
VARIATIONS TO THE CRYPTOGRAPHIC
ALGORITHMS AES AND TWOFISH

P. Freyre∗1, N. Dı́az ∗ and O. Cuellar †2

∗Faculty of Mathematics and Computer Science, University of Havana, Cuba.

†Faculty of Mathematics, Physical and Computer Science, Central University of Las Villas, Cuba.

1e-mail: pfreyre@matcom.uh.cu

2e-mail: oristela@uclv.edu.cu

Abstract

The cryptographic algorithms AES and Twofish guarantee a high diffusion by
the use of fixed 4×4 MDS matrices. In this article variations to the algorithms AES
and Twofish are made. They allow that the process of cipher - decipher come true
with MDS matrices selected randomly from the set of all MDS matrices with the
use of proposed algorithm. A new key schedule with a high diffusion is designed for
the algorithm AES. Besides proposed algorithm generate new S - box that depends
of the key.
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1 Introduction.

The cryptographic algorithms Rijndael (see [DR99] and [DR02]) and
Twofish (see [SKWHF98] and [GBS13]) were finalists of the contest to
select the Advanced Encryption Standard (AES) convened by the National
Institute of Standards and Technology from the United States (NIST).
The contest finished in October 2000 with the selection of the algorithm
Rijndael as the AES, stated algorithm was proposed by Joan Daemen and
Vincent Rijmen from Belgium.

In order to reach a high diffusion, the algorithms AES and Twofish, use
a MDS (Maximal Distance Separable) matrices, selected a priori. In this
article we will explain the variations of these algorithms, where the MDS
matrices are selected randomly as function of the secret key. In addition, a
new key schedule for the algorithm AES is proposed, which
guarantee a high diffusion and where a new S-box as function of the
key is obtained. Proposals of variation of the algorithm AES can be
found in [AE13], [AHK13], [ERDM09], [IGKAE12], [MEEZ13], [MJ11] and
[MKAF11].

The algorithm for the random generation of MDS matrix A = {ai,j}4×4,
where for all i and j, ai,j ∈ GF (28) (GF - Galois Fields), only needs a
random matrix M = {mi,j}4×4, where for all i and j, mi,j ∈ GF (28), which
has as restriction that for none i, i ≥ 2, mi,i = mi,i+1 = · · ·mi,4 = 0 and
m1,2,m1,3 and m1,4 6= 0. This algorithm has an advantage, in relation to
the other ones: usage of a random MDS matrix is selected from the set
of all MDS matrices, see paragraph 2.3 and [FDDP14]. The attainment
of MDS matrices can be seen in [AF14], [AF13],[DMMF15], [DMMMP14],
[GR13], [GR13a], [GR14], [KM14], [JV04], [LF04], [MI08], [MI11], [NA09],
[RRYB15], [SDMO12] and [SKOP15].

This article also contains a proposal for variation of the S - box (SRD)
used in algorithm AES. SRD is transformed into S ′RD = λ2SRDλ1(x), where
λ1 and λ2 are Boolean invertible 8×8 matrices, which are generated during
the key schedule by algorithm that is described in paragraph 2.3. Proposals
for variation of the S-box from AES can be found in [Ke97], [FSESH05],
[KM08], [MRE09], [KK09] and [JMV15].
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This article begins with the summarized description of the algorithm
AES, followed by variation proposals and afterwards a similarly
summarized description of the algorithm Twofish, followed by the
explanation of its variations. The work finishes with two algorithms which
allow the variation of the S - box from AES and the MDS matrices of the
algorithms AES and Twofish.

2 Development.

2.1 Block Cipher AES.

The input and output blocks of the algorithm AES are described in matrix
form consists of bytes in 4 rows per Nb = 4 columns. The input matrix is
formed from the succession of bytes of clear text p0p1p2p3 . . . p4Nb−1 in the
following way: ai,j = pi+4j 0 ≤ i < 4, 0 ≤ j < Nb, where p0 is the initial
byte and p4Nb−1 is the final byte. The output matrix is transformed into
bytes of cipher text c0c1c2c3 . . . c4Nb−1 in the following way: ci+4j = ai,j,
0 ≤ i < 4, 0 ≤ j < Nb. The transformations in each round operate on
the matrix ai,j, 0 ≤ i < 4, 0 ≤ j < Nb, matrix of state (see [DR99] and
[DR02]).

The key is a one-dimensional arrangement of bytes which is written as a
matrix consists of bytes of 4 rows per Nk = 4, 6 or 8 columns. The number
of round Nr in the algorithm AES is function of Nb and Nk (see [DR99]
and [DR02]).

The algorithm AES uses the following funtions: SubBytes, which we
denote as SRD, ShiftRows and MixColumns. The key schedule for
Nk ≤ 6 and Nk > 6 is presented in pseudo code in [DR99] and [DR02].

2.1.1 Variations to Block Cipher AES.

Variation to key schedule.

The algorithm AES has a key schedule with a low diffusion, that made
possible the success of differential cryptanalysis with related keys (see
[JD04], [BKN09] and [BK09]), in order to avoid this cryptanalytic attack in
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[DR12] and [CZKHP11] was proposed the way to redesign a key schedule.
The first variation to the algorithm AES exhibited in this article is the

substitution of its key schedule by the one that follows, which uses in its
base Rijndael cryptographic algorithm with Nb = Nk = 8 and Nr = 10
when the key is 256 bits, Nb = Nk = 6 and Nr = 8 when the key is 192
bits and Nb = Nk = 4 and Nr = 8 when the key is 128 bits (see [DR99]
and [DR02]).

To generate the keys in each round with this new key schedule, the
following algorithms are used:

MDSMatrixGeneration:
Input:
1. Primitive polynomials g1(x), g2(x) and g3(x) ∈ GF (28)[x](They are a

priori selected and deg(g1(x)) = 4, deg(g2(x)) = 3 and deg(g3(x)) = 2)
2. 16 bytes that are transformed in a M [4][4] matrix of bytes.
Output:
1. MDS matrix A[4][4] of bytes suitable for use in the MixColumns
function.

This algorithm for random generation of MDS matrix can be seen in
paragraph 2.3 and [FDDP14]. If in the matrix M [4][4] comes true that
(mk,0,mk,1, . . . ,mk,4−k) = 0 then (mk,0,mk,1, . . . ,mk,4−k) = (0, 0, . . . , 0, 28−
1), k = 2, ..., 4.

BooleanMatrixGeneration:
Input:
1. Primitive polynomials g1(x), g2(x), . . . , g6(x) and g7(x) ∈ GF (2)[x]

(They are a priori selected and deg(g1(x)) = 8, deg(g2(x)) = 7, . . .,
deg(g6(x)) = 3 and deg(g7(x)) = 2).

2. 8 bytes that are transformed in a Boolean matrix M [8][8].
Output:
1. Invertible Boolean matrix A[8][8].

This algorithm for random generation of invertible Boolean matrices can
be seen in paragraph 2.3 and [FDM09]. If in the matrix M [8][8] comes true
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that (mk,0,mk,1, . . . ,mk,8−k) = 0 then (mk,0,mk,1, . . . ,mk,8−k) = (0, 0, . . . , 0,
1) k = 1, ..., 8.

The BooleanMatrixGeneration algorithm is used to create the new
SubBytes function where SRD is substituted by S ′RD = λ2SRDλ1 and
the matrices λ1 and λ2 are obtained by the BooleanMatrixGeneration
algorithm. Anothers proposal of variation of the AES S - box can be found
in [MRE09], [KK09] and [JMV15].

RoundKeyGeneration:
Input:
1. The key of 256, 192 or 128 bits identified as Key.
2. A primitive element α ∈ GF (28).
3. The S - box of the AES identified as SRD.
Output:
1. 17 keys of 16 bytes identified as RoundKey[17][16].

Note: RoundKey[0][16], RoundKey[1][16],. . . , RoundKey[14][16] are the
round keys, RoundKey[15][16] is used in the MDSMatrixGeneration
algorithm, RoundKey[16][16] is used to obtain two Boolean matrices by
the BooleanMatrixGeneration algorithm.
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RoundKeyGeneration(byte Key[Nkey],byte Keyr[Nr][Nkey], byte α, byte SRD[256],byte
RoundKey[17][16]){
switch (Nkey){
case 32:

for(t=0;t < 16;t++){
RoundKey[0][t]=Key[t];
RoundKey[1][t]=Key[16+t];
}
MDSMatrixGeneration(SRD[Key[0]],SRD[Key[1]],. . . ,SRD[Key[15]]);
λ1=BooleanMatrixGeneration(SRD[Key[16]],SRD[Key[17]],. . . ,SRD[Key[23]]);
λ2=BooleanMatrixGeneration(SRD[Key[24]],SRD[Key[25]],. . . ,SRD[Key[31]]);
for(i=0;i < 256;i++)
S′RD[i] = λ2SRDλ1[i];

for(i=0;i < Nr;i++)
for(j=0;j < Nkey;j++)

Keyr[i][j]= S′RD

[
α(i ∗ Nkey + j) mod 255

]
;

for(j=0;j < 8;j++){
for(i=0;i < 10;i++){

SubBytes(Key);
ShiftRows(Key);
MixColumns(Key);
AddRoundKey(Key,Keyr[i]);
}
If(j 6= 7)

for(t = 0 ; t ¡ 16 ; t++) {
RoundKey[j*2+2][t]=Key[t];
RoundKey[j*2+3][t]=Key[16+t];
}

else
for(t=0;t < 16;t++)

RoundKey[j*2+2][t]=Key[t];
Keyr[j] << 8;
}
break

case 24:
for(t=0;t < 8;t++){

RoundKey[0][t]=Key[t];
RoundKey[0][t+8]=Key[t+8];
RoundKey[1][t]=Key[t+16];
}
MDSMatrixGeneration(SRD[Key[0]],SRD[Key[1]],. . . ,SRD[Key[15]]);
for(i=0;i < Nr;i++)

for(j=0;j < Nkey;j++)
Keyr[i][j]=α(i ∗ NKey + j);
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for(i=0;i < 8;i++){
SubBytes(Key);
ShiftRows(Key);
MixColumns(Key);
AddRoundKey(Key,Keyr[i]);
}
λ1=BooleanMatrixGeneration(SRD[Key[0]],SRD[Key[1]],. . . ,SRD[Key[7]]);
λ2=BooleanMatrixGeneration(SRD[Key[8]],SRD[Key[9]],. . . ,SRD[Key[15]]);
for(i=0;i < 8;i++)

RoundKey[1][t+8]=Key[t+16];
for(i=0;i < 256;i++)
S′RD[i]= λ2SRDλ1[i];

for(i=0;i < Nr;i++)
for(j=0;j < Nkey;j++)

Keyr[i][j]= S′RD

[
αi ∗ Nkey + j

]
;

for(j=1;j < 11;j++){
for(i=0;i < 8;i++){

SubBytes(Key);
ShiftRows(Key);
MixColumns(Key);
AddRoundKey(Key,Keyr[i]);
}

if(j mod 2)
for(t=0;t < 8;t++){

RoundKey[j+1][t]=Key[t];
RoundKey[j+1][t+8]=Key[t+8];
RoundKey[j+2][t]=Key[t+16];
}

else
for(t=0;t < 8;t++){

RoundKey[j+2][t]=Key[t];
RoundKey[j+2][t+8]=Key[t+8];
RoundKey[j+1][t]=Key[t+16];
}

Keyr[(j 1) mod 8] << 8;
}
break

Case 16:
for(t=0;t < 16 ; t++) RoundKey[0][t]=Key[t];
MDSMatrixGeneration(SRD[Key[0]],SRD[Key[1]],. . . ,SRD[Key[15]]);
for(i=0;i < Nr;i++)

for(j=0;j < Nkey;j++)
Keyr[i][j]=αi ∗ NKey + j ;

for(i=0;i < 8;i++){
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SubBytes(Key);
ShiftRows(Key);
MixColumns(Key);
AddRoundKey(Key,Keyr[i]);
}
λ1=BooleanMatrixGeneration(SRD[Key[0]],SRD[Key[1]],. . . ,SRD[Key[7]]);
λ2=BooleanMatrixGeneration(SRD[Key[8]],SRD[Key[9]],. . . ,SRD[Key[15]]);
for(i=0;i < 256;i++)
S′RD[i]=λ2SRDλ1[i];

for(i=0;i < Nr;i++)
for(j=0;j < Nkey;j++)

Keyr[i][j]= S′RD

[
αi ∗ NKey + j

]
;

for(j=0;j < 16;j++){
for(i=0;i < 8;i++){

SubBytes(Key);
ShiftRows(Key);
MixColumns(Key);
AddRoundKey(Key,Keyr[i]);
}

for(t=0;t < 16;t++)
RoundKey[j+1][t]=Key[t];

Keyr[j mod 8] << 8;
}
}
MDSMatrixGeneration(RoundKey[15][0],RoundKey[15][1],. . . ,RoundKey[15][15]);
λ1=BooleanMatrixGeneration(RoundKey[16][0],RoundKey[16][1],. . . ,RoundKey[16][7]);
λ2=BooleanMatrixGeneration(RoundKey[16][8],RoundKey[16][9],. . . ,RoundKey[16][15]);
for(i=0;i < 256;i++)
S′RD[i] = λ2SRDλ1[i];

Variation to AES algorithm in text ciphering.

Ciphering a clear text block is done in the following way:

AES(State ,CipherKey???){
switch(???){

case 256:
Nr = 10;
Nkey = 32;

Break;
case 192:

Nr = 8;
Nkey = 24;

Break;
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case 128:
Nr = 8;
Nkey = 16;

}
RoundKeyGeneration(Key[Nkey],Keyr[Nr][Nkey],α,SRD[256],RoundKey[17][16]){
AddRoundKey (State ,RoundKey[0]);
for(i=1;i < 14;i++)

Round(State,RoundKey[i]);
FinalRound(State,RoundKey[14]);
}
Round(State,RoundKey[i]){

SubBytes(State);
ShiftRows(State);
MixColumns(State);
AddRoundKey(State,RoundKey[i]);
}
FinalRound(State,RoundKey[14]){

SubBytes(State);
ShiftRows(State);
AddRoundKey(State,ExpandedKey[14]);
}
}

2.2 Block Cipher Twofish.

The algorithm Twofish (see [SKWHF98] and [GBS13]) has 128 bits of
input - output blocks and it accepts keys of variable length up to 256 bits,
it is a Feistel Cipher with an F function that includes S - boxes of 8 bits and
a fixed MDS matrix A = {ai,j}4×4, where for all i and j, ai,j ∈ GF (28),
it has a key schedule that uses the same transformations as the round
function and was carefully designed to resist the differential cryptanalysis
with related keys.

In the algorithm Twofish the length of the key is N = 128, 192 or 256
bits, the key divided into bytes m0, . . . , m8K−1, where K = N/64, the bytes
are converted into 2K words of 32 bits through the following expression:

Mi =
3∑
j=0

m4i + j × 28j

Where Me = (M0, M2, . . . , M2k−2) and M0 = (M1, M3, . . . , M2k−1).
The key schedule extends the key in 40 words of 32 bits K0, K1, . . . , K39
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in the following way:

ρ = 224 + 216 + 28 + 20

Ai = h(2iρ,Me)
Bi = ROL(h((2i+ 1)ρ,M0), 8)
K2i = (Ai + Bi) mod 232

K2i+1 = ROL((Ai + 2Bi) mod 232, 9)
Where: i = 0, . . . , 19

2.2.1 Variation to Block Cipher Twofish.

The authors of the algorithm Twofish designed a cipher function where the
S-boxes depends of the key. They thought about the possibility of a MDS
matrix to be formed during the key schedule similarly as function of the
key, but finally they discarded this variant due to the amount of additional
work that they had to incorporate to the key schedule (see [SKWHF98]).

The variations proposed in this article to the algorithm Twofish is pre-
cisely to make a variable of the MDS matrix that could be generated during
the key schedule as a function of the key, to do that, we transform the key
schedule in the following way:

The key schedule expands the key in 44 words of 32 bits K0, K1, . . . ,

K43 in a similar way as it was previously done:

ρ = 224 + 216 + 28 + 20

Ai = h(2iρ,Me)
Bi = ROL(h((2i+ 1)ρ,M0), 8)
K2i = (Ai + Bi) mod 232

K2i+1 = ROL((Ai + 2Bi) mod 232, 9)

Where: i = 0, . . . , 21
The words of 32 bits K0, K1, . . . , K39 are used in the algorithm as it

has been established and the 4 words of 32 bits K40, K41, K42, K43 are
used to conform a MDS matrix through the algorithm that is described in
paragraph 2.3 and [FDDP14].
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2.3 Algorithms for the random generation of matrices.

2.3.1 Algorithm for the random generation of a Boolean invertible matrix.

The algorithm for the generation of a Boolean invertible matrix
A = {ai,j}8×8, where for all i and j, ai,j ∈ GF (2) is presented here, it
will be used in the generation of Boolean invertible matrices λ1 and λ2 to
transform the S–box of the algorithm AES. The explanation and analysis
of this algorithm for the general case where the elements of the matrix
belong to an finite arbitrary field can be seen in [FDM09].

BooleanMatrixGeneration
Input:
- Primitive polynomials g1(x), g2(x), . . . , g6(x) and g7(x) ∈ GF (2)[x]

(They are selected a priori and deg(g1(x)) = 8, deg(g2(x)) = 7, . . .,
deg(g6(x)) = 3 and deg(g7(x)) = 2).

- Random matrix M .

M =



b1,0 b1,1 b1,2 . . . b1,7

c2,0 b2,0 b2,1 . . . b2,6

c3,0 c3,1 b3,0 . . . b3,5

. . . . . . . . . . . . . . .
c7,0 . . . c7,5 b7,0 b7,1

c8,0 c8,1 . . . c8,6 b8,0


Where: ci,j and bk,t ∈ GF (2), (bk,0, bk,1, . . . , bk,8−k) 6= 0,k = 1, ..., 8,
t = 0, ..., 7, i = 2, ..., 8 and j = 0, ..., 6.
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Begin
Calculation of the first row of A.
Step 1:
Input: (a0, a1, a2, . . . , a7) = (1, 0, 0, . . . , 0)
â0 + â1x + . . .+ â7x

7 =
(a0 + a1x + . . .+ a7x

7)(b1,0 + b1,1x + . . .+ b1,7x
7)mod g1(x)

Output: Row1 = (â0, â1, . . . , â7)
Calculation of the row j of A, 2 ≤ j ≤ 8.
Steps from 1 to j-1:
Input: (a0, a1, . . . , a7) = (0, 0, . . . , 1, . . . , 0). (the canonical vector
(0, 0, . . . , 1, . . . , 0) has a 1 at the j-th position)
For i = j down to 2 do
Begin
â0 = a0 + ci,0ai−1, â1 = a1 + ci,1ai−1, . . . , âi−2 = a1 + ci,1ai−1

âi−1 + âix+ . . .+ â7x
8−i =

(ai−1 + aix+ . . .+ a7x
8−i)(bi,0 + bi,1x+ . . .+ bi,8−i)mod gi(x)

(a0, a1, . . . , a7) = (â0, â1, . . . , â7)
End
Step j:
Input: (a0, a1, . . . , a7)
â0+â1x+. . .+â7x

7 = (a0+a1x+. . .+a7x
7)(b1,0+b1,1x+. . .+b1,7x

7)mod g1(x)
Output: Rowj= (â0, â1, . . . , â7)
End

Output: Matrix A =


Row1

Row2

. . .
Row8



2.3.2 Algorithm for the random generation of MDS matrices.

The algorithm for the random generation of a MDS matrix A = {ai,j}4×4,
where for all i and j, ai,j ∈ GF (28), part of the algorithm for the random
generation of an invertible matrix A = {ai,j}4×4, where for all i and j,
ai,j ∈ GF (28) see [FDDP14], that is similar in its structure to the algorithm
of the previous paragraph.
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Input:
- Primitive polynomials g1(x), g2(x) and g3(x) ∈ GF (28)[x] (They are

selected a priori and deg(g1(x)) = 4, deg(g2(x)) = 3 and deg(g3(x)) = 2).
- Random matrix M .

M =


b1,0 b1,1 b1,2 b1,3

c2,0 b2,0 b2,1 b2,2

c3,0 c3,1 b3,0 b3,1

c4,0 c4,1 c4,2 b4,0


where: ci,j and bk,t ∈ GF (28), (bk,0, bk,1, . . . , bk,4−k) 6= 0, k = 1, ..., 4,
t = 0, ..., 3, i = 2, ..., 4 and j = 0, ..., 2.
Begin
Calculation of the first row of matrix A.
Step1:
Input: (a0, a1, a2, a3) = (1, 0, 0, 0).
â0 + â1x+ â2x

2 + â3x
3 =

(a0 + a1x+ a2x
2 + a3x

3)(b1,0 + b1,1x+ b1,2x
2 + b1,3x

3)mod g1(x)
Output: Row1 = (â0, â1, â2, â3)
Calculation of the row j of A, 2 ≤ j ≤ 4.
Steps from 1 to j-1:
Input: (a0, a1, . . . , a4) = (0, . . . , 1, . . . , 0). (the canonical vector
(0, . . . , 1, . . . , 0) has a 1 at the j-th position)
For i = j down to 2 do
Begin
â0 = a0 + ci,0ai−1, â1 = a1 + ci,1ai−1, . . . , âi−2 = a1 + ci,1ai−1

âi−1 + âix+ . . .+ â3x
4−i =

(ai−1 + aix+ . . .+ a3x
4−i)(bi,0 + bi,1x+ . . .+ bi,4−ix

4−i)mod gi(x)
(a0, a1, . . . , a3) = (â0, â1, . . . , â3)
End
Step j:
Input: (a0, a1, . . . , a3)
â0+â1x+. . .+â3x

3 = (a0+a1x+. . .+a3x
3)(b1,0+b1,1x+. . .+b1,3x

3)mod g1(x)
Output: Rowj= (â0, â1, . . . , â3)
End
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Output: Matrix A =


Row1

Row2

Row3

Row4


Notice that in the algorithm previously described in the i-th row, i ≥ 2,

the output values in the last vector (â0, â1, â2, â3) can be expressed in the
following way: âj = ajb1,0 ⊕ rj j ∈ {0, ..., 3}.

Now, let’s see the algorithm for the random generation of a MDS matrix
A4×4 = {ai,j}4×4, where for all i and j, ai,j ∈ GF (28). In this algorithm, it
is used the fact that an A matrix is MDS iff all its squared sub-matrices
are not singular.

MDSMatrixGeneration
Input:
- Primitive polynomials g1(x), g2(x) and g3(x) ∈ GF (28)[x] (They are

selected a priori and deg(g1(x)) = 4, deg(g2(x)) = 3 and deg(g3(x)) = 2)
- Random matrix M .

M =


− b1,1 b1,2 b1,3

c2,0 b2,0 b2,1 b2,2

c3,0 c3,1 b3,0 b3,1

c4,0 c4,1 c4,2 b4,0


where: ci,j and bk,t ∈ GF (28), (bk,0, bk,1, . . . , bk,4−k) 6= 0, k = 2, ..., 4,
t = 0, ..., 3, i = 2, ..., 4, j = 0, ..., 2 and b1,1, b1,2 and b1,3 6= 0.

Begin
1.- First row of matrix A:

The first row of matrix A is formed by b1,0, b1,1, b1,2 and b1,3. Values b1,1, b1,2

and b1,3 are taken from matrix M then a1,1 = b1,1, a1,2 = b1,2, a1,3 = b1,3.
Notice that a1,0 = b1,0 but the value b1,0 is taken a variable and it will be
determined in step 3 of the present algorithm.
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2.- i-th row of matrix A, 2 ≤ i ≤ 4:

From the values from the first up to the i-th row, matrix M and the
previous algorithm, values aj and rj of ai,j = âj = ajb1,0⊕ rj, j ∈ {0, ..., 3}
are calculated, leaving the i-th row of matrix A in the following way:

A =


− a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

− − − −
ai,0 ai,1 ai,2 ai,3


- Values ai,j, j ∈ {0, ..., 3}, are done equal to zero and linear equations

with b1,0 as variables are formed.
- The determinants of all sub-matrices of 2× 2, which were not obtained

in the previous steps are calculated. The determinants are equalled to
zero and the linear and quadriatic equations are formed with b1,0 as
variable.

- The determinants of all sub-matrices of 3× 3, which were not obtained
in the previous steps are calculated. The determinants are equalled to
zero and the previous quadriatic and cubic equations are formed with
b1,0 as variable.

- The values of b1,0 which do not satisfy the previous equations are stored.

3.- Random generation of matrix A.

From the values of b1,0 which do not satisfy the previous equations, one
should be selected at random, leaving matrix M full, as it will be shown
now. For the key schedule which is described above, the selection of b1,0 is
done by taking the necessary bits that allow to conform a number that is
the biggest integer minor or equal to the amount of element of the set of
the posible b1,0.

M =


− b1,1 b1,2 b1,3

c2,0 b2,0 b2,1 b2,2

c3,0 c3,1 b3,0 b3,1

c4,0 c4,1 c4,2 b4,0
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Observations:
If for any of the equations formed in the i-th row, i ≥ 2, all the cofficients

are equal to zero, a new value ci,0 is randomly selected for matrix M , then,
the values aj and rj, j ∈ {0, ..., 3} are again calculated and the whole
process is repeated, subsequently, we continue with the algorithm for the
remaining rows.

If we take matrix M =


b1,0 b1,1 b1,2 b1,3

c2,0 b2,0 b2,1 b2,2

c3,0 c3,1 b3,0 b3,1

c4,0 c4,1 c4,2 b4,0

 in the following way

M =


b1,0 b1,1 b1,2 b1,3

0 1 0 0
0 0 1 0
0 0 0 1

 then, the multiplication of a vector (a0, a1, a2, a3)

by the MDS matrix A obtained by the previous algorithm is:

Input: (a0, a1, a2, a3)
a0 = a0 + c2,0a1 + c3,0a2 + c4,0a3

[â0, â1, â2, â3] = (a0+a1x+a2x
2+a3x

3)(b1,0+b2,0x+b2,1x
2+b2,2x

3)mod g1(x)
Output: (â0; â1; â2; â3)

In addition to multiplying the vector (a0, a1, a2, a3) by the inverse matrix
A−1 from MDS matrix A, see [FDM09], is done in the following way:

Input: (a0, a1, a2, a3)
[â0, â1, â2, â3] =
(a0 + a1x+ a2x

2 + a3x
3)(b1,0 + b2,0x+ b2,1x

2 + b2,2x
3)−1mod g1(x)

â0 = â0 + c2,0a1 + c3,0a2 + c4,0a3

Output:(â0; â1; â2; â3)
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Now we will show an example of determinating a MDS matrix A
through the previous algorithm.

Input:
- Primitive polynomials:
g1(x) = x4 ⊕ z9x3 ⊕ z2x⊕ z13

g2(x) = x3 ⊕ z16x⊕ z53

g3(x) = x2 ⊕ z67x⊕ z14

z = 03 is a primitive element of the GF (28).

- Random matrix M =


02 03 01 01
7C 9F EA 1A
52 74 B2 08
5E D1 OF 2F


The GF (28) was constructed from the irreducible polynomial 1⊕x2⊕x3⊕
x4 ⊕ x8 (read in hexadecimal notation as B8).

The posible values for b1,0 are:

02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0D, 0E, 0F, 10,

12, 13, 14, 15, 16, 17, 18, 1C, 1D, 1E, 1F, 20, 21, 22,

23, 25, 26, 27, 29, 2A, 2C, 2D, 2E, 30, 31, 33, 35, 36,

38, 39, 3A, 3B, 3C, 3D, 3E, 40, 41, 42, 43, 44, 45, 46,

47, 49, 4A, 4F, 50, 51, 52, 54, 55, 56, 58, 59, 5B, 5C,

5D, 5E, 5F, 60, 61, 62, 63, 65, 66, 67, 69, 6A, 6B, 6D,

6E, 70, 71, 72, 75, 76, 77, 79, 7A, 7B, 7C, 7E, 80, 81,

82, 83, 84, 85, 86, 88, 89, 8A, 8B, 8C, 8E, 8F, 90, 91,

92, 94, 95, 96, 97, 98, 99, 9A, 9B, 9C, 9F, A0, A2, A4,

A5, A6, A7, AA, AB, AD, AE, B0, B1, B2, B3, B5, B6, B8,

B9, BA, BB, BC, BD, BE, BF, C0, C1, C2, C4, C5, C7, C8,

C9, CB, CC, CD, CE, CF, D1, D2, D3, D4, D5, D8, D9, DA,

DB, DC, DD, DF, E0, E1, E3, E5, E7, E8, E9, EA, EC, ED,

EE, EF, F0, F1, F3, F4, F5, F9, FA, FB, FC, FD, FE, FF,
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Taking b1,0 = 2A then, the matrix M will be:


2A 03 01 01
7C 9F EA 1A
52 74 B2 08
5E D1 OF 2F

 and

the matrix A =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


Notice that the matrix obtained is MDS matrix which is suitable to use in
the algorithm AES (see [DR99] and [DR02]).

3 Conclusions:

The variations carried out in this article to the algorithms AES and Twofish
differ to others which are reported in the specialized literature. We have
proposed that the MDS matrices for both algorithms vary as the function
of the key, and that in the AES the S - box also varies as function of the
key and we propose a new key schedule in order to avoid the differential
cryptanalysis of the related key as it is suggested in [DR12]. It is advisable
to change the S - box of the AES, SRD, by the one used in [DD13].

The proposed to vary the MDS matrices of the algorithms AES and
Twofish as the function of the key can be extended to any cryptographic
algorithm that uses matrices MDS A = {ai,j}n×n, where for all i, j, ai,j ∈
GF (28) and n ≤ 5 (see [FDDP14]).
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