;t < 16;t++)
RoundKey[j+1][t]=Key[t];

Keyr[j mod 8] << 8;
}
}
MDSMatrixGeneration(RoundKey[15][0],RoundKey[15][1],. . . ,RoundKey[15][15]);
λ1=BooleanMatrixGeneration(RoundKey[16][0],RoundKey[16][1],. . . ,RoundKey[16][7]);
λ2=BooleanMatrixGeneration(RoundKey[16][8],RoundKey[16][9],. . . ,RoundKey[16][15]);
for(i=0;i < 256;i++)
S′RD[i] = λ2SRDλ1[i];

Variation of Rijndael Algorithm in Text Ciphering.

Ciphering a clear text block is done in the following way:

Rijndael(State ,CipherKey???){
switch(???){

case 256:
Nr = 10;
Nkey = 32;

Break;
case 192:

Nr = 8;
Nkey = 24;

Break;
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case 128:
Nr = 8;
Nkey = 16;

}
RoundKeyGeneration(Key[Nkey],Keyr[Nr][Nkey],α,SRD[256],RoundKey[17][16]){
AddRoundKey (State ,RoundKey[0]);
for(i=1;i < 14;i++)

Round(State,RoundKey[i]);
FinalRound(State,RoundKey[14]);
}
Round(State,RoundKey[i]){

SubBytes(State);
ShiftRows(State);
MixColumns(State);
AddRoundKey(State,RoundKey[i]);
}
FinalRound(State,RoundKey[14]){

SubBytes(State);
ShiftRows(State);
AddRoundKey(State,ExpandedKey[14]);
}
}

2.2 Cryptographic Algorithm of Block Cipher Twofish.

The Cryptographic Algorithm of Block Cipher Twofish [SKWHF98] and
[GBS13] has 128 bits of input - output block and it accepts keys of variable
longitude up to 256 bits, it is a Feistel Cipher with an F function conformed
by S - boxes of 8 bits and a MDS fixed matriz A = {ai,j}4×4, where for
all i and j, ai,j ∈ GF (28), it has a Schedule of keys that uses the same
primitives than the ones from the Algorithm body and it was carefully
designed to resist the differential cryptoanalysis with related key.

In the Cryptographic Algorithm Twofish when the longitude of the key is
N = 128, 192 or 256 bits, then the key divided into bytes is m0, . . . , m8K−1,
where K = N/64. the bytes are converted into 2K words of 32 bits through
the following expression:

Mi =
3∑
j=0

m4i + j 28j

Where Me = (M0, M2, . . . , M2k−2) and M0 = (M1, M3, . . . , M2k−1).
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The Schedule of keys extends the key in 40 words of 32 bits K0, K1, . . . , K39

in the following way:

ρ = 224 + 216 + 28 + 20

Ai = h(2iρ,Me)
Bi = ROL(h((2i+ 1)ρ,M0), 8)
K2i = (Ai + Bi) mod 232

K2i+1 = ROL((Ai + 2Bi) mod 232, 9)
Where: i = 0, . . . , 19

2.2.1 Variation of Cryptographic Algorithm of Block Cipher Twofish.

The creators of the Cryptographic Algorithm Twofish designed a cipher
function where the S-Boxes depend on the key. They thought in the possi-
bility of a MDS matrix to be formed during the Schedule of keys similarly
as function of the key, but finally they discarded this variant due to the
amount of additional work that they had to incorporate to the Schedule of
keys [SKWHF98] and [GBS13].

The modification proposed in this paper to the Cryptographic Algo-
rithm of Block Cipher Twofish is precisely to make a variable of the MDS
matrix and that it to be generated in the Schedule of key as a function of
the key, to do that, we transform the Schedule of key in the following way:

The Schedule of keys expands the key in 44 words of 32 bits K0, K1, . . . ,

K43 in a similar way as it is previously done:

ρ = 224 + 216 + 28 + 20

Ai = h(2iρ,Me)
Bi = ROL(h((2i+ 1)ρ,M0), 8)
K2i = (Ai + Bi) mod 232

K2i+1 = ROL((Ai + 2Bi) mod 232, 9)

Where: i = 0, . . . , 21
The words of 32 bits K0, K1, . . . , K39 are used in the Cryptographic

Algorithm as it has been established and the 4 words of 32 bits K40, K41,
K42, K43 are used to conform a MDS matrix through the algorithm that
is described in epigraph 2.3 and [FDDP14].
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First of all, another variant to have into consideration is that the MDS
matrix used in the Schedule of Key be obtained first, taking the 128 bits of
Me = (M0, M2, . . . ,M2k−2) and M0 = (M1, M3, . . . ,M2k−1) but choosing
the values from right to left as it’s shown M2k−2, M2k−1, . . . , M2, M3, M0,
M1, and later with this MDS matrix and the Schedule of key to obtain the
4 words of 32 bits K40,K41, K42, K43 to conform the MDS matrix that will
be used in the cipher and decipher of texts.

2.3 Algorithms for the random generation of matrices.

2.3.1 Algorithm for the random generation of a Boolean invertible matrix
A = {ai,j}8×8, where for all i and j, ai,j ∈ GF(2)

The algorithm for the generation of a Boolean invertible matrix
A = {ai,j}8×8, where for all i and j, ai,j ∈ GF (2) is presented here, it
will be used in the generation of Boolean invertible matrices λ1 and λ2 to
transform the S–box of the Cryptographic Algorithm Rijndael. The ex-
planation and analysis of this algorithm of generation of random invertible
matrices for the general case in which the elements of the matrix belong
to an finite arbitrary field can be seen in [FDM09].

BooleanMatrixGeneration
Input:
- Primitive polynomials g1(x), g2(x), . . . , g7(x) ∈ GF (2)[x](They are

selected a priori and gr(g1(x)) = 8, gr(g2(x)) = 7, . . . , gr(g7(x)) = 2).
- Random matrix M .

M =



b1,0 b1,1 b1,2 . . . b1,7

c2,0 b2,0 b2,1 . . . b2,6

c3,0 c3,1 b3,0 . . . b3,5

. . . . . . . . . . . . . . .
c7,0 . . . c7,5 b7,0 b7,1

c8,0 c8,1 . . . c8,6 b8,0


Where: ci,j and bk,t ∈ GF (2), (bk,0, bk,1, . . . , bk,8−k) 6= 0, k = 1..8, t = 0..7,
i = 2..8 and j = 0..6.
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Begin
Calculation of the first row of A.
Step 1:
Input: (a0, a1, a2, . . . , a7) = (1, 0, 0, . . . , 0)
â0 + â1x + . . .+ â7x

7 =
(a0 + a1x + . . .+ a7x

7)(b1,0 + b1,1x + . . .+ b1,7x
7)mod g1(x)

Output: Row1 = (â0, â1, . . . , â7)
Calculation of the row j of A, 2 ≤ j ≤ 8.
Steps from 1 to j-1:
Input: (a0, a1, . . . , a7) = (0, 0, . . . , 1, . . . , 0). (the canonical vector
(0, 0, . . . , 1, . . . , 0) has a one in the j-th position)
For i = j downto 2 do
Begin
â0 = a0 + ci,0ai−1, â1 = a1 + ci,1ai−1, . . . , âi−2 = a1 + ci,1ai−1

âi−1 + âix+ . . .+ â7x
8−i =

(ai−1 + aix+ . . .+ a7x
8−i)(bi,0 + bi,1x+ . . .+ bi,8−i)mod gi(x)

(a0, a1, . . . , a7) = (â0, â1, . . . , â7)
End
Step j:
Input: (a0, a1, . . . , a7)
â0+â1x+. . .+â7x

7 = (a0+a1x+. . .+a7x
7)(b1,0+b1,1x+. . .+b1,7x

7)mod g1(x)
Output: Rowj= (â0, â1, . . . , â7)
End

Output: Matrix A =


Row1

Row2

. . .
Row8



2.3.2 Algorithm for the random generation of MDS matrices.

The algorithm for the random generation of a MDS matrix A = {ai,j}4×4,
where for all i and j, ai,j ∈ GF (28), part of the algorithm for the random
generation of an invertible matrix A = {ai,j}4×4, where for all i and j,
ai,j ∈ GF (28) see [FDDP14], that is similar in its structure to the algorithm
of the previous epigraph.
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Input:
- Primitive polynomials g1(x), g2(x) y g3(x) ∈ GF (28)[x] (They are

selected a priori and gr(g1(x)) = 4, gr(g2(x)) = 3 and gr(g3(x)) = 2).
- Random matrix M .
where: ci,j and bk,t ∈ GF (28), (bk,0, bk,1, . . . , bk, 4− k) 6= 0, k = 1..4,
t = 0..3, i = 2..4 and j = 0..2.
Begin
Calculation of the first row of matrix A.
Step1:
Input: (a0, a1, a2, a3) = (1, 0, 0, 0).
â0 + â1x+ â2x

2 + â3x
3 =

(a0 + a1x+ a2x
2 + a3x

3)(b1,0 + b1,1x+ b1,2x
2 + b1,3x

3)mod g1(x)
Output: Row1 = (â0, â1, â2, â3)
Calculation of the row j of A, 2 ≤ j ≤ 4.
Steps from 1 to j-1:
Input: (a0, a1, . . . , a4) = (0, . . . , 1, . . . , 0). (the canonical vector
(0, . . . , 1, . . . , 0) has a one in the j-th position)
For i = j downto 2 do
Begin
â0 = a0 + ci,0ai−1, â1 = a1 + ci,1ai−1, . . . , âi−2 = a1 + ci,1ai−1

âi−1 + âix+ . . .+ â3x
4−i =

(ai−1 + aix+ . . .+ a3x
4−i)(bi,0 + bi,1x+ . . .+ bi,4−ix

4−i)mod gi(x)
(a0, a1, . . . , a3) = (â0, â1, . . . , â3)
End
Step j:
Input: (a0, a1, . . . , a3)
â0+â1x+. . .+â3x

3 = (a0+a1x+. . .+a3x
3)(b1,0+b1,1x+. . .+b1,3x

3)mod g1(x)
Output: Rowj= (â0, â1, . . . , â3)
End

Output: Matrix A =


Row1

Row2

Row3

Row4


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Notice that in the algorithm previously described in the i-th row, i ≥ 2,
the output values in the last vector (â0, â1, â2, â3) can be expressed in the
following way: âj = ajb1,0 ⊕ rj j ∈ {0..3}.

Now, let’s see the algorithm for the random generation of a MDS matrix
A4×4 = {ai,j}4×4, where for all i and j, ai,j ∈ GF (28). In this algorithm, it
is used the fact that an A matrix is MDS iff all its squared sub-matrices
are not singular.

MDSMatrixGeneration
Input:
- Primitive polynomials g1(x), g2(x) and g3(x) ∈ GF (28)[x] (They are

selected a priori and gr(g1(x)) = 4, gr(g2(x)) = 3 and gr(g3(x)) = 2)
- Random matriz M

M =


− b1,1 b1,2 b1,3

c2,0 b2,0 b2,1 b2,2

c3,0 c3,1 b3,0 b3,1

c4,0 c4,1 c4,2 b4,0


where: ci,j and bk,t ∈ GF (28), (bk,0, bk,1, . . . , bk,4−k) 6= 0, k = 2..4, t = 0..3,
i = 2..4, j = 0..2 and b1,1, b1,2 and b1,3 6= 0.

Begin
1.- First row of matrix A:

The first row of matrix A is formed by b1,0, b1,1, b1,2 and b1,3. Values b1,1, b1,2

and b1,3 are taken from matrix M then a1,1 = b1,1, a1,2 = b1,2, a1,3 = b1,3.
The value b1,0 will be determined in step 3 of the present algorithm.

2.- i-th row of matrix A, 2 ≤ i ≤ 4:

From the values from the first up to the i-th row, matrix M and the
previous algorithm, values aj and rj de âi,j = âj = ajb1,0 ⊕ rj, j ∈ {0..3}
are calculated, leaving the i-th row of matrix A in the following way:

A =


− a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

− − − −
âi,0 âi,1 âi,2 âi,3


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- Values âi,j, j ∈ {0..3}, are done equal to zero and lineal equations with
b1,0 as variables are formed.

- The determinants of all sub-matrices of 2× 2, which were not obtained
in the previous steps are calculated. The determinants are equalled to
zero and the lineal and quadriatic equations are formed with b1,0 as va-
riant.

- The determinants of all sub-matrices of 3× 3, which were not obtained
in the previous steps are calculated. The determinants are equalled to
zero and the previous quadriatic and cubic equations are formed with
b1,0 as variant.

- The values of b1,0 which do not satisfy the previous equations are stored.

3.- Random generation of matrix A.

From the values of b1,0 which do not satisfy the previous equations, one
should be selected at random, leaving matrix M full, as it will be shown
now. For the Schedule of keys which is described above, the selection of
b1,0 is done by taking the necessary bits that allow to conform a number
that is the biggest integer minor or equal to the cardinal of the set of the
posible b1,0.

M =


− b1,1 b1,2 b1,3

c2,0 b2,0 b2,1 b2,2

c3,0 c3,1 b3,0 b3,1

c4,0 c4,1 c4,2 b4,0


Observations:
If for any of the equations formed in the i-th row, i ≥ 2, all the cofficients
are equal to zero, a new value ci,0 is randomly selected for matrix M , then,
the values aj and rj, j ∈ {0..3} are again calculated and the whole process
is repeated, subsequently, we continue with the algorithm for the remaining
rows.
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If we take matrix M =


b1,0 b1,1 b1,2 b1,3

c2,0 b2,0 b2,1 b2,2

c3,0 c3,1 b3,0 b3,1

c4,0 c4,1 c4,2 b4,0

 in the following way M =


b1,0 b1,1 b1,2 b1,3

0 1 0 0
0 0 1 0
0 0 0 1

 then, the multiplication of a vector (a0, a1, a2, a3) by

the MDS matrix A obtained by the previous algorithm is:

Input: (a0, a1, a2, a3)
a0 = a0 + c2,0a1 + c3,0a2 + c4,0a3

[â0, â1, â2, â3] = (a0+a1x+a2x
2+a3x

3)(b1,0+b2,0x+b2,1x
2+b2,2x

3)mod g1(x)
Output: (â0; â1; â2; â3)

In addition to multiplying the vector (a0, a1, a2, a3) by the inverse matrix
A−1 from MDS matrix A, see [FDM09], is done in the following way:

Input: (a0, a1, a2, a3)
[â0, â1, â2, â3] = (a0+a1x+a2x

2+a3x
3)(b1,0+b2,0x+b2,1x

2+b2,2x
3)mod g1(x)

â0 = â0 + c2, 0a1 + c3,0a2 + c4,0a3

Output:(â0; â1; â2; â3)
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Now we will show an example of determinating a MDS matrix A
through the previous algorithm.

Input:
- Primitive polynomials:
g1(x) = x4 ⊕ z9x3 ⊕ z2x⊕ z13

g2(x) = x3 ⊕ z16x⊕ z53

g3(x) = x2 ⊕ z67x⊕ z14

z = 0X03 it is primitive element of the GF (28).

- Random matrix M =


02 03 01 01
7C 9F EA 1A
52 74 B2 08
5E D1 OF 2F


The GF (28) was constructed from the irreductible polynomial 1⊕x2⊕x3⊕
x4 ⊕ x8 (read in hexadecimal notation as B8).

The posible values for b1,0 are:

02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0D, 0E, 0F, 10,

12, 13, 14, 15, 16, 17, 18, 1C, 1D, 1E, 1F, 20, 21, 22,

23, 25, 26, 27, 29, 2A, 2C, 2D, 2E, 30, 31, 33, 35, 36,

38, 39, 3A, 3B, 3C, 3D, 3E, 40, 41, 42, 43, 44, 45, 46,

47, 49, 4A, 4F, 50, 51, 52, 54, 55, 56, 58, 59, 5B, 5C,

5D, 5E, 5F, 60, 61, 62, 63, 65, 66, 67, 69, 6A, 6B, 6D,

6E, 70, 71, 72, 75, 76, 77, 79, 7A, 7B, 7C, 7E, 80, 81,

82, 83, 84, 85, 86, 88, 89, 8A, 8B, 8C, 8E, 8F, 90, 91,

92, 94, 95, 96, 97, 98, 99, 9A, 9B, 9C, 9F, A0, A2, A4,

A5, A6, A7, AA, AB, AD, AE, B0, B1, B2, B3, B5, B6, B8,

B9, BA, BB, BC, BD, BE, BF, C0, C1, C2, C4, C5, C7, C8,

C9, CB, CC, CD, CE, CF, D1, D2, D3, D4, D5, D8, D9, DA,

DB, DC, DD, DF, E0, E1, E3, E5, E7, E8, E9, EA, EC, ED,

EE, EF, F0, F1, F3, F4, F5, F9, FA, FB, FC, FD, FE, FF,
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Taking b1,0 = 2A then, the matrix M will be:


2A 03 01 01
7C 9F EA 1A
52 74 B2 08
5E D1 OF 2F

 and

the matrix A =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


Notice that the matrix obtained is MDS matrix which is used in the Cryp-
tographic Algorithm AES [DR99] and [DR02].

3 Conclusions:

The variations carried out in this paper to the Cryptographic Algorithms
AES [DR99] and [DR02] and Twofish [SKWHF98] and [GBS13] differ to
others which are reported in the especializad literature. We have proposed
that the MDS matrices from both algorithms vary in the function of the
key, and that in the AES the S - box also varies as function of the key
and we propose a new Schedule of the key in order to avoid the differential
cryptanalysis of the key related as it is suggested in [DR12]. It is advisable
to change the S - box of the AES, SRD, by the one used in [DD13].

The porposal to vary in the function of the key the MDS matrices of
the Cryptographic Algorithms AES and Twofish can be extended to any
Cryptographic Algorithm that uses matrices MDS A = {ai,j}n×n, where
for all i, j, ai,j ∈ GF (28) and n ≤ 5 [FDDP14].
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